Thank you for your suggestions, which have improved this manuscript. We
address the two remaining major issues below.

(1) Assumption of non-skewed distributions

Because we are not using the RMSZ scores to determine pass or fails, we do
not have a methodology (and assumptions) to state. We agree that section
3.5 ("Optional CESM-ECT output”) in the manuscript does not contribute to
the discussion and have removed it from the paper (as well as removed
references to RMSZ in section 3.3). We will add information about the
optional RMSZ output to the code documentation in the next release.

(2) Is PCA necessary?

We agree that the choice of 50 PCs is specific to our setup and tuned to our
desired false positive rate. We note, however, that the number of PCs to
examine with CESM-ECT is an input parameter and, therefore, easily
modifiable by other users. The key factor is that each PC is a linear
combination of all 120 variables, and based on our extensive testing
experiments, 50 PCs have proven sufficient to pick up issues with any of the
variables. Because each PC is a linear combination of all 120 variables, a
scenario in which only the first two PCs are different while the remaining 48
are exactly the same might be mathematically constructible, but is (for all
practical purposes) extremely unlikely.

While PCA does expose the linear combinations of the variables that
contribute most to the variability of the climate system, this information is
not directly relevant in the context of attempting to discover errors in the
hardware and software systems. For example, recently CESM-ECT led us to
discover a portion of the CESM code that is sensitive to hardware with a fused
multiply-add (FMA) in terms of rounding errors (and needs to be re-

written). This portion of code did not contribute much to the overall climate
system variability, and thus most of the so-called leading PCs did not

fail. Therefore, we want to stress that we are not necessarily using the first
50 because they are the most important, but rather because, based on our

experiments, these 50 PCs can capture problems with any of the variables
because they are linear combinations of all variables. We thank the reviewer
for bringing it to our attention that the original manuscript does not justify
our choice well, and we have added additional information in Section 3.4.

(1) We have removed section 3.5 ("Optional CESM-ECT output”) as well as all
references to the RMSZ.

(2) We added discussion in section 3.4 regarding our choice of 50 PCs.

Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2014/09/16 7.15 Copernicus papers of the IATEX class copernicus.cls.
Date: 20 August 2015

A new ensemble-based consistency test for
the Community Earth System Model
(pyCECT v1.0)

A. H. Baker, D. M. Hammerling, M. N. Levy, H. Xu, J. M. Dennis, B. E. Eaton,
J. Edwards, C. Hannay, S. A. Mickelson, R. B. Neale, D. Nychka, J. Shollenberger,
J. Tribbia, M. Vertenstein, and D. Williamson

The National Center for Atmospheric Research, Boulder, CO, USA

Correspondence to: A. H. Baker (abaker@ucar.edu)

JTode g uoIsSsnosI(]

JodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSnoSI(]

20

25

Abstract

Climate simulation codes, such as the Community Earth System Model (CESM), are es-
pecially complex and continually evolving. Their on-going state of development requires
frequent software verification in the form of quality assurance to both preserve the quality
of the code and instill model confidence. To formalize and simplify this previously subjec-
tive and computationally-expensive aspect of the verification process, we have developed
a new tool for evaluating climate consistency. Because an ensemble of simulations allows
us to gauge the natural variability of the model’s climate, our new tool uses an ensemble
approach for consistency testing. In particular, an ensemble of CESM climate runs is cre-
ated, from which we obtain a statistical distribution that can be used to determine whether
a new climate run is statistically distinguishable from the original ensemble. The CESM En-
semble Consistency Test, referred to as CESM-ECT, is objective in nature and accessible
to CESM developers and users. The tool has proven its utility in detecting errors in software
and hardware environments and providing rapid feedback to model developers.

1 Introduction

The Community Earth System Model (CESM) is a state-of-the-art, fully-coupled, global
climate model whose development is centered at the National Center for Atmospheric Re-
search (NCAR) (Hurrell et al., 2013). The Earth’s global climate is complex, and CESM
is widely-used by scientists around the world to further our understanding of the future,
present and past states of the climate system. For large simulation models such as CESM,
verification and validation are critical to establishing and maintaining a model’s credibility,
particularly when the model is used to make decisions (e.g., |Carson I, |2002). Note that
differences in interpretation exist among scientific communities in regards to the terms ver-
ification and validation (e.g.,|Oberkamf and Roy, |2010), and the term "evaluation” has been
advocated as a more appropriate term than “validation” in some literature (e.g., |Orsekes
et al., 11994} Orsekes | [1998). Generally, though, validation focuses on how well the model

2

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

represents the real world phenomena that are being modeled, and verification involves de-
termining whether the implementation of a model is correct and matches the intended de-
scription and assumptions for the model (see, e.g.|Carson Il, 2002;|Sargent, (201 1}; \Whitner
and Balcil [1989; |Oberkamf and Roy, 2010];|Goosse et al., [2014).

Software verification necessarily requires the detection and reduction of errors or “quality
assurance” (Oberkamf and Royl, |2010), and we focus on this component of verification for
CESM. As with many scientific codes, development of CESM is on-going: features are con-
tinually added; improvements are made; software and hardware environments change. The
primary motivation for this work is to ensure that changes during the development life cycle
of CESM do not adversely affect the simulation. In particular, changes during CESM devel-
opment that result in simulation output that is no longer bit-for-bit (BFB) identical to previous
output data require attention to ensure that the output still produces the same climate (i.e.,
an error has not been introduced). Note that CESM simulations are expected to produce
BFB reproducible output on the same machine and processor counts when the CESM ver-
sion and parameters are identical." The approach to detecting potential errors in CESM
has historically been a cumbersome process at best. For example, porting the CESM code
to a new machine architecture results in non-BFB model output, and the current approach
is as follows. First, a climate simulation of several hundred years (typically 400) is run on
the new machine. Next, data from the new simulation is analyzed and compared to data
from the same simulation run on a “trusted” machine, and, lastly, all results are given to
a senior climate scientist for approval. This informal process is not overly rigorous and re-
lies largely on subjective evaluations. Further, running a simulation for hundreds of years is
resource intensive, and this expense is exacerbated as the model grows larger and more
complicated. Clearly a more rapid, objective, and accesible solution is needed, particularly
because a port of CESM to a new machine is just one example of a non-BFB change that
requires quality assurance testing. Other common situations that can lead to non-BFB re-
sults include experiments with new compiler versions or optimizations, code modifications
that are not expected to be climate-changing, and many new exascale-computing technolo-
gies. The lack of a straightforward metric for accessing the quality of the simulation output

3

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

has limited the ability of CESM users and developers to introduce potential code modifica-
tions and performance improvements that result in non-BFB reproducibility. The need for
a more quantitative solution for ensuring code quality prompted our development of a new
tool for assessing the impact of non-BFB changes in CESM. While verification always in-
volves some degree of subjectivity and one cannot absolutely prove correctness (Carson I,
2002; |Oberkamf and Roy, 2010), we aim to facilitate the detection of hardware, software,
or human errors introduced into the simulation.

The quality assurance component of code verification implies that a degree of consis-
tency must exist (Oberkamf and Roy, 2010). Our new method evaluates climate consis-
tency in CESM via an ensemble-based approach that simplifies and formalizes the quality
assurance piece of the current verification process. In particular, the goal of our new CESM
Ensemble Consistency Test tool, referred to as CESM-ECT, is to easily determine whether
or not a change in a CESM simulation is statistically significant. The ability of this simple
tool to quickly assess changes in simulation output is a significant step forward in the pur-
suit of more qualitative metrics for the climate modeling community. The tool has already
proven invaluable in terms of providing more feedback to model developers and increasing
confidence in new CESM releases. Note that we do not discuss verification of the underly-
ing numerical model in this work, which is considered at other stages in the development
of individual CESM components. Further, we do not address model validation, but mention
that it is primarily conducted via hindcasts and comparisons to real world data, e.g., the
Intergovernmental Panel on Climate Change Data Distribution Center has a large collection
of observed data (IPCC Data Collection Center 2015).

This paper is organized as follows. We give additional background information in Sect.
We describe the new CESM-ECT tool in Sect.|3] In Sect. |4, we provide results from exper-
iments with CESM-ECT, and in Sect. [5| we give examples of the utility of the new tool in
practice. Finally, we give concluding remarks and discuss future work in Sect. [6]

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

2 Background

Climate science has a strong computational component, and the climate codes used in this
discipline are typically complex and large in size (e.g., |[Easterbrook et al., 2011} [Pipitone
and Easterbrook, 2012), making the thorough evaluation of climate model software quite
challenging (Clune and Rood, 2011). In particular, the CESM code base, which has been
developed over the last twenty years, currently contains about one and a half million lines
of code. CESM consists of multiple geophysical component models of the atmosphere,
ocean, land, sea ice, land ice, and rivers. These components can all run on different grid
resolutions, exchanging boundary data with each other through a central coupler. Because
CESM supports a variety of spatial resolutions and time-scales, simulations can be run
on both state-of-the-art supercomputers as well as on an individual scientist’s laptop. The
myriad of model configurations available to the user contribute to the difficulty of exhaustive
software testing (Clune and Rood, |2011}; |Pipitone and Easterbrook| [2012). A particularly
fascinating and in-depth description of the challenges of scientific software in general, and
climate modeling software in particular, can be found in |Easterbrook and Johns| (2009).
Furthermore, the societal importance of better understanding Earth’s climate is such that
every effort must be made to verify climate codes as well as possible (e.g., |[Easterbrook
et al., 2011).

In general, scientific codes are often in a near-constant state of development as new sci-
ence capabilities are added and requirements change, and this is certainly true for CESM
and other global climate models. However, despite the complexity of climate software, both
the constant enrichment of the code base and the manner in which it has evolved over time
has resulted in an overall quality of software superior to that of other open-source projects
(Pipitone and Easterbrook, [2012). Yet the pace of evolution of the code requires that is-
sues of correctness, reproducibility and software quality are frequently being addressed.
Coarse-grained testing is a common practice in climate modeling, and this global approach
is useful for detecting the existence of errors in the software or input stack or the software
and hardware environment (Clune and Rood, |2011). This approach does not offer informa-

5

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

tion as to the source of the error, but rather as to whether or not one may exist. The goal of
coarse-grained testing is not to prove correctness, but to point out potential incorrectness.
Fine-grained testing is needed to identify the source of errors, and typically occurs within
the individual CESM component models. Our focus in this work is on a coarse-grained ap-
proach to software quality assurance, and for climate models, this global approach typically
takes the form of analysis of simulation output (Easterbrook and Johns| 2009). Visualiza-
tions of model output are commonly examined by climate scientists, and achieving bit-for-bit
(BFB) identical results has been quite important to the climate community (Easterbrook and
Johns,, [2009; |Pipitone and Easterbrook, [2012). If changes in the source code or software
and hardware environment yield BFB results to the previous version, then this verification
step is trivial. However, depending on the nature of the change, achieving BFB results from
one run to the next is not always possible. For example, in the context of porting the code to
a new machine architecture, machine-rounding level changes can propagate rapidly in a cli-
mate model (Rosinski and Williamson, |1997). In fact, changes in hardware, software stack,
compiler version, and CESM source code can all cause round-off level or larger changes
in the model simulation results, and the emergence of some heterogeneous computing
technologies inhibit BFB reproducibility as well.

Some of the difficulties caused by differences due to truncation and rounding in climate
codes that result in non-BFB simulation data are discussed in |Clune and Rood| (2011). In
particular, the authors cite the need for determining acceptable error tolerances and the
concern that seemingly minor software changes can result in a different climate if the sim-
ulation is not run for a sufficient amount of time. The work in [Rosinski_and Williamson
(1997) is also of interest and aims to determine the validity of a simulation when migrating
to a new architecture. They minimize the computational expense of a long run by setting
tolerances for rounding accumulation growth based on the growth of a small perturbation
in the atmospheric temperature after several days. However, this test is no longer appli-
cable to the atmospheric component of CESM, called the Community Atmosphere Model
(CAM), because the parameterizations in CAM5 are ill-conditioned in the sense that small
perturbations in the input produce large perturbations in the output. The result is that the

6

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

tolerances for rounding accumulation growth are exceeded within the first few time steps.
Our work builds on this idea of gauging the effects of a small temperature perturbation on
the simulation, though improvements in software and hardware allow us to extend the sim-
ulation duration well beyond several days. Further, by looking only at climate signals, we
relax the restriction on how the parameterizations respond.

3 A new method for evaluating consistency

In this section, we present and discuss a new ensemble consistency test for CESM, called
CESM-ECT. We first give a broad overview, followed by more details in the subsequent
subsections. As noted, CESM'’s evolving code base and the demand to run on new machine
architectures often result in data that are not BFB identical to previous data. Therefore,
our new tool for CESM must determine whether or not the new configuration (e.g., code
generated with a different compiler option, on a new architecture, or after a non-climate
changing code modification) should be accepted. For our purposes, we accept the new
configuration if its output data is statistically indistinguishable from the original data, where
the original data refers to data generated on a trusted machine with an accepted version of
the software stack. Our tool must:

— determine whether or not data from a new configuration is consistent with the original
data

— indicate the level of confidence in its determination (e.g., false positive rate)

— be user-friendly in terms of ease of use and minimal computational requirements for
the end-user.

Note that this new tool takes a coarse-grained approach to detecting statistical differences.
Its purpose is not to isolate the source of an inconsistency, but rather to indicate the like-
lihood that one exists. To this end, the CESM-ECT tool works as follows. The first step

7

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

requires the creation of an ensemble of simulations in an accepted environment represent-
ing the original data. The second step uses the ensemble data to determine the statistical
distributions that describe the original data. Next, several simulations representing the new
data are obtained. And finally, a determination is made as to whether the new data is sta-
tistically similar to the original ensemble data.

3.1 Preliminaries

CESM data are written to “history” files in time slices in NetCDF format for post-processing
analysis. Data in history files are single-precision (by default). For this initial work, we focus
on history data from the Community Atmosphere Model (CAM) component in CESM, which
is actively developed at NCAR. We chose to begin with CAM because the time-scales for
changes propagating through the atmosphere are relatively short compared to the longer
time-scales of other components, such as the ocean, ice, or land models. Further, the set of
CAM global output variables is diverse, and the default number for our CESM configuration
(detailed in the next section) is on the order of 130. An error in CAM would certainly affect
the other component models in fully-coupled CESM situations; however, we cannot assume
that CAM data passing CESM-ECT implies that the remaining components would also pass.
Data from other components (e.g. ocean, ice, and land) will be addressed in future work,
though we give an example in Sect. [5|of detecting errors stemming from the ice component
with CESM-ECT.

3.2 An ensemble method

The development of a tool like CESM-ECT necessitates the determination of error toler-
ances that can be used to evaluate whether differences in climate data are significant. Re-
quiring that the difference be less than the natural variability of the climate system makes
sense intuitively and is along the lines of Condition 2 in |Rosinski and Williamson| (1997).
However, characterizing the natural variability is difficult with a single run of the original
simulation. Therefore, we extend the sampling of the original data to an ensemble from

8

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

which we can obtain a statistical distribution. An ensemble refers to a collection of multi-
ple realizations of the same model simulation, generated to represent possible states of
the system (e.g.,|Dai et al., 2001). Generally, small perturbations in the initial conditions are
used to generate the ensemble members, and the idea is to characterize the climate system
with a representative distribution (as opposed to a single run). Ensembles are commonly
used in climate modeling and weather forecasting (see, e.g.,Dai et al., 2001 Zhu and Toth,
2008; von Storch and Zwiers|, [2013]; [Zhu, 2005; [Sansom et al., 2013) to enhance model
confidence, indicate uncertainly, and improve predictions. For example, the ensemble in
Kay et al.| (2015) was created by small perturbations to the initial temperature condition in
CAM and is being used to study internal climate variability.

We generate our ensemble for CESM-ECT by running simulations that differ only in a ran-
dom perturbation of the initial atmospheric temperature field of O(10~1%). These perturba-
tions grow to the size of NWP (Numerical Weather Prediction) analysis errors in a few hours.
Each simulation is one-year in length, which is short enough to be computationally reason-
able, yet of sufficient length to allow the effects of the perturbation to propagate through
the system. A perturbation of this size should not be climate-changing, and, while one year
is inadequate to establish a climate, it is sufficient for generating the statistical distribution
that we need. In particular, while the trajectories of the ensemble members will rapidly di-
verge due to the chaotic nonlinearity of the model, the statistical properties of the ensemble
members are expected to be the same. Determining the appropriate number of ensemble
members requires a balance between computational and storage costs and the quality of
the distribution. The lower bound on the size is constrained by our use of Principal Com-
ponent Analysis (PCA), which is described in the next subsection. PCA requires that the
number of ensemble members be larger than the number of CAM variables. We chose an
initial ensemble size, denoted by Ngns, of 151 for CESM-ECT. At this size, the coefficient
of variation for each CAM variable is well under five percent, save for two variables that
are known to have large distributions across the ensemble (meridional surface stress and
meridional flux of zonal momentum). The cost to generate the ensemble is reasonable be-
cause all Ngns, members can be run in parallel, resulting in a much faster turn around time

9

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

than for a single multi-century run (a single one-year simulation can run in a couple hours
on less than a thousand cores). Note that, as explained further in Sect. an ensemble
is only generated for the control and not for the code to be tested. Hence, the ensemble
creation does not impact the CESM-ECT user.

In summary, the CESM-ECT ensemble consists of Nens = 151 one-year climate simu-
lations, denoted by E' = {E1, E», ..., En,, }, and is produced on a trusted machine with an
accepted version, model, and configuration of the climate code. The data for these one-year
ensemble runs consists of annual temporal averages at each grid point for the selected grid
resolution for all N4 variables, which are either two- or three-dimensional. Retaining only
the annual temporal averages for each variable helps to reduce the cost of storing the en-
semble simulation output and has proved sufficient for our purposes. We denote the dataset
for a variable X as X = {x1,22,...,2n, }, Where z; is a scalar that represents the annual
(temporal) average at grid point ¢ and N is the total number of grid points in X (determined
by whether X is a 2-D or 3-D variable).

3.3 Characterizing the ensemble data

The next stage in our process is the creation of the statistical distributions that describe the
ensemble data. In particular, information collected from the ensemble simulations helps to
characterize the internal variability of the climate model system. Results from new simula-
tions (resulting from a non-BFB change) can then be compared to the ensemble distribution
to determine consistency.

First, based on the ensemble simulation output, CESM-ECT calculates the gIobaI area-
we|ghted mean a

|str|but|ons rowdln cllmate smenhsts W|th an mdlcatlon of the average state and vari-
ability across the control ensemble for each variable. However, determining whether or not

the climate in the new run is consistent with the ensemble data based on the number of
variables that fall within the global mean distribution (or other specified tolerance) is difficult
without a linearly independent set of variables. For the CESM 1.3.x series, 134 variables

10

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

20

25

are output by default for CAM. We exclude several redundant variables as well as those with
zero variance across the ensemble (e.g., specified variables common to all ensemble runs)
from our analysis, resulting in Nyar = 120 variables total. (See Appendix [A]for more detail.)
A correlation analysis shows that many of these variables are highly correlated (> 0.9). In
fact, 52 variables are highly correlated in the global mean;43-in-the{optional- RMSZ-seore;
and-16-pairs-are-common-to-both. Determining objective and statistically-motivated criteria

(such as false positive rates) necessitated a transformation of our variable-based data to
a linearly independent data space. We use Principal Component Analysis (PCA), a popular
tool in data analysis, to determine the orthogonal transform needed to convert the ensem-
ble variable values into a set of principal component scores. The principal components are
orthogonal and indicate the directions in which there is the most variance, i.e. in which the
data is the most “spread out”, thereby exposing underlying structure in the data that might
otherwise be overlooked (e.g., |Shlens| 2014). A second well-known advantage of PCA is
that most of the variance in the system ends up being represented by many fewer com-
ponents than the original number of variables, which simplifies analysis, particularly when
there are large number of variables.

CESM ECT applles PCA-based testlng GFH*thO the global mean data, a&we»expee%srwiaf

2?)—The-and the implementation of the PCA-based testing strategy into our tool entails
the following steps. First, for each ensemble member m, the global area-weighted mean
is calculated for each variable X across all grid points i and denoted by X . Next, we
standardize the Nyar X Nens matrix containing the global means for each variable in each
ensemble member and denote the result by Vym. Note that Ny = 120 and Nyar < Neps.
Standardization of the data involves subtracting the ensemble mean and dividing by the
ensemble standard deviation for each variable and is important because the CAM variables
have vastly different units and magnitudes. Next, we calculate the transformation matrix, or
“loadings”, that project the variable space Vg, into principal component (PC) space. Load-

11

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

20

25

ing matrix Pgnm is size (IVvar X Nyar) and corresponds to the eigenvector decomposition of the
covariance of Vg, ordered such that the first PC corresponds to the largest eigenvalue and
decreasing from there. Finally, we apply the transformation to Vg to obtain the PC scores,
Sym, for our ensemble:

Now instead of using a distribution of variable global means to represent our ensemble,
the Nyvar X Nens matrix Sym forms a distribution of PC scores that represents the variance
structure in the data. These scores have a mean of zero, so we only need to calculate the
standard deviation of the ensemble scores in Sy, which we denote by OSgm- To summarize,
this first stage computes the following data:

— Nyar X Nens global means

— Nvar means of ensemble global mean values (i)

— Nyar standard deviations of ensemble global mean values (ov,,,)
— Nyar X Nygr loadings (Pgm)

— Nyar standard deviations of ensemble global mean scores (asgm),

which are written to the CESM-ECT ensemble summary file. This summary file (in NetCDF
format) is generated for each CESM software tag on the Yellowstone machine at NCAR
with the default compiler options (more details follow in Sect. [3.5).

The distribution of global mean scores from the ensemble, represented by the standard
deviations in os,m,, can be used to evaluate data from a new simulation. Note that most
of the variance in the climate data is now largely represented by a few PCs. In fact, the
coefficients on the first PC explain about 21 % of the varlance and the coefﬂments on the

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

20

25

3.4 Determining a pass or fail

The last step in the CESM-ECT procedure evaluates whether the new output data that has
resulted from the non-BFB change is statistically distinguishable from the original ensemble
data, as represented by the ensemble summary file. For simplicity of discussion, assume
that we want to evaluate whether the results obtained on a new machine, Yosemite, are
consistent (i.e. not statistically distinguishable) with those on Yellowstone. To do this, we
collect data from a small number (Vnew) of randomly selected ensemble runs on Yosemite.
Variables in the new datasets are denoted by X, where X = {#1,%,...,4n, }. The CESM-
ECT tool then decides whether or not the output data from simulations on Yosemite are
consistent with the ensemble data and issues an overall pass or fail result.

CESM-ECT determines an overall pass or fail in the following manner. First, the weighted

area global means for each variable X in all Npew runs are calculated, X (k=1: Nnew)-
These new variable means are then standardized using the mean and standard deviations
of the control ensemble given in the summary file (uy,, and oy,). Second, the standardized
means are converted to scores via the loading matrix Pgm from the summary file. Next, we
determine whether the first Npc scores of the new runs are within m, standard deviations
of the mean, using the standard deviation of the zero-mean scores for the ensembile in
the summary file (os,,). Then for each of the Nnew Yosemite simulations, the PC scores
that fall outside the m, confidence interval are tagged as a “fail” for that particular run.
Finally, CESM-ECT decides whether the simulations on Yosemite are consistent with those
on Yellowstone by counting the number of times that each PC failed at least N,yngails runs,
where Nyynrails < Nnew- If at least Npcrais PCs fail at least Nyynraiis runs, then CESM-ECT
returns an overall “failure”.

neglected, and one only examines the first Npc components in an analysis. However, in the
context of detecting errors in the hardware or software system, the PCs that are responsible
for the most variability are not necessarily the most relevant. Recalling that each PC is a

13

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

20

25

information to detect errors in any of the variables and allows for a low false positive rate.
Our extensive testing indicates that Npc = 50 is sufficient to detect errors for our particular

setup..
The parameters my, Nnew, Npcrails; @nd Nunrais are also_chosen to obtain a desired

false positive rate. We performed an empirical simulation study and tested a variety of
combinations of parameters. We found that choosing m, = 2 (which corresponds to the
95 % confidence level), Npew = 3, Npcrais = 3, and Nyynrails = 2 yields our desired false
positive rate of 0.5%. To summarize, we run 3 simulations on Yosemite, and if at least
3 of the same PCs fail for at least 2 of these runs, then CESM-ECT issues a “failure”.
We intentionally err on the conservative side by choosing a low false positive rate, hedging
against the possibility that our ensemble may not be capturing all the variability that we want
to accept. Also note that while perturbing the initial temperature condition is a common
method of ensemble creation for studying climate variability, other possibilities exist, and
we are currently conducting further research on the initial ensemble composition and its
representation of the range of variability, particularly in regard to compilers and machine
modifications.

14

1odeJ UOISSNOSI(T

1odeJ UOISSNOSI(T

1odeJ UOISSNOSI(]

1odeJ UOISSNOSI(T

Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper |

_E\m
2

5
10
15
20

20

25

3.5 CESM-ECT software tools

Finally, we further discuss the software tools needed to test for ensemble consistency that
are included in the CESM public releases (see Sect. [6|for details). Generating the ensemble
simulation data by setting up and running the Ngns = 151 one-year simulations is the most
compute-intensive step in this ensemble consistency-testing process. The CESM Software
Engineering group generates ensembles as needed. For example, generating new ensem-
ble simulation data is now routine when a CESM software tag is created that contains
a scientific change known to alter the climate from the previous tag. (The frequency of such
tag creation varies, but is several times a year on average). While the utility used to gen-
erate the ensemble runs is included in CESM releases, a typical end-user does not need
to generate their own ensemble. Note that our consistency-testing methodology can be ex-
tended to other simulation models, and, in that case, an application-specific tool to facilitate
the generation of Ngng simulations would be needed for the new application.

Whenever a new ensemble of simulations is generated, a summary file (as described in
Sect. must be created for the ensemble. The ensemble summary utility (pyEnsSum),
written in parallel Python, creates a NetCDF summary for any specified number (Ngns) of
output files. This step requires far less time than it takes to run the simulations themselves.
As an example, generating the summary file for 151 ensemble members on 42 cores of Yel-
lowstone takes about 20 minutes (we chose the number of cores to be equal to the number
of 3-D variables). Note that the summary creation takes less than a minute if-when we only
compute the information needed for the PCA test (i.e., exclude the-most-computationally
expensive-part-the-RMSZ caleulations-optional calculations of quantities such as the root
mean squared Z-scores). Each CESM software tag now includes the corresponding en-

semble summary file. Including the summary file in the CESM releases facilitates tracking

16

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

20

25

data changes in the software life cycle and enables CESM users to run CESM-ECT without
creating an ensemble of simulations themselves. Note that the storage cost for a single
summary file is minor compared to the cost of storing the simulation output for the entire
ensemble.

In addition to an ensemble summary file, our Python tool CESM-ECT (pyCECT) requires
Nnew = 3 one-year simulations from the configuration that is to be tested. For a CESM de-
veloper or advanced user, this may mean using a development version of code with a mod-
ification that needs to be tested. For a basic CESM-user, this may mean verifying that the
user’s installation of CESM on their personal machine is acceptable. In either case, a sim-
ple shell script that creates one-year CESM run cases (with random initial perturbations)
for this purpose is also included in CESM releases, though advanced users can certainly
generate more custom simulations if desired. Regardless, after the Nnew simulations have
completed, pyCECT determines whether results from the new configuration are consistent
with the original ensemble data based on the supplied new CAM output files and specified
ensemble summary file. Then pyCECT reports whether of not the new configuration has
passed or failed the consistency test, as well as which PCs in particular have passed or
failed each of the Nnew simulations contributing to the overall pass/fail rating. In addition,
the user may assign values to the pyCECT parameters m,, Nnew, NpcFailss NrunFails, and
Npg via input parameters if the defaults are not desired.

For clarity, Fig. 2] illustrates the workflow for the CESM-ECT process. The two Python
tools are indicated by green circles. The dashed blue box delineates the work done pre-
release by the CESM-software engineers. If a CESM user wants to evaluate a new config-
uration, the user simply executes the steps in the dashed red box.

4 Experimental studies

As noted in Sect. [1] a verification process necessarily includes some degree of subjectivity.
The decision to designate our initial ensemble distribution as “accepted” is critical to our
methodology and yet, despite on-going research, we cannot (ever) be absolutely sure that

17

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

this distribution is “correct” in terms of capturing all signatures that lead to the same climate.
Our confidence in this initial ensemble distribution is due, in part, to the vast experience and
intuition of the CESM climate scientists. However, we gain further confidence with a series
of tests of trusted scenarios (i.e., scenarios that we expect to produce the same climate)
and verify that those scenarios pass the CESM-ECT. Similarly, we sample scenarios that
we expect to be climate-changing and should, therefore, fail.

4.1 Preliminaries

We obtained the results in this work from the 1.3 release series of CESM, using a present-
day F compset (active atmosphere and land, data ocean, and prescribed ice concentration)
and CAMS physics. We examine 120 (out of a possible 134) variables from the CAM his-
tory files, as redundant variables and those with no variance are excluded. Of the 120
variables, 78 are two-dimensional and 42 are three-dimensional variables. This spectral-
element version of CAM uses a ne= 30 resolution (’ne” refers to the number of elements
on the edge of the cube), which corresponds approximately to a 1° global grid containing
a total of 48 602 horizontal grid-points and 30 vertical levels. Unless otherwise noted, simu-
lations were run with 900 MPI tasks and two OpenMP threads per task on the Yellowstone
machine at NCAR. The default compiler on Yellowstone for our CESM version is Intel 13.1.2
with —O2 optimization.

4.2 Non-climate changing modifications

First we look at modifications that lead to non-BFB results but are not expected to be
climate-changing. Such modifications include equivalent code formulations that result in
the reordering in floating-point arithmetic operations, thus affecting the rounding error. Two
common CESM configurations that induce reordering in arithmetic operations include re-
moving thread-level parallelism from the model and certain compiler changes. We expect
that the following tests on Yellowstone will not be climate-changing, and thus, will be con-
sistent with our initial ensemble distribution:

18

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

NO-OPT: changing the Intel compiler flag to remove optimization (—0O0)

INTEL-15: changing the Intel compiler version to 15.0.0

NO-THRD: compiling CAM without threading (MPI-only)

PGlI: using the CESM-supported PGI compiler (13.0)

GNU: using the CESM-supported GNU compiler (4.8.0)

These five scenarios differ from the control run used to generate the ensemble only in
the single aspect listed above. We first generate Nnew = 3 simulations on Yellowstone cor-
responding to each test scenario, where each simulation is given a perturbation selected at
random from the perturbations used to create the initial ensemble. Table [2|lists the pass/fail
result from pyCECT and indicates that none of these modifications caused a failure. Recall
that our criteria for failure in pyCECT is that at least three PCs must fail at least two of the
runs. Table 2| shows that at most two PCs failed two runs for these particular test scenarios.

4.3 CAM climate-changing parameter modifications

CESM-ECT also must successfully detect changes to the simulation results that are known
to be climate-changing and return a failure. To this end, climate scientists provided a list
of CAM input parameters thought to affect the climate in a non-trivial manner. Parameter
values were modified to be those intended for use with different CAM configurations (e.g.
high-resolution, finite volume, etc.). We ran the following test scenarios which were identical
to the default ensemble case with the exception of the noted CAM parameter change (the
name of the CAM parameter is indicated in italics, and its original default value in parenthe-
sis):

— DUST: dust emissions; dust_emis_fact = 0.45 (0.55)

— FACTB: wet deposition of aerosols convection factor; sol_factb_interstitial = 1.0 (0.1)

19

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

FACTIC: wet deposition of aerosols convection factor; sol_factic_interstitial = 1.0 (0.4)
RH-MIN-LOW': min. relative humidity for low clouds; cldfrc_rhminl = 0.85 (0.8975)
RH-MIN-HIGH: min. relative humidity for high clouds; cldfrc_rhminh = 0.9 (0.8)
CLDFRC-DP: deep convection cloud fraction; cldfrc_ dp1 = 0.14 (0.10)

UW-SH: penetrative entrainment efficiency — shallow; uwschu_rpen = 10.0 (5.0)

CONV-LND: autoconversion over land in deep convection; zmconv_c0_Ind = 0.0035
(0.0059)

CONV-OCN: autoconversion over ocean in deep convection; zmconv_c0 _ocn =
0.0035 (0.045)

NU-P: hyperviscosity for layer thickness (vertical lagrangian dynamics); nu_p = 1.0 x
1071 (1.0 x 10719)

NU: dynamics hyperviscosity (horizontal diffusion); nu = 9.0 x 10~ (1.0 x 10715)

From Table 1}, most of these tests fail by a lot more than 3 PCs, indicating that the new
simulation data is quite different from the original ensemble data. However, contrary to
our initial expectations, one scenario was found to be consistent and passed. Upon further
investigation, the change caused by NU likely did affect some aspects of the climate in a way
that would not be detected by the test. The issue is that modifications to NU cause changes
to the small-scales (but not to the mean of the field the diffusion is applied to) and generally
affect the extremes of climate variables (such as precipitation). Because CESM-ECT looks
at variable annual-global means, the “pass” result is not entirely surprising as errors in
small-scale behavior are unlikely to be detected in a yearly global mean. Developing the
capability to detect the influence of small-scale events is a subject for future work.

20

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

4.4

Modifications with unknown outcome

Now we present results for simulations in which we had less confidence in the expected
outcome. These include running our default CESM simulation on other CESM-supported
machines as well as changing to a higher level of optimization on Yellowstone (—03). We
expected that the tests on other machines supported by CESM would pass, and, for each
machine, we list the machine name and location below (and give the processor and com-
piler type in parentheses). The affect of —O3 compiler options was not known as the CESM
codebase is large and level three optimizations can be quite aggressive. The following sim-
ulations were performed:

HOPPER: National Energy Research Scientific Computing Center (Cray XE6, PGI)
EDISON: National Energy Research Scientific Computing Center (Cray XC30, Intel)
TITAN: Oakridge National Laboratory (AMD Opteron CPUs, PGl)

MIRA: Argonne National Laboratory (IBM BG/Q system, IBM)

JANUS: University of Colorado (Intel Westmere CPUs, Intel)

BLUEWATERS: University of lllinois (Cray XE6, PGlI)

EOS: Oakridge National Laboratory (Cray XC30, Intel)

GOLDBACH-INTEL: NCAR (Intel Xeon CPU cluster, Intel)

GOLDBACH-PGI: NCAR (Intel Xeon CPU cluster, PGI)

INTEL13-O3 Yellowstone with default Intel compiler and —O3 option

INTEL14-O3 Yellowstone with Intel 14.0.2 compiler and —O3 option

INTEL15-O3 Yellowstone with Intel 15.0.0 compiler and —O3 option

21

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

Note that we use the CESM-specified default compiler option for each CESM-supported
machine. Table [3|indicates that most of the CESM-supported machine configurations pass
(the nine test scenarios above the horizontal line), and the few that fail are all near the
pass/fail threshold. In other words, these machine failures are in contrast to the more egre-
gious failures obtained by changing CAM parameters as in Table |1 However, ideally all
CESM-supported machines would pass our test (assuming the absence of error in their
hardware and software environments), and a better understanding of the variability intro-
duced by the environments of other machines (i.e., not Yellowstone) is needed. Therefore,
as a first step, we ran additional tests on Mira and Bluewaters with the goal of better un-
derstanding (and substantiating) the failures in Table [3| For each machine, we ran 7 more
sets of three randomly perturbed simulations. Thus we have a total of 8 experiments each
for Mira and Bluewaters, counting the original in Table [3| Furthermore, we created three
additional ensembles of 151 simulations based on the PGI, GNU, and NO-OPT scenarios
listed in Sect. and created a summary file for each. Thus, we can test the 8 new cases
for consistency on both machines against a total of four ensembles to better understand the
effect of the compiler on the consistency assessment. Results from these experiments are
shown for Bluewaters and Mira in Figs. [3|and [4} respectively. Note that the Intel ensemble
is the default “accepted” ensemble that we have used thus far in our experiments and the
No-Opt option is also the Intel compiler (with —QO0).

The results in Figs. |3 and |4| indicate that the compiler choice for the control ensemble
on Yellowstone results in differences in the numbers of PC scores that fail each individual
test case. However, the overall outcome from all four control ensembles is similar in that the
test results are split in terms of passes and fails, indicating that these are in fact borderline
cases for CESM-ECT with the current failure criteria, which requires at least 3 PCs to fail
at least two runs. Test scenarios that very nearly pass or fail, such as these for Bluewaters
and Mira underscore the difficulty in distinguishing a bug in the hardware or software from
the natural variability present in the climate system. Certainly we do not expect to perfect
CESM-ECT to the point where a pass or fail is a definitive indication of the absence or
presence of a problem, though we have obtained a large amount of data to date that we will

22

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

explore in detail to better characterize the effects of compiler and architecture differences
on the variability. We expect to report on our further analysis in future work. Finally, another
difficulty for our tool is that while PCA will indicate the existence of different signatures of
variability between new simulations and the ensemble, the differences detected may not
necessarily be important in terms of the produced climate and the decision on whether to
accept or reject that climate (e.g., because the definition of climate requires more than one
year and involves spatial distributions).

The last three experiments listed above and in Table [3|involve either modifying the op-
timization to a more agressive level (INTEL13-O3) or additionally upgrading the compiler
version (INTEL14-O3 and INTEL15-O83). Our results for INTEL15-O3 suggest that there is
an issue with that version of the compiler. Note that because of the size of the CESM code
base, pinpointing a problem with a specific compiler version is time-intensive, and we find it
more productive not to use that compiler.

5 CESM-ECT in practice

CESM-ECT has already been successfully integrated into the CESM software engineering
workflow. In particular, the creation of a new beta release tag in the CESM development
trunk (that is not BFB with the previous tag) requires that CESM-ECT be run for the new tag
on all CESM-supported platforms (e.g. the machines listed in Sect. [4.4] and the supported
compilers on those platforms (e.g, Intel, GNU and PGl, all with —O2, on Yellowstone).
Results from these tests are kept in the CESM testing database. Failure on one or more of
the test platforms signals that an error may exist in the new tag or on a particular machine,
spawning an investigation and delay of the beta tag release.

CESM-ECT has proven its utility on numerous occasions, and we now provide several
specific examples of the success of this consistency testing methodology in practice. The
first example concerns an early success for our ensemble-based testing methodology. The
consistency test for a CESM.1.2 series beta tag test on the Mira machine failed decisively,
while the consistency tests on all other platforms passed. The CESM-ECT failure prompted

23

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

an extensive investigation of the Mira simulation data which resulted in the discovery that
the CAM energy balance was incorrect. Eventually an error was discovered in the stochas-
tic cloud generator code that only manifested itself on big-endian systems (Mira was the
only big-endian machine in the group of CESM-supported machines). Because this partic-
ular success occurred early in the research and development stages of CESM-ECT (when
we were only-tooking-at-RMSZ-scoresinitially looking at root mean squared Z-scores), it
provided the impetus to move forward and further refine our ensemble-based consistency
testing strategy.

A second, more recent success for CESM-ECT was the detection of errors in a new
version of the Community Ice Code (CICE). In particular, CICES replaced CICE4 in the
CESM.1.3 series development trunk, and this upgrade was purported to not change the cli-
mate. However, when the software tag with CICE5 was tested with CESM-ECT, failures oc-
curred on all of the CESM-supported platforms. Recall that CESM-ECT uses an F compset
(e.g., Sect. [4.7), which means that CICE runs in prescribed mode. Prescribed mode is
intended for atmospheric experiments and uses the thermodynamics in the sea ice model
(the dynamics are deactivated) with a pre-specified ice distribution. The CESM-ECT failures
for the new development tag raised a red flag that resulted in the detection and correction
of a number of errors and necessary tuning parameter changes in CICES5 prescribed mode.
Pre-integration component-level testing for stand-alone CICE, however, allowed errors to
go undetected in prescribed mode until run with CESM-ECT. Table 4] lists the results of
CESM-ECT for three test scenarios on Yellowstone (Intel, GNU, and PGI compilers) with
CICES and CICE4, showing that the difference was quite significant.

Finally, CESM-ECT has been essential in the evaluation of lossy compression schemes
for CESM climate data. Lossy compression schemes result in data loss when the com-
pressed data is reconstructed (i.e., uncompressed). Evaluating the impact of the loss in
precision and/or accuracy in the reconstructed data is critical to the adoption of lossy com-
pression methods in the climate modeling community. In particular, we advocate for com-
pression levels that result in reconstructed data that is not statistically distinguishable from

24

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

the original data. The CESM ensemble-consistency methodology has been invaluable in
making this determination (e.g., [Baker et al., [2014).

6 Conclusions and future work

Software quality assurance is critical for building (and retaining) confidence in widely-used
scientific codes such as the Community Earth System Model. The size of the code, diversity
of both the user and developer base, societal impact, and near-constant state of develop-
ment for CESM require a verification technique that is easy to use and has minimal compu-
tational requirements. Further, the increasing difficulty in achieving BFB identical results due
to differences across hardware and software environments dictates that a verification tool
determines acceptable error tolerances. This manuscript presents a ensemble-based con-
sistency test that evaluates whether a new CESM configuration (e.g., resulting from a code
modification, compiler change, or new hardware platform) is consistent with the original “ac-
cepted” (or control) configuration. The original configuration is represented by an ensemble
that captures the natural variability in the modeled climate system. CESM-ECT has already
been effectively incorporated into the CESM software development workflow. Our many
experiments and its successes in practice have increased our confidence in this method-
ology for detecting and reducing errors in CESM. Furthermore, the utility of CESM-ECT in
a number of scenarios has become apparent:

— port-verification (new CESM-supported machines);

— quality assurance for software release tags;

— exploration of new algorithms, solvers, compiler options;

— feedback for model developers;

— detection of errors in the software or hardware environment; and

— assessment of the effects of lossy data compression.
25

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

Despite our successes with this new consistency-testing methodology, the natural vari-
ability present in the climate system makes the detection of subtle errors in CESM chal-
lenging. While no verification tool can be absolutely correct, we consider CESM-ECT in its
current form to be preliminary work as many avenues remain to be explored. We are cur-
rently conducting a more detailed analysis of large ensembles from different compilers and
machines in an attempt to better characterize the effects of those types of perturbations.
We have also begun to evaluate spatial patterns in addition to global (spatial) means, as
these patterns may be revealing in such contexts as boundaries between ocean and land,
and less chaotic systems like the coarse-resolution ocean. In addition, we are interested in
other important climate statistics like extremes. Finally, we intend to evaluate relationships
between variables in cross-covariance studies.

Code availability

The software tools needed to test for ensemble consistency are included in the CESM
public releases beginning with the version 1.4 series, which are available at https://github.
com/CESM-Development/cime. Note that the Python testing tools can also be down-
loaded independently of CESM from the collection of parallel Python tools available on the
NCAR'’s Application Scalability and Performance website (https://www2.cisl.ucar.edu/tdd/
asap/application-scalability) or obtained directly from NCAR’s public Subversion repository
(https://proxy.subversion.ucar.edu/pubasap/pyCECT/tags/1.0.0/). CESM simulation data is
available from the corresponding author upon request.

Appendix A: CAM variable list

The 134 total monthly variables output by default for CESM 1.3.x series include the 132
monthly variables listed at for CESM 1.2.2 at http://www.cesm.ucar.edu/models/cesm1.2/
cam/docs/ug5_3/hist_flds_fv_camb.html, with the exception of the three variables ORO,
dst_al1SF, and dst_a3SF. In addition, five new variables are output:

26

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

https://github.com/CESM-Development/cime
https://github.com/CESM-Development/cime
https://github.com/CESM-Development/cime
https://www2.cisl.ucar.edu/tdd/asap/application-scalability
https://www2.cisl.ucar.edu/tdd/asap/application-scalability
https://www2.cisl.ucar.edu/tdd/asap/application-scalability
https://proxy.subversion.ucar.edu/pubasap/pyCECT/tags/1.0.0/
http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/ug5_3/hist_flds_fv_cam5.html
http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/ug5_3/hist_flds_fv_cam5.html
http://www.cesm.ucar.edu/models/cesm1.2/cam/docs/ug5_3/hist_flds_fv_cam5.html

5

20

DTWR_H202 (wet removal Neu scheme tendency, 30 levels, mol/mol/s);

DTWR_H2S04 (wet removal Neu scheme tendency, 30 levels,mol/mol/s);

DTWR_SO2 (wet removal Neu scheme tendency, 30 levels, mol/mol/s);

TAUGWX (zonal gravity wave surface stress, 1 level, N'm2); and
— TAUGWY (meridional gravity wave surface stress, 1 level, N/m2).

Note that for all experiments in this manuscript, the following 14 variables were excluded
for reasons of redundancy or zero variance: DTWR_H202, DTWR_H2S04, DTWR_SO2,
EMISCLD, H2SO4_SRF, ICEFRAC, LANDFRAC, OCNFRAC, PHIS, SOLIN, TSMIN , TS-
MAX, SNOWHICE , AEROD_v. Because CESM-ECT allows the user to specify variables
that should be excluded from the analysis, there is flexibility around the numbers of vari-
ables.

Acknowledgements. This research used computing resources provided by the Climate Simulation
Laboratory at NCAR'’s Computational and Information Systems Laboratory (CISL), sponsored by
the National Science Foundation and other agencies. This research also used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the US Department of Energy under Contract No. DE-AC05-000R22725.
This research used resources of the Argonne Leadership Computing Facility, which is a DOE Of-
fice of Science User Facility supported under Contract DE-AC02-06CH11357. This research used
resources of the National Energy Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the US Department of Energy under Contract
No. DE-AC02-05CH11231. This work utilized the Janus supercomputer, which is supported by the
National Science Foundation (award number CNS-0821794) and the University of Colorado Boul-
der. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University
of Colorado Denver and the National Center for Atmospheric Research.

27

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

20

25

30

References

Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N., Nychka, D., Mickelson, S. A., Edwards, J., Verten-
stein, M., and Wegener, A.: A methodology for evaluating the impact of data compression on cli-
mate simulation data, in: Proceedings of the 23rd international symposium on High-Performance
Parallel and Distributed Computing, HPDC ’14, 203-214, 2014.

Carson I, J. S.: Model verification and validation, in: Proceedings of the 2002 Winter Simulation
Conference, 52-58, 2002.

Clune, T. and Rood, R.: Software testing and verification in climate model development, IEEE Soft-
ware, 28, 49-55, doi:10.1109/MS.2011.117, 2011.

Dai, A., Meehl, G., Washington, W., Wigley, T., and Arblaster, J. M.: Ensemble simulation of 21st
century climate changes: business as usual vs. CO, stabilization, B. Am. Meteorol. Soc., 82,
2377-2388, 2001.

Easterbrook, S. M. and Johns, T. C.: Engineering the software for understanding climate change,
Comput. Sci. Eng., 11, 65-74, doi:10.1109/MCSE.2009.193, 2009.

Easterbrook, S. M., Edwards, P. N., Balaji, V., and Budich, R.: Guest editors’ introduction: climate
change — science and software, IEEE Software, 28, 32-35, 2011.

Goosse, H., Barriat, P, Lefebvre, W., Loutre, M., and Zunz, V.: Introduction to climate dynamics and
climate modeling, available at: http://www.climate.be/textbook (last access: 5 May 2015), 2014.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F,
Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh,
D. R., Neale, R. B., Rasch, P, Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J.,
Kiehl, J., and Marshall, S.: The Community Earth System Model: a framework for collaborative

research, B. Am. Metereol. Soc., 94, 1339—1360, doii10.1175/BAMS-D-12-00121.1}, 2013.

IPCC Data Collection Center 2015, available at: http://www.ipcc-data.org/ (last access: 5 May 2015),
2015.

Kay, J., Deser, C., Phillips, A., A. Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Dan-
abasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K.,
Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Commu-
nity Earth System Model (CESM) Large Ensemble Project: A Community Resource for Study-
ing Climate Change in the Presence of Internal Climate Variability, B. Am. Meteorol. Soc.,
doii10.1175/BAMS-D-13-00255.1, in press, 2015.

28

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

http://dx.doi.org/10.1109/MS.2011.117
http://dx.doi.org/10.1109/MCSE.2009.193
http://www.climate.be/textbook
http://dx.doi.org/10.1175/BAMS-D-12-00121.1
http://www.ipcc-data.org/
http://dx.doi.org/10.1175/BAMS-D-13-00255.1

20

25

Oberkamf, W. and Roy, C.: Verification and Validation in Scientific Computing, Cambridge University
Press, Cambridge, 2010.

Orsekes, N., K. Shrader-Frechette, K. Belitz: Verification, validation, and confirmation of numerical
models in the earth sciences, Science, 263, 641-646, 1994.

Orsekes, N.: Evaluation (not validation) of quantitative models: Environ. Health Perspect., 106,
1453-1460, 1998.

Pipitone, J. and Easterbrook, S.: Assessing climate model software quality: a defect density analysis
of three models, Geosci. Model Dev., 5, 1009-1022, doii10.5194/gmd-5-1009-2012, 2012.

Rosinski, J. M. and Wiliamson, D. L.: The accumulation of rounding errors and port
validation for global atmospheric models, SIAM J. Sci. Comput., 18, 552-564,
doii10.1137/S1064827594275534, 1997.

Sansom, P. G., Stephenson, D. B., Ferro, C. A. T., Zappa, G., and Shaffrey, L.: Simple uncer-
tainty frameworks for selecting weighting schemes and interpreting multimodel ensemble climate
change experiments, J. Climate, 26, 4017—4037, 2013.

Sargent, R. G.: Verification and Validation of Simulation Models, in: Proceedings of the 2011 Winter
Simulation Conference, 183-198, 2011.

Shlens, J.: A Tutorial on Principal Component Analysis, CoRR, abs/1404.1100, available at: http:
/larxiv.org/abs/1404.1100| (last access: 5 May 2015), 2014.

von Storch, H. and Zwiers, F.: Testing ensembles of climate change scenarios for “statistical signifi-
cance”, Climatic Change, 117, 1-9, 2013.

Whitner, R. B. and Balci, O.: Guidelines for selecting and using simulation model verification tech-
niques, in: Winter Simulation Conference, 559-568, 1989.

Zhu, Y.: Ensemble forecast: a new approach to uncertainty and predictability, Adv. Atmos. Sci., 22,
781-788, 2005.

Zhu, Y. and Toth, Z.: Ensemble based probabilistic forecast verification, in: 19th Conference on
Probability and Statistics, Amer. Meteor. Soc., 1-6, 2008.

29

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

http://dx.doi.org/10.5194/gmd-5-1009-2012
http://dx.doi.org/10.1137/S1064827594275534
http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1404.1100

Table 1. CESM modifications expected to change the climate.

Test name CESM-ECT Number of PCs failing
Results at least 2 runs

DUST FAIL 9

FACTB FAIL 36

FACTIC FAIL 43
RH-MIN-LOW FAIL 44
RH-MIN-HIGH FAIL 30
CLDFRC-DP FAIL 27

UW-SH FAIL 24
CONV-LND FAIL 33
CONV-OCN FAIL 45

NU-P FAIL 35

NU PASS 1

30

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 2. CESM modifications expected to produce the same climate.

Testname CESM-ECT Number of PCs failing
Results at least 2 runs

NO-OPT PASS 1

INTEL-15 PASS 1

NO-THRD PASS 0

PGI PASS 0

GNU PASS 2

31

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 3. CESM modifications with unknown outcomes.

IodeJ UOISSNOSI(]

Test name CESM-ECT Number of PCs failing &
Results at least 2 runs é
HOPPER PASS 1 &
EDISON PASS 1 3
TITAN PASS 0 '
MIRA FAIL 5 —
JANUS PASS 1 _
BLUEWATERS FAIL 5 =
EOS FAIL 4 g
GOLDBACH-INTEL PASS 0 =
GOLDBACH-PGI PASS 0 -
INTEL13-03 PASS 1 2
INTEL14-03 PASS 1 -
INTEL15-03 FAIL 38 —

32

IodeJ UOISSNOSI(]

Table 4. CESM development tag with two versions of the CICE component run with different com-

pilers on Yellowstone.

Test name CESM-ECT Number of PCs failing
Results at least 2 runs

CICE4-INTEL PASS 1

CICE4-GNU PASS 0

CICE4-PGI PASS 0

CICE5-INTEL FAIL 19

CICE5-GNU FAIL 20

CICE5-PGI FAIL 19

33

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Variability explained for Global Mean

110

IodeJ UOISSNoSI(]

100

90

80

70

60

50

Percentage Variability Explained

40

30

20
0

1 1 1
40 60 80
Number of Principal Components

I
100

120

Figure 1. Percentage of variability explained for global mean by component scores.

34

JodeJ UOISSnosI(] JTodeJ UOISSnoSI(]

JodeJ UOISSnoSI(]

CESM software engineers

151 CAM
output files
g J
SESMIUSED
new CAM new CAM
output 1 output 3
new CAM —
output 2
J

Figure 2. Graphic of CESM-ECT software tools (circles) and workflow.

35

IodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSnoSI(]

JodeJ UOISSNoSI(]

9 Bluewaters
Il Intel

8 B GNU |1
B PGl

U No-Opt |

Number of PCs failing at least 2 runs

Test name

Figure 3. Additional CESM-ECT results on Bluewaters, comparing against four different ensemble
distributions. Bars extending above the dashed line indicate an overall failure.

36

1odeJ woISSNosI(| 1odeJ woISSNasI(] 1odeJ woIssnoasI(|

Tode UOISSNOSI(]

o . . . erz? . . .
I Intel
8r - EEE GNU |
L B PGl
T |° =3 No-Opt|]|

Number of PCs failing at least 2 runs

& ¢ ¢ s
Test name

Figure 4. Additional CESM-ECT results on Mira, comparing against four different ensemble distri-
butions. Bars extending above the dashed line indicate an overall failure.

37

1odeJ woISSNosI(| 1odeJ woISSNasI(] 1odeJ woIssnoasI(|

Tode UOISSNOSI(]

	rev_1_again
	paper_diff_2

