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Abstract

Preparing for episodes with risks of anomalous weather a month to a year ahead is an impor-
tant challenge for governments, non-governmental organisations and private companies and is
dependent on the availability of reliable forecasts. The majority of operational seasonal fore-
casts are made using process-based dynamical models, which are complex, computationally5

challenging and prone to biases. Empirical forecast approaches built on statistical models to
represent physical processes offer an alternative to dynamical systems and can provide either a
benchmark for comparison or independent supplementary forecasts. Here, we present a simple
empirical system based on multiple linear regression for producing probabilistic forecasts of
seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent10

concentration is taken as the primary predictor; subsequent predictors, including large-scale
modes of variability in the climate system and local-scale information, are selected on the basis
of their physical relationship with the predictand. The focus given to the climate change signal
as a source of skill and the probabilistic nature of the forecasts produced constitute a novel
approach to global empirical prediction.15

Hindcasts for the period 1961-2013 are validated against observations using deterministic
(correlation of seasonal means) and probabilistic (continuous rank probability skill scores) met-
rics. Good skill is found in many regions, particularly for surface air temperature and most
notably in much of Europe during the spring and summer seasons. For precipitation, skill is
generally limited to regions with known El Nino Southern Oscillation (ENSO) teleconnections.20

The system is used in a quasi-operational framework to generate empirical seasonal forecasts
on a monthly basis.

1 Introduction

The provision of reliable seasonal forecasts is an important area in climate science and under-
standing the limitations and quantifying uncertainty remains a key challenge (Doblas-Reyes25

et al., 2013; Weisheimer and Palmer, 2014). Operational seasonal forecasting, although once
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limited to a handful of research centres, is now a regular activity across the globe. Much re-
cent focus has been given to the skill and reliability of seasonal climate predictions. Dynamical
(process-based) forecast systems are arguably the most important tool in producing predictions
of seasonal climate at continental and regional scales. Such systems are based on numerical
models that represent dynamical processes in the atmospheric, ocean and land surface in ad-5

dition to the linear and non-linear interactions between them. However, the development of
dynamical systems is a continuous challenge; climate models are inherently complex and com-
putationally demanding and often contain considerable errors and biases that limit model skill
in particular regions and seasons.

As an alternative to dynamical forecast systems, empirical approaches aim to describe a10

known physical relationship between regional-scale anomalies in a target variable (the pre-
dictand), say, temperature or precipitation, and preceding climate phenomena (the predictors).
In its simplest form, an empirical forecast may be based on persistence in which observations
of a given variable at some lead time are taken as the forecast for that variable. Such forecasts
have frequently performed better at short lead times than those simply prescribed by the long-15

term climatology, particularly so in the Tropics. More sophisticated statistical methods include
analog forecasting (van den Dool, 2007; Suckling and Smith, 2013) and regression-based tech-
niques, which may in turn take predictive information from spatial patterns using, for instance,
empirical orthogonal functions (EOFs) (e.g. van Oldenborgh et al., 2005), maximum covariance
analysis (MCA) (e.g. Coelho et al., 2006) and linear inverse modelling (LIM) (e.g. Penland and20

Matrosova, 1998). Empirical predictions for the phase and strength of the El Nino Southern
Oscillation (ENSO) have historically shown comparable skill to those produced by dynamical
systems (e.g. Sardeshmukh et al., 2000; Peng et al., 2000; van Oldenborgh et al., 2005). Ad-
ditionally, an inherent advantage of empirical methods is the ease with which knowledge of
climate variability gained from analysis of up-to-date observations can be incorporated into a25

prediction system (Doblas-Reyes et al., 2013), which in turn facilitates the development of new
methodologies and statistical techniques (van den Dool, 2007).

Empirical forecasts serve both as a baseline for dynamical models and can be used to im-
prove the forecasts by limiting the effects of dynamical model biases. However, differences in
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the development and output of dynamical and empirical-statistical approaches makes systematic
comparison troublesome, and understanding the relative skill of each forecast type is challeng-
ing. Recent attempts have been made in developing empirical benchmark systems for multiple
variables, such as land and sea surface temperature, on decadal time scales (e.g. Ho et al., 2013;
Newman, 2013), concluding that the usefulness of such systems merits further development.5

While comparison of dynamical and empirical systems for seasonal forecasts is not novel, a
systematic global comparison for multiple variables, including probabilistic measures, has been
lacking. A key potential benefit of such comparison is the identification of regions where em-
pirical models are skilful and may be able to provide useful forecast information to complement
the output of dynamical systems. Supplementing dynamical forecasts with empirical forecasts10

is of great importance in situations where dynamical systems are known to have weaknesses.
It has also been shown that combining the output of empirical and dynamical systems can pro-
duce marked improvement over single-system forecasts (e.g. Coelho et al., 2006; Schepen et al.,
2012).

A fundamental criticism of empirical systems is the question of their applicability in a future,15

perturbed climate. In other words, to what extent will the predictor-predictand relationships un-
derpinning a statistical model remain stationary under climate change? Sterl et al. (2007) found
that within the statistical uncertainties, no changes could be detected in ENSO teleconnections.
Doblas-Reyes et al. (2013) recently noted that the temporal evolution of seasonal climate should
be considered as forced not only by the internal variability of the climate system but also by20

changes in concentrations of greenhouse gas and aerosols as a result of anthropogenic activities.
Such external forcings are considered in climate change simulations, and also to an increasing
extent in the field of decadal prediction (e.g. Krueger and Von Storch, 2011). Current seasonal
forecast systems now include these forcings (Doblas-Reyes et al., 2006; Liniger et al., 2007),
but the resulting trends are sometimes not realistic.25

Here we present and validate a simple empirical system for predicting seasonal climate across
the globe. The prediction system, based on multiple linear regression, produces probabilis-
tic forecasts for temperature and precipitation using a number of predictors based on well-
understood physical relationships. In all forecasts, the global equivalent CO2 concentration is
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used as the primary predictor as an indicator of the climate change signal. Additional predictors
describing large-scale modes of variability in the climate system, starting with ENSO, and local-
scale information are subsequently selected on the basis of their potential to provide additional
predictive power. The system presented will have two purposes: (a) to serve as a benchmark
for assessing and comparing the skill of dynamical forecast systems; and (b) to act as an in-5

dependent forecast system in combination with predictions from dynamical systems. Key to
achieving these goals will be the system’s implementation in a quasi-operational framework
with empirical forecasts made on a monthly basis and the availability of a set of hindcasts.

The method implemented here constitutes a relatively simple approach to empirical forecast-
ing. The global and automated nature of the prediction system calls for the underlying empirical10

method to be parsimonious in terms of the predictive sources used to construct it. The statistical
model and the selection of predictors will thus be based on physical principles and processes
to the fullest extent so as to elicit the maximum predictive power of, first of all, the long-term
trend associated with the climate change signal and, secondly, as few additional predictors as
is necessary in order to minimise the risk of overfitting. The final system will also be suffi-15

ciently flexible to facilitate its future development. Such development may involve inclusion of
additional predictors should more complete and reliable datasets become available, or the ap-
plication of the system to alternative predictands including those relating to the magnitude and
frequency of extreme events.

Producing empirical forecast output in similar format to dynamical systems is crucial when20

designing a framework for robust comparison. A weakness of current dynamical-empirical sys-
tem comparison is the general lack of a common set of validation measures. Whereas dynamical
systems inherently provide output in the form of ensemble forecasts, which may be validated in
probabilistic terms, validation of empirical systems does not always extend beyond determinis-
tic measures, such as bias, RMS error and correlation (Mason and Mimmack, 2002). Here, the25

uncertainties are explicitly parametrised as an ensemble of forecasts and we employ a rigorous
validation framework designed to assess both the deterministic and probabilistic aspects of the
forecast system.
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The remainder of the paper is structured as follows. Section 2 describes the prediction system
in full, including the observational data used for empirical model fitting and validation. An
analysis of the potential usefulness of the predictors is given in Section 3. The skill of the
prediction system is then assessed in Section 4 with a discussion and outlook given in Section5

5.

2 Prediction system outline

Key to achieving the goals set out in Section 1 is the development of an automated forecast
system that can be applied globally and, in principle, for any number of predictands. For these
reasons, the regression-based prediction system developed here is relatively simple in com-10

parison with more sophisticated statistical models, with emphasis given to a basis of physical
processes and the avoidance of overfitting.

Our system incorporates a multiple linear regression approach for estimating seasonal (three-
month) surface air temperature (SAT) and precipitation (PREC) as a function of global and
local atmospheric and oceanic fields. The approach used assumes the predictand time series x15

to consist of two components,

x= xext+int, (1)

where xext is the response to externally forced low frequency variability associated with anthro-
pogenic activity and xint represents the internal variability independent of changes in external
forcing (Krueger and Von Storch, 2011). We seek first to utilise the predictive information in20

xext which is assumed to be linearly dependent on the global CO2-equivalent concentration
(CO2EQV), based on historical estimates until 2005 and according to Representative Concen-
tration Pathway (RCP) 4.5 thereafter, which constitutes the net forcing of greenhouse gases,
aerosols and other anthropogenic emissions (Meinshausen et al., 2011). Secondly, we seek to
identify a set of predictors that best represents xint. The predictand time series x may be mod-
elled as a function of a set of predictors thus:

6
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x= α+βC +

n∑
i=1

(ΦiFi) + ε (2)

where C is CO2EQV at a given lead time and F is a set of n additional predictors at the same5

lead time that describes xint. The regression parameters β and Φ are those required to transform
C and F respectively, α is the constant regression term and ε is the set of residuals specific
to the model fit. In this case, predictors are taken from the previous three-month season at a
lead time of one month (e.g. the forecast for the season March-April-May is estimated using
predictors from November-December-January). An independent regression model is calibrated10

at each grid point. Whereas CO2EQV is included as a predictor by default, all additional pre-
dictors are included on the basis of their predictive potential, which is determined by a predictor
selection procedure prior to model fitting. In the remainder of this section we (a) identify po-
tential predictors and describe the sources of both predictor and predictand data (2.1); and (b)
provide further details on the predictor selection approach, the model fitting procedure and the15

validation framework (2.2).

2.1 Potential predictors

As additional predictors F , we consider first of all variables that describe large-scale modes of
variability. ENSO is the most important of these in terms of its contribution to the skill of sea-
sonal predictions, particularly in the tropics (van Oldenborgh et al., 2005; Balmaseda and An-20

derson, 2009; Weisheimer et al., 2009; Doblas-Reyes et al., 2013). Circulation and precipitation
patterns in the tropical Pacific associated with ENSO SST anomalies are subsequently linked
to climate variability in other parts of the globe (Alexander et al., 2002). In addition, modes of
variability in other tropical oceans, including the tropical Atlantic and Indian basins, are known
to contribute substantially to variability in SAT and PREC, particularly in surrounding regions25

(Doblas-Reyes et al., 2013). Many such phenomena are linked in some way to ENSO, although
variability in the Indian Ocean Dipole (IOD) is known to occur independently (Zhao and Hen-
don, 2009). Similarly, the Pacific Decadal Oscillation (PDO), defined as the leading empirical
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orthogonal function (EOF) of North Pacific monthly SST anomalies, is considered as a repre-
sentation of variability on interdecadal time scales that is not otherwise apparent in interannual
ENSO variability (Liu and Alexander, 2007). Drought occurrence in the United States is known
to be linked to the phase of both PDO and the Atlantic Multidecadal Oscillation (AMO). At-5

mospheric anomalies, including troposhere-stratosphere interactions, are also known to have
predictive potential. The Quasi-Biennial Oscillation (QBO) (Ebdon and Veryard, 1961; Bald-
win et al., 2001) has recently been considered in a multiple regression model for predicting
European winter climate (Folland et al., 2012). With this in mind, the following indices are
considered as predictors: NINO3.4 (representative of ENSO), PDO, AMO, IOD and QBO. The10

system is designed to be flexible enough for the inclusion of additional predictors in the future.
External forcing and global modes of variability are not the only source of skill in seasonal

forecasts. Many studies, including those based on dynamical systems, have found links between
local climate and variations in preceding nearby climate phenomena (e.g. van den Hurk et al.,
2012; Quesada et al., 2012). The most simple of these is persistence; that is, the value of the15

predictand (either SAT or PREC) for the same location at some lead time. Here, we seek to
elicit predictive information from persistence (PERS) and other variables that vary from grid
point to grid point in addition to the set of large-scale modes of variability described above.
For coastal locations in particular, we seek to maximise the potential of short-term memory
contained within neighbouring sea surface temperatures to provide greater predictability than20

PERS at the specified lead time. We derive a local sea surface temperature (LSST) index for each
predictand grid cell, defined as the mean of the k nearest grid cells containing SST information.
Here, k = 5 throughout the analysis although this value could of course be altered or optimised
for region-specific analysis. Finally, as a proxy for soil moisture, which has been shown to
impact on local temperature (e.g. van den Hurk et al., 2012), we also consider accumulated25

rainfall (CPREC) as a potential predictor.
Further details of the sources of predictor data are given in Table 1. Our list of predictors is

not exhaustive. Much recent work has sought to identify predictability arising from the extent of
sea ice and snow covered land, the reflective and insulative attributes of which are relevant for
SAT and PREC in several regions of the extra-tropics (e.g. Shongwe et al., 2007; Dutra et al.,
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2011; Brands et al., 2012; Chevallier and Salas-Mélia, 2012). However, these variables are not
considered for the present system due to the absence of sufficiently long and reliable datasets,
although some effects are effectively captured by persistence. The design of the prediction sys-5

tem facilitates inclusion of additional predictors should high quality observational or reanalysis
data become available.

2.2 Model fitting and validation

Global observational datasets provide the predictand (SAT and PREC) fields required for model
calibration and validation. SAT is taken from the Cowtan and Way (2014) reconstruction of10

the Hadley Centre–Climatic Reseach Unit Version 4 (HadCRUT4) (Morice et al., 2012), which
uses kriging to account for missing data in unsampled regions. PREC is taken from the Global
Precipitation Climatology Centre (GPCC) Full Data Reanalysis version 6 (Schneider et al.,
2011) for the period 1901-2010 combined with additional data for the period 2011-2013 taken
from the GPCC monitoring product following bias correction.15

Analysing the degree of additional predictive skill offered by each predictor will form an im-
portant precursor to the implementation of the system. A two-step predictor selection procedure
is used to determine the fewest numbers of predictors necessary to provide greatest predictive
skill. The selection procedure may be considered ‘offline’ in the sense that it is implemented
prior to model fitting. In the first step, global maps of linear correlation between predictand-20

predictor pairs form a basis for a physical understanding of the factors governing variability.
Predictors that show good potential and do not exhibit colinearity with other predictors are
included in the second step: the selection of predictors to be passed to the empirical forecast
model itself.

To achieve this, the linear trend associated with CO2EQV is first of all removed from both25

the predictand x and the set of predictors F by fitting the models

x= α1 +β1C + εx (3)
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and

Fi = α2 +β2C + εFi (4)

where α1, β1 and α2, β2 are the respective regression parameters for each model fit and εx5

and εFi are the time series of residuals that equate to the detrended predictand and predictors
respectively. Correlation is performed between εx and each of the N predictors within the set
εFi (where i= 1,2...N ). Predictors that exhibit significant (at the 90% level) correlation are
identified. The two-step approach is designed to avoid overfitting, which would lower skill
scores, and to ensure that the empirical model is built on physical principles to the fullest extent.10

The first step is to an extent qualitative and undertaken only once for each predictand, i.e. for
each predictand there is an agreed set of potential predictors independent of season or location.
However, the fully quantitative second step is performed independently at each grid point and
for each season. Following the selection of predictors, all significant predictors are then entered
into a multiple linear regression along with CO2EQV; equation (2) is thus modified:15

x= α+βC +

k∑
i=1

(ΦiF
S
i ) + ε (5)

where FS is the subset of k predictors from F that meet the significance criteria outlined in
the selection procedure. An estimate for the unknown predictand x̂ at forecast time t may be
determined thus:

x̂t = α+βCt +
k∑

i=1

(ΦiF
S
it ) (6)20

A key component of the empirical prediction system is the provision of probabilistic output.
The residuals ε from the regression fit in equation (5) are randomly sampled (with replacement)

10
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and subsequently used to generate a forecast ensemble. The kth member of the ensemble x̂ens

at forecast time t is thus given by

x̂ens
t,k = x̂t + εk (7)5

where εk is a randomly sampled member of ε. Sampling of the residuals is performed 51 times,
reflecting the typical ensemble size in an operational dynamic forecast. The ensemble allows
for the calculation of probabilistic skill scores and will provide a basis for full comparison with
the output of dynamical systems. It is anticipated that future development of the system will
consider more complex methods of ensemble generation.10

The model is calibrated and validated in a hindcast framework using a causal approach: hind-
casts are produced for 1961-2013 using data since 1901 prior to the hindcast start date. The
causal approach was chosen instead of a leave-one-out framework in order to replicate the set
of observational data that would have been available for each hindcast were it produced in real
time. The predictor selection procedure, in addition to being location-specific, is also imple-15

mented independently for each hindcast. In other words, for a given grid point, a given predictor
would only be included in the regression model for hindcasts with fitting periods during which
it demonstrates predictive potential, allowing for the maximum value to be taken from predictor
information in the fairest way. It is also important to note that, in setting the earliest hindcast
to 1961, we seek to limit the impact of poor quality available predictand and predictor data in20

the early 20th Century. Additionally, to ensure robustness, the multiple linear regression model
requires complete predictand-predictor time series of at least thirty years in the fitting period
for a forecast to be produced.

Both the deterministic and probabilistic aspects of the prediction system must be system-
atically validated using a number of measures. Global maps of correlation between hindcast25

estimates and observations provide a view on the degree of representation of temporal vari-
ability. Verification scores originally developed in the context of numerical weather prediction,
including the root mean squared error skill score (RMSESS) and the continuous rank proba-
bility skill score (CRPSS) (e.g. Ferro, 2013), provide a quantification of the degree of bias and
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the skill of the probability distribution produced by the ensemble respectively. Such verification
measures are also used to determine skill scores that describe forecast skill against a reference5

ensemble forecast. The reference forecast is produced by random sampling of the climatology,
i.e. the observations for each year in the fitting period.

3 Analysis of potential predictors

3.1 Surface air temperature

The surface air temperature (SAT) shows a clear trend almost everywhere, which is assumed to10

be proportional to the forcing of greenhouse gases, described by CO2EQV. Separate spatially
varying aerosol forcings have not yet been implemented. As mentioned in Section 2, this trend
is treated differently from the other predictors in the sense it is always included in the empirical
model; other predictors are considered only in cases where they appear to add value (following
step one of the predictor selection process). Figure 1 shows seasonal correlation between SAT15

and CO2EQV along the top row of
:
in

::::
the

:::
top

::::
left

:
panels. Subsequent rows

:::::
panels

:
show the

correlation derived from predictor-predictand pairs (following removal of the linear trend asso-
ciated with CO2EQV). Correlation between SAT and CO2EQV is in general strongly positive
across the majority of the globe, and particularly so when the response of SAT to the internal
variability of the climate system is known to be small compared to the response to the signal20

associated with anthropogenic forcing, for example in the northern hemisphere during spring
(MAM) and summer (JJA). Additionally, correlation between SAT and CO2EQV is in general
strongly positive throughout tropical land masses at all times of year.

Among the indices describing variability in the climate system, NINO3.4 shows the sec-
ond strongest relationship with SAT; the importance of ENSO in governing variability in tem-25

peratures across the tropics is highlighted by correlation stronger than ±0.5 in parts of South
America, Africa and northern Australia in addition to the tropical Pacific and Indian Oceans.
ENSO-based relationships in extra-tropical land regions are less apparent, although positive
correlation in the northern half of the North American continent and negative ones around the
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Gulf of Mexico show the well-known influence on winter (DJF) and spring (MAM) SAT (Ro-
pelewski and Halpert, 1987; Kiladis and Diaz, 1989). Very low correlations are found across
Europe.

The PDO and IOD correlation patterns are very similar to those for NINO3.4. Much of the
signal associated with PDO

:
is
:
likely captured by NINO3.4. However, inclusion of PDO along-5

side NINO3.4 in the prediction system may yield additional skill in the northern Pacific as a
result of enhanced cyclonic circulation around the deepened Aleutian low associated with a
positive, warm PDO phase (Liu and Alexander, 2007). The AMO correlation patterns clearly
act independently of ENSO and feature correlations throughout the high northern latitudes and
the North Atlantic, but curiously not so much in Western Europe (van Oldenborgh et al., 2009b).10

The PDO, IOD and AMO indices are all included in the prediction system.
Correlation associated with the QBO is poor with the notable exception of northern and

central Russia during the Boreal autumn (not shown). In agreement with Folland et al. (2012)
we found no significant correlation for winter in Europe with a one month lead time. This is
surprising given the link found in previous work between the QBO and the Arctic Oscillation15

(AO), and thus on European surface climate, although the authors suggest that predictability
requires a shorter optimal lead time than that used here (Marshall and Scaife, 2009). QBO is
thus withdrawn and not included in the prediction system.

Persistence (PERS) shows strong correlations in some key regions and is particularly impor-
tant for high latitude seas in the northern hemisphere during winter, reflecting the latent heat20

of melting of the sea ice. Over land however, there are relatively few regions associated with
strong correlation outside of the tropics. Correlation is greater than 0.4 in parts of western Eu-
rope (MAM), south-east Europe (JJA), central North America (JJA) and parts of central Asia
(JJA). However, aside from these examples, the memory of land surface temperature outside of
the tropics does not appear to extend to the predictor period.25

Local SST (LSST) produces similar correlation to persistence over the oceans but offers no
skill over most continental regions. It is be anticipated that LSST is may be beneficial in coastal
regions but this is not clear at present spatial resolution. Both predictors are made available
for selection in the SAT forecast system. The relationship between antecedent precipitation
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(CPREC) and SAT is in general quite poor but correlation is around 0.3 in northern Europe
during spring (MAM), most likely representing the connection between a mild, wet winter to
a mild spring. There is negative correlation (although not significant) during summer (JJA) in
parts of Europe, which suggests that CPREC is partly able to represent the link between soil5

moisture and SAT at this time of year shown in previous work (van den Hurk et al., 2012).
The correlation is also strong (negative) in parts of Australia and south-east Asia, in addition to
southern Africa (MAM) and northern South America (DJF and MAM).

3.2 Precipitation

Correlation between PREC and the predictors is shown in Figure 2. As expected, the response of10

PREC to the trend in CO2EQV is not as strong as that of global temperature. Increased PREC in
northern high latitudes during the Boreal winter has a known association with global warming
(Hartmann et al., 2013). However, the response of precipitation to global warming is not yet
visible above the noise in much of the mid-latitudes and these regions are associated with low
correlation at all times of the year. Notable exceptions are significant negative correlation in15

Northern Africa (all times of year) and significant positive correlation in Greenland, Northern
Europe and Asia (MAM, SON and DJF).

The strong correlation exhibited between NINO3.4 and PREC in many parts of the world
provides an important basis for predictability. In addition to ENSO-related changes in tropical
precipitation patterns, there are a number of known links with precipitation in the extra-tropics20

(Alexander et al., 2002; Doblas-Reyes et al., 2013), although only a weak one in MAM is
found in Europe (van Oldenborgh et al., 2000). Correlation patterns for the PDO (not shown)
are again similar for NINO3.4. For the IOD, correlations of around 0.3 exists in eastern Africa
during autumn (SON) and winter (DJF) but again these patterns are very similar to those for
NINO3.4. Correlation of IOD and PREC following removal of the NINO3.4 signal (not shown)25

indicates an ENSO-independent relationship, particularly during DJF in East Africa, which is
supported by the findings of previous work (Goddard and Graham, 1999), and also parts of
Europe. In the absence of known links between the phase of PDO and precipitation anomalies
that are independent of ENSO, PDO is not considered for inclusion in the prediction system.
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QBO is also omitted on the basis that there are few areas of correlation of statistical significance
(not shown). AMO on the other hand produces significant correlation in regions influenced
by the Atlantic where NINO3.4 does not, including the Sahel (JAS, visible in JJA and SON),
eastern South America (JJA). The AMO-PREC relationship does not appear to extend to extra-
tropical regions; there are no discernible areas of strong correlation in Europe or eastern North5

America. This contrasts with the strong link previously identified between the AMO and JJA
precipitation in Europe during the 1990s (Sutton and Dong, 2012). The use of long-term time
series, correlations rather than composites and an absence of temporal filtering here results in
lower correlations.

For PERS, there are a number of regions, particularly in the extra-tropics, where significant10

correlation offer potential for predictability. The most obvious of such correlation is during DJF
and MAM in the mid- to high-latitudes of the northern hemisphere; the persistence of dry (wet)
conditions during autumn in much of central Eurasia is an indicator for similar conditions during
winter and into spring. There are relatively few regions where LSST is significantly correlated
with PREC. These include the western United States (MAM) and south-east Asia where SST15

has variability that is independent from ENSO and adds to the skill in dynamical systems (van
Oldenborgh et al., 2005). It remains unclear to what extent LSST may offer additional value to
this empirical prediction system.

4 Prediction system development and validation

For each hindcast between 1961-2013, and for each season and grid point, predictors are se-20

lected on the basis of the significance of the (detrended) correlation with the predictand for
the fitting period. For validation, causal hindcast estimates are compared with observations to
determine the skill of the deterministic and probabilistic aspects of the prediction system.
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4.1 Surface air temperature

Following the assessment of potential predictors (step one of the predictor selection process),
the following were chosen in addition to CO2EQV for inclusion in the prediction system:
NINO3.4, PDO, AMO, IOD, PERS, LSST and CPREC. Hindcasts were produced with each
predictor added in turn and verified against observations. Figure 3 shows the correlation be-
tween observations and a hindcast constructed using CO2-equivalent only (top left panel on5

each page) and the incremental correlation attained by including additional predictors cumula-
tively (second to eighth

::::::::::
subsequent panels on each page). The observation-hindcast correlation

following the inclusion of all predictors is given in Figure 4. Note that these are the correlations
of a causal system that only uses information from before the hindcast date, the values are there-
fore much lower than the full correlations of Figure 1. If the correlations are spurious, i.e., there10

was no physical connection, but the predictor was included because the correlation exceeded
the 90% significance criterion (this happens by chance on 10% of the grid points without con-
nection), the hindcast skill is degraded by the inclusion of this predictor, visible as the light-blue
background in the panels of Figure 3. We tried to minimise this by the first step in the predictor
selection process.15

The correlation of observations with hindcasts estimated using CO2EQV (Figure 3) only is
much lower than that with hindcasts estimated using as a function of all potential predictors
(Figure 4). This is due to the fact that over the first half of the hindcast period the trend is not
yet very strong and does not contribute to the skill. This measure therefore underestimates the
skill expected in forecasts, which are made at a time that the trend plays a much larger role,20

although this depends also on the reference period chosen for the forecasts.
The inclusion of NINO3.4 (second line) clearly adds value across the Pacific and in the parts

of the tropics. There are no land-based areas where either PDO or IOD add value, but AMO
does improve correlation substantially in the North Atlantic and in parts of northern (SON) and
eastern (JJA) Europe, although its inclusion degraded the hindcasts in eastern Europe in DJF.25

The addition of PERS improves correlation in only a handful of locations and LSST, while
important to correlation over some parts of the ocean and hence for islands and coastal regions
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not resolved by our coarse datasets, adds little value further from the coast. As suggested in
Figure 1, CPREC adds little global value except in parts of Australia

The final model shows good skill was found in many regions of the globe (Figure 4). Key
areas of high correlation include the majority of the tropics where the dominance of ENSO on
interannual variability is greatest. Correlation is strong at all times of year throughout much
of northern South America, Central and Southern Africa and South Asia. Strong correlation is
also found in important extratropical regions, including much of Europe except during SON.5

Correlation is strong in much of western and Central Europe during the spring and summer
(MAM until ASO). Over North America, the skill depends strongly on the season, varying
from slightly negative skill (due to overfitting) during SON to good skill in large parts during
MAM. Global patterns of RMSE skill scores are broadly similar; regions of strong correlation
are generally associated with small differences from observations (Figure 5; left panels).10

Global maps of CRPSS exhibit broad patterns of skill similar to those for correlation (Figure
5; right panels). The highest skill scores (relative to the climatology-based forecast) are found in
the tropics and are evident during all seasons. In Europe, skill is again greatest during spring and
summer, although some parts of eastern Europe and Scandinavia are associated with negative
skill scores. Very little of North America is associated with high skill; indeed, the prediction15

system fails to outperform the climatology-based forecast over the majority of the eastern and
southern United States. This lack of skill is known to extend to dynamical forecasts, particularly
during winter (e.g. Kim et al., 2012).

4.2 Precipitation

The following predictors were included in the PREC prediction system: NINO3.4, AMO, PERS20

and LSST. Figure 6 shows total and incremental correlation results in the same format as Figure
3 for SAT. Using CO2EQV as a sole predictor fails to yield any notable regions of significant
correlation, with the exception of parts of northern Eurasia during winter (DJF). As for SAT,
we would expect the forecast skill to be greater than the hindcast skill given that the a large
portion of hindcasts were made before the trend becomes important. The addition of NINO3.425

increases hindcast-observation correlation in many parts of the tropics, particularly during the
17
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boreal autumn (SON) and winter (DJF). In spite of some evidence for a relationship with PREC
in parts of Eurasia as shown in Figure 2, AMO fails to add any improvement to the empirical
model’s skill except in northeastern Brazil and to some extent the Sahel. The same is largely
true for PERS and LSST, suggesting that almost all skill is captured by NINO3.4 and, to some5

extent, the climate change signal.
For the final model, high correlation (>0.6) is limited to south-east Asia and northern parts

of South America (between ASO and JFM) (Figure 7). Another area of high correlation to north
is in south-east South America during the Austral spring (SON to NDJ). However, the RMSE
for the hindcast is rarely an improvement on that derived from the climatology (Figure 8; left10

panels). In addition, there are only a few areas where the hindcast produces a positive CRPSS,
which would indicate an improvement on the ensemble forecast derived from the climatology
(Figure 8; right panels). This leads us to conclude that, while the deterministic component of
the system is able to reproduce some components of seasonal precipitation variability, proba-
bilistically the system does not perform well outside limited areas in its present guise.15

5 Discussion and outlook

A global empirical system for seasonal climate prediction has been developed and validated.
Multiple linear regression was chosen as the basis of the system; a simple predictor selection
scheme sought to maximise the predictive skill of a number of predictors describing global-scale
modes of variability and local-scale information alongside that of the climate change signal.20

Probabilistic hindcasts of surface air temperature (SAT) and precipitation (PREC) have been
produced using prediction models based on multiple linear regression and validated against ob-
servations using correlation and skill scores. The prediction system shows good skill in many
regions. For SAT, the trend and interannual variability are well-represented throughout the trop-
ics and in a number of extra-tropical regions, including parts of Europe, particularly during25

spring and summer, southern Africa and eastern Australia. Skill associated with the probabilis-
tic component of the seasonal predictions shows similar spatial patterns. For PREC, few areas
of notable skill are found outside of regions with known ENSO teleconnections and, probabilis-
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tically, the system does not perform better than a climatological ensemble throughout most of
the world.

As outlined in Section 1, the system presented here has been designed to serve both as a
benchmark for dynamical prediction systems and as an independent forecast system to be com-5

bined with dynamical output to produce more robust forecasts. Concerning the second purpose,
it is important to identify seasons and regions where dynamical systems lack skill and whether
our system may potentially add value in such instances. In general, dynamical system skill is
limited to regions that are strongly linked to ENSO; in extra-tropical regions, where seasonal
variability in the atmospheric state is governed to a greater extent by random internal variability,10

skill is inevitably lower than in the tropics (Kumar et al., 2007; Arribas et al., 2011). The good
skill in many parts of Europe, particularly for forecasts of SAT, is an encouraging property of
our system and a detailed comparison with dynamical European forecasts is forthcoming. The
inclusion of locally-varying predictors, in combination with predictors describing large-scale
modes of variability provides a basis to elicit more skill than can be attained using global in-15

dices alone.
An important outcome of this work is the system’s implementation in a quasi-operational

framework and the provision of regular forecasts. Monthly forecasts are generated for each
forthcoming three-month season and made publicly available through the KNMI Climate Ex-
plorer along with uncertainty parameters and updated hindcast validation. The system’s frame-20

work permits the potential to test empirical prediction methods other than linear regression,
such as neural networks that potentially capture non-linear aspects of the climate system. Ad-
ditionally, as mentioned in Section 2, the current list of predictors considered for inclusion is
not exhaustive and there is scope to better exploit the predictive information in other locally-
varying predictors. Further avenues for system development include region-specific and case-25

based analysis and application to alternative predictands from century-long reanalyses or those
describing extreme events. Focus will also be given to alternative methods of ensemble genera-
tion using, for instance, derived uncertainty in regression parameters and spatial patterns.
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Figure 1. Correlation between seasonal SAT and the set of predictors with a one month lead time (1961-
2013)

:::
for

::
(a)

::::::
MAM,

:::
(b)

::::
JJA,

:::
(c)

:::::
SON

:::
and

:::
(d)

::::
DJF. Correlation between CO2EQV is shown in the top

line
:::
left

:::::
panel; subsequent lines

:::::
panels

:
show correlation between predictand-predictor pairs following

removal of the CO2EQV trend. Stippling is used to indicate significance at the 95% level.
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Figure 2. Correlation between seasonal PREC and the set of predictors (1961-2013)
::
for

:::
(a)

::::::
MAM,

:::
(b)

:::
JJA,

:::
(c)

:::::
SON

:::
and

:::
(d)

::::
DJF. As in Figure 1, correlation between CO2EQV is shown in the top line

:::
left

::::
panel; subsequent lines

:::::
panels show correlation between predictand-predictor pairs following removal

of the CO2EQV trend. Stippling is used to indicate significance at the 95% level.
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Figure 3. Correlation between SAT hindcasts and observations (1961-2013) .
:::
for (a) Correlation

:::::
MAM,

::
(b)

::::
JJA,

:::
(c)

::::
SON

::::
and

:::
(d)

::::
DJF.

:::
The

::::
top

:::
left

:::::
panel

:::::
shows

:::::::::
correlation

:
bewteen observations and SAT hind-

casts constructed using CO2-equivalent as the sole predictor. Stippling
:
;
:::::::
stippling

:
is used to indicate

significance at the 95% level. (b)-(h) Differences
:::::::::
Subsequent

:::::
panels

:::::
show

:::::::::
differences

:
in correlation fol-

lowing the inclusion of additional predictors.
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Figure 4. Correlation between observations and SAT hindcasts generated using regression model with
all predictors (1961-2013). Stippling is used to indicate significance at the 95% level.
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Figure 5. Root mean squared error skill score (RMSESS) and the continuous rank probability skill score
(CRPSS) of the SAT hindcasts expressed as a skill score against a climatology ensemble forecast (1961-
2013). For CRPSS, stippling is used to indictate significance at the 95% level following a one sided
t-test.
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Figure 6. Correlation between PREC hindcasts and observations (1961-2013) .
::
for (a) Correlation

:::::
MAM;

::
(b)

::::
JJA,

:::
(c)

::::
SON

::::
and

:::
(d)

::::
DJF.

:::
The

::::
top

:::
left

:::::
panel

:::::
shows

:::::::::
correlation

:
bewteen observations and SAT hind-

casts constructed using CO2-equivalent as the sole predictor. Stippling
:
;
:::::::
stippling

:
is used to indicate

significance at the 95% level. (b)-(h) Differences
:::::::::
Subsequent

::::::
panels

:::::
show

::::::::
difference

:
in correlation fol-

lowing the inclusion of additional predictors.
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Figure 7. Correlation between observations and PREC hindcasts generated using regression model with
all predictors (1961-2013). Stippling is used to indicate significance at the 95% level.
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Figure 8. Root mean squared error skill score (RMSESS) and the continuous rank probability skill
score (CRPSS) of the PREC hindcasts expressed as a skill score against a climatology ensemble forecast
(1961-2013). For CRPSS, stippling is used to indictate significance at the 95% level following a one
sided t-test.
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Table 1. Description of predictor variables and their sources.

Predictor Source

CO2EQV CO2-equivalent concentrations (Meinshausen et al., 2011)
NINO3.4 Calculated from SST fields from HadISST (Rayner et al., 2003)
PDO University of Washington (http://jisao.washington.edu/static/pdo//)
QBO At 30hPa from the reconstruction of Brönnimann et al. (2007)
AMO Calculated by van Oldenborgh et al. (2009a); based on HadSST (Kennedy

et al., 2011a, b)
IOD Calculated from SST fields from HadISST (Rayner et al., 2003)
LSST HadSST3 (Kennedy et al., 2011a, b)
CPREC GPCC Full Data Reanalysis version 6 (Schneider et al., 2011)

(R1)
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