
Referee 1 
 
First of all, thank you very much to the anonymous referee for his constructive advises. Please find 
enclosed answer to the comments agreeing with some of them and trying to justify those in which 
we have a different interpretation.  
 
Q1) Aim of paper: It is not quite clear what the aim of this article is. It seems that it is 
introducing and describing the use of the software package "S4CAST v2.0". But much of the 
introduction, references and analysis are on predicting Sahel rainfall. I feel that much of this 
Sahel rainfall discussion is distracting from the main aim of this paper: Introducing a 
software package for statistical analysis. I think the paper needs to be substantially rewritten 
to have a clear focus. More space needs to be given on how the software is used. 
 
A1) Thank you very much for your comment. Indeed, it is true that, in the former version, there was 
an excessive reference to Sahelian rainfall predictability, being always motivated by the fact that 
this phenomenon was the driving factor for developing the S4CAST model, so, in this new version, 
we have reduced the number of references. Although some references could be found in relation to 
West African Monsoon (WAM), there were also others related to some other phenomenon 
influenced by sea surface temperature (SST) worldwide. In the revised version, the introduction is 
clearly focused on presenting SST as a source of climate predictability of different climate-related 
variables, stationarity in terms of fluctuations in the co-variability patterns between climate 
variables along a given time period, state-of-the-art dynamical and statistical models and statistical 
method used in this work. All previous considerations serve to introduce the essence of a MCA-
based statistical model that can be executed under different constraints with the aim of predicting 
any given variable from the information given by the SST. 
 
According to the referee comments, the introduction has been differently focused, removing 
excessive mention of the WAM. This section is now clearly structured with appropriate references. 
First, an overview is given on the predictive ability of the SST and associated impacts. Next, a 
summary on the different variables influenced by the SST in different regions of the globe is 
described, explaining in this way its predictor capability. Finally, an overview on both, statistical 
and dynamical models is done to emphasize the application of statistical methodologies, especially 
Maximum Covariance Analysis (MCA) as core of the S4CAST model. Finally there is a brief 
introduction to the different sections of the paper. 
 
We also fully agree with the fact that the case study developed for Sahelian rainfall could be too 
long and overemphasized, so in this new version two different case studies (summarizing the main 
results) are presented: section 4.1 (page 13, from line 19 in advance) is focused on Sahelian rainfall 
predictability while section 4.2 (page 16, from line 7 in advance) is focused on tropical Pacific 
predictability. Tables 1 and 2, presenting the input parameters for each case study have been 
included, so that more space is given on how the software is used. In addition, two movies are 
included as supplementary material on how the case studies are reproduced using the software. 
 
Q2) "stationarity": The authors emphasis "non-stationarity" a lot. They argue that they have 
illustrated "non-stationarity" (in section 3.2.1 and later). I don’t see how they have shown 
that something is non-stationary and how they have statistically test for stationarity. Running 
mean correlations over a 21-year period will by construction go up and down. How can you 
define a stationary period in this? And how do you know if two periods have different 
statistical properties (they are not stationary between the two periods)? This needs to be 
presented much clearer, as it appears to be one of the main issues of the article. 
 
A2) This is a very interesting question and we agree that it was not too clear in the former version. 



“Something” refers to a pattern of co-variability between two climate variables: SST as predictor 
and any predictand field linked to SST (previous studies are required). From previous 
considerations, stationarity is defined in a simpler way. Any given variable, which evolution does 
not depend on time, and it keeps constant with time, can be considered stationary. Thus, we speak 
about stationarity when such a pattern of covariability keeps invariant within a time period. In the 
same way, “something” is non-stationary when it shows changes along time. For detecting it, 
running correlations have been widely applied between time series or climate indices (e.g., 
Camberlin et al., 2001; Rimbu et al 2003, Van Oldenborgh and Burgers 2005). To assess its 
significance it requires additional analysis, as could be bootstrap methods (Gershunov et al, 2001). 
In our case, we have checked the significance of the stationarity using a Montecarlo test, which is 
very similar than a bootstrap method, accepting in this way that the correlations are not obtained by 
chance. 
 
This simple method of moving correlations between two time series is supported by other analysis 
done from the model outputs as regression maps, correlation maps, skill-score maps and time series 
using correlation coefficients and root mean squared error (rmse) which are very useful for 
comparing them with other studies that have been developed in the same field of study.  
 
These modifications have been added to the new version so that section 3.2.1 (page 11, lines 5-31) 
has been extended introducing better explanations and clarifications.  
 
Q3) Version 1 of "S4CAST v2.0": The authors state that this software package is version 2 of 
"S4CAST", but it is not clear where version 1.0 has been published. It seems version 1.0 has 
not been published in peer review? Then it would not be available for most readers? So 
whatever information maybe provided in version 1 would need to be provided here too. 
 
A3) What we consider as version 1.0 was part of a donation to the UCAD university in the 
framework of the VR: 101/11 cooperation project from the VIII UCM Call for Cooperation and 
Development projects. In this way, despite the absence of a publication, we want to respect the 
version number corresponding to the donation. A short explanation on previous considerations 
including a brief history of the first version has been included in section 5 (discussion and 
conclusions) of the revised manuscript (page 18, lines 3-16). 
 
Q4) Introduction of the software: I think it would be very helpful if the example discussed is 
also provided as a MATLAB-script, which explains how this is done and how the software is 
used. 
 
A4) We consider that a matlab script could not be appropriate for understanding how the software is 
used. Instead, two tables (tables 1 and 2) corresponding to both case studies providing the input 
parameters have been included in the revised version and two short movies reproducing the matlab 
command window are included as supplementary material. 
 
Minor comments: 
 
————— page 3987, line "SL1": Is not explain in the text before it has been used here. 
 
The case study SL1 has been removed in order to summarize the case study related to Sahelian 
rainfall and include a second case study. 
 
————— analysis Fig.4-6: what are the domain boundaries to which the explained variance 
values refer to? Figure captions indicate its the boxes shown in Fig4-6? 
 



All figures have been changed in the revised version. 
 
————— Fig.4-6: The headings in panels a and b show some numbers that are not 
explained. 
 
All figures have been changed in the revised version. 
 
—————page 3989, line 14-16: "The results presented above support the existence of a 
non-stationary behaviour of 15 the teleconnections between SSTA variability and rainfall 
associated with WAM which has been referenced in the previously mentioned works. ": I dont 
see how this has been shown. 
 
It can be seen how the Atlantic influence on WAM is different due to the presence of Pacific SSTA, 
which counteract the effect of the Atlantic, leading the disappearance of the rainfall dipole, as 
described in Mohino et al (2011) and Losada et al (2012). In this regard, appropriate explanations 
have been included in the case study (page 15, lines 16-27). 
 
————— page 3989, line 28 "... validation is computed. ": What does this mean? 
 
Thanks for observation, the sentence was wrong and has been removed so that the paragraph is 
better explained in the revised version (page 15, from line 28 in advance). 
 
————— Fig. 9-11: Order of discussion wrong / fig 9 was not discussed. 
 
All figures have been changed in the revised version. 
 
————— page 3990, line 26 "The results of CPT are not so good as those using S4CAST.": 
What does "good" mean? Are the authors saying the CPT methods is not as good as their own 
method? I think this has not been demonstrated here. 
 
In this new version, we have omitted this part since it would require an extensive comparison 
between CPT and S4CAST in order to better explain differences between the two tools, which we 
believe is a deviation from the objective of strictly presenting the results of the S4CAST model. 
 
________________________________________________________________________________ 
 
Referee 2 
 
We deeply thank the referee for taking the time to review this work. Regardless of the final 
publication in GMD, certainly the paper has been greatly improved due to feedback and 
constructive criticism. In this way, substantial changes have been carried out mainly affecting 
introduction and the section on the application of the model. Other less substantial changes have 
also been made. All amendments are listed and detailed below. 
 
Q1) It is difficult for the readers to understand the main factors for predictability 
applicability in these statistical models, e.g. nonlinear and non-stationary approaches. 
 
Thank you for the advice. In this new version, the introduction has been rewritten so we hope that 
this issue is now better understood. In this section, also, and following other comments of the 
referee, we have now corrected some grammatical errors (e.g. "the capacity of storage heat and 
release it...") (page 1, line 27). 
 



Q2) Besides, it seems that the version 1 of the S4CAST model was not mentioned. A brief 
development history would be helpful. Also, it is better to describe why the authors developed 
the version 2 and which part has been improved. That is the purpose to develop and introduce 
this model. 
 
The version number of the model is a sentimental issue. As mentioned in the work, the idea to 
develop and create the model arises from a project from the VIII UCM Call for Cooperation and 
Development projects (VR: 101/11) between the Universtity Complutense of Madrid (UCM) and 
the University Cheikh Anta Diop (UCAD) of Dakar. The project was named “Creation and 
Donation of a statistical seasonal forecast model for West African rainfall”. What we call first 
version, is the model restricted to study the predictability of West African rainfall from tropical 
Atlantic SST under some limited input parameters. First version was donated and then presented in 
some meetings as oral or poster presentations. The reason for developing what we refer as version 
2.0 is the motivation arising from colleagues in different institutions to expand the model. Thus, the 
model is being currently used as part of some studies of predictability as: influence of El Niño 
Southern Oscillation (ENSO) on European rainfall, influence of tropical Atlantic SSTA on 
precipitation in Angola, predictability of rainfall in different regions of South America from tropical 
Atlantic and Pacific SSTA, influence of tropical Atlantic and Pacific SSTA on malaria-related 
parameters in a specific region within the Sahel, influence of SSTA on crop yields in the Iberian 
Peninsula, influence of ENSO on the Senegalese near coastal upwelling.  
 
In the revised version, previous considerations are stated in section 5 (discussion and conclusions; 
page 1, lines 3-16). 
 
Q3) Last, a couple of applications can be considered to show the applicability of the new 
model. 
 
Following this suggestion, we have considered appropriate to simplify the case study related to 
Sahelian rainfall predictability from Atlantic SSTs. To do this, the multiple selections for predictor 
(SL0, SL1) have been removed in order to make a single selection so that the case study is easier to 
understand. Consequently, the explanatory table (table 1) about SL0 and SL1 has been also 
removed. Doing this has allowed us to include a second case study, as suggested. Thus, the second 
case study is focused on the predictability of tropical Pacific SSTA from Atlantic SSTs, a relation 
that has been previously found by other authors and can subsequently be used as a benchmark of the 
tool. In the revised version, the first case study corresponds to section 4.1 (page 13 from line 19 in 
advance). The second case study corresponds to section 4.2 (page 16 from line 7 in advance).  
 
Q4) The objective is to describe the development of the S4CAST model. Thus, the framework 
of model description can be revised, e.g. 2. Description of S4CAST model, 2.1 Statistical 
method, 2.2 Model structure, and  model validation and applications  
 
Thank you for your suggestion. Nevertheless the model structure we have decided to keep invariant 
in this new version. The main reason is that Maximum Covariance Analysis (MCA) method and 
rest of statistical methodologies used by the model are well known methodologies used in statistical 
forecasting. Thus, we consider that the theoretical framework should be introduced before the 
model description section. The section of model description (section 3; page 7, from line 18 in 
advance) is exclusively to introduce the principal novelties introduced by S4CAST model.  
 
Q5) Some suggestions are raised for the results and discussions in model applications.  
 
A. (Page 12 line 21) "In this section the model has been validated through..." Has the model 
been validated in the previous study? If "yes", please include the citation of previous works. If 



"not", the authors only used the western Sahel rainfall to validate model in this study. A 
model typically requires the calibration, validation, and application examples.  Also, the 
predictability of S4CAST model can be revealed if a couple of examples with different 
characteristics (e.g. linear/nonlinear and stationary/non-stationary) can be provided. 
 
The model is validated because a cross-validation of the hindcasts is part of the code of the model. 
Any simulation made with S4CAST includes validation. Nevertheless, this is the first time that the 
validation of the model for different case studies is published. For this reason we have considered to 
add a second case study to validate it. Indeed, the results expected from both case studies are known 
because have been published before and are, therefore, accepted in the scientific community. 
 
B. (Page 14 and page 19) Some sentences about "the cooling of south Atlantic and the rainfall 
dipole over West Africa" are repeated many times in the context. The authors are suggested 
to make some deeper scientific discussions since the prediction results are excellent. When 
compared the CPT tool, the predictability due to different methods used in these models can 
be also discussed. 
 
This is not a scientific paper about the underlying dynamics that explain the results. Indeed, the 
selected case studies correspond to non-stationary relationships that have been described in previous 
publications and, thus, their related mechanisms have been previously described. S4CAST is used to 
corroborate the relationships shown in these studies, as a benchmark of the statistical tool. For this 
reason, although we have summarized the underlying mechanisms associated with the case studies 
(adding the corresponding references), this is not a result of the paper. 
 
Q7). C. (Page 15 line 1-3)  
 

(i) "... SL0 and EP-SL3) when compared to SC." The EP-SL3 should be a typo. 
 
It was a mistake since SL3 did not appear as a case study. Nevertheless, SL0 and SL1 have been 
removed in order to simplify the case study related to Sahelian rainfall predictability (case 4.1) and 
introduce a second case study (section 4.2). 
 

(ii) "Opposite sign anomalies are observed over the tropical North 
Pacific and around the coast of California..." The authors would like to indicate the SSTA or 
anomalous rainfall. It is not clear in the context and the figure.  
 
The description of the results has been rewritten (section 4.1) in order to provide a clearer 
explanation.  
 

(iii) The quality of the figures should be improved. 
 
Done. We have replaced all the figures and included new ones with a better quality. 
 
 
 
Referee 3 
 
First of all, we deeply thank the editor for taking the time to review this work. Regardless of the 
final publication in GMD, the paper has been greatly improved due to feedback and constructive 
suggestions.  
 
This study nicely introduces a statistical prediction model designed to account for non- 



stationary behavior. I have a few concerns about presentation of the results that are detailed 
below. Beyond that, I would like to see a discussion of how to determine whether you are in a 
statistical significant or not statistical significant period. In other words, explain how one can 
determine that a forecast is likely to be skillful? The useful application of such a model 
requires that the user can determine whether a skillful forecast is possible. I feel it this point is 
not adequately discussed in the paper. 
 
Thank you very much for addressing this issue, it has served to introduce a better explanation. It is 
true that the model produces a prediction in hindcast mode, choosing from the moving correlation 
time series the period (SC or NSC period) to be used to apply the MCA. Nevertheless, in forecast 
mode, the user doesn’t know that information a priori and the model produces the three predictions 
corresponding to the SC, NSC and EP periods. Then, attending to the correlation curve from which 
stationary periods (SC, NSC and EP) are obtained, the user assesses the best possible prediction by 
studying the sequence of hindcasts immediately preceding the present. 
 
The explanation about differences between hindcast and forecast mode has been introduced in 
section 5 about discussion and conslusions (page 19, lines 4-26). 
 
Q1) Pg. 3980, s15, what do you mean “particular institution”? 
 
With “particular institution” we refer to different institutions responsible of various datasets (i.e., 
NOAA, NCEP, NCAR, ECMRWF, etc.). In the revised version, we have change the sentence by 
“determined center of climate and environmental research” (page 8, line 9). 
 
Q2) Pg. 3981, s10, it should be “if the forecast”. Same section, I find the explanation of lead-
time hard to follow. In particular, is a synchronous prediction really a prediction? After all, 
the event has already occurred. I am not convinced why partially overlapping seasons are of 
interest (i.e., is it relevant to predict JAS rainfall with data for JJA. 2/3 of the seasonal mean 
should be already observed. Furthermore, why is AMJ also considered zero lag? Isn’t this a 
one season lead forecast?  
 
Thank you for this correction. The sentence has been changed in the revised version (page 9, lines 
16-17). 
 
Regarding explanations about lead-time, and following this advice and other similar suggestions 
from previous referees, we have modified and clarified this section (3.1.2). In this way, lead-time 
refers to time (expressed in months) between the last month for predictor season and the first month 
for predictand season (forecast period), being equal to zero (medium-range forecast) when the 
predictor immediately precedes the predictand or positive (long-range forecast) when there is one or 
more months between both fields. Strictly, we can't speak about lead-time when the predictor 
partially or totally overlaps (synchronous) the predictand field. In this last case we refer to lag-time 
(in months) between the last month comprising the forecast period (predictand season) and the last 
month for predictor season. Following previous explanation, there is a relationship between lead-
time and lag-time, which depends on the number of months comprising the forecast period. Finally, 
forecast-time is commonly used in seasonal forecasting to describe the time gap between predictor 
and predictand fields, so that forecast-time and lead-time represent the same concept. Following 
previous considerations, we have included an explanation about these concepts in the revised 
manuscript (page 8, lines 12-25). 
 
It is true that synchronous and partially overlapping seasons between predictor and predictand fields 
are not useful when referring to predictability, although this option is available in order to perform 
simulations focused on the study of detecting teleconnections with the ocean. In this way, we can 



detect and attribute alterations in the thermal state of the ocean with changes in climate variables. 
Thus, the model is useful just not for the study of the predictability but also to detect 
teleconnections between SST (predictor) and a predictand field. This is explained in section 3.1.2 
(page 9, lines 2-15) and section 5 (page 19, lines 4-26) in addition to some comments in the abstract 
and introduction. 
 
May be there has been a misunderstanding. We refer to lead-time equal to zero (forecast-time equal 
to zero), which would be a three months lag. Anyway, this has been changed and conveniently 
explained in the revised manuscript using a hypothetical case described in section 3.1.2 (page 9, 
lines 16-28). 
 
Q3) Pg. 3981, s25, it is not clear to me why you would apply a low-pass filter and then use the 
model to predict seasonal variability. Furthermore, the statistical model would be developed 
using information from future data, and so it is also not so clear how you would apply the 
model in forecast mode. Is the filter only used for computing the statistical relations, and then 
applied to the raw data. Please explain.  
 
In fact, applying or not a frequency filter, either high pass or low pass filter depends on user 
requirements and should be based on previous studies of the predictor-predictand relationships so 
that a random selection of input parameters can lead to a meaningless simulation. Thus, as 
mentioned by the referee, selection of low pass filter is not suitable for seasonal forecast and 
subsequently is not useful in the current version. Anyway, we keep the possibility of selecting a low 
pass filter in order to include decadal predictability in a future version of the model. Clarifications 
on the use of frequency filter have been included in the revised manuscript (page 9, lines 29-32; 
page 10, lines 1-9). 
 
In its current configuration, the application of the model in forecast mode (not hindcast) mainly 
depends on selected data set for predictor and predictand variables. In this way, forecast will be 
performed if predictor and predictand data are available until the season before the present and 
predictor is available for future prediction. This is better explained by an example: considering from 
September to November (SON) as forecast period concerning the predictand and selecting a lead- 
time of two months for the prediction, which means taking the predictor two months before 
September (from April to June; AMJ), the prediction for SON 2015 will be performed if predictand 
field is available at least until November 2014 and predictor is available at least until June 2015. 
Thus, the model constructs the regression coeficient by using the common period until November 
2014. Regression coefficients along with predictor data (AMJ 2015) will provide the forecast for 
SON 2015. To do this, the model firstly checks predictor and predictand availability and shows by 
screen if future forecast is enabled. Once this is accomplished, the model performs three types of 
prediction depending on the stationarity: for the entire period (EP) forecast is as explained before, 
for significant correlation period (SC) and no-significant correlation period (NSC) forecast is 
performed by computing the regression coefficient respectively for each period. In all three cases 
the predictor for the current year is necessary, being AMJ 2015 in the example above. The 
appropriate changes related to previous explanation are given in section 5 (page 19, lines 4-26). 
 
When a filter is selected, it is applied to the raw data for the initial data preprocessing. Thus, the 
results must be interpreted for the frequencies kept and the forecast and hindcasts are done just for 
those frequencies. 
 
Q4) Pg. 3982, s10, again it is not clear why you refer to AMJ as zero lead forecast of JAS.  
 
AMJ (April-May-June) is defined as the predictor with a lead-time of zero months when the 
predictand is taken for JAS (July-August-September). Remember that lead-time, also named as 



forecast-time, is the time in months between the last month comprising the predictor season and the 
first month for the predictand season (forecast period). If we want to define this example with lag-
time, it would be 3 months, the time between the last months of both predictor and predictand 
seasons. The relationship between lag-time and lead-time depends on the number of months 
comprising the forecast-period. Explanations about this have been included in section 3.1.2 (page 8, 
lines 12-25).  
 
Q5) Pg. 3983, s15, I am not sure what the purpose of centered or advanced correlation 
coefficients are considered. To me only the delayed makes sense in a forecast context. I 
assume this analysis is used for defining the SC/NSC periods. In which case you should clarify 
that you are not specifically discussing predictions.  
 
Indeed, it is true that only delayed correlation coefficients are the most suitable in a forecast context. 
Nevertheless, centered and advanced correlation coefficients are also available for application no 
matter the aim of the user. As pointed by the referee, moving correlations are used for defining 
SC/NSC periods. For any of the three types of mobile windows, hindcasts could be performed, 
while delayed moving correlations windows are preferable when referring to future prediction. In 
this way, section 3.2.1 has been extended to clarify these concepts (page 11, lines 6-31). 
 
Q6) Pg. 3984, s10, shouldn’t this be “leave-one-out”?  
 
Yes, the method is really named as “leave-one-out”. The revised manuscript reflects the name as 
“leave-one out” (page 12, lines 7-8).  
 
Q7) Pg. 3987, s5, is the filtering only applied for deriving the model, or is it used in the 
predictions, and if so what is the impact of the filtering on the end points and resulting 
forecasts?  
 
Once the filter is applied, the results should be interpreted accordingly. Thus, if a high pass filter is 
applied to predictor or predictand, we are talking about high frequency predictability of anomalous 
predictand or predictor fields. 
 
Q8) Pg. 3987, s10, I do not really understand the model used in the synchronous selection. Do 
you have three models: one for each of the three possible overlapping seasons? Or do you 
construct a statistical model using all three seasons as predictors? If so, how can you compare 
synchronous and asynchronous prediction (using only one seasons of data for the predictor)?  
 
We construct a statistical model using all three seasons as predictors. Doing this, we can check the 
influence of the predictor (multiple time selections) on the predictability if no overlapping is 
selected or in the teleconnection if there is an overlap. Synchronous selection between predictor and 
predictand fields is focused on the study of teleconnections. The comparison between synchronous 
and asynchronous selections is done using different time domains for predictor (different 
simulations). In fact, synchronous refers to the selection of predictor and predictand in the same 
period (forecast period), while overlaps between predictor periods (seasons) are focused on the 
contribution of all information given by the predictor. This is explained in the revised manuscript 
(page 9, lines 16-24; page 10, lines 10-17). 
 
Q9) Fig 3 caption, it would probably be useful to use more descriptive terms in the figure 
caption than SL0 and SL1.  
 
Since the case study related to Sahelian rainfall predictability has been deeply simplified in order to 
introduce a second case study, SL0 and SL1 selections have been removed in the revised 



manuscript.  
 
Q10) Pg. 3989, top, if I understood correctly, the MCA is repeated for the NSC period. If the 
is no significant correlation in the Sahel box, does this simply indicate that the leading mode 
does not explain much variance in rainfall in the box, even if it is the mode that should 
maximize the correlation between predictor and predictand fields? It could be useful to 
clarify why there is no correlation in the rainfall box.  
 
Correct, MCA is repeated for the NSC period for which the leading mode (regression map) exhibits 
no significant relationship between the leading mode of the predictor and preditand fields (less than 
90% under a Montecarlo test) in the rainfall box and therefore worsens predictability. This implies 
that, for the NSC period the relationship between the predictor and the predictand field is led by 
another pattern and affecting other regions, reinforcing the theory of a time dependence (non- 
stationary) of the relationship between the two variables. 
 
Q11) Pg. 3990, s15, the correlations shown in figure 8 indicate negative skill. If this is 
systematic, then actually multiplying the forecasts by -1 would give you skill? Does this imply 
that there is useful information in the NSC period or is there an issue with the significance test?  
 
Negative skill in figure 8 is related with a poor or null predictability. Take into account that the 
prediction for each period is done by using the leading mode, which shows no significant signal in 
the rainfall box for the NSC period. There is always useful information in the NSC period that 
should be interpreted as a change, sometimes improving and other worsening predictability. Note 
that all figures have been changed in the revised manuscript, so that new figure 8 does not 
correspond to old figure 8. 
 
Q12) Pg. 3990, s20, this should be figure 9.  
 
Yes, should be fig 9, although the figures have been changed in the revised version. 
 
Q13) Pg. 3992, bottom, the paragraph is not very precise. I guess you mean skill in the second 
sentence, but actually it is not clear for what region/phenomenon/index you are discussing. 
For ENSO, dynamical models are beginning to outperform statistical systems. I believe this is 
described in a recent BAMS papers by Barnston et al.  
 
Thank you for the comment. We were thinking in the tropical Atlantic and, for this reason we used 
that case for the case studies. In the revised version, this sentence, which is now at the beginning of 
section 5 about discussion and conclusions (page 17, lines 26-28), has been corrected, adding a 
reference to Barnston et al. (2015).  
 
Q14) Pg. 3993, s15, this should be “hierarchal Bayesian methods being one ” 
 
Correct, should be “hierarchical Bayesian methods being one”, although no reference to this 
appears in the revised manuscript since some changes have been included. 
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 10 

Abstract 11 

Sea Surface Temperature is the key variable when tackling seasonal to decadal climate 12 

forecast. Dynamical models are unable to properly reproduce tropical climate variability, 13 

introducing biases that prevent a skillful predictability. Statistical methodologies emerge as an 14 

alternative to improve the predictability and reduce these biases. In addition, recent studies 15 

have put forward the non-stationary behavior of the teleconnections between tropical oceans, 16 

showing how the same tropical mode has different impacts depending on the considered 17 

sequence of decades. To improve the predictability and investigate possible teleconnections, 18 

the Sea Surface Temperature based Statistical Seasonal foreCAST model (S4CAST) 19 

introduces the novelty of considering the non-stationary links between the predictor and 20 

predictand fields. This paper describes the development of S4CAST model whose operation is 21 

focused on studying the impacts of sea surface temperature on any climate-related variable. 22 

Two applications focused on analyzing the predictability of different climatic events have 23 

been implemented as benchmark examples. 24 

 25 

1. Introduction 26 

Global oceans have the capacity to store and release heat as energy that is transferred to the 27 

atmosphere altering global atmospheric circulation. Therefore, fluctuations in monthly sea 28 

surface temperature (SST) may be considered as an important source of energy affecting 29 
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 2 

seasonal predictability and improving the ability to forecast climate-related variables. Many 1 

research works have been conducted to study the impacts of worldwide sea surface 2 

temperature anomalies (SSTA) by means of dynamical models, observational studies and 3 

statistical methods. In this way, tropical oceans purchase greater relevance (Rasmusson and 4 

Carpenter, 1982; Harrison and Larkin, 1998; Klein et al., 1999; Saravanan and Chang, 2000; 5 

Trenberth et al., 2002; Chang et al., 2006; Ding et al., 2012; Wang et al., 2012; Ham, 2013a; 6 

2013b; Keenlyside et al., 2013). Because of the persistence shown by SSTA, alterations that 7 

occur in the oceans are slower than changes occurring in the atmosphere. Once the thermal 8 

equilibrium between the ocean and the atmosphere is broken, oceans are able to release their 9 

energy, changing the atmospheric circulation for some time before dissipating, leading in turn 10 

to an influence on other variables. This fact explains why the SSTA can be used as potential 11 

predictor of the anomalous associated impacts. 12 

The S4CAST model presented in this work is focused on the study of the predictability and 13 

teleconnections of climate-related variables based on the remote influence of the SSTA. It has 14 

been shown that such variables can be SST (Rasmusson and Carpenter, 1982; Latif and 15 

Barnett, 1995; Harrison and Larkin, 1998; Klein et al., 1999; Trenberth et al., 2002), rainfall 16 

(Janicot et al., 2001; Drosdowsky and Chambers, 2001; Giannini et al., 2001, 2003; Rowell, 17 

2001, 2003; Chung and Ramathan, 2006; Haylock et al., 2006; Polo et al., 2008; Joly and 18 

Voldoire, 2009; Lu, 2009; Gaetani et al., 2010; Shin and Sardeshmukh, 2010; Fontaine et al., 19 

2011; Nnamchi and Li, 2011; Bulic and Kucharski, 2012; López-Parages and Rodríguez-20 

Fonseca, 2012), and other climate-related variables. In this way, there are studies that have 21 

focused on the role of the tropical Pacific on vegetation, crop yields and the economic 22 

consequences resulting from these impacts (Hansen et al., 1998, 2001; Adams et al., 1999; 23 

Legler et al., 1999; Li and Kafatos, 2000; Naylor et al., 2001; Tao et al., 2004; Deng et al., 24 

2010; Phillips et al., 1998; Verdin et al., 1999; Podestá et al., 1999; Travasso et al., 2009). 25 

Regarding human health, tropical SST patterns have been widely linked to the development 26 

and propagation of diseases (Linthicum et al., 2010), where El Niño-southern Oscillation 27 

(ENSO) related variability plays a crucial role mainly affecting tropical and subtropical 28 

regions around the world (Kovats, 2000; Patz, 2002; Kovats et al., 2003; Patz et al., 2005; 29 

McMichael et al., 2006).  30 

The study of the impacts of tropical global SST on climate has become increasingly important 31 

during the last decades. Thus, there are dynamical and statistical prediction models that 32 
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 3 

attempt to define and predict seasonal averages from interannual to multidecadal time scales. 1 

In this way, General Circulation Models (GCMs) emerged from the need to reproduce the 2 

ocean-atmosphere interactions, responsible for much of climate variability whose major 3 

component is attributed to ENSO phenomenon (Bjerknes, 1969; Gill, 1980). Numerous 4 

research centers have done a hard work to create their own prediction systems in which 5 

coupled ocean-atmosphere GCMs are used in conjunction with statistical methods to achieve 6 

reliable ENSO variability predictions and analyze the skill of these models (Cane et al., 1986; 7 

Barnett and Preisendorfer, 1987; Zebiak and Cane, 1987; Barnston and Ropelewski, 1992; 8 

Barnett et al., 1993; Barnston et al., 1994, 1999; Ji et al., 1994a, 1994b; Van den Dool, 1994; 9 

Mason et al., 1999). Predictability of rainfall has become a scope for these models, finding 10 

works that have focused on this issue by means of dynamical and statistical models (Garric et 11 

al., 2002; Coelho et al., 2006). However, the difficulty of GCMs to adequately reproduce the 12 

tropical climate variability remains a real problem, so that in recent years the number of 13 

studies focusing on specific aspects of the biases of these models has increased exponentially 14 

(Biasutti et al., 2006; Richter and Xie, 2008; Wahl et al., 2011; Doi et al., 2012; Li and Xie, 15 

2012; Richter et al., 2012; Bellenguer et al., 2013; Brown et al., 2013; Toniazzo and 16 

Woolnough, 2013; Vanniere et al., 2013; Xue et al., 2013; Li and Xie, 2014).  17 

 Statistical models have been widely used as an alternative way of climate forecasting, 18 

including several techniques in their development. Model Output Statistics (MOS) determine 19 

a statistical relationship between the predictand and the variables obtained from dynamic 20 

models (Glahn and Lowry, 1972; Klein and Glahn, 1974; Vislocky and Fritsch, 1995). 21 

Stochastic climate models were defined in the 1970s to be first applied to predict SSTA and 22 

thermocline variability (Hasselmann, 1976; Frankignoul and Hasselmann, 1977) and later 23 

addressing non-linearity problems (Majda et al., 1999). Moreover, Linear Inverse Modeling 24 

(Penland and Sardeshmukh, 1995) has been used in predicting variables such as tropical 25 

Atlantic SSTA (Penland and Matrosova, 1998) and the study of Atlantic Meridional Mode 26 

(Vimont, 2012). Statistical modeling with neural networks is also applied in climate 27 

prediction (Gardner and Dorling, 1998; Hsieh and Tang, 1998; Tang et al., 2000; Hsieh, 2001; 28 

Knutti et al., 2003; Baboo and Shereef, 2010; Shukla et al., 2011) with the potential to be a 29 

nonlinear method capable of addressing the problems in atmospheric processes that are 30 

overlooked in other statistical methodologies (Tang et al., 2000; Hsieh, 2001). 31 

A special mention goes to two linear statistical methods: Maximum Covariance Analysis 32 
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(MCA) used in the S4CAST model and Canonical Correlation Analysis (CCA). These 1 

methods have been widely used in seasonal climate forecasting, either to complement 2 

dynamical models or to be applied independently. In this way, Climate Predictability Tool 3 

(CPT) developed at International Research Institute for Climate and Society (IRI) allows user 4 

to apply multivariate linear regression techniques (e.g., CCA) to get their own predictions 5 

(Korecha and Barnston, 2007; Recalde-Coronel et al., 2014; Barnston and Tippet, 2014). In 6 

essence, these techniques serve to isolate co-variability coupled patterns between two 7 

variables that act as predictor and predictand respectively (Bretherton et al., 1992). Based on 8 

the ability of the SSTA as predictor field, these methods were originally applied to analyze 9 

the predictability of phenomenon like ENSO (Barnston and Ropelewski, 1992), 500-mb 10 

height anomalies (Wallace et al., 1992) or global surface temperature and rainfall (Barnston 11 

and Smith, 1996). Nevertheless, there are works discussing the use of these methods, focusing 12 

on the differences between the two techniques (Cherry, 1996, 1997) and on the limitations in 13 

their applications (Newman and Sardeshmukh, 1995). 14 

The co-variability patterns between SSTA themselves might fluctuate from one given study 15 

period to another, determining non-stationary behavior along time. In this way, 16 

teleconnections associated with El Niño or with the Tropical Atlantic are effective in some 17 

periods but not in others. In this way, Rodríguez-Fonseca et al. (2009) suggested how the 18 

interanual variability in the equatorial Atlantic could be used as predictor of Pacific ENSO 19 

after the 1970's, a theory that has been subsequently reinforced by further analysis (Martín-20 

Rey et al., 2012; 2014; 2015; Polo et al., 2015). The non-stationarity in terms of predictability 21 

of rainfall has also been found for West African rainfall (Janicot et al., 1996; Fontaine et al., 22 

1998; Mohino et al., 2011; Losada et al., 2012; Rodriguez-Fonseca et al., 2011; 2015); and 23 

Europe (López-Parages and Rodriguez-Fonseca, 2012; López-Parages et al., 2014). Thus, the 24 

existence of non-stationarities is a key factor in the development of the statistical model.  25 

The present paper describes a statistical model based on the predictive nature of SSTA 26 

treating the stationarity in the relationships between the predictor and predictand fields. 27 

Section 2 describes the theoretical framework including the statistical methodology and the 28 

significance of the statistical analysis. Section 3 is dedicated to S4CAST model description 29 

including the determination of stationary periods, hindcast and forecast calculations and 30 

validation. Section 4 describes two case studies concerning the predictability of Sahelian 31 

rainfall and tropical Pacific SSTA.  32 
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 1 

2. Theoretical framework 2 

2.1. Statistical methodology 3 

Maximum Covariance Analysis (MCA) is a broadly used statistical discriminant analysis 4 

methodology based on calculating principal directions of maximum covariance between two 5 

variables. This statistical analysis considers two fields, Y (predictor) and Z (predictand) 6 

(Bretherton et al., 1992; Cherry, 1997; Widmann, 2005) for applying the Singular Value 7 

Decomposition (SVD) to the cross-covariance matrix (C) in order to be maximized. SVD is 8 

an algebraical technique that diagonalizes non-squared matrices, as it can be the case of the 9 

matrices of the two fields to be maximized. 10 

In the meteorological context, C is dimensioned in time (!!) and space domains (!!and !!for 11 

Y and Z respectively), although the spatial domain can be more complex depending on the 12 

user requirements. SVD calculates linear combinations of the time series of Y and Z, named as 13 

expansion coefficients (hereinafter U and V for Y and Z respectively) that maximize C. The 14 

expansion coefficients are computed by diagonalization of C. As C is non-squared, 15 

diagonalization is first done to A =CCT  and then to B =CTC . The singular vectors R and Q 16 

are the resultant eigenvectors from each diagonalization, which are the spatial configurations 17 

of the co-variability modes. The associated loadings on time domain are the expansion 18 

coefficients U and V. The eigenvalues are a measure of the percentage of variance explained 19 

by each mode. 20 

Mathematically, the time anomalies of both, Z and Y fields are calculated by removing the 21 

climatological seasonal cycle to the seasonal means.  22 

!Z = Z " Z           (1) 23 

!Y =Y "Y           (2) 24 

Then, the cross-covariance matrix is calculated as: 25 

C !Y !Z =
!Y !Z T

nt "1( )
          (3) 26 

MCA diagonalizes (3) by SVD methodology, obtaining the singular vectors R and Q from 27 

which the expansion coefficients are obtained according to the following expression: 28 
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U = RTY           (4) 1 

V =QTZ           (5) 2 

Using the eigenvectors, the percentage of explained covariance is calculated as 3 

scfk =
!k
2

!i
2

i

r

!
;!k = !1,!2,...,!n[ ]              (6) 4 

Where k is the eigenvalue for each k mode and r represents the number of modes taken into 5 

account for the analysis. 6 

The expression from which an estimation of the predictand is obtained is a linear model as: 7 

Ẑ =!Y           (7) 8 

Where !  is the so-called regression coefficient and Ẑ  denotes an estimation of the data to be 9 

predicted (hindcast). 10 

Taking into account that S is the regression map of the field Z onto the direction of U 11 

S =UZT           (8) 12 

And assuming good prediction Ẑ , it follows that 13 

S =UẐT           (9) 14 

Introducing the equality UUT( ) UUT( )
!1
= I  and multiplying in (9) the following expression is 15 

obtained: 16 

UUT( ) UUT( )
!1
S =UẐT         (10) 17 

Removing U from both terms 18 

Ẑ = UT UUT( )
!1
S"

#$
%
&'
T

         (11) 19 

Considering now the expression U =Y TR  it follows that 20 

Ẑ =YR UUT( )
!1
S          (12) 21 

Comparing this expression with (7) and introducing (8) it can be concluded that 22 



 7 

! = R UUT( )
"1
UZT          (13) 1 

Which is the regression coefficient to be calculated when defining the linear model from 2 

which the predictions and hindcasts will be obtained. 3 

2.2. Statistical field significance 4 

There are many statistical tests to assess the robustness of a result. The S4CAST uses a non-5 

parametric test because, a priori, the model doesn't know the distribution of the predictand 6 

field. Thus, applying Monte Carlo testing assesses the robustness of the results and is used to 7 

validate the S4CAST model skill. This method involves performing a large number (N > 500) 8 

of permutations from the original time series. Each permuted time series is used to repeat the 9 

calculation and compare the obtained results with the real values. Once this is done, the 10 

values obtained with the N permutations are taken to create a random distribution to finally 11 

determine the position of the real value within the distribution, which will indicate the 12 

statistical significance of the obtained value. This method has been described and used in 13 

many previous works (Livezey and Chen, 1987; Barnett, 1995; Maia et al., 2007). The user 14 

inputs the level of statistical significance at which the test is applied, being the most used 90% 15 

(0.10), 95% (0.05) and 99% (0.01).  16 

 17 

3. S4CAST model 18 

S4CAST v2.0 model is conceived as a statistical tool to study the predictability and 19 

teleconnections of variables that strongly covary with SSTA variability in remote and nearby 20 

locations to a particular region of study. The code has been developed as a MATLAB® 21 

toolbox. The software requirements are variable and depend on user needs. The spatial 22 

resolution and size of data files used as inputs are directly proportional to memory 23 

requirements. The software generates an ‘out of memory’ message whenever it requests a 24 

segment of memory from the operating system that is larger than what is currently available. 25 

The model software consists of three main modules (figure 1), each composed of a set of sub-26 

modules whose operation is described below. 27 

3.1. Model Inputs 28 

S4CAST v2.0 has a direct execution mode. By simply typing ‘S4cast’ in the command 29 

window, the user is prompted to enter a series of input parameters in a simple and intuitive 30 
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way. 1 

3.1.1. Loading databases 2 

The model is ready to work with Network Common Data Form (NetCDF) data files. There 3 

are different conventions to set the attributes of the variables contained in NetCDF files. In 4 

this way, the data structure must conform as far as possible to the Cooperative 5 

Ocean/Atmosphere Research Service (COARDS) convention. Execution errors that may 6 

occur due to the selection of data files are easily corrected by minor modifications of data 7 

assimilation scripts. Data files can be easily introduced at the request of the user. Once 8 

downloaded from the website of a determined center of climate and environmental research, 9 

the user inserts data files into the directory set by default (S4CAST_v2.0/data_files). 10 

3.1.2. Input parameters 11 

In order to correctly introduce the input parameters, it is convenient to present some terms 12 

commonly used in seasonal forecasting. In this way, the forecast period corresponds to the n-13 

month seasonal period concerning the predictand for which the forecast and hindcasts are 14 

performed. Moreover, the lead-time refers to time expressed in months between the last 15 

month comprising the predictor monthly period and the first month comprising the forecast 16 

period. Thus, medium-range forecast refers to a lead-time set to zero, while long-range 17 

forecast refers to a lead-time equal or larger than one month. Strictly, we can't speak about 18 

lead-time when the predictor monthly period partially or totally overlaps the forecast period. 19 

In this case we refer to lag-time expressed in moths between the last month comprising the 20 

forecast period and the last month for predictor period. The relationship between lead-time 21 

and lag-time depends on the number of months comprising the forecast period. Finally, the 22 

forecast-time is commonly used to describe the time gap expressed in months between the 23 

predictor and predictand monthly periods, assuming the same concept represented by the 24 

lead-time. 25 

In the first step, predictand and predictor data files are selected. In this way, the predictand 26 

field can be precipitation, SST, or any variable susceptible to be predicted from SSTA. The 27 

predictor is restricted to SST.  28 

Once predictor and predictand fields are selected, the available common time period between 29 

them is analyzed and displayed so that the user is prompted to select the whole common 30 

period for analysis or other within it. The same temporal dimension in both fields is required 31 
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in the statistical analysis to construct the cross-covariance matrix (see section 2.1.). 1 

The next step is for selecting the n-month forecast period in which the predictand is 2 

considered. The model allows a selection from one (n = 1) to four (n = 4) months. From the 3 

forecast period, the user determines a specific lead-time, relative to the predictor, from which 4 

medium-range (lead-time 0) or long-range (lead-time > 0) forecast can be performed. In order 5 

to study and evaluate possible teleconnections, the temporal overlapping between the forecast 6 

period and the predictor is also available by defining the monthly lags between both fields 7 

from monthly lag 0 (synchronous) referred to the case in which the predictor and the 8 

predictand fields are taken at the same n-month period, through partial overlapping to 9 

eliminate the overlapping (medium-range forecast). Note that synchronous and partially 10 

overlapping seasons between predictor and predictand fields are not useful when referring to 11 

predictability, although this option is available in order to perform simulations focused on the 12 

study of physical mechanisms (teleconnections) between the predictor and predictand fields. 13 

Thus, it is worth noting that the model may be focused in the study of the predictability but it 14 

can be also used to detect teleconnections between SST (predictor) and a predictand field. 15 

Monthly lags indicating forecast times (lead-times) are user selectable. To illustrate the above, 16 

taking a hypothetical case in which the forecast period corresponds to the months from 17 

February to April (FMA) whatever the region, the synchronous option will consider the 18 

predictor in FMA, while partially overlapping occurs when the predictor is taken for January-19 

to-March (JFM) and December-to-February (DJF). Avoiding overlapping, lead time 0 will be 20 

NDJ (November-to-January), lead time 1 will be OND (October-to-December), lead time 2 21 

will be SON (September-to-November) and so on, without overlapping FMA season of the 22 

previous year. Thus, the user can select any 3-month isolated period from FMA 23 

(synchronous) to MJJ (May-to-July).  24 

Next, the spatial domains of both predictor and predictand fields are easily selected from its 25 

latitudinal and longitudinal values. Considering the above options, the user can select a 26 

sequence of successive monthly lags or only one so that the predictor is taken for the total 27 

amount of selected information (e.g., NDJ+OND+SON). 28 

Later, there is the possibility of applying a filter to the time series of predictor and predictand 29 

fields. The current version uses a Butterworth filter, either as high-pass or low-pass filter 30 

frequently used in climate-related studies (e.g., Roe and Steig, 2004; Enfield and Cid-Serrano, 31 

2006; Mokhov and Smirnov, 2006; Ault and George, 2012; Schurer and Hegerl, 2013), 32 
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although the selection of low pass filter is not suitable for seasonal forecast and subsequently 1 

is not useful in the current version. Anyway, the possibility of selecting a low pass filter is 2 

maintained in order to include decadal predictability in a future version of the model. The 3 

application of a filter allows the user to isolate the frequencies at which the variability 4 

operates, which can have different sources of predictability. In this way, the user selects the 5 

cutoff frequency, following the expression 2dt/T, being dt the sampling interval and T the 6 

period to be filtered both in the same units of time. If no filter is applied, the raw data is used. 7 

There are plenty of filters that could be applied and future versions of the model will include 8 

different possibilities.  9 

In case of multiple time selection for predictor, the statistical methodology is firstly applied 10 

considering the largest lead-time and successively adding information for other lead-times up 11 

to the present. So, continuing with the example above in which the forecast period 12 

corresponds to FMA if selected lead-times from 0 to 3, the first predictor selection is made 13 

considering the 3-months lead-time period (SON). After, the 2-months lead-time period is 14 

added (ASO+SON). Next, up to the period 1-month delayed (ASO+SON+OND), and finally 15 

the case up to the period with a lead-time equal to zero (ASO+SON+OND+NDJ). Previous 16 

example is illustrated in figure 2. 17 

Once the matrices are determined for each predictor time selection, the statistical 18 

methodology is applied. Up to now, the model applies the MCA discriminant analysis 19 

technique, although other statistical methodologies will be included in future releases, 20 

including CCA or non-linear methods as neural network and Bayesian methodologies. As 21 

indicated in the previous section, MCA determines a new vector base in which the relations 22 

between the variables are maximized. Thus, it is important to choose a number of modes 23 

(principal directions) to be considered in the computations, selecting either a single mode or a 24 

set of them, always consecutive. The analysis of stationarity is performed for a single mode 25 

selection. For multi-mode selection, the whole time series will be considered. 26 

The statistical field significance level is set for the first time to assess the analysis of 27 

stationarity. Thus, the model runs for the entire period and for those periods for which the 28 

relationships are considered stationary within it. This is internally established by applying the 29 

method explained later in the section 3.2.1.  30 

3.1.3. Data preprocessing 31 

From selected data files and input parameters previously defined, preprocessing of data is 32 
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performed so that the data are prepared for implementing statistical methodology. 1 

3.2. Statistical Tools 2 

At this point the statistical procedure described in the methodology is applied considering 3 

different periods based on the previously described stationary analysis. 4 

3.2.1. Analysis of stationarity 5 

Stationarity refers to changes along time in the co-variability pattern between two variables. 6 

Thus, we speak about stationarity when such a pattern of co-variability keeps invariant within 7 

a time period and therefore will be non-stationary when showing changes. To evaluate how 8 

much the predictor (Y) and the predictand (Z) fields are related to each other, the model 9 

calculates running mean correlations between the expansion coefficients indicated in (4) and 10 

(5) for the selected  !!! mode along the record. This technique has been widely used to 11 

determine the stationarity of the relationships between the time series of climate indices (e.g., 12 

Camberlin et al., 2001; Rimbu et al., 2003; Van Oldenborgh and Burgers, 2005). Next, the 13 

significance level of correlation coefficients is calculated according to the method explained 14 

in section 2.2. In this way, stationary relationships between the predictor (Y) and the 15 

predictand (Z) fields are established by applying a 21 years moving correlation windows 16 

analysis between the leading expansion coefficients of both fields obtained from the 17 

discriminant analysis method (section 2.1.) using the whole record in accordance with the 18 

evolution of the correlation coefficient. To do this, three types of 21 years moving correlation 19 

windows are user selectable: ‘delayed’ to correlate one year and the 20 previous years; 20 

‘centered’ to correlate one year, the 10 previous years and the 10 next years; or ‘advanced’ to 21 

correlate one year and the 20 next years. Note that delayed correlation coefficients are the 22 

most suitable in a forecast context when referring to future prediction. Nevertheless, centered 23 

and advanced correlation coefficients are also available for application no matter the aim of 24 

the user.  25 

From previous analysis, three different periods are analyzed depending on the stationarity of 26 

the predictability: use the significant correlation period (hereinafter SC) for which the 27 

expansion coefficients are significantly correlated; use no significant correlation period 28 

(hereinafter NSC), and work with the entire period (hereinafter EP). The model performs all 29 

calculations for each period separately and, from them, the simulated maps (hindcasts) of the 30 

predictand for each year are calculated by applying cross-validation. 31 
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3.2.2. Model validation 1 

Cross-validation is used in climate forecasting as part of statistical models when assessing 2 

forecast skill (Michaelsen, 1987; Barnston and Van den Dool, 1993; Elsner and 3 

Schmertmann, 1994). This method is intended as a model validation technique in which the 4 

data for the predictor and the predictand for a given time step is removed from the analysis to 5 

make an estimate of it with the rest of data, comparing the simulated value with the removed 6 

one. In this way, a cross-validated hindcast is obtained. In the S4CAST model, the leave-one-7 

out method is applied as described by (Dayan et al., 2013). From the comparison between the 8 

predicted value and the original one, the skill of the model can be inferred using different 9 

skill-scores. S4CAST considers the Pearson correlation coefficients and the root mean square 10 

error (RMSE) although other scores will be introduced in future versions. 11 

3.3. Model Outputs 12 

Modes of co-variability are related to spatial patterns of different variables that co-vary over 13 

time, and thus, are linked to each other. In the case of MCA, the covariance matrix is 14 

computed and the SVD method is applied to provide a new basis of eigenvectors for the 15 

predictor and predictand fields which covariance is maximized. The obtained singular vectors 16 

describe spatial patterns of anomalies in each of the variables that tend to be related to each 17 

other. Regression and correlation maps and corresponding expansion coefficients determine 18 

each mode of co-variability for the predictor and predictand fields. The expansion coefficients 19 

indicate the weight of these patterns in each of the time steps. Thus, regression and correlation 20 

co-variability maps can be represented. This is done with the original anomalous matrix, 21 

highlighting those grid points whose time series are highly correlated with the obtained 22 

expansion coefficients, showing large co-variability and determining the key regions of 23 

prediction. To represent it, regression and correlation maps are calculated to analyze the 24 

coupling between variables and to understand the physical mechanisms involved in the link.  25 

On the other hand, the time series of the expansion coefficients determine the scores of the 26 

regression and correlation maps at each time along the study period. The model represent the 27 

expansion coefficients used to calculate the regression coefficients. Thus, those years in 28 

which the expansion coefficients for the predictor and the predictand are highly correlated 29 

will coincide with years in which we can expect a better estimation.  30 

In the current version of the model, the root mean square error (RMSE) and the Pearson 31 

correlation coefficients skill scores have been included. These techniques are applied to 32 
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compare the observed and simulated maps (hindcasts) of the predictand field obtaining 1 

correlation and RMSE maps and time series. On the one hand, maps are obtained calculating 2 

for each grid point the skill scores between the hindcast and the observed maps. On the other 3 

hand, time series are obtained for each time by applying correlation and RMSE between the 4 

area average of the observed and estimated maps. Some comments on these techniques are 5 

addressed by Barnston (1992). The S4CAST model generates the hindcast within the EP, SC 6 

and NSC periods separately from applying the one-leave-out method (Dayan et al., 2013) and 7 

then the statistical methodology. 8 

 9 

4. Application of the model: case studies 10 

Two different case studies have been simulated as benchmark examples. Both cases are 11 

focused on the predictive ability of the tropical Atlantic SSTA. In a first simulation, the 12 

predictand field corresponds to Sahelian rainfall. In a second simulation, winter tropical 13 

Pacific SSTA have been used as predictand field. The links between tropical Atlantic Ocean 14 

and the two variables selected as predictand fields have been widely studied exhibiting non-15 

stationary relationships. The results obtained by applying the model have been contrasted in 16 

the following sections. Tables 1 and 2 list the entries for both case studies to be easily 17 

reproduced by the user. 18 

4.1 Tropical Atlantic – Sahelian rainfall 19 

In this first case study the model has been applied to validate its use in the study of seasonal 20 

rainfall predictability in the Sahel taking tropical Atlantic as predictor field. The West African 21 

Monsoon (WAM) is characterized by a strong seasonal rainfall regime that occurs from July 22 

to September related to the semi-annual shift of the Intertropical Convergence Zone (ITCZ) 23 

together with the presence of a strong thermal gradient between the Sahara and the ocean in 24 

the Gulf of Guinea. The interannual fluctuations in seasonal rainfall are due to various causes, 25 

being the changes in global SST the main driver of WAM variability (Folland, 1986; Palmer, 26 

1986; Fontaine et al., 1998; Rodríguez-Fonseca et al., 2015). Particularly, several 27 

observational studies suggest the influence of tropical Atlantic SSTA on the WAM at 28 

interannual time scales (Giannini et al., 2003; Polo et al., 2008; Joly and Voldoire, 2009; 29 

Nnamchi and Li, 2011).  30 

Regarding the input parameters (table 1), the predictand field corresponds to precipitation 31 
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from GPCC Full Data Reanalysis monthly means of precipitation appended with GPCC 1 

monitoring dataset from 2011 onwards with a resolution of 1.0º x 1.0º covering the period 2 

from January 1901 to March 2015 (Rudolf et al., 2010; Becker et al., 2013; Schneider et al., 3 

2014; http://gpcc.dwd.de). The forecast period consists of July to September (JAS), 4 

computing seasonal anomalous rainfall in the Sahelian domain (18W-10E; 12N-18N). No 5 

frequency filter is applied for predictand. The predictor field corresponds to NOAA Extended 6 

Reconstructed SST (ERSST) V3b monthly means of SST with a resolution of 2.0º x 2.0º 7 

spanning the period from January 1854 to May 2015 (Smith and Reynolds 2003; 2004; Smith 8 

et al., 2008; http://www.ncdc.noaa.gov/oa/climate/research/sst/ersstv3.php). The spatial 9 

domain corresponds to southern subtropical and equatorial Atlantic band (60W-20E; 20S-10 

4N). A high pass filter with cutoff frequency set to 7 years has been applied to the predictor 11 

time series in order to analyze the influence of SSTA interannual variability, which includes 12 

leading oceanic interannual variability modes such as the Atlantic equatorial mode (AEM) 13 

(Polo et al., 2008) or the South Atlantic Ocean dipole (SAOD) (Nnamchi et al., 2011). 14 

Medium-range forecast has been taken into account setting the lead-time to zero (equivalent 15 

to monthly lag 3). In this way, April-to-June (AMJ) is the selected season for predictor.  16 

For applying the methodology, the leading mode of co-variability (k = 1) has been selected. 17 

The correlation curve (figure 3) reflects the stationary periods (SC and NSC) within EP period 18 

as stated in section 3.2.1. The SC period is almost restricted to years from 1932 to 1971 with 19 

some exceptions. The remaining years are taken to analyze the predictability for the NSC 20 

period.  21 

Figure 4 show regression maps associated with the leading mode for the periods SC, EP and 22 

NSC explaining 50%, 32% and 41% of co-variability respectively. For the SC period (figure 23 

4, top panels), the co-variability pattern exhibits a quasi-isolated cooling in the tropical 24 

Atlantic associated with a rainfall dipole over West Africa with negative anomalies in the 25 

region of the Gulf of Guinea and opposite in the Sahel. The opposite co-variability pattern 26 

takes place under negative scores of the expansion coefficient. These results are in agreement 27 

with those found in the last decades of the 20th century by several authors who have 28 

discussed the role of the tropical Atlantic SST as a dominant factor in the WAM variability at 29 

interannual and seasonal time scales (Janowiak, 1988; Janicot, 1992; Fontaine and Janicot, 30 

1996). Losada et al. (2010b) found how the response to an isolated positive equatorial 31 

Atlantic Niño event is a dipolar rainfall pattern in which the decrease of rainfall in Sahel is 32 
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related to the increase of rainfall in Guinea (as in figure 4) due to changes in the sea-land 1 

pressure gradient between Gulf of Guinea SSTs and the Sahel. Mohino et al (2011) and 2 

Rodríguez-Fonseca et al. (2011) have found in the observations how this dipolar behavior 3 

takes place for some particular decades coinciding with the SC periods, confirming in this 4 

way the correct determination of the leading co-variability mode by the model. When 5 

considering the EP period (figure 4, middle panels), a co-variability pattern similar to that 6 

observed for the SC period is appreciated with small differences. Regarding the predictand 7 

field, the anomalous rainfall signal is less intense when compared to SC. For the predictor, the 8 

cooling in the tropical Atlantic is accompanied by opposite weak anomalies in the north 9 

subtropical and tropical Pacific. Regarding the NSC period (figure 4, bottom panels), as for 10 

the previous periods (SC, EP) a cooling in the tropical Atlantic is observed concerning the 11 

predictor associated with negative rainfall anomalies in the Gulf of Guinea and a weak 12 

positive signal in the eastern Sahel, virtually disappearing the rainfall dipole. The global 13 

SSTA regression map shows a significant warming in the tropical Pacific. The opposite 14 

pattern should be considered under negative scores of the expansion coefficient.  15 

The results presented above support the existence of a non-stationary behavior of the 16 

teleconnections between SSTA variability and rainfall associated with WAM. Several authors 17 

have addressed the dipolar anomalous rainfall pattern as a response of an isolated tropical 18 

Atlantic warming (cooling) (Rodríguez-Fonseca et al., 2011, Losada et al., 2010a; 2010b; 19 

Mohino et al., 2011) restricted to the period 1957-78 in the observations. The uniform rainfall 20 

signal over the whole West Africa, with negative anomalies related to a cooling over tropical 21 

Atlantic and an opposite sign pattern over tropical Pacific is only observed for the period from 22 

1979 in advance. These results agree with Losada et al. (2012), who focused on non-23 

stationary influences of tropical global SST in WAM variability, explaining how the 24 

disappearance of the dipole was due to the counteracting effect of the anomalous responses of 25 

the Pacific and Atlantic on the Sahel. Recently, Diatta and Fink (2014) have documented 26 

similar non-stationary relationships. 27 

The associated skill of the model to reproduce the rainfall is shown in figure 5 in terms of 28 

correlation maps and time series for SC and EP periods. A qualitative improvement is 29 

observed when considering the SC periods instead of the whole period (EP). This result points 30 

to a better spatial distribution of the significant values for particular decades in which the 31 

signal extends to a larger spatial domain. In order to analyze the performance of the 32 
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simulation for each particular year, the correlation between observed and predicted maps at 1 

each time step is calculated and shown in figure 5. Since it has only been considered the 2 

leading mode of co-variability, the time series of validation between observed and simulated 3 

rainfall should evolve following the absolute values of the expansion coefficients. Thus, when 4 

the expansion coefficient (U) of the predictor (SST) shows high scores in the leading mode, 5 

good hindcasts are obtained. 6 

4.2. Tropical Atlantic – Tropical Pacific 7 

A non-stationary behavior in the association between tropical Atlantic and tropical Pacific 8 

SSTA has been recently documented in some works suggesting that the tropical Atlantic 9 

SSTA during the boreal summer could be a potential predictor of winter tropical Pacific 10 

SSTA variability after the 1970s (Rodríguez-Fonseca et al., 2009; Ding et al., 2012). In this 11 

section, the S4CAST model has been applied to corroborate the non-stationarity in the 12 

teleconnection between tropical Atlantic considered as predictor field and tropical Pacific 13 

variability, a feature that has been also demonstrated in Martin del Rey et al (2015). 14 

The input parameters are listed in table 2. Both predictor and predictand fields corresponds to 15 

NOAA ERSST introduced in the previous section (4.1) covering the period from January 16 

1854 to May 2015. The forecast period consists of December-to-March (DJFM). The selected 17 

region for predictand corresponds to SSTA in the tropical Pacific domain (120E-60W; 30S-18 

20N), while the predictor corresponds to tropical Atlantic SSTA (60W-20E; 20S-4N) and has 19 

been considered for the period July-to-October (JASO), which means long-range forecast 20 

setting the lead-time to one month. A high pass filter with cutoff frequency set to 7 years has 21 

been applied to both predictor and predictand time series in order to analyze the predictability 22 

considering interannual variability. For applying the methodology and assess the stationary 23 

periods (SC and NSC) within EP, the leading mode of co-variability (k = 1) has been selected.  24 

The correlation curve (figure 7) presents the SC period clearly divided into two intervals: 25 

from 1889 to 1939 and from 1985 up to the present (2015). Consequently, the NSC period 26 

corresponds to the remaining years within the study period (1854 – 2015).  27 

The leading mode (figure 8) for the periods SC, NSC and EP explains 52%, 28% and 43% of 28 

co-variability respectively. Regarding the SC (figure 8; top panels) and EP (figure 8; middle 29 

panels) periods it is observed how a cooling (warming) in the tropical Atlantic is related to a 30 

warming (cooling). Thus the co-varibility pattern is defined by opposite sign anomalies 31 

between predictor and predictand fields, although the magnitude of the anomalies is greater 32 
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concerning the SC period. Considering the NSC period (figure 8; bottom panels), a signal in 1 

tropical Pacific is not observed in response to the tropical Atlantic cooling (warming). 2 

Previous results are in agreement with former studies in which a similar tropical SSTA pattern 3 

with opposite temperature anomalies in the equatorial Atlantic and Pacific in summer has 4 

been documented to occur in the decades within the SC period (Rodríguez-Fonseca et al., 5 

2009; Martin-Rey et al., 2012). Thus, Martín-Rey et al. (2014, 2015) point to a non-stationary 6 

relationship that seems to take place in the early 20th century and after the 1970s, confirming 7 

the correct determination of the leading co-variability mode by the model. 8 

The mechanism from which the teleconnection takes place, has been explained by Polo et al. 9 

(2015), who suggest that a cooling in the equatorial Atlantic results in enhanced equatorial 10 

convection, altering the Walker circulation and consequently enhancing subsidence and 11 

surface wind divergence over the equatorial Pacific during the period July-to-August (JASO). 12 

The anomalous wind piles up water in the western tropical Pacific, triggering a Kelvin wave 13 

eastward from autumn to winter, setting up the conditions for a cold event in the equatorial 14 

east Pacific during the period December-to-March (DJFM). Considering a cooling in the 15 

tropical Atlantic, the opposite sequence takes place. 16 

The skill of the model in reproducing tropical Pacific SSTA (figure 9) is also restricted to 17 

stationary conditions. Thus, depending on the considered sequence of decades within the 18 

period EP (figure 9; middle panels), the model provides better results for period SC (figure 9; 19 

top panels), while it is not able to produce reliable estimations when period NSC (figure 9; 20 

bottom panels) is taken into account. These results highlight the need to consider different 21 

periods and possible modulations when tackling seasonal predictability of tropical Pacific 22 

SSTA, in agreement with recent results of Martin del Rey et al. (2015). 23 

 24 

5. Discussion and conclusions 25 

It is well known how dynamical models are far to produce very accurate seasonal climate 26 

forecast for non-ENSO events, partly due to the presence of strong biases in some regions, as 27 

the tropical Atlantic (Barnston et al., 2015). In contrast, statistical models, despite being an 28 

useful and effective supplement, they are mostly unable to reproduce the non-linearity in the 29 

ocean-atmosphere system, exceptions include neural networks and Bayesian methods. 30 

Attempts to implement new statistical models constitute a fundamental contribution aimed to 31 
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enhance and complement the dynamical models. Anyway, statistical models have evolved 1 

linked to dynamical models, either as an alternative or within them as a hybrid model. 2 

Following this reasoning, this paper introduces the S4CAST v2.0 model. The model was 3 

created from the first version (S4CAST v1.0) developed as the main part of a cooperation 4 

project between the Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang 5 

of the University Cheik Anta Diop (UCAD) in Dakar (Senegal) and the Complutense 6 

University of Madrid (UCM) within the VIII UCM Call for Cooperation and Development 7 

projects (VR: 101/11) and was named “Creation and Donation of a statistical seasonal 8 

forecast model for West African rainfall”. Thereby, the authors wanted to respect the number 9 

of the donation version despite not having a publication. As a brief explanation on the history, 10 

the original model was restricted to study the predictability of West African rainfall from 11 

tropical global SSTA under some input parameters much more limited respect version 2.0. 12 

Thus, the reason for developing and improve the model for publication is the motivation 13 

arising from colleagues in different institutions along Africa and Europe to expand the model 14 

and use it as an alternative tool to look for SST-related predictability due to the strong SST 15 

bias that coupled dynamical models exhibit nowadays.  16 

The model is based on the predictive power of the SST. Concerning the association along 17 

time between SSTA and any climate-related variable susceptible of being predicted from it, 18 

the concept of stationarity is raised as one of the motivating factors in creating the S4CAST 19 

model. The stationarity refers to changes in the co-variability patterns between the predictor 20 

and the predictand fields along a given sequence of decades, so that it can be kept invariant 21 

(stationary) or changing (non-stationary). This concept has been addressed by different 22 

authors (Janicot et al., 1996; Fontaine et al., 1998; Rodríguez-Fonseca et al., 2009, 2011; 23 

Mohino et al., 2011; Martín-Rey et al., 2012; Losada et al., 2012) and becomes the main 24 

novelty and contribution introduced by S4CAST as a key factor to consider in seasonal 25 

forecasting provided by current prediction models, either dynamical or statistical. Thus, 26 

S4CAST model is an alternative to enhance and complement the estimates made by dynamical 27 

models, which have a number of systematic errors to adequately reproduce the tropical 28 

climate variability (Biasutti et al., 2006; Richter and Xie, 2008; Wahl et al., 2011; Doi et al., 29 

2012; Richter et al., 2012; Bellenguer et al., 2013; Brown et al., 2013; Li and Xie, 2013; 30 

Toniazzo and Woolnough, 2013; Vanniere et al., 2013; Xue et al., 2013). For the time being, 31 

the S4CAST model cannot be applied for strict operational forecasts, although its application 32 

Roberto Suarez Moreno� 16/9/2015 17:44
Deleted: T33 

Roberto Suarez Moreno� 10/9/2015 15:25
Deleted: , developed at the Department of 34 
Geophysics and Meteorology, in the Faculty of 35 
Physics of the Universidad Complutense de 36 
Madrid (UCM). The model was created from 37 
the first version (S4CAST v1.0), developed as 38 
part of a cooperation project with the 39 
Laboratoire de Physique de l'Atmosphère et de 40 
l'Océan Siméon Fongang (LPAOSF) of the 41 
Université Cheikh Anta Diop (UCAD) of 42 
Dakar in Senegal.43 
Roberto Suarez Moreno� 16/9/2015 16:54
Formatted: Font Alignment: Baseline

Roberto Suarez Moreno� 2/9/2015 12:07
Moved up [1]: The model is focused on the 44 
study of the predictability of climate-related 45 
variables based on the predictive nature of the 46 
SST. Such variables can be either SST 47 
(Rasmusson and Carpenter, 1982; Latif and 48 
Barnett, 1995; Harrison and Larkin, 1998; 49 
Klein et al., 1999; Trenberth et al., 2002) and 50 
rainfall (Janicot et al., 2001; Rowell, 2001, 51 
2003; Giannini et al., 2003; Chung and 52 
Ramathan, 2006; Polo et al., 2008; Joly and 53 
Voldoire, 2009; Lu, 2009; Gaetani et al., 2010; 54 
Fontaine et al., 2011; Nnamchi and Li, 2011); 55 
but also other variables. There are studies that 56 
have focused on the role of the tropical Pacific 57 
on vegetation, crop yields and the economic 58 
consequences resulting from these impacts 59 
(Hansen et al., 1998, 2001; Adams et al., 1999; 60 
Legler et al., 1999; Li and Kafatos, 2000; 61 
Naylor et al., 2001; Tao et al., 2004; Deng et 62 
al., 2010; Phillips et al., 1998; Verdin et al., 63 
1999; Podestá et al., 1999; Travasso et al., 64 
2009). Regarding human health, tropical SST 65 
patterns have been widely linked to the 66 
development and propagation of diseases 67 
(Linthicum et al., 2010), where ENSO-related 68 
variability plays a crucial role mainly affecting 69 
tropical and subtropical regions around the 70 
world (Kovats, 2000; Patz, 2002; Kovats et al., 71 
2003; Patz et al., 2005; McMichael et al., 72 
2006). Whatever the predictand, previous 73 
analysis of the SST influence is necessary in 74 
order to establish an association between such 75 
variables and the SST variability considered as 76 
the predictor field. 77 

Roberto Suarez Moreno� 10/9/2015 15:33
Deleted: two variables along time78 



 19 

in determining stationary relationships between two fields and their co-variability patterns can 1 

be crucial for improving the estimates provided by the operating prediction models currently 2 

used. 3 

The model is proposed for use in two areas: the study of seasonal predictability and the study 4 

of teleconnections, both based on the influence of SST. On the one hand, we refer to 5 

predictability when predictor is considered from a lead-time equal to 0 months (medium-6 

range forecast) in advance (long-range forecast). On the other hand, we speak about the study 7 

of teleconnections when predictor seasonal selection partially or totally overlaps 8 

(synchronous) the forecast period, meaning that one can not speak about lead-time, instead we 9 

speak about a monthly lag between the last month in the forecast period and the last month 10 

comprising the predictor monthly period. 11 

In addition to previous considerations, the model always provides the predictions in hindcast 12 

mode for the different periods of stationarity (SC, NSC and EP), while the forecast mode 13 

depends on input parameters and data files used for predictor and predictand fields. For 14 

instance, considering from September to November (SON) as forecast period concerning the 15 

predictand and selecting a lead- time of two months for the prediction, which means taking 16 

the predictor two months before September (from April to June; AMJ), the prediction for 17 

SON 2015 will be performed if predictand field is available at least until November 2014 and 18 

predictor is available at least until June 2015. Thus, the model constructs the regression 19 

coeficient by using the common period until November 2014. Regression coefficients along 20 

with predictor data (AMJ 2015) will provide the forecast for SON 2015. In this way, the 21 

model firstly checks data availability related to the input parameters and shows by screen if 22 

future forecast is enabled. If enabled, the model performs three types of forecast by 23 

computing the regression coefficient respectively for each period (SC, NSC, EP). Finally, the 24 

user should determine the better forecast by a study of the modulations of each stationary 25 

period and the sequence of hindcasts immediately preceding the present. 26 

In the applications shown in this paper we have focused in the results from MCA. This 27 

statistical methodology, along with Canonical Correlation Analysis (CCA), have been widely 28 

used in studies of predictability during the last decades (Barnston and Ropelewski, 1992; 29 

Bretherton et al., 1992; Wallace et al., 1992; Barnston and Smith, 1996; Fontaine et al., 1999; 30 

Korecha and Barnston, 2007; Barnston and Tippet, 2014; Recalde-Coronel et al., 2014). 31 

Integration of the methodology and intuitive use through a user interface are some of the main 32 
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advantages of the S4CAST model, allowing the selection of a big number of inputs. Future 1 

releases of the model will include other methodologies that are currently being introduced and 2 

tested. 3 

Originally, the model was created to tackle the study of the predictability of anomalous 4 

rainfall associated with WAM, which co-varies in a different way with the tropical band of 5 

Atlantic and Pacific ocean basins, being an indicator of non-stationarity (Losada et al., 2012). 6 

The transition between SC and NSC periods, around the 1970s, has served as the starting 7 

point of many studies focusing on the influence of global SSTA before and after that period 8 

(Mohino et al., 2011; Rodríguez-Fonseca et al., 2011; 2015; Losada et al., 2012) while being 9 

one of the motivations to create S4CAST. 10 

The choice of the case study related to Sahelian rainfall predictability is motivated by two 11 

main reasons: on the one hand, SST in the tropical Atlantic is well known to strongly 12 

influence the dynamics of the ITCZ (Fontaine et al., 1998) which in turn determines the 13 

subsequent WAM. Nevertheless, dynamical models do not reproduce the influence of SST on 14 

the ITCZ (Lin, 2007; Richter and Xie, 2008; Doi et al., 2012; Tonniazzo and Woolnough, 15 

2013) becoming the statistical prediction an alternative way to predict WAM variability. The 16 

second reason is related to the non-stationary influence of the tropical Atlantic on Sahelian 17 

rainfall reported in some studies (Janicot et al., 1996, 1998; Ward, 1998; Rodríguez-Fonseca 18 

et al., 2011; Mohino et al., 2011; Losada et al., 2012). 19 

The second case study has served as a benchmark to certify the ability of the S4CAST model 20 

in the study of SSTA predictability by the corroboration of the Equatorial Atlatnic variability 21 

as preditor of ENSO· This is a recently discovered relationship (Rodríguez-Fonseca et al., 22 

2009; Ding et al., 2011; Polo et al., 2015) that has been found to be  non-stationary (Martín 23 

del Rey et al., 2014, 2015). 24 

The application of moving correlation windows between expansion coefficients obtained from 25 

MCA analysis results in three periods of stationarity depending on the statistically significant 26 

correlation: entire period (EP), significant correlation period (SC) and no-significant 27 

correlation period (NSC). For the case in which non-stationarity is considered we refer to EP 28 

period, assuming changes in co-variability patterns. Stationarity is referred to SC and NSC 29 

periods. These periods may slightly vary depending on the type of moving correlation 30 

windows: advanced, centered or delayed. Stationary analysis to determine the three different 31 

work periods (SC, NSC, EP) is limited to the selection of a single mode of co-variability. 32 
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When selecting a set of modes, the stationarity analysis is not applied so that simulations are 1 

only developed for EP period, whereby the whole time series is considered for both the 2 

predictor and predictand fields.  3 

Three conditions may enhance the degree of confidence in a given predictor. The first has to 4 

do with the selection of moving correlation windows (see section 3.1.2.) used to determine the 5 

working scenarios (SC, NSC, EP). Delayed moving correlation windows can help in this task. 6 

Thus, if correlation coefficients between the expansion coefficients (U and V) exhibit 7 

significant values for the present year and the previous 21 study years, greater confidence is 8 

assumed for the predictor. The second condition is determined by the value of the expansion 9 

coefficient (U) for the current year so that the higher its value, the better the forecast. The last 10 

condition has to do with the percentage of variance explained by the selected co-variability 11 

mode, the higher its value, the better the forecast. Nevertheless, despite previous conditions, 12 

the influence of other remote and nearby oceanic predictors must be considered in order to 13 

provide a full and reliable predictability study. 14 

So far, the data files used as predictor and predictand fields correspond to observations and 15 

reanalysis from several institutions. The use of new data files is simple and can be performed 16 

according to user needs. The upgrade of data files from respective websites must be checked 17 

periodically to strengthen the results. In addition, it is also advisable to launch the same 18 

simulations using different data files in order to compare the results and assess the robustness 19 

of the forecast. The results shown in this work for different selections have been verified by 20 

following these criteria. 21 

The results obtained by using the S4CAST model put forward the consideration of non-22 

stationarity in the co-variability patterns and therefore in climatic teleconnections. Thus, it is 23 

important to determine the multidecadal modulator of the interannual variability in order to 24 

know which predictor is the one affecting in particular periods and regions (Rodríguez-25 

Fonseca et al., 2015). 26 

 27 

6. Code availability 28 

The model consists of a software package organized in folders containing libraries, functions 29 

and scripts developed as a MATLAB® toolbox from version R2010b onwards. Two of the 30 

folders, named as mexcdf and netcdf_toolbox, corresponds to libraries needed for working 31 
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with NetCDF files and have been downloaded from www.mexcdf.sourceforge.net and built-in 1 

into the model. The file containing the model core with the executable code is named S4core. 2 

Once the toolbox has been added to the MATLAB® path and by simply typing ‘S4cast’ in the 3 

command window, the user is prompted to enter a number of input parameters required to 4 

launch a simulation. The software package S4plot dedicated to plot figures has been added so 5 

that the user can use this software by typing ‘figures’ in the command window. Note that 6 

figures presented in this work have been further improved manually. The code is Open 7 

Access and can be downloaded from the Zenodo repository (DOI 10.5281/zenodo.15985) in 8 

the URL https://zenodo.org/record/15985. To facilitate the execution of the model leading to 9 

the results shown in this paper, used data files that have been previously defined in Section 4, 10 

are included in the directories /S4CAST_v2.0/data_files/predictand and 11 

/S4CAST_v2.0/data_files/predictor. The second case study requires NOAA ERSST as 12 

predictor and predictand. The code has been thoroughly analyzed by using several data files 13 

and input parameters. However, the emergence of software bugs is not ruled out, being mostly 14 

associated with problems to adapt and use NetCDF files. To solve these hypothetical code 15 

bugs, please do not hesitate to contact authors. 16 
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Table 1. Input parameters used to reproduce the first case study. Left column represents the 1 

statements reproduced by the model with the same format as in the simulation. Right column 2 

represents the input parameters entered by the user. 3 

Statements reproduced by the model 

Input 
parameters 

entered by the 
user 

Enter the NetCDF file containing the predictand data in the 
path /S4CAST_v2.0/data_files/predictand/ 
Press enter to continue 
PREDICTAND data available from Jan-1901 to Mar-2015  
Enter the NetCDF file containing the predictor data in the 
path /S4CAST_v2.0/data_files/predictor/ 
Press enter to continue 
PREDICTOR data available from Jan-1854 to May-2015  
Select a common analysis period 
The common longest analysis period extends from Jan-1902 to 
Mar-2015 
Do you want to select this period? y/n ‘y’ 
The selected analysis period extends from Jan-1902 to Mar-
2015 
Select the forecast period 
Type 1 to select a set of months 
Type 2 to select one month 1 
Enter the forecast period using the initials of the months ‘JAS’ 
2015 forecast available from lead time 1 (monthly lag 4) to 
lead time 6 (monthly lag 9)  
Enter PREDICTAND spatial domain 
West longitude from -179.5 to 179.5 -18 
East longitude from -179.5 to 179.5 10 
South latitude from -89.5 to 89.5 12 
North latitude from -89.5 to 89.5 18 
Do you want to standardize the predictand? y/n ‘y’ 
Dou you want to apply a Butterworth filter to the 
predictand? y/n ‘n’ 
Enter PREDICTOR spatial domain 
West longitude from -180 to 178 -60 
East longitude from -180 to 178 20 
South latitude from -88 to 88 -20 
North latitude from -88 to 88 5 
Do you want to standardize the predictor? y/n ‘n’ 
Dou you want to apply a Butterworth filter to the 
predictor? y/n ‘y’ 
Type 1 to apply a high pass filter 
Type 2 to apply a low pass filter 1 
Introduce the cutoff frequency 7 
Select the predictor monthly periods 
Type 1 to select a set of chronological monthly periods 
Type 2 to select one monthly period 2 
Enter the monthly lag regarding the predictand 3 
Select the number of modes for MCA analysis 
Do you want to select a set of modes? y/n ‘n’ 
Enter the mode number 1 
To assess the stationarity the model will analyze 21 years 
moving correlation windows between the expansion 
coefficients of the PREDICTOR and PREDICTAND fields 
obtained from MCA method 
Indicate delayed, centered or advanced moving correlation windows ‘delayed’ 
To assess the significant stationary periods, indicate the 
degree of statistical significance from 0 to 100 90 
To validate the model skill, indicate the degree of 
statistical significance from 0 to 100 90 

Roberto Suarez Moreno� 15/9/2015 01:25
Deleted: Case studies (EP-SL0, EP-SL1, 4 
SC-SL0, SC-SL1, NSC-SL0, NSC-SL1) 5 
corresponding to the model simulations 6 
developed in this work depending on 7 
predictand and predictor selections.8 ... [8]



 37 

Table 2. Input parameters used to reproduce the second case study. Left column represents the 1 

statements reproduced by the model. Right column represents the input parameters. 2 

Statements reproduced by the model 

Input 
parameters 

entered by the 
user 

Enter the NetCDF file containing the predictand data in the 
path /S4CAST_v2.0/data_files/predictand/ 
Press enter to continue 
PREDICTAND data available from Jan-1854 to May-2015  
Enter the NetCDF file containing the predictor data in the 
path /S4CAST_v2.0/data_files/predictor/ 
Press enter to continue 
PREDICTOR data available from Jan-1854 to May-2015  
Select a common analysis period 
The common longest analysis period extends from Jan-1855 to 
May-2015 
Do you want to select this period? y/n ‘y’ 
The selected analysis period extends from Jan-1855 to May-
2015 
Select the forecast period 
Type 1 to select a set of months 
Type 2 to select one month 1 
Enter the forecast period using the initials of the months ‘JAS’ 
2016 forecast not available  
Enter PREDICTAND spatial domain 
West longitude from -179.5 to 179.5 120 
East longitude from -179.5 to 179.5 -60 
South latitude from -89.5 to 89.5 -30 
North latitude from -89.5 to 89.5 20 
Do you want to standardize the predictand? y/n ‘n’ 
Dou you want to apply a Butterworth filter to the 
predictand? y/n ‘y’ 
Type 1 to apply a high pass filter 
Type 2 to apply a low pass filter 1 
Enter the cutoff frequency 7 
Enter PREDICTOR spatial domain 
West longitude from -180 to 178 -60 
East longitude from -180 to 178 20 
South latitude from -88 to 88 -20 
North latitude from -88 to 88 5 
Do you want to standardize the predictor? y/n ‘n’ 
Dou you want to apply a Butterworth filter to the 
predictor? y/n ‘y’ 
Type 1 to apply a high pass filter 
Type 2 to apply a low pass filter 1 
Introduce the cutoff frequency 7 
Select the predictor monthly periods 
Type 1 to select a set of chronological monthly periods 
Type 2 to select one monthly period 2 
Enter the monthly lag regarding the predictand 5 
Select the number of modes for MCA analysis 
Do you want to select a set of modes? y/n ‘n’ 
Enter the mode number 1 
To assess the stationarity the model will analyze 21 years 
moving correlation windows between the expansion 
coefficients of the PREDICTOR and PREDICTAND fields 
obtained from MCA method 
Indicate delayed, centered or advanced moving correlation windows ‘delayed’ 
To assess the significant stationary periods, indicate the 
degree of statistical significance from 0 to 100 90 
To validate the model skill, indicate the degree of 
statistical significance from 0 to 100 90 



 38 

 

 1 
 2 

Figure 1. Schematic diagram illustrating the structure of the model. 3 
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 2 

Figure 2. Predictand (Z) and predictor (Y) fields represented by their corresponding data 3 

matrices. The illustration relates to an example in which the forecast period covers the months 4 

February-March-April (FMA) and the predictor is selected for four distinct seasons: August-5 

September-October (ASO, lead-time=3); September-October-November (SON, lead-time=2); 6 

October-November-December (OND, lead-time=1); November-December-January (NDJ, 7 

lead-time=0). Each of these sub-matrices for the predictor has the same temporal dimension 8 

(nt) and spatial dimension (ns2). The predictand may have a different spatial dimension (ns1) 9 

but the same temporal dimension (nt) to enable matrix calculations required by MCA 10 

methodology. 11 
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Figure 3. 21 years moving correlation windows (green line) between the expansion 3 

coefficients U corresponding to tropical Atlantic SSTA (predictor, blue bars) and V 4 

corresponding to Sahelian anomalous rainfall (predictand, red line) obtained for the leading 5 

mode of co-variability from MCA analysis. Shaded triangles indicate significant correlation 6 

under a Montecarlo Test at 90%. 7 
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Figure 4. Regression maps obtained for the leading mode by applying MCA between SSTA in 3 

the tropical Atlantic (predictor) and western Sahel rainfall (predictand). Left column 4 

represents the homogeneous regression map done by projecting the expansion coefficient U 5 

onto global SSTA (ºC). Right column represents the heterogeneous regression map done by 6 

projecting expansion coefficient U onto the anomalous Sahelian rainfall (mm/day). Period SC 7 

(top panels); EP (middle panels) and NSC (bottom panels). Rectangles show the selected 8 

regions for predictor and predictand fields considered in the MCA analysis. Values are plotted 9 

in regions where statistical significance under a Montecarlo test is higher than 90%.  10 
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Figure 5. Skill-score validation using Pearson correlation coefficients between observations 3 

and hindcasts. Left column corresponds to the spatial validation for each point in space. Right 4 

column corresponds to validation time series (green line) between hindcasts and observations 5 

considering only the regions indicated by positive significant spatial correlation. Period SC 6 

(top panels); EP (bottom panels). Significant correlation values for time series are indicated 7 

by shaded triangles. Blue bars correspond to the expansion coefficient (U) of the SSTA 8 

(predictor). Significant values are plotted from a 90% statistical significance under a 9 

Montecarlo test. 10 
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Figure 6. Skill-score validation using Pearson correlation coefficients between observations 3 

and hindcasts for each point in space corresponding to NSC period. Significant values are 4 

plotted from a 90% statistical significance under a Montecarlo test. 5 
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Figure 7. 21 years moving correlation windows (green line) between the expansion 3 

coefficients U corresponding to tropical Atlantic SSTA (predictor, blue bars) and V 4 

corresponding to tropical Pacific SSTA (predictand, red line) obtained for the leading mode of 5 

co-variability from MCA analysis between predictor and predictand fields. Shaded triangles 6 

indicate significant correlation under a Montecarlo Test at 90%.  7 
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Figure 8. Regression maps obtained for the leading mode by applying MCA between SSTA in 3 

the tropical Atlantic (predictor) and SSTA in the tropical Pacific (predictand). Left column 4 

represents the homogeneous regression map done by projecting the expansion coefficient U 5 

onto global SSTA (ºC) for predictor seasonal period. Right column represents the 6 

heterogeneous regression map done by projecting expansion coefficient U onto global SSTA 7 

(ºC) for predictand seasonal period. Period SC (top panels); EP (middle panels) and NSC 8 

(bottom panels). Rectangles show the selected regions for predictor and predictand fields 9 

considered in the MCA analysis. Values are plotted in regions where statistical significance 10 

under a Montecarlo test is higher than 90%.  11 
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Figure 9. Skill-score validation using Pearson correlation coefficients between observations 3 

and hindcasts. Left column corresponds to the spatial validation for each point in space. Right 4 

column corresponds to validation time series (green line) between hindcasts and observations 5 

considering only the regions indicated by positive significant spatial correlation. Period SC 6 

(top panels); EP (middle panels); NSC (bottom panels). Significant correlation values for time 7 

series are indicated by shaded triangles. Blue bars correspond to the expansion coefficient (U) 8 

of the SSTA (predictor). Significant values are plotted from a 90% statistical significance 9 

under a Montecarlo test. 10 
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