
Response	
  to	
  the	
  comments	
  of	
  Anonymous	
  Referee	
  #1	
  	
  
	
  
Main	
  comments:	
  The	
  title	
  describes	
  exactly	
  the	
  content	
  of	
  the	
  paper:	
  describing	
  a	
  
statistical	
  model	
  and	
  evaluating	
  the	
  seasonal	
  probabilistic	
  scores	
  over	
  the	
  world.	
  
When	
  I	
  read	
  this	
  title,	
  my	
  first	
  mind	
  was	
  “Yet	
  another	
  comparison	
  of	
  seasonal	
  
hindcast	
  scores	
  between	
  numerical	
  models	
  and	
  statistical	
  methods.”	
  For	
  reasons	
  I	
  
will	
  not	
  develop	
  here,	
  I	
  consider	
  this	
  type	
  of	
  contest	
  as	
  fair	
  as	
  comparing	
  a	
  car	
  race	
  
with	
  a	
  horse	
  race.	
  But	
  the	
  content	
  and	
  the	
  philosophy	
  of	
  the	
  manuscript	
  are	
  
completely	
  different.	
  The	
  authors	
  reduce	
  strongly	
  the	
  score	
  overestimation	
  by	
  
selecting	
  individually	
  predictors	
  amongst	
  a	
  few	
  well	
  known	
  indices	
  (not	
  trying	
  
multiple	
  combinations).	
  They	
  also	
  use	
  a	
  progressive	
  learning	
  approach,	
  closer	
  to	
  
what	
  would	
  be	
  a	
  true	
  forecast.	
  They	
  present	
  their	
  product	
  as	
  a	
  complement	
  of	
  
numerical	
  operational	
  forecasts,	
  not	
  as	
  a	
  challenger.	
  This	
  convinced	
  me	
  to	
  propose	
  
this	
  manuscript	
  as	
  suitable	
  for	
  publication,	
  with	
  a	
  few	
  minor	
  corrections:	
  	
  
	
  
Response:	
  	
  We	
  thank	
  the	
  Reviewer	
  for	
  their	
  comments	
  the	
  effort	
  made	
  to	
  
understand	
  and	
  appreciate	
  the	
  content	
  of	
  our	
  paper.	
  	
  We	
  are	
  particularly	
  
encouraged	
  that	
  the	
  emphasis	
  placed	
  on	
  the	
  avoidance	
  of	
  overfitting	
  and	
  using	
  as	
  
few	
  predictors	
  as	
  possible	
  has	
  been	
  acknowledged.	
  	
  A	
  full	
  response	
  to	
  the	
  Reviewer’s	
  
comments	
  is	
  given	
  below.	
  
	
  
	
  
Additional	
  comments	
  
	
  
p2	
  lines	
  2	
  and	
  3:	
  relies	
  ...	
  reliable	
  	
  
	
  
Response:	
  	
  Sentence	
  changed	
  to	
  “…is	
  dependent	
  on	
  the	
  availability	
  of	
  reliable	
  
forecasts”.	
  
	
  
p3	
  line	
  10:	
  of	
  course,	
  the	
  model	
  inadequacy	
  wrt	
  the	
  true	
  world	
  induces	
  systematic	
  
errors,	
  but	
  the	
  main	
  problem	
  is	
  elsewhere;	
  if	
  a	
  model	
  had	
  just	
  a	
  cold	
  bias,	
  but	
  would	
  
successfully	
  predict	
  the	
  sequence	
  of	
  cold	
  and	
  warm	
  seasons	
  (which	
  is	
  measured	
  by	
  
time	
  correlation),	
  one	
  would	
  be	
  satisfied	
  of	
  it;	
  conversely	
  if	
  a	
  model	
  has	
  been	
  
carefully	
  tuned	
  and	
  has	
  a	
  bias	
  close	
  to	
  zero,	
  but	
  a	
  very	
  weak	
  time	
  correlation	
  wrt	
  
observed	
  seasons,	
  one	
  is	
  not	
  satisfied	
  at	
  all.	
  So	
  the	
  critical	
  point	
  is	
  the	
  fact	
  that,	
  
because	
  a	
  model	
  has	
  the	
  wrong	
  equations	
  (assuming	
  that	
  the	
  real	
  world	
  follows	
  a	
  
small	
  set	
  of	
  equations),	
  its	
  predictability	
  is	
  low.	
  It	
  is	
  possible	
  that,	
  in	
  addition,	
  this	
  
model	
  has	
  biases,	
  but	
  the	
  link	
  bias-­‐predictability	
  is	
  not	
  very	
  tight	
  in	
  practice.	
  	
  
	
  
Response:	
  	
  We	
  have	
  revised	
  this	
  sentence	
  to	
  avoid	
  the	
  ambiguity	
  highlighted	
  by	
  the	
  
Reviewer.	
  	
  We	
  now	
  refer	
  to	
  “…errors	
  and	
  biases…”	
  rather	
  than	
  “…systematic	
  
errors…”	
  in	
  order	
  to	
  make	
  clear	
  that	
  we	
  are	
  describing	
  all	
  model	
  errors.	
  	
  However,	
  
we	
  do	
  not	
  feel	
  it	
  is	
  appropriate	
  here	
  to	
  begin	
  a	
  discussion	
  on	
  the	
  sources	
  of	
  model	
  
errors.	
  	
  The	
  Reviewer’s	
  point	
  about	
  the	
  large	
  portion	
  of	
  model	
  skill	
  being	
  in	
  its	
  ability	
  
to	
  simulate	
  the	
  correct	
  sequence	
  of	
  weather	
  events	
  but	
  this	
  is	
  largely	
  driven	
  by	
  the	
  
representation	
  of	
  the	
  initial	
  conditions	
  and	
  the	
  degree	
  of	
  data	
  assimilation	
  



performed	
  during	
  the	
  simulation.	
  	
  For	
  clarity,	
  and	
  in	
  order	
  to	
  make	
  our	
  sentence	
  
applicable	
  to	
  all	
  climate	
  models,	
  we	
  have	
  chosen	
  the	
  following	
  revision:	
  
	
  
“However,	
  the	
  development	
  of	
  dynamical	
  systems	
  is	
  a	
  continuous	
  challenge;	
  climate	
  
models	
  are	
  inherently	
  complex	
  and	
  computationally	
  demanding	
  and	
  often	
  contain	
  
considerable	
  errors	
  and	
  biases	
  that	
  limit	
  model	
  skill	
  in	
  particular	
  regions	
  and	
  
seasons.”	
  
	
  
p4	
  line	
  20:	
  the	
  non	
  transferrability	
  of	
  empirical	
  relations	
  is	
  a	
  major	
  criticism	
  in	
  the	
  
case	
  of	
  big	
  climate	
  change	
  (e.g.	
  2100	
  RCP8.5).	
  In	
  the	
  case	
  of	
  seasonal	
  hindcasts	
  
spanning	
  over	
  the	
  last	
  30	
  years,	
  the	
  stationarity	
  hypothesis	
  is	
  acceptable.	
  The	
  major	
  
criticism	
  is	
  that	
  these	
  empirical	
  relations	
  could	
  be	
  partly	
  based	
  on	
  coincidences	
  of	
  big	
  
events	
  in	
  the	
  past	
  which	
  might	
  not	
  repeat	
  in	
  the	
  future	
  (I	
  mean	
  the	
  coincidences,	
  not	
  
the	
  big	
  events).	
  There	
  is	
  thus	
  a	
  dilemma:	
  longer	
  time	
  series,	
  better	
  robustness,	
  lesser	
  
stationarity.	
  
	
  
Response:	
  	
  In	
  this	
  paragraph	
  (Section	
  1,	
  paragraph	
  4)	
  we	
  seek	
  to	
  outline	
  the	
  
importance	
  of	
  considering	
  external	
  forcings,	
  not	
  only	
  in	
  climate	
  change	
  simulations	
  
and	
  decadal	
  prediction,	
  but	
  also	
  in	
  seasonal	
  forecasting.	
  	
  We	
  assert	
  that,	
  in	
  general,	
  
the	
  inclusion	
  of	
  a	
  predictor	
  describing	
  greenhouse	
  gas	
  forcing	
  gives	
  the	
  system	
  
greater	
  transferability	
  to	
  a	
  perturbed	
  climate.	
  	
  	
  
	
  
p	
  10	
  line	
  16:	
  why	
  random	
  sampling	
  ?	
  The	
  reference	
  forecast	
  for	
  calculating	
  a	
  skill	
  
score	
  should	
  be	
  the	
  forecast	
  which	
  minimizes	
  this	
  score	
  in	
  the	
  absence	
  of	
  
information:	
  -­‐average	
  of	
  the	
  available	
  past	
  observations	
  for	
  RMSESS	
  -­‐distribution	
  of	
  
the	
  available	
  past	
  observations	
  for	
  CRPSSS	
  
	
  
Response:	
  	
  We	
  have	
  chosen	
  to	
  sample	
  randomly	
  from	
  the	
  climatology	
  in	
  order	
  to	
  
maintain	
  an	
  ensemble	
  vs	
  ensemble	
  approach	
  to	
  the	
  generation	
  of	
  skill	
  scores.	
  	
  
	
  
	
  
	
  
	
   	
  



Response	
  to	
  the	
  comments	
  of	
  Anonymous	
  Referee	
  #2	
  
	
  
Main	
  comments:	
  The	
  manuscript	
  describes	
  and	
  assesses	
  the	
  skill	
  of	
  a	
  global	
  
empirical	
  system	
  for	
  probabilistic	
  seasonal	
  climate	
  prediction.	
  The	
  manuscript	
  is	
  well	
  
organized	
  and	
  provides	
  an	
  original	
  and	
  novel	
  contribution	
  for	
  the	
  field	
  of	
  seasonal	
  
prediction,	
  being	
  a	
  valuable	
  benchmark	
  for	
  future	
  assessment	
  of	
  dynamical	
  seasonal	
  
prediction	
  systems.	
  The	
  development	
  of	
  empirical	
  systems	
  is	
  an	
  important	
  and	
  
complementary	
  contribution	
  to	
  dynamical	
  prediction	
  systems.	
  However,	
  I	
  feel	
  a	
  
number	
  of	
  improvements	
  are	
  required	
  in	
  order	
  to	
  make	
  the	
  manuscript	
  ready	
  for	
  
publication.	
  Please	
  see	
  below	
  a	
  list	
  of	
  major	
  remarks	
  and	
  additional	
  remarks	
  that	
  I	
  
recommend	
  to	
  be	
  addressed	
  prior	
  to	
  publication	
  of	
  this	
  manuscript.	
  	
  
	
  
Response:	
  	
  We	
  thank	
  the	
  Reviewer	
  for	
  their	
  comments	
  and	
  in	
  particular	
  for	
  
identifying	
  where	
  our	
  manuscript	
  is	
  unclear	
  in	
  describing	
  the	
  methodology	
  used.	
  	
  
Our	
  revision	
  takes	
  into	
  account	
  all	
  comments	
  and	
  includes	
  many	
  changes	
  designed	
  
to	
  offer	
  greater	
  transparency	
  and	
  clarity	
  to	
  the	
  reader.	
  	
  In	
  particular,	
  we	
  direct	
  the	
  
Reviewer	
  to	
  Section	
  2	
  in	
  the	
  revised	
  manuscript,	
  which	
  has	
  been	
  restructured	
  
considerably.	
  	
  	
  
	
  
Major	
  comments:	
  	
  
1)	
  Lack	
  of	
  methodological	
  information	
  to	
  allow	
  repeatability:	
  The	
  presented	
  
methodology	
  in	
  the	
  manuscript	
  is	
  mainly	
  descriptive.	
  To	
  allow	
  repeatability	
  of	
  the	
  
described	
  empirical	
  model	
  it	
  is	
  necessary	
  to	
  include	
  in	
  the	
  manuscript	
  the	
  equations	
  
used	
  to	
  define	
  the	
  model,	
  including	
  a	
  description	
  of	
  model	
  parameters,	
  predictor	
  
and	
  predictand	
  variables,	
  and	
  explain	
  how	
  model	
  parameters	
  were	
  estimated.	
  
Currently	
  the	
  methodological	
  description	
  is	
  limited	
  to	
  indicate	
  that	
  the	
  developed	
  
global	
  empirical	
  system	
  is	
  based	
  on	
  multiple	
  linear	
  regression.	
  A	
  substantially	
  
improved	
  description	
  of	
  the	
  developed	
  empirical	
  model	
  with	
  the	
  inclusion	
  of	
  the	
  
required	
  equations	
  for	
  the	
  production	
  of	
  probabilistic	
  prediction	
  is	
  needed.	
  	
  
	
  
Response:	
  	
  The	
  content	
  of	
  Section	
  2	
  is	
  split	
  into	
  sub-­‐sections	
  and	
  we	
  now	
  include	
  a	
  
set	
  of	
  equations	
  detailing	
  the	
  development	
  of	
  our	
  empirical	
  model.	
  	
  We	
  begin	
  
Section	
  2	
  with	
  equation	
  (1)	
  to	
  describe	
  the	
  assumption	
  that	
  the	
  predictand	
  is	
  a	
  
function	
  of	
  both	
  external	
  forcing	
  and	
  internal	
  variability	
  components.	
  	
  We	
  seek	
  to	
  
make	
  it	
  clear	
  that	
  the	
  external	
  forcing	
  (represented	
  by	
  global	
  CO2-­‐equivalent)	
  is	
  the	
  
primary	
  predictor	
  in	
  our	
  system;	
  the	
  inclusion	
  of	
  other	
  predictors	
  vary	
  according	
  to	
  
location	
  and	
  season.	
  	
  This	
  is	
  made	
  clear	
  in	
  equation	
  (2).	
  	
  The	
  fitting	
  of	
  and	
  
application	
  of	
  the	
  regression	
  model	
  following	
  the	
  selection	
  of	
  predictors	
  is	
  shown	
  in	
  
equations	
  (5)	
  and	
  (6).	
  	
  The	
  generation	
  of	
  a	
  forecast	
  ensemble	
  for	
  probabilistic	
  
prediction	
  is	
  shown	
  in	
  equation	
  (7).	
  
	
  
2)	
  More	
  precise	
  methodological	
  description	
  needed:	
  In	
  the	
  current	
  model	
  
description	
  it	
  unclear	
  which	
  seasons	
  are	
  included	
  in	
  the	
  lagged	
  analysis.	
  Additionally,	
  
the	
  procedure	
  of	
  removing	
  the	
  impact	
  of	
  CO2	
  equivalent	
  signal	
  from	
  modeled	
  time	
  
series	
  needs	
  to	
  be	
  explained	
  in	
  details	
  because	
  this	
  procedure	
  is	
  currently	
  unclear.	
  
Including	
  the	
  equation	
  used	
  to	
  perform	
  this	
  procedure	
  will	
  help	
  this	
  clarification.	
  	
  
	
  



Response:	
  	
  As	
  made	
  clear	
  in	
  Section	
  2,	
  paragraph	
  2,	
  predictor	
  information	
  is	
  taken	
  
from	
  “the	
  previous	
  three-­‐month	
  season	
  at	
  a	
  lead	
  time	
  of	
  one	
  month	
  (e.g.	
  the	
  
forecast	
  for	
  the	
  season	
  March-­‐April-­‐May	
  is	
  estimated	
  using	
  predictors	
  from	
  
November-­‐December-­‐January).”	
  	
  Section	
  2.2	
  in	
  the	
  revision	
  deals	
  specifically	
  
predictor	
  selection	
  and	
  model	
  fitting.	
  	
  We	
  have	
  chosen	
  to	
  define	
  the	
  predictor	
  
selection	
  scheme	
  as	
  a	
  two-­‐step	
  process,	
  with	
  the	
  first	
  step	
  built	
  largely	
  on	
  existing	
  
knowledge	
  of	
  physical	
  processes.	
  	
  The	
  second	
  step	
  is	
  fully	
  quantitative;	
  we	
  remove	
  
the	
  linear	
  trend	
  associated	
  with	
  CO2EQV	
  from	
  the	
  predictand	
  and	
  all	
  other	
  
predictors	
  passed	
  from	
  step	
  one	
  and	
  identify	
  the	
  predictors	
  that	
  exhibit	
  a	
  significant	
  
correlation	
  with	
  the	
  predictand	
  following	
  the	
  detrending.	
  	
  The	
  procedure	
  for	
  
removing	
  the	
  linear	
  CO2EQV	
  trend	
  is	
  made	
  clear	
  in	
  equations	
  (3)	
  and	
  (4).	
  
	
  
3)	
  Improved	
  figures	
  are	
  required:	
  All	
  multiple	
  panel	
  figures	
  are	
  currently	
  excessively	
  
small	
  in	
  size.	
  For	
  this	
  reason	
  it	
  is	
  not	
  possible	
  to	
  clearly	
  see	
  the	
  results,	
  particularly	
  
for	
  the	
  described	
  statistical	
  significance.	
  All	
  multiple	
  panel	
  figures	
  need	
  to	
  be	
  
improved	
  (i.e.	
  enlarge	
  all	
  individual	
  panels)	
  to	
  allow	
  the	
  reader	
  to	
  clearly	
  appreciate	
  
the	
  presented	
  evidences.	
  	
  
	
  
Response:	
  	
  Unfortunately,	
  the	
  volume	
  of	
  plots	
  in	
  this	
  manuscript	
  necessitates	
  the	
  
use	
  of	
  multi-­‐panel	
  figures	
  and	
  thus	
  smaller	
  plots	
  than	
  would	
  be	
  ideal.	
  	
  To	
  
compensate,	
  all	
  Figures	
  have	
  been	
  changed	
  to	
  .pdf	
  format	
  in	
  the	
  revised	
  manuscript.	
  	
  	
  
Global	
  feature	
  can	
  be	
  easily	
  identified	
  at	
  real-­‐size	
  resolution	
  and	
  the	
  .pdf	
  format	
  
allows	
  the	
  online	
  user	
  to	
  zoom	
  on	
  each	
  plot	
  to	
  a	
  much	
  greater	
  extent	
  and	
  view	
  the	
  
necessary	
  detail.	
  	
  	
  
	
  
4)	
  Text	
  requires	
  clarity	
  improvement:	
  The	
  text	
  needs	
  to	
  be	
  carefully	
  revised	
  in	
  order	
  
to	
  improve	
  clarity.	
  Please	
  see	
  below	
  a	
  number	
  of	
  additional	
  remarks	
  indicating	
  
where	
  clarification	
  is	
  required.	
  	
  
	
  
Response:	
  	
  The	
  comments	
  of	
  the	
  Reviewer	
  specified	
  below	
  have	
  been	
  taken	
  into	
  
account.	
  	
  Our	
  revision	
  includes	
  a	
  much	
  clearer	
  outline	
  of	
  the	
  prediction	
  system,	
  
including	
  predictor	
  selection	
  and	
  model	
  fitting.	
  	
  Further	
  details	
  are	
  given	
  in	
  the	
  
responses	
  to	
  the	
  Reviewer’s	
  comments	
  below.	
  
	
  
	
  
Additional	
  comments:	
  	
  
	
  
Abstract:	
  The	
  acronyms	
  NGOs	
  and	
  ENSO	
  are	
  not	
  defined.	
  All	
  acronyms	
  need	
  to	
  be	
  
defined	
  when	
  first	
  used.	
  Please	
  revise	
  the	
  entire	
  manuscript	
  to	
  make	
  sure	
  all	
  
acronyms	
  are	
  defined	
  when	
  first	
  used.	
  	
  
	
  
Response:	
  	
  Changes	
  made	
  in	
  revision.	
  
	
  
Abstract,	
  line	
  17:	
  using	
  correlation	
  and	
  skill	
  scores.	
  Please	
  be	
  more	
  precise.	
  
Correlation	
  of	
  what	
  with	
  what?	
  Which	
  skill	
  scores?	
  	
  
	
  
Response:	
  	
  Sentence	
  changed	
  to:	
  



“…validated	
  against	
  observations	
  using	
  deterministic	
  (correlation	
  of	
  seasonal	
  means)	
  
and	
  probabilistic	
  (continuous	
  rank	
  probability	
  skill	
  score)	
  metrics.”	
  
	
  
Page	
  3944,	
  line	
  4:	
  by	
  limiting	
  the	
  effects	
  of	
  model	
  biases.	
  What	
  do	
  you	
  mean	
  here?	
  
Do	
  you	
  mean	
  empirical	
  forecasts	
  produced	
  with	
  empirical	
  models	
  do	
  not	
  have	
  biases	
  
by	
  construction?	
  Please	
  clarify.	
  	
  
	
  
Response:	
  	
  Sentence	
  changed	
  to:	
  
“…by	
  limiting	
  the	
  effects	
  of	
  dynamical	
  model	
  biases.”	
  
	
  
Page,	
  3948,	
  line	
  18:	
  during	
  the	
  predictor	
  period.	
  What	
  is	
  the	
  predictor	
  period?	
  Please	
  
be	
  more	
  precise.	
  	
  
	
  
Response:	
  	
  As	
  this	
  section	
  is	
  a	
  description	
  of	
  the	
  predictors	
  only,	
  we	
  agree	
  that	
  this	
  
sentence	
  is	
  slightly	
  ambiguous.	
  	
  Sentence	
  therefore	
  changed	
  to:	
  
“Finally,	
  as	
  a	
  proxy	
  for	
  soil	
  moisture,	
  which	
  has	
  been	
  shown	
  to	
  impact	
  on	
  local	
  
temperature	
  (e.g.	
  van	
  den	
  Hurk	
  et	
  al.,	
  2012),	
  we	
  also	
  consider	
  accumulated	
  rainfall	
  
(CPREC)	
  as	
  a	
  potential	
  predictor.”	
  
	
  
Page	
  3949,	
  line	
  12:	
  using	
  data	
  since	
  1901.	
  A	
  comment	
  on	
  data	
  availability	
  in	
  the	
  early	
  
1900	
  is	
  needed	
  here.	
  	
  
	
  
Response:	
  	
  The	
  following	
  text	
  has	
  been	
  added	
  to	
  Section	
  2.2,	
  paragraph	
  4.	
  
	
  
“It	
  is	
  also	
  important	
  to	
  note	
  that,	
  insetting	
  the	
  earliest	
  hindcast	
  to	
  1961,	
  we	
  seek	
  to	
  
limit	
  the	
  impact	
  of	
  poor	
  quality	
  available	
  predictand	
  and	
  predictor	
  data	
  in	
  the	
  early	
  
20th	
  Century.	
  Additionally,	
  to	
  ensure	
  robustness,	
  the	
  multiple	
  linear	
  regression	
  
model	
  requires	
  complete	
  predictand-­‐predictor	
  time	
  series	
  of	
  at	
  least	
  thirty	
  years	
  in	
  
the	
  fitting	
  period	
  for	
  a	
  forecast	
  to	
  be	
  produced.”	
  
	
  
Page	
  3949,	
  lines	
  18-­‐20:	
  Please	
  provide	
  equation	
  to	
  explain	
  precisely	
  what	
  was	
  the	
  
procedure	
  implemented	
  here	
  to	
  make	
  the	
  described	
  removal.	
  	
  
	
  
Response:	
  	
  The	
  original	
  text	
  was	
  slightly	
  confusing	
  to	
  the	
  reader.	
  	
  Please	
  see	
  
rewritten	
  section	
  2.2	
  in	
  which	
  we	
  show	
  equations	
  to	
  make	
  clear	
  how	
  the	
  linear	
  trend	
  
of	
  CO2EQV	
  is	
  removed	
  from	
  the	
  predictand	
  and	
  predictors.	
  
	
  
Page	
  3949,	
  lines	
  21-­‐26:	
  The	
  described	
  procedure	
  is	
  unclear.	
  Is	
  each	
  predictor	
  tested	
  
separately/independently?	
  Please	
  provide	
  equations	
  to	
  show	
  more	
  precisely	
  what	
  
has	
  been	
  done.	
  	
  
	
  
Response:	
  	
  Please	
  see	
  rewritten	
  section	
  2.	
  	
  We	
  make	
  it	
  clear	
  that	
  the	
  regression	
  
model	
  outlined	
  in	
  equation	
  (2)	
  is	
  implemented	
  independently	
  at	
  each	
  grid	
  point	
  and	
  
for	
  each	
  season.	
  	
  In	
  Section	
  2.2,	
  we	
  offer	
  a	
  clearer	
  explanation	
  of	
  the	
  selection	
  
procedure.	
  
	
  



“This	
  is	
  achieved	
  by	
  correlating	
  the	
  detrended	
  predictand	
  with	
  each	
  detrended	
  
predictor	
  and	
  identifying	
  those	
  predictors	
  that	
  exhibit	
  significant	
  (at	
  the	
  90%	
  level)	
  
correlation.”	
  
	
  
Page	
  3949,	
  lines	
  25-­‐26:	
  Predictor	
  inclusion	
  is	
  determined	
  independently	
  for	
  each	
  
hindcast.	
  What	
  does	
  this	
  precisely	
  mean?	
  Please	
  rephrase	
  and	
  better	
  explain.	
  	
  
	
  
Response:	
  	
  We	
  offer	
  better	
  clarification	
  on	
  what	
  is	
  meant	
  here	
  with	
  new	
  text	
  in	
  
Section	
  2.2.	
  
	
  
“The	
  predictor	
  selection	
  procedure,	
  in	
  addition	
  to	
  being	
  location-­‐specific,	
  is	
  also	
  
implemented	
  independently	
  for	
  each	
  hindcast.	
  In	
  other	
  words,	
  for	
  a	
  given	
  grid	
  point,	
  
a	
  given	
  predictor	
  would	
  only	
  be	
  included	
  in	
  the	
  regression	
  model	
  for	
  hindcasts	
  with	
  
fitting	
  periods	
  during	
  which	
  it	
  demonstrates	
  predictive	
  potential,	
  allowing	
  for	
  the	
  
maximum	
  value	
  to	
  be	
  taken	
  from	
  predictor	
  information	
  in	
  the	
  fairest	
  way.”	
  
	
  
Page	
  3950,	
  line	
  20:	
  We	
  parameterize	
  this	
  trend.	
  .	
  .	
  The	
  described	
  procedure	
  is	
  
unclear.	
  Please	
  provide	
  equations	
  to	
  show	
  more	
  precisely	
  what	
  has	
  been	
  done.	
  
	
  
Response:	
  	
  For	
  clarity,	
  the	
  first	
  sentence	
  in	
  Section	
  3.1,	
  paragraph	
  has	
  been	
  changed:	
  
	
  
“The	
  surface	
  air	
  temperature	
  (SAT)	
  shows	
  a	
  clear	
  trend	
  almost	
  everywhere,	
  which	
  is	
  
assumed	
  to	
  be	
  proportional	
  to	
  the	
  forcing	
  of	
  greenhouse	
  gases,	
  described	
  by	
  
CO2EQV.”	
  
	
  
Page	
  3951,	
  line	
  1:	
  previous	
  year	
  CO2EQV.	
  Why	
  previous	
  year	
  if	
  you	
  are	
  considering	
  
seasonal	
  averages?	
  Shouldnʹ′t	
  it	
  be	
  previous	
  season?	
  	
  
	
  
Response:	
  	
  Yes,	
  this	
  is	
  an	
  error.	
  	
  Change	
  made	
  in	
  revision.	
  
	
  
Page	
  3951,	
  lines	
  4-­‐5:	
  when	
  natural	
  variability	
  is	
  small	
  compared	
  to	
  the	
  forced	
  signal.	
  
Please	
  further	
  expand	
  and	
  explain	
  precisely	
  what	
  you	
  mean	
  by	
  this	
  sentence.	
  	
  
	
  
Response:	
  	
  We	
  offer	
  clarification	
  on	
  this	
  point	
  in	
  the	
  revision	
  (Section	
  4.1,	
  paragraph	
  
1).	
  
	
  
“Correlation	
  between	
  SAT	
  and	
  CO2EQV	
  is	
  in	
  general	
  strongly	
  positive	
  across	
  the	
  
majority	
  of	
  the	
  globe,	
  and	
  particularly	
  so	
  when	
  the	
  response	
  of	
  SAT	
  to	
  the	
  internal	
  
variability	
  of	
  the	
  climate	
  system	
  is	
  known	
  to	
  be	
  small	
  compared	
  to	
  the	
  response	
  to	
  
the	
  signal	
  associated	
  with	
  anthropogenic	
  forcing,	
  for	
  example	
  in	
  the	
  northern	
  
hemisphere	
  during	
  spring	
  (MAM)	
  and	
  summer	
  (JJA)	
  and	
  throughout	
  the	
  tropics	
  at	
  all	
  
times	
  of	
  year.:	
  
	
  
Page	
  3951,	
  line	
  24:	
  PDO,	
  IOD	
  and	
  AMO	
  indices.	
  At	
  this	
  point	
  it	
  is	
  unclear	
  how	
  
predictors	
  are	
  selected.	
  Please	
  further	
  explain	
  and	
  provide	
  precise	
  information	
  on	
  
the	
  selection	
  procedure.	
  	
  
	
  



Response:	
  	
  Please	
  see	
  revised	
  Section	
  2,	
  and	
  particularly	
  Section	
  2.2	
  in	
  which	
  a	
  
clearer	
  explanation	
  of	
  the	
  predictor	
  selection	
  procedure	
  is	
  given.	
  
	
  
Page	
  3952,	
  lines	
  21-­‐23:	
  The	
  correlation	
  is	
  also	
  strong.	
  .	
  .	
  Unfortunately	
  it	
  is	
  not	
  
possible	
  to	
  see	
  these	
  described	
  features.	
  Figure	
  panels	
  are	
  too	
  small.	
  Please	
  enlarge	
  
figure	
  panels.	
  	
  
	
  
Response:	
  	
  As	
  mentioned	
  above,	
  all	
  Figures	
  will	
  be	
  changed	
  to	
  .pdf	
  format	
  in	
  the	
  
revised	
  manuscript.	
  
	
  
Page	
  3952,	
  line	
  25:	
  Lagged	
  correlation	
  between	
  PREC	
  and	
  the	
  predictors	
  is	
  shown	
  in	
  
Fig.	
  2.	
  What	
  type	
  of	
  lag	
  are	
  you	
  considering?	
  Previous	
  season	
  predictor	
  with	
  next	
  
season	
  PREC?	
  Please	
  be	
  more	
  precise.	
  	
  
	
  
Response:	
  	
  It	
  is	
  confusing	
  to	
  the	
  reader	
  to	
  refer	
  to	
  the	
  correlations	
  as	
  “lagged”	
  when	
  
the	
  forecast	
  lead	
  time	
  time	
  and	
  the	
  time	
  difference	
  between	
  the	
  predictand	
  and	
  
predictors	
  sets	
  is	
  made	
  clear	
  in	
  section	
  2.	
  
	
  
“In	
  this	
  case,	
  this	
  is	
  defined	
  as	
  previous	
  three-­‐month	
  season	
  at	
  a	
  lead	
  time	
  of	
  one	
  
month	
  (e.g.	
  the	
  forecast	
  for	
  the	
  season	
  March-­‐April-­‐May	
  is	
  estimated	
  using	
  
predictors	
  from	
  November-­‐December-­‐January).”	
  
	
  
Page	
  3954,	
  line	
  10:	
  causal	
  hindcast	
  estimates.	
  What	
  do	
  you	
  mean	
  by	
  causal?	
  Please	
  
rephrase	
  of	
  further	
  explain.	
  	
  
	
  
Response:	
  	
  The	
  explanation	
  of	
  the	
  causal	
  approach	
  and	
  the	
  preference	
  of	
  this	
  over	
  a	
  
leave-­‐one-­‐out	
  approach	
  is	
  made	
  clear	
  in	
  Section	
  2.2	
  
	
  
“The	
  model	
  is	
  calibrated	
  and	
  validated	
  in	
  a	
  hindcast	
  framework	
  using	
  a	
  causal	
  
approach:	
  hindcasts	
  are	
  produced	
  for	
  1961-­‐2010	
  using	
  data	
  since	
  1901	
  prior	
  to	
  the	
  
hindcast	
  start	
  date.	
  The	
  causal	
  approach	
  was	
  chosen	
  instead	
  of	
  a	
  leave-­‐one-­‐out	
  
framework	
  in	
  order	
  to	
  replicate	
  the	
  set	
  of	
  observational	
  data	
  that	
  would	
  have	
  been	
  
available	
  for	
  each	
  hindcast	
  were	
  it	
  produced	
  in	
  real	
  time.”	
  
	
  
Page	
  3954,	
  lines	
  18-­‐19:	
  the	
  incremental	
  correlation	
  attained	
  by	
  including	
  additional	
  
predictors	
  (second	
  to	
  eight	
  lines).	
  It	
  is	
  unclear	
  if	
  panels	
  on	
  lines	
  2-­‐8	
  of	
  Fig.	
  3	
  are	
  for	
  
individual	
  predictors	
  or	
  for	
  a	
  sequential	
  cumulative	
  addition	
  of	
  predictors.	
  Please	
  
explain	
  more	
  precisely	
  what	
  is	
  shown	
  here.	
  	
  
	
  
Response:	
  	
  Revised	
  text	
  in	
  Section	
  4.1	
  offers	
  clarification.	
  
	
  
“Hindcasts	
  were	
  produced	
  with	
  each	
  predictor	
  added	
  in	
  turn	
  and	
  verified	
  against	
  
observations.	
  Figure	
  3	
  shows	
  the	
  correlation	
  between	
  observations	
  and	
  a	
  hindcast	
  
constructed	
  using	
  CO2-­‐equivalent	
  only	
  (top	
  line),	
  the	
  incremental	
  correlation	
  
attained	
  by	
  including	
  additional	
  predictors	
  cumulatively	
  (second	
  to	
  eighth	
  lines),	
  and	
  
the	
  observation-­‐hindcast	
  correlation	
  following	
  the	
  inclusion	
  of	
  all	
  predictors.”	
  
	
  



Page	
  3955,	
  line	
  3:	
  full	
  correlation.	
  What	
  does	
  this	
  mean?	
  Does	
  it	
  mean	
  the	
  
correlation	
  for	
  the	
  model	
  that	
  incorporate	
  all	
  predictions	
  (i.e.	
  bottom	
  row	
  in	
  Fig.	
  3)?	
  
Please	
  be	
  more	
  precise.	
  	
  
	
  
Response:	
  	
  Revised	
  text	
  in	
  Section	
  4.1,	
  paragraph	
  2	
  offer	
  clarification.	
  
	
  
“The	
  correlation	
  of	
  observations	
  with	
  hindcasts	
  estimated	
  using	
  CO2EQV	
  (Figure	
  3,	
  
top	
  line)	
  only	
  is	
  much	
  lower	
  than	
  that	
  with	
  hindcasts	
  estimated	
  using	
  as	
  a	
  function	
  of	
  
all	
  potential	
  predictors	
  (Figure	
  3,	
  bottom	
  line).”	
  
	
  
Pages	
  3965	
  and	
  3966,	
  Figure	
  1	
  and	
  2:	
  Figure	
  panels	
  are	
  too	
  small.	
  It	
  is	
  currently	
  
difficult	
  to	
  appreciate	
  the	
  evidences	
  presented	
  in	
  these	
  figures.	
  Please	
  enlarge	
  figure	
  
panels.	
  The	
  caption	
  indicates	
  one	
  month	
  lead	
  time.	
  Please	
  be	
  more	
  precise	
  in	
  
defining	
  what	
  is	
  meant	
  by	
  one	
  month	
  lead	
  time	
  here.	
  Does	
  this	
  mean	
  the	
  previous	
  
season	
  predictor	
  values	
  are	
  used	
  to	
  predict	
  next	
  season	
  SAT	
  and	
  PREC?	
  	
  
	
  
Response:	
  	
  As	
  mentioned	
  above,	
  all	
  Figures	
  will	
  be	
  changed	
  to	
  .pdf	
  format	
  in	
  the	
  
revised	
  manuscript.	
  	
  Again,	
  in	
  order	
  to	
  avoid	
  confusing	
  the	
  reader,	
  the	
  reference	
  to	
  
lead	
  time	
  is	
  removed	
  from	
  the	
  figure	
  caption.	
  	
  The	
  time	
  difference	
  between	
  the	
  
predictand	
  and	
  predictors	
  is	
  made	
  clear	
  in	
  Section	
  2.	
  
	
  
Pages	
  3967	
  and	
  3968,	
  Figures	
  3	
  and	
  4:	
  For	
  which	
  period	
  has	
  this	
  correlation	
  been	
  
computed?	
  Please	
  provide	
  this	
  information	
  in	
  the	
  figure	
  caption.	
  It	
  is	
  also	
  unclear	
  if	
  
the	
  first	
  8	
  rows	
  of	
  this	
  figure	
  show	
  the	
  correlation	
  skill	
  considering	
  only	
  one	
  predictor	
  
(i.e.	
  the	
  individual	
  predictors	
  indicated	
  on	
  the	
  left	
  side	
  of	
  each	
  row).	
  Please	
  make	
  
sure	
  the	
  correct	
  description	
  is	
  provided	
  in	
  the	
  text	
  and	
  figure	
  caption.	
  Likewise,	
  it	
  is	
  
unclear	
  if	
  the	
  last	
  row	
  of	
  this	
  figure	
  shows	
  the	
  correlation	
  skill	
  considering	
  all	
  8	
  
predictors	
  indicated	
  in	
  lines	
  1	
  to	
  8	
  above	
  in	
  the	
  multiple	
  linear	
  regression	
  model.	
  
Please	
  make	
  sure	
  the	
  correct	
  description	
  is	
  provided	
  in	
  the	
  text	
  and	
  figure	
  caption.	
  
And	
  unfortunately,	
  because	
  figure	
  panels	
  are	
  too	
  small,	
  it	
  is	
  not	
  possible	
  to	
  see	
  the	
  
stippling	
  indicated	
  in	
  the	
  figure	
  caption.	
  Please	
  enlarge	
  figure	
  panels	
  to	
  allow	
  
identification	
  of	
  statistically	
  significant	
  results.	
  Make	
  sure	
  to	
  provide	
  references	
  and	
  
or	
  equations	
  for	
  the	
  RMSESS	
  and	
  CRPSS	
  shown	
  in	
  Figure	
  4.	
  	
  
	
  
Response:	
  	
  As	
  mentioned	
  above,	
  all	
  Figures	
  will	
  be	
  changed	
  to	
  .pdf	
  format	
  in	
  the	
  
revised	
  manuscript.	
  	
  A	
  reference	
  for	
  the	
  skill	
  scores	
  is	
  given	
  in	
  Section	
  2.2,	
  paragraph	
  
5.	
  
	
  
Pages	
  3969	
  and	
  3970,	
  Figure	
  5	
  and	
  6:	
  Figure	
  panels	
  are	
  too	
  small.	
  It	
  is	
  currently	
  
difficult	
  to	
  appreciate	
  the	
  evidences	
  presented	
  in	
  these	
  figures.	
  Please	
  enlarge	
  figure	
  
panels.	
  Figure	
  5	
  is	
  apparently	
  for	
  SAT	
  but	
  caption	
  indicates	
  PREC.	
  Please	
  correct.	
  	
  
	
  
Response:	
  	
  As	
  mentioned	
  above,	
  all	
  Figures	
  will	
  be	
  changed	
  to	
  .pdf	
  format	
  in	
  the	
  
revised	
  manuscript.	
  	
  Figure	
  captions	
  have	
  been	
  corrected	
  accordingly.	
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Abstract

Preparing for episodes with risks of anomalous weather a month to a year ahead is an important
challenge for governments, NGOs and companies and relies

::::::::::::::::
non-governmental

::::::::::::
organisations

:::
and

::::::::
privates

::::::::::
companies

::
is

::::::::::
dependent on the availability of reliable forecasts. The majority of

operational seasonal forecasts are made using process-based dynamical models, which are com-5

plex, computationally challenging and prone to biases. Empirical forecast approaches built on
statistical models to represent physical processes offer an alternative to dynamical systems and
can provide either a benchmark for comparison or independent supplementary forecasts. Here,
we present a simple empirical system based on multiple linear regression for producing prob-
abilistic forecasts of seasonal surface air temperature and precipitation across the globe. The10

global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors,
including large-scale modes of variability in the climate system and local-scale information, are
selected on the basis of their physical relationship with the predictand. The focus given to the
climate change signal as a source of skill and the probabilistic nature of the forecasts produced
constitute a novel approach to global empirical prediction.15

Hindcasts for the period 1961-2013 are validated using correlation and skill scores
::::::
against

:::::::::::
observations

:::::
using

::::::::::::
deterministic

:::::::::::
(correlation

:::
of

::::::::
seasonal

:::::::
means)

::::
and

:::::::::::
probabilistic

:::::::::::
(continuous

::::
rank

::::::::::
probability

::::
skill

:::::::
scores)

:::::::
metrics. Good skill is found in many regions, particularly for sur-

face air temperature and most notably in much of Europe during the spring and summer seasons.
For precipitation, skill is generally limited to regions with known ENSO

::
El

:::::
Nino

:::::::::
Southern20

::::::::::
Oscillation

::::::::
(ENSO) teleconnections. The system is used in a quasi-operational framework to

generate empirical seasonal forecasts on a monthly basis.

1 Introduction

The provision of reliable seasonal forecasts is an important area in climate science and under-
standing the limitations and quantifying uncertainty remains a key challenge (Doblas-Reyes25

et al., 2013; Weisheimer and Palmer, 2014). Operational seasonal forecasting, although once

2
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limited to a handful of research centres, is now a regular activity across the globe. Much re-
cent focus has been given to the skill and reliability of seasonal climate predictions. Dynamical
(process-based) forecast systems are arguably the most important tool in producing predictions
of seasonal climate at continental and regional scales. Such systems are based on numerical
models that represent dynamical processes in the atmospheric, ocean and land surface in ad-5

dition to the linear and non-linear interactions between them. However, the development of
dynamical systems is a continuous challenge; climate models are inherently complex and com-
putationally demanding and often contain considerable systematic errors

::::::
errors

:::
and

::::::
biases

:
that

limit model skill in particular regions and seasons.
As an alternative to dynamical forecast systems, empirical approaches aim to describe a10

known physical relationship between regional-scale anomalies in a target variable (the pre-
dictand), say, temperature or precipitation, and preceding climate phenomena (the predictors).
In its simplest form, an empirical forecast may be based on persistence in which observations
of the variable to be predicted

:
a
::::::
given

:::::::
variable

:::
at

:::::
some

::::
lead

:::::
time are taken as the forecast for

some lead time
:::
that

::::::::
variable. Such forecasts have frequently performed better at short lead times15

than those simply prescribed by the long-term climatology, particularly so in the Tropics. More
sophisticated statistical methods include analog forecasting (van den Dool, 2007; Suckling and
Smith, 2013) and regression-based techniques, which may in turn take predictive information
from spatial patterns using, for instance, empirical orthogonal functions (EOFs) (e.g. van Old-
enborgh et al., 2005), maximum covariance analysis (MCA) (e.g. Coelho et al., 2006) and lin-20

ear inverse modelling (LIM) (e.g. Penland and Matrosova, 1998). Empirical predictions for the
phase and strength of the El Nino Southern Oscillation (ENSO) have historically shown compa-
rable skill to those produced by dynamical systems (e.g. Sardeshmukh et al., 2000; Peng et al.,
2000; van Oldenborgh et al., 2005). Additionally, an inherent advantage of empirical methods
is the ease with which knowledge of climate variability gained from analysis of up-to-date ob-25

servations can be incorporated into a prediction system (Doblas-Reyes et al., 2013), which in
turn facilitates the development of new methodologies and statistical techniques (van den Dool,
2007).
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Empirical forecasts serve both as a baseline for dynamical models and can be used to im-
prove the forecasts by limiting the effects of

:::::::::
dynamical

:
model biases. However, differences in

the development and output of dynamical and empirical-statistical approaches makes systematic
comparison troublesome, and understanding the relative skill of each forecast type is challeng-
ing. Recent attempts have been made in developing empirical benchmark systems for multiple5

variables, such as land and sea surface temperature, on decadal time scales (e.g. Ho et al., 2013;
Newman, 2013), concluding that the usefulness of such systems merits further development.
While comparison of dynamical and empirical systems for seasonal forecasts is not novel, a
systematic global comparison for multiple variables, including probabilistic measures, has been
lacking. A key potential benefit of such comparison is the identification of regions where em-10

pirical models are skilful and may be able to provide useful forecast information to complement
the output of dynamical systems. Supplementing dynamical forecasts with empirical forecasts
is of great importance in situations where dynamical systems are known to have weaknesses.
It has also been shown that combining the output of empirical and dynamical systems can pro-
duce marked improvement over single-system forecasts (e.g. Coelho et al., 2006; Schepen et al.,15

2012).
A fundamental criticism of empirical systems is the question of their applicability in a future,

perturbed climate. In other words, to what extent will the predictor-predictand relationships un-
derpinning a statistical model remain stationary under climate change? Sterl et al. (2007) noted

:::::
found

:
that within the statistical uncertainties, no changes could be detected in ENSO teleconnec-20

tions. Doblas-Reyes et al. (2013) recently noted that the temporal evolution of seasonal climate
should be considered as forced not only by the internal variability of the climate system but
also by changes in concentrations of greenhouse gas and aerosols as a result of anthropogenic
activities. Such external forcings are considered in climate change simulations, and also to an
increasing extent in the field of decadal prediction (e.g. Krueger and Von Storch, 2011). Current25

seasonal forecast systems now include these forcings (Doblas-Reyes et al., 2006; Liniger et al.,
2007), but the resulting trends are sometimes not realistic.

Here we present and validate a simple empirical system for predicting seasonal climate across
the globe. The prediction system, based on multiple linear regression, produces probabilis-
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tic forecasts for temperature and precipitation using a number of predictors based on well-
understood physical relationships. In all forecasts, the global equivalent CO2 concentration is
used as the primary predictor as an indicator of the climate change signal. Additional predictors
describing large-scale modes of variability in the climate system, starting with ENSO, and local-
scale information are subsequently selected on the basis of their potential to provide additional5

predictive power. The system presented will have two purposes: (a) to serve as a benchmark
for assessing and comparing the skill of dynamical forecast systems; and (b) to act as an in-
dependent forecast system in combination with predictions from dynamical systems. Key to
achieving these goals will be the system’s implementation in a quasi-operational framework
with empirical forecasts made on a monthly basis and the availability of a set of hindcasts.10

The method implemented here constitutes a relatively simple approach to empirical forecast-
ing. The global and automated nature of the prediction system calls for the underlying empirical
method to be parsimonious in terms of the predictive sources used to construct it. The statistical
model and the selection of predictors will thus be based on physical principles and processes
to the fullest extent so as to elicit the maximum predictive power of, first of all, the long-term15

trend associated with the climate change signal and, secondly, as few additional predictors as
is necessary in order to minimise the risk of overfitting. The final system will also be suffi-
ciently flexible to facilitate its future development. Such development may involve inclusion of
additional predictors should more complete and reliable datasets become available, or the ap-
plication of the system to alternative predictands including those relating to the magnitude and20

frequency of extreme events.
Producing empirical forecast output in similar format to dynamical systems is crucial when

designing a framework for robust comparison. A weakness of current dynamical-empirical sys-
tem comparison is the general lack of a common set of validation measures. Whereas dynamical
systems inherently provide output in the form of ensemble forecasts, which may be validated in25

probabilistic terms, validation of empirical systems does not always extend beyond determinis-
tic measures, such as bias, RMS error and correlation (Mason and Mimmack, 2002). Here, the
uncertainties are explicitly parametrised as an ensemble of forecasts and we employ a rigorous
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validation framework designed to assess both the deterministic and probabilistic aspects of the
forecast system.

The remainder of the paper is structured as follows. Section 2 describes the prediction system
in full, including the observational data used for empirical model fitting and validation. An
analysis of the potential usefulness of the predictors is given in Section 3. The skill of the5

prediction system is then assessed in Section 4 with a discussion and outlook given in Section
5.

2 Model fitting and validation measures
:::::::::
Prediction

:::::::
system

:::::::
outline

Key to achieving the goals set out in Section 1 is the development of an automated forecast
system that can be applied globally and, in principle, for any number of predictands. For these10

reasons, the regression-based prediction system developed here is relatively simple in com-
parison with more sophisticated statistical models, with emphasis given to a basis of physical
processes and the avoidance of overfitting.

Our system incorporates a two-step
::::::::
multiple

:::::
linear

:
regression approach for estimating sea-

sonal (three-month) surface air temperature (SAT) and precipitation (PREC) as a function of15

global and local atmospheric and oceanic fields. The first step is to utilise the predictive information
in

::::::::
approach

:::::
used

::::::::
assumes

:::
the

::::::::::
predictand

::::
time

::::::
series

:
x
:::
to

::::::
consist

:::
of

::::
two

:::::::::::
components,

:

x= xext+int,
:::::::::::

(1)

:::::
where

::::
xext

::
is

:::
the

::::::::
response

:::
to externally forced low frequency variability associated with anthro-

pogenic activity ; this is represented by
:::
and

::::
xint

:::::::::
represents

:::
the

:::::::
internal

::::::::::
variability

:::::::::::
independent

::
of20

:::::::
changes

::
in

::::::::
external

::::::
forcing

:::::::::::::::::::::::::::::
(Krueger and Von Storch, 2011).

::::
We

::::
seek

::::
first

::
to

::::::
utilise

:::
the

:::::::::
predictive

::::::::::
information

::
in

::::
xext

::::::
which

::
is

::::::::
assumed

::
to

::
be

::::::::
linearly

:::::::::
dependent

:::
on

:::
the

::::::
global CO2-equivalent con-

centration (CO2EQV), based on historical estimates until 2005 and according to Representative
Concentration Pathway (RCP) 4.5 thereafter, which constitutes the net forcing of greenhouse
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gases, aerosols and other anthropogenic emissions (Meinshausen et al., 2011). The second step
is to identify predictive potential

:::::::::
Secondly,

:::
we

:::::
seek

:::
to

:::::::
identify

::
a
:::
set

:::
of

::::::::::
predictors

::::
that

::::
best

:::::::::
represents

::::
xint.

::::
The

::::::::::
predictand

:::::
time

:::::
series

::
x
::
at

:::::
may

::
be

:::::::::
modelled

:::
as

:
a
::::::::
function

:
of a set of pre-

dictors representing internal variability following removal of the trend associated with external
forcing. The final product is a season- and location-specific multiple linear regression using the5

selected predictors, with an
::::
thus:

x=
:::

α
:
+
:
β
:
C +

n∑
i=1

(

::::::::

Φ
: iFi)+

:::::
ε (2)

:::::
where

:::
C

::
is

:::::::::
CO2EQV

::
at

::
a

:::::
given

::::
lead

:::::
time

::::
and

::
F

::
is

:
a
::::
set

::
of

::
n

:::::::::
additional

::::::::::
predictors

::
at

:::
the

:::::
same

::::
lead

::::
time

::::
that

:::::::::
describes

::::
xint.

::::
The

:::::::::
regression

::::::::::
parameters

::
β

::::
and

::
Φ

:::
are

:::::
those

::::::::
required

::
to

:::::::::
transform

::
C

:::
and

::
F

::::::::::::
respectively,

::
α

::
is

:::
the

:::::::
constant

::::::::::
regression

::::
term

::::
and

:
ε
::
is

:::
the

:::
set

::
of

:::::::::
residuals

:::::::
specific

::
to

:::
the10

:::::
model

:::
fit.

:::
In

:::
this

:::::
case,

::::::::::
predictors

:::
are

:::::
taken

:::::
from

:::
the

::::::::
previous

:::::::::::
three-month

:::::::
season

::
at

:
a
:::::
lead

::::
time

::
of

::::
one

::::::
month

::::
(e.g.

::::
the

:::::::
forecast

::::
for

:::
the

:::::::
season

::::::::::::::::
March-April-May

::
is

:::::::::
estimated

::::::
using

:::::::::
predictors

::::
from

:::::::::::::::::::::::::::::
November-December-January).

:::
An

:
independent regression model

:
is
:

calibrated at each
grid point. Analysing the degree of additional predictive skill offered by each predictor will
form an important precursor to the implementation of the system

::::::::
Whereas

:::::::::
CO2EQV

::
is

::::::::
included15

::
as

:
a
:::::::::

predictor
:::
by

:::::::
default,

:::
all

:::::::::
additional

::::::::::
predictors

:::
are

::::::::
included

:::
on

::::
the

:::::
basis

::
of

:::::
their

:::::::::
predictive

::::::::
potential,

::::::
which

::
is
:::::::::::
determined

:::
by

:
a
:::::::::
predictor

::::::::
selection

::::::::::
procedure

::::
prior

:::
to

::::::
model

::::::
fitting.

:::
In

:::
the

:::::::::
remainder

::
of

::::
this

:::::::
section

:::
we

:::
(a)

::::::::
identify

::::::::
potential

::::::::::
predictors

:::
and

::::::::
describe

::::
the

:::::::
sources

:::
of

::::
both

::::::::
predictor

::::
and

::::::::::
predictand

::::
data

::::::
(2.1);

::::
and

:::
(b)

:::::::
provide

:::::::
further

:::::::
details

::
on

::::
the

:::::::::
predictor

::::::::
selection

:::::::::
approach,

:::
the

::::::
model

::::::
fitting

:::::::::
procedure

::::
and

:::
the

:::::::::
validation

::::::::::
framework

:::::
(2.2).20

2.1
::::::::
Potential

::::::::::
predictors

As additional predictors
:
F , we consider first of all variables that describe large-scale modes of

variability. ENSO is the most important of these in terms of its contribution to the skill of sea-
sonal predictions, particularly in the tropics (van Oldenborgh et al., 2005; Balmaseda and An-
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derson, 2009; Weisheimer et al., 2009; Doblas-Reyes et al., 2013). Circulation and precipitation
patterns in the tropical Pacific associated with ENSO SST anomalies are subsequently linked
to climate variability in other parts of the globe (Alexander et al., 2002). In addition, modes of
variability in other tropical oceans, including the tropical Atlantic and Indian basins, are known
to contribute substantially to variability in SAT and PREC, particularly in surrounding regions5

(Doblas-Reyes et al., 2013). Many such phenomena are linked in some way to ENSO, although
variability in the Indian Ocean Dipole (IOD) is known to occur independently (Zhao and Hen-
don, 2009). Similarly, the Pacific Decadal Oscillation (PDO), defined as the leading empirical
orthogonal function (EOF) of North Pacific monthly SST anomalies, is considered as a repre-
sentation of variability on interdecadal time scales that is not otherwise apparent in interannual10

ENSO variability (Liu and Alexander, 2007). Drought occurrence in the United States is known
to be linked to the phase of both PDO and the Atlantic Multidecadal Oscillation (AMO). At-
mospheric anomalies, including troposhere-stratosphere interactions, are also known to have
predictive potential. The Quasi-Biennial Oscillation (QBO) (Ebdon and Veryard, 1961; Bald-
win et al., 2001) has recently been considered in a multiple regression model for predicting15

European winter climate (Folland et al., 2012). With this in mind, the following indices are
considered as predictors: NINO3.4 (representative of ENSO), PDO, AMO, IOD and QBO. The
system is designed to be flexible enough for the inclusion of additional predictors in the future.

External forcing and global modes of variability are not the only source of skill in seasonal
forecasts. Many studies, including those based on dynamical systems, have found links between20

local climate and variations in preceding nearby climate phenomena (e.g. van den Hurk et al.,
2012; Quesada et al., 2012). The most simple of these is persistence; that is, the value of the
predictand (either SAT or PREC) for the same location at some lead time. Here, we seek to
elicit predictive information from persistence (PERS) and other variables that vary from grid
point to grid point in addition to the set of large-scale modes of variability described above.25

For coastal locations in particular, we seek to maximise the potential of short-term memory
contained within neighbouring sea surface temperatures to provide greater predictability than
PERS at the specified lead time. We derive a local sea surface temperature (LSST) index for each
predictand grid cell, defined as the mean of the k nearest grid cells containing SST information.

8
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Here, k = 5 throughout the analysis although this value could of course be altered or optimised
for region-specific analysis. Additionally, soil moisture

:::::::
Finally,

::
as

::
a
::::::
proxy

:::
for

::::
soil

:::::::::
moisture,

:::::
which

:
has been shown to impact on local temperature (e.g. van den Hurk et al., 2012). As a

proxy, we consider as a predictor the
:
,
:::
we

::::
also

::::::::
consider

:
accumulated rainfall (CPREC) during

the predictorperiod
::
as

:
a
::::::::
potential

:::::::::
predictor.5

Global observational datasets provide the predictand (SAT and PREC) and predictor fields
required for model calibration and validation. SAT is taken from the Cowtan and Way (2014) reconstruction
of the Hadley Centre–Climatic Reseach Unit Version 4 (HadCRUT4) (Morice et al., 2012),
which uses kriging to account for missing data in unsampled regions. PREC is taken from the
Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis version 6 (Schneider et al., 2011) for10

the period 1901-2010 combined with additional data for the period 2011-2013 taken from the
GPCC monitoring product following bias correction. Further details of the sources of predic-
tor data are given in Table 1. Our list of predictors is not exhaustive. Much recent work has
sought to identify predictability arising from the extent of sea ice and snow covered land, the
reflective and insulative attributes of which are relevant for SAT and PREC in several regions of15

the extra-tropics (e.g. Shongwe et al., 2007; Dutra et al., 2011; Brands et al., 2012; Chevallier
and Salas-Mélia, 2012). However, these variables are not considered for the present system due
to the absence of sufficiently long and reliable datasets, although some effects are effectively
captured by persistence. The design of the prediction system facilitates inclusion of additional
predictors should high quality observational or reanalysis data become available.20

Global

2.2
::::::
Model

::::::
fitting

::::
and

::::::::::
validation

::::::
Global

::::::::::::
observational

::::::::
datasets

:::::::
provide

:::
the

::::::::::
predictand

:::::
(SAT

:::
and

:::::::
PREC)

:::::
fields

::::::::
required

:::
for

::::::
model

:::::::::
calibration

::::
and

:::::::::::
validation.

::::
SAT

:::
is

:::::
taken

:::::
from

::::
the

:::::::::::::::::::::::::::::::::::
Cowtan and Way (2014) reconstruction

:::
of

:::
the

::::::
Hadley

:::::::::::::::
Centre–Climatic

::::::::
Reseach

:::::
Unit

:::::::
Version

::
4

::::::::::::
(HadCRUT4)

:::::::::::::::::::
(Morice et al., 2012),

::::::
which25

::::
uses

:::::::
kriging

::
to

:::::::
account

:::
for

::::::::
missing

::::
data

::
in

::::::::::
unsampled

::::::::
regions.

::::::
PREC

::
is

:::::
taken

:::::
from

::::
the

::::::
Global

:::::::::::
Precipitation

::::::::::::
Climatology

::::::
Centre

:::::::
(GPCC)

::::
Full

:::::
Data

::::::::::
Reanalysis

:::::::
version

:
6
::::::::::::::::::::::::
(Schneider et al., 2011) for

9
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:::
the

::::::
period

::::::::::
1901-2010

:::::::::
combined

:::::
with

:::::::::
additional

:::::
data

:::
for

:::
the

::::::
period

::::::::::
2011-2013

::::::
taken

:::::
from

:::
the

::::::
GPCC

::::::::::
monitoring

:::::::
product

:::::::::
following

::::
bias

::::::::::
correction.

:

:::::::::
Analysing

::::
the

::::::
degree

:::
of

:::::::::
additional

::::::::::
predictive

::::
skill

::::::::
offered

::
by

:::::
each

:::::::::
predictor

::::
will

:::::
form

:::
an

:::::::::
important

::::::::
precursor

::
to

:::
the

:::::::::::::::
implementation

::
of

:::
the

:::::::
system.

::
A

::::::::
two-step

::::::::
predictor

::::::::
selection

::::::::::
procedure

:
is
:::::

used
::
to

::::::::::
determine

:::
the

::::::
fewest

:::::::::
numbers

::
of

::::::::::
predictors

:::::::::
necessary

::
to

:::::::
provide

::::::::
greatest

:::::::::
predictive5

::::
skill.

::::
The

:::::::::
selection

:::::::::
procedure

:::::
may

:::
be

::::::::::
considered

::::::::
‘offline’

::
in

:::
the

::::::
sense

::::
that

::
it

::
is

::::::::::::
implemented

::::
prior

:::
to

::::::
model

::::::
fitting.

:::
In

:::
the

:::::
first

::::
step,

:::::::
global maps of linear correlation between predictand-

predictor pairs form a basis for a physical understanding of the factors governing variabilityand
provide a first step in determining predictive potential. Predictors that show good potential
and do not exhibit colinearity with other predictors are included in the selection procedure10

for
::::::
second

:::::
step:

::::
the

::::::::
selection

:::
of

::::::::::
predictors

::
to

:::
be

:::::::
passed

::
to

::::
the the empirical forecast model

itself. The model is calibrated and validated in a hindcast framework using a causal approach:
hindcasts are produced for 1961-2010 using data since 1901 prior to the forecast year. The
causal approach was chosen instead of a leave-one-out framework in order to replicate

::
To

::::::::
achieve

:::
this

:::
the

::::::
linear

:::::
trend

:::::::::
associated

:::::
with

:::::::::
CO2EQV

::
is

::::
first

::
of

:::
all

::::::::
removed

:::::
from

::::
both

:::
the15

:::::::::
predictand

::
x
::::
and the set of observational data that would have been available for each hindcast

were it produced in real time. Separate models are calibrated for each three-month season with a
one month lead time (the season March-April-May is thus predicted by November-December-January).
CO2EQV is included as a predictor for all seasons at all locations. In order to identify subsequent
informative predictors, the linear regression onto CO2EQV is removed from the predictand20

:::::::::
predictors

::
F

:::
by

::::::
fitting

:::
the

:::::::
models

x=
:::

α
:1+

::
β
:
1C+
::::

εx
:

(3)

and each predictor

Fi =
::::

α
:2+

::
β
:
2C+
::::

εFi
:

(4)

10
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:::::
where

::::
α1,

:::
β1::::

and
::::
α2,

:::
β2 :::

are
::::
the

:::::::::
respective

::::::::::
regression

::::::::::
parameters

::::
for

::::
each

:::::::
model

::
fit

::::
and

:::
εx

:::
and

::::
εFi

:::
are

:::
the

:::::
time

:::::
series

:::
of

::::::::
residuals

::::
that

:::::::
equate

::
to

::::
the

:::::::::
detrended

::::::::::
predictand

::::
and

:::::::::
predictors

::::::::::
respectively. Correlation is performed between the detrended predictand and predictor pairs.
Predictor selection is season- and location-specific; for each season and grid point, the predictors
that produce

::
εx

::::
and

:::::
each

::
of

:::
the

:::
N

:::::::::
predictors

::::::
within

::::
the

:::
set

:::
εFi

:::::::
(where

::::::::::::
i= 1,2...N ).

:::::::::
Predictors5

:::
that

:::::::
exhibit

:
significant (at the 90% level) correlation with the predictand are entered into a

multiple linear regression along with CO2EQV. This strategy
:::
are

:::::::::
identified.

::::
The

::::::::
two-step

::::::::
approach

is designed to avoid overfitting, which would lower skill scores, and to ensure that the empiri-
cal model is built on physical principles to the fullest extent. Predictor inclusion is determined
independently for each hindcast, allowing for the maximum value to be taken from predictor10

information in the fairest way.
::::
The

::::
first

::::
step

::
is
:::

to
:::
an

::::::
extent

::::::::::
qualitative

::::
and

::::::::::
undertaken

:::::
only

::::
once

:::
for

:::::
each

::::::::::
predictand,

::::
i.e.

:::
for

:::::
each

:::::::::
predictand

::::::
there

::
is

::
an

:::::::
agreed

:::
set

::
of

:::::::::
potential

:::::::::
predictors

:::::::::::
independent

::
of

:::::::
season

:::
or

::::::::
location.

:::::::::
However,

::::
the

:::::
fully

:::::::::::
quantitative

:::::::
second

::::
step

::
is

::::::::::
performed

::::::::::::
independently

:::
at

::::
each

::::
grid

:::::
point

::::
and

:::
for

:::::
each

:::::::
season.

:::::::::
Following

::::
the

::::::::
selection

::
of

::::::::::
predictors,

:::
all

:::::::::
significant

::::::::::
predictors

:::
are

:::::
then

:::::::
entered

::::
into

::
a

::::::::
multiple

:::::
linear

::::::::::
regression

::::::
along

::::
with

::::::::::
CO2EQV;15

::::::::
equation

:::
(2)

::
is

::::
thus

:::::::::
modified:

x=
:::

α
:
+
:
β
:
C +

k∑
i=1

(

::::::::

Φ
: iF

S
i )+

::::::
ε (5)

:::::
where

::::
FS

::
is

::::
the

::::::
subset

::
of

::
k
::::::::::
predictors

:::::
from

::
F

::::
that

:::::
meet

::::
the

:::::::::::
significance

:::::::
criteria

::::::::
outlined

::
in

:::
the

::::::::
selection

::::::::::
procedure.

::::
An

::::::::
estimate

:::
for

:::
the

:::::::::
unknown

::::::::::
predictand

::̂
x

::
at

::::::::
forecast

::::
time

::
t
::::
may

:::
be

::::::::::
determined

:::::
thus:20

x̂t =
::::

α
:
+
:
β
:
Ct +

k∑
i=1

(

::::::::

Φ
: iF

S
it )

::::

(6)

11
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A key component of the empirical prediction system is the provision of probabilistic out-
put. The residuals ε

:
from the regression fit for each hindcast are

:
in

::::::::
equation

::::
(5)

:::
are

:::::::::
randomly

:::::::
sampled

:::::
(with

::::::::::::
replacement)

::::
and

::::::::::::
subsequently

:
used to generate an ensembleof predictions. The

set of residuals is randomly sampled
:
a
::::::::
forecast

:::::::::
ensemble.

::::
The

:::
kth

::::::::
member

::
of

:::
the

:::::::::
ensemble

::::
x̂ens

::
at

:::::::
forecast

:::::
time

:
t
::
is

::::
thus

:::::
given

:::
by

:
5

x̂ens
t,k = x̂t+

:::::::::

εk
:

(7)

:::::
where

:::
εk:::

is
:
a
::::::::::

randomly
::::::::
sampled

::::::::
member

:::
of

::
ε.

::::::::::
Sampling

::
of

::::
the

:::::::::
residuals

::
is

::::::::::
performed

:
51

times(with replacement), reflecting the number of members in a typical dynamical forecast
ensemble

::::::
typical

:::::::::
ensemble

::::
size

::
in

:::
an

:::::::::::
operational

::::::::
dynamic

::::::::
forecast. The ensemble allows for

the calculation of probabilistic skill scores and will provide a basis for full comparison with10

the output of dynamical systems. It is anticipated that future development of the system will
consider more complex methods of ensemble generation.

::::
The

::::::
model

::
is
::::::::::

calibrated
::::
and

:::::::::
validated

::
in

::
a
::::::::
hindcast

:::::::::::
framework

:::::
using

::
a
:::::::
causal

:::::::::
approach:

::::::::
hindcasts

::::
are

:::::::::
produced

:::
for

::::::::::
1961-2013

::::::
using

::::
data

:::::
since

::::::
1901

:::::
prior

::
to

:::
the

:::::::::
hindcast

::::
start

:::::
date.

:::
The

::::::
causal

:::::::::
approach

::::
was

:::::::
chosen

::::::
instead

:::
of

:
a
:::::::::::::
leave-one-out

::::::::::
framework

::
in

:::::
order

:::
to

::::::::
replicate

:::
the15

::
set

:::
of

:::::::::::::
observational

::::
data

::::
that

::::::
would

:::::
have

:::::
been

:::::::::
available

:::
for

:::::
each

::::::::
hindcast

:::::
were

::
it
:::::::::
produced

::
in

::::
real

:::::
time.

::::
The

:::::::::
predictor

::::::::
selection

::::::::::
procedure,

:::
in

::::::::
addition

::
to

::::::
being

::::::::::::::::
location-specific,

::
is

::::
also

:::::::::::
implemented

::::::::::::::
independently

:::
for

:::::
each

::::::::
hindcast.

:::
In

:::::
other

::::::
words,

::::
for

:
a
::::::

given
::::
grid

::::::
point,

::
a

:::::
given

::::::::
predictor

::::::
would

:::::
only

:::
be

::::::::
included

:::
in

:::
the

::::::::::
regression

:::::::
model

:::
for

:::::::::
hindcasts

:::::
with

::::::
fitting

:::::::
periods

::::::
during

::::::
which

:
it
:::::::::::::
demonstrates

:::::::::
predictive

:::::::::
potential,

::::::::
allowing

:::
for

:::
the

::::::::::
maximum

:::::
value

::
to

:::
be

:::::
taken20

::::
from

:::::::::
predictor

:::::::::::
information

:::
in

:::
the

::::::
fairest

:::::
way.

::
It

::
is
:::::

also
:::::::::
important

::
to

:::::
note

:::::
that,

::
in

:::::::
setting

:::
the

::::::
earliest

::::::::
hindcast

:::
to

:::::
1961,

:::
we

:::::
seek

::
to

:::::
limit

:::
the

:::::::
impact

:::
of

::::
poor

:::::::
quality

::::::::
available

::::::::::
predictand

::::
and

::::::::
predictor

::::
data

::
in

::::
the

:::::
early

::::
20th

::::::::
Century.

::::::::::::
Additionally,

:::
to

::::::
ensure

::::::::::
robustness,

::::
the

:::::::
multiple

::::::
linear

:::::::::
regression

::::::
model

::::::::
requires

:::::::::
complete

::::::::::::::::::
predictand-predictor

:::::
time

:::::
series

:::
of

::
at

:::::
least

:::::
thirty

::::::
years

::
in

:::
the

:::::
fitting

:::::::
period

:::
for

:
a
::::::::
forecast

::
to

:::
be

:::::::::
produced.25

Both the deterministic and probabilistic aspects of the prediction system must be system-
atically validated using a number of measures. Global maps of correlation between hindcast
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estimates and observations provide a view on the degree of representation of temporal vari-
ability. Verification scores originally developed in the context of numerical weather prediction,
including the root mean squared error skill score (RMSESS) and the continuous rank proba-
bility skill score (CRPSS)

::::
(e.g.

::::::::::::
Ferro, 2013), provide a quantification of the degree of bias and

the skill of the probability distribution produced by the ensemble respectively. Such verification5

measures are also used to determine skill scores that describe forecast skill against a reference
ensemble forecast. The reference forecast is produced by random sampling of the climatology,
i.e. the observations for each year in the fitting period.

3 Analysis of potential predictors

3.1 Surface air temperature10

The surface air temperature (SAT) shows a clear trend almost everywhere. We parametrise
this trend as

:
,
::::::
which

::
is

::::::::
assumed

:::
to

:::
be

:
proportional to the forcing of greenhouse gases, de-

scribed by the equivalent CO2 concentrations, which describes the global mean trend quite
well (r ∼ 0.93)

::::::::
CO2EQV. Separate spatially varying aerosol forcings have not yet been im-

plemented. As mentioned in Section 2, this trend is treated differently from the other predic-15

tors in the sense it is always included in the empirical model; all other predictors are included

:::::::::
considered

:
only in cases where they appear to add value

:::::::::
(following

:::::
step

::::
one

::
of

:::
the

:::::::::
predictor

::::::::
selection

::::::::
process). Figure 1 shows seasonal correlation between SAT and the previous year’s

CO2EQV along the top row of panels. Subsequent rows show the correlation derived from
predictor-predictand pairs (following removal of the

:::::
linear trend associated with CO2EQV

:
).20

Correlation between SAT and CO2EQV is in general strongly positive across the majority of
the globe, and particularly so when natural variability is

:::
the

::::::::
response

:::
of

:::::
SAT

::
to

::::
the

:::::::
internal

:::::::::
variability

::
of

::::
the

:::::::
climate

:::::::
system

::
is

::::::
known

:::
to

::
be

:
small compared to the forced signal

::::::::
response

::
to

:::
the

::::::
signal

::::::::::
associated

:::::
with

:::::::::::::
anthropogenic

:::::::
forcing, for example in the northern hemisphere

during spring (MAM) and summer (JJA) and throughout the tropics at all times of year.25

13



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

NINO3.4 shows the second strongest relationship with SAT; the importance of ENSO in
governing variability in temperatures across the tropics is highlighted by correlation stronger
than ±0.5 in parts of South America, Africa and northern Australia in addition to the tropical
Pacific and Indian Oceans. ENSO-based relationships in extra-tropical land regions are less
apparent, although positive correlation in the northern half of the North American continent5

and negative ones around the Gulf of Mexico show the well-known influence on winter (DJF)
and spring (MAM) SAT (Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989). Very low
correlations are found across Europe.

The PDO and IOD correlation patterns are very similar to those for NINO3.4. Much of the
signal associated with PDO is captured by NINO3.4; additional skill is confined to the northern10

Pacific, which is likely to be associated with the region of enhanced cyclonic circulation around
the deepened Aleutian low associated with a positive, warm PDO phase (Liu and Alexander,
2007). Other areas of stronger correlation include small areas of central North America during
summer, which supports the association of PDO with multidecadal drought frequency in the
United States (McCabe et al., 2004). The AMO correlation patterns clearly act independently15

of ENSO and feature correlations throughout the high northern latitudes and the North Atlantic,
but curiously not so much in Western Europe (van Oldenborgh et al., 2009b). The PDO, IOD
and AMO indices are all included for selection in the prediction system.

Correlation associated with the QBO is poor with the notable exception of northern and
central Russia during the Boreal autumn. In agreement with Folland et al. (2012) we found no20

significant correlation for winter in Europe with a one month lead time. This is surprising given
the link found in previous work between the QBO and the Arctic Oscillation (AO), and thus
on European surface climate, although the authors suggest that predictability requires a shorter
optimal lead time than that used here (Marshall and Scaife, 2009). We thus omit QBO from the
SAT

:::::
QBO

::
is

::::
thus

::::::::::
withdrawn

::::
and

:::
not

::::::::
included

:::
in

:::
the prediction system.25

Persistence (PERS) shows strong correlations in some key regions and is particularly impor-
tant for high latitude seas in the northern hemisphere during winter, reflecting the latent heat
of melting of the sea ice. Over land however, there are relatively few regions associated with
strong correlation outside of the tropics. Correlation is greater than 0.4 in parts of western Eu-
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rope (MAM), south-east Europe (JJA), central North America (JJA) and parts of central Asia
(JJA). However, aside from these examples, the memory of land surface temperature outside of
the tropics does not appear to extend to the predictor period.

Unsurprisingly, including local SST (LSST) produces higher correlation than persistence
over the oceans but offers no skill over most continental regions. However, LSST is clearly5

beneficial in coastal regions, including northern and western Europe. We thus make both pre-
dictors available for selection in the SAT forecast system. The relationship between antecedent
precipitation (CPREC) and SAT is in general quite poor but correlation is around 0.4 in north-
ern Europe during spring (MAM), most likely representing the connection between a mild, wet
winter to a mild spring. The negative correlation during summer (JJA), significant over France,10

suggests that CPREC is reasonably able to represent the link between soil moisture and SAT
at this time of year shown in previous work (van den Hurk et al., 2012). The correlation is
also strong in parts of Australia and south-east Asia, in addition to southern Africa (MAM) and
northern South America (DJF and MAM).

3.2 Precipitation15

Lagged correlation
::::::::::
Correlation

:
between PREC and the predictors is shown in Figure 2. As

expected, the response of PREC to the trend in CO2EQV is not as strong as that of global
temperature. Increased PREC in northern high latitudes during the Boreal winter has a known
association with global warming (Hartmann et al., 2013). However, the response of precipitation
to global warming is not yet visible above the noise in much of the mid-latitudes and these20

regions are associated with low correlation at all times of the year.
The strong lagged correlation exhibited between NINO3.4 and PREC in many parts of the

world provides the most important basis for predictability. In addition to ENSO-related changes
in tropical precipitation patterns, there are a number of known links with precipitation in the
extra-tropics (Alexander et al., 2002; Doblas-Reyes et al., 2013), although only a weak one25

in MAM is found in Europe (van Oldenborgh et al., 2000). Correlation patterns for the PDO
are again similar for NINO3.4. For the IOD, correlations of around 0.5 exists in eastern Africa
during autumn (SON) and winter (DJF) but again these patterns are very similar to those for
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NINO3.4. Correlation of IOD and PREC following removal of the NINO3.4 signal (not shown)
indicates an ENSO-independent relationship, particularly during DJF in East Africa, which is
supported by the findings of previous work (Goddard and Graham, 1999), and also parts of Eu-
rope. In the absence of known links between the phase of PDO and precipitation anomalies that
are independent of ENSO, PDO is omitted from

:::
not

::::::::::
considered

:::
for

:::::::::
inclusion

::
in

:
the prediction5

system. QBO is also omitted on the basis that there are few areas of correlation of statistical sig-
nificance. AMO on the other hand produces significant correlation in regions influenced by the
Atlantic where NINO3.4 does not, including the Sahel (JAS, visible in JJA and SON), eastern
South America (JJA). The AMO-PREC relationship does not appear to extend to extra-tropical
regions; there are no discernible areas of strong correlation in Europe or eastern North America.10

This contrasts with the strong link previously identified between the AMO and JJA precipita-
tion in Europe during the 1990s (Sutton and Dong, 2012). The use of long-term time series,
correlations rather than composites and an absence of temporal filtering here results in lower
correlations.

For PERS, there are a number of regions, particularly in the extra-tropics, where significant15

correlation offer potential for predictability. The most obvious of such correlation is during DJF
in the mid- to high-latitudes of the northern hemisphere; the persistence of dry (wet) conditions
during autumn in much of central Eurasia is an indicator for similar conditions during winter.
In Europe, significant negative correlation during summer (JJA) suggests evidence for dry (wet)
springs followed by wet (dry) summers. By contrast, there are relatively few regions where20

LSST is significantly correlated with PREC. These include the western United States (MAM)
and south-east Asia where SST has variability that is independent from ENSO and adds to the
skill in dynamical systems (van Oldenborgh et al., 2005). It remains to be seen

::::::
unclear

:
to what

extent LSST may offer additional value to this empirical prediction system.

4 Prediction system development and validation25

For each hindcast between 1961-2010
::::::::::
1961-2013, and for each season and grid point, predictors

are selected on the basis of the significance of the (detrended) correlation with the predictand
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for the fitting period. For validation, causal hindcast estimates are compared with observations
to determine the skill of the deterministic and probabilistic aspects of the prediction system.

4.1 Surface air temperature

Following the assessment of potential predictors
::::
(step

::::
one

::
of

::::
the

::::::::
predictor

:::::::::
selection

::::::::
process),

the following were chosen in addition to CO2EQV for inclusion in the prediction system:5

NINO3.4, PDO, AMO, IOD, PERS, LSST and CPREC. Hindcasts were produced with each
predictor added in turn and verified against observations. Figure 3 shows the correlation be-
tween observations and a hindcast constructed using CO2-equivalent only (top line), the incre-
mental correlation attained by including additional predictors

:::::::::::
cumulatively

:
(second to eighth

lines), and the
::::::::::::::::::
observation-hindcast

:
correlation following the inclusion of all predictors. Note10

that these are the correlations of a causal system that only uses information from before the
hindcast date, the values are therefore much lower than the full correlations of Figure 1. If the
correlations are spurious, i.e., there was no physical connection, but the predictor was included
because the correlation exceeded the 90% significance criterion (this happens by chance on 10%
of the grid points without connection),

:
the hindcast skill is degraded by the inclusion of this pre-15

dictor, visible as the light-blue background in the panels of Figure 3. We tried to minimise this
by the first selection round

::::
step

::
in

:::
the

:::::::::
predictor

::::::::
selection

:::::::
process.

The skill of the trend, parametrised by
::::::::::
correlation

::
of

::::::::::::
observations

::::
with

:::::::::
hindcasts

:::::::::
estimated

:::::
using

:
CO2EQV ,

::::::
(Figure

::
3,
::::

top
:::::
line)

:::::
only

:
is much lower than the full correlation

:::
that

:::::
with

::::::::
hindcasts

:::::::::
estimated

::::::
using

::
as

::
a

:::::::
function

:::
of

:::
all

::::::::
potential

:::::::::
predictors

:::::::
(Figure

:::
3,

::::::
bottom

:::::
line). This20

is due to the fact that over the first half of the hindcast period the trend is not yet very strong
and does not contribute to the skill. This measure therefore underestimates the skill expected
in forecasts, which are made at a time that the trend plays a much larger role, although this
depends also on the reference period chosen for the forecasts.

The inclusion of NINO3.4 (second line) clearly adds value across the Pacific and in the parts25

of the tropics. There are no land-based areas where either PDO or IOD add value, but AMO
does improve correlation substantially in the North Atlantic and in parts of northern (SON) and
eastern (JJA) Europe, although its inclusion degraded the hindcasts in eastern Europe in DJF.
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The addition of PERS improves correlation in only a handful of locations and LSST, while
important to correlation over some parts of the ocean and hence for islands and coastal regions
not resolved by our coarse datasets, adds little value further from the coast. As suggested in
Figure 1, CPREC adds little global value except in parts of Australia

The final model shows good skill was found in many regions of the globe (Figure 3; bottom5

line of panels). Key areas of high correlation include the majority of the tropics where the
dominance of ENSO on interannual variability is greatest. Correlation is strong at all times of
year throughout much of northern South America, Central and Southern Africa and South Asia.
Strong correlation is also found in important extratropical regions, including much of Europe
except during SON. Correlation is strong in much of western and Central Europe during the10

spring and summer (MAM until ASO). Over North America, the skill depends strongly on the
season, varying from slightly negative skill (due to overfitting) during SON to good skill in
large parts during MAM. Global patterns of RMSE skill scores are broadly similar; regions of
strong correlation are generally associated with small differences from observations (Figure 4;
left panels).15

Global maps of CRPSS exhibit broad patterns of skill similar to those for correlation (Figure
4; right panels). The highest skill scores (relative to the climatology-based forecast) are found in
the tropics and are evident during all seasons. In Europe, skill is again greatest during spring and
summer, although some parts of eastern Europe and Scandinavia are associated with negative
skill scores. Very little of North America is associated with high skill; indeed, the prediction20

system fails to outperform the climatology-based forecast over the majority of the eastern and
southern United States. This lack of skill is known to extend to dynamical forecasts, particularly
during winter (e.g. Kim et al., 2012).

4.2 Precipitation

In addition to CO2EQV, the
:::
The

:
following predictors were included in the PREC prediction25

system: NINO3.4, AMO, PERS and LSST. Figure 5 shows total and incremental correlation
results in the same format as Figure 3 for SAT. Using CO2EQV as a sole predictor fails to yield
any notable regions of significant correlation, with the exception of parts of northern Eurasia
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during winter (DJF). As for SAT, we would expect the forecast skill to be greater than the
hindcast skill given that the a large portion of hindcasts were made before the trend becomes
important. The addition of NINO3.4 increases hindcast-observation correlation in many parts
of the tropics, particularly during the boreal autumn (SON) and winter (DJF). In spite of some
evidence for a relationship with PREC in parts of Eurasia as shown in Figure 2, AMO fails to5

add any improvement to the empirical model’s skill except in northeastern Brazil and to some
extent the Sahel. The same is largely true for PERS and LSST, suggesting that almost all skill
is captured by NINO3.4 and, to some extent, the climate change signal.

For the final model, high correlation (>0.6) is limited to south-east Asia and northern parts
of South America (between ASO and JFM) (Figure 5). Another area of high correlation to north10

is in south-east South America during the Austral spring (SON to NDJ). However, the RMSE
for the hindcast is rarely an improvement on that derived from the climatology (Figure 6; left
panels). In addition, there are only a few areas where the hindcast produces a positive CRPSS,
which would indicate an improvement on the ensemble forecast derived from the climatology
(Figure 6; right panels). This leads us to conclude that, while the deterministic component of15

the system is able to reproduce some components of seasonal precipitation variability, proba-
bilistically the system does not perform well outside limited areas in its present guise.

5 Discussion and outlook

A global empirical system for seasonal climate prediction has been developed and validated.
Multiple linear regression was chosen as the basis of the system; a simple predictor selection20

scheme sought to maximise the predictive skill of a number of predictors describing global-scale
modes of variability and local-scale information alongside that of the climate change signal.
Probabilistic hindcasts of surface air temperature (SAT) and precipitation (PREC) have been
produced using prediction models based on multiple linear regression and validated against ob-
servations using correlation and skill scores. The prediction system shows good skill in many25

regions. For SAT, the trend and interannual variability are well-represented throughout the trop-
ics and in a number of extra-tropical regions, including parts of Europe, particularly during
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spring and summer, southern Africa and eastern Australia. Skill associated with the probabilis-
tic component of the seasonal predictions shows similar spatial patterns. For PREC, few areas
of notable skill are found outside of regions with known ENSO teleconnections and, probabilis-
tically, the system does not perform better than a climatological ensemble throughout most of
the world.5

As outlined in Section 1, the system presented here has been designed to serve both as a
benchmark for dynamical prediction systems and as an independent forecast system to be com-
bined with dynamical output to produce more robust forecasts. Concerning the second purpose,
it is important to identify seasons and regions where dynamical systems lack skill and whether
our system may potentially add value in such instances. In general, dynamical system skill is10

limited to regions that are strongly linked to ENSO; in extra-tropical regions, where seasonal
variability in the atmospheric state is governed to a greater extent by random internal variability,
skill is inevitably lower than in the tropics (Kumar et al., 2007; Arribas et al., 2011). The good
skill in many parts of Europe, particularly for forecasts of SAT, is an encouraging property of
our system and a detailed comparison with dynamical European forecasts is forthcoming. The15

inclusion of locally-varying predictors, in combination with predictors describing large-scale
modes of variability provides a basis to elicit more skill than can be attained using global in-
dices alone.

An important outcome of this work is the system’s implementation in a quasi-operational
framework and the provision of regular forecasts. Monthly forecasts are generated for each20

forthcoming three-month season and made publicly available through the KNMI Climate Ex-
plorer along with uncertainty parameters and updated hindcast validation. The system’s frame-
work permits the potential to test empirical prediction methods other than linear regression,
such as neural networks that potentially capture non-linear aspects of the climate system. Ad-
ditionally, as mentioned in Section 2, the current list of predictors considered for inclusion is25

not exhaustive and there is scope to better exploit the predictive information in other locally-
varying predictors. Further avenues for system development include region-specific and case-
based analysis and application to alternative predictands from century-long reanalyses or those
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describing extreme events. Focus will also be given to alternative methods of ensemble genera-
tion using, for instance, derived uncertainty in regression parameters and spatial patterns.
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Figure 1. Correlation between seasonal SAT and the set of predictors with a one month lead time. Corre-
lation between CO2EQV is shown in the top line; subsequent lines show correlation between predictand-
predictor pairs following removal of the CO2EQV trend.
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Figure 2. Correlation between seasonal PREC and the set of predictorswith a one month lead time. As
in Figure 1, correlation between CO2EQV is shown in the top line; subsequent lines show correlation
between predictand-predictor pairs following removal of the CO2EQV trend.
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Figure 3. Correlation between SAT hindcasts and observations. The top line shows correlation bewteen
observations and SAT hindcasts constructed using CO2-equivalent as the sole predictor. Subsequent lines
show the difference in correlation following the inclusion of additional predictors. The bottom line shows
the correlation for the full model. For the top and bottom lines, stippling is used to indicate significance
at the 95% level.
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Figure 4. RMSESS and CRPSS of the SAT hindcasts expressed as a skill score against a climatology
ensemble forecast. For CRPSS, stippling is used to indictate significance at the 95% level following a
one sided t-test.
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Figure 5. As Figure 3 but for PREC.
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Figure 6. As Figure 4 but for PREC.
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Table 1. Description of predictor variables and their sources.

Predictor Source

CO2EQV CO2-equivalent concentrations (Meinshausen et al., 2011)
NINO3.4 Calculated from SST fields from HadISST (Rayner et al., 2003)
PDO University of Washington (http://jisao.washington.edu/static/pdo//)
QBO At 30hPa from the reconstruction of Brönnimann et al. (2007)
AMO Calculated by van Oldenborgh et al. (2009a); based on HadSST (Kennedy

et al., 2011a, b)
IOD Calculated from SST fields from HadISST (Rayner et al., 2003)
LSST HadSST3 (Kennedy et al., 2011a, b)
CPREC GPCC Full Data Reanalysis version 6 (Schneider et al., 2011)

(R1)
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