Dear Editor and Referees,

We really appreciate the careful reading, detailed comments and constructive suggestions

by the reviewers, which greatly improve the clarity of our presentation and help our

revision.

Responses to comments from Referee 1:

1.

2.

3.

4.

Page 3798, line 17, “quit” should be “quite”.
Reply: Corrected

Page 3801, the sentence in line 16 is a repeat of the 1st sentence on the same page. It

should be removed.
Reply: Corrected
Page 3802, line 25: This long sentence is not clear. It should be rewritten.

Reply: We are sorry about that. This section has been reorganized for better
clarification. The corresponding sentence is changed to “Two extra steps are included
before the original downhill simplex method to overcome its limited effectiveness on
model performance improvement. The “Downhill 2 steps” method includes an
initial value pre-processing step before the downhill simplex method. And the
“Downhill 3 steps” method further introduces another step to eliminate insensitive

parameters for tuning by sensitivity analysis.”

Line 3804, 2nd paragraph: The physical explanations should be improved. If the
model used the stratiform fractional cloud condensation scheme of CAM3 or CAM4
(Zhang, et al. 2003), reducing the “rhminh” threshold will not only increase the
cloud amount, but also increase the stratiform condensation rate and decrease the
atmospheric humidity. Likewise, increasing the “rhminl” will do the opposite. This is
why you see clear opposite changes of RH and CLOUD in the lower troposphere and
upper troposphere in Figure 6.



Reply: We thank the reviewer for pointing out this important linkage and the
illuminating explanation for Fig. 6. Yes, the stratiform fractional cloud condensation
scheme of CAM4 (Zhang, et al.2003) was used in GAMIL2. Accordingly, we have
included the following to the model description section on page 7, line 5. At the same

time, we rewrite the 1st paragraph on page 15 of the revised manuscript.

“Compared to the previous version, GAMIL2 has modifications in cloud-related
processes (Li et al. 2013), such as the deep convection parameterization (Zhang and
Mu, 2005), the convective cloud fraction (Xu and Krueger, 1991), the cloud
microphysics (Morrison and Gettelman, 2008), and the stratiform fractional cloud

condensation scheme (Zhang et al. 2003).”

“With reduced RH threshold for high cloud (from 0.78 in CNTL to 0.63 in EXP,
Table 1), the stratiform condensation rate increases and the atmospheric humidity
decreases (Zhang et al. 2003). In addition, with increased auto-conversion coefficient
in the deep convection, less condensate is detrained to the environment. As a result,
mid- and upper-troposphere is overall drier, especially over the tropics where deep
convection dominates the vertical moisture transport (Fig. 6¢). Although the mid- and
upper-troposphere become drier over the tropics, reduced RH threshold for high
cloud makes clouds easier to be present. Consequently, middle and high clouds
increase over the globe, especially over the mid- and high-latitudes with the largest
increase up to 4-5 % (Fig. 6f). In the tropics, due to the drier tendency induced by
the reduced detrainment, high cloud increase is relatively small (2—-3%) compared to
the mid- and high-latitudes. On the contrary, low cloud below 800 hPa decreases by
1-2% over the mid- and high-latitudes with slightly decreased RH (Fig.6) because of
the negligible change of RH threshold for low cloud (Table 1). Overall, the combined
effects of all relevant parameterizations lead to the changes of atmospheric humidity

and cloud fraction.”



Responses to comments from Referee 2:

General comments: This study proposed a “three-step” parameter optimization
procedure which can help tuning important parameters in general climate models with
reduced computation load. This “three-step” procedure is an extension of downhill
simplex method with a parameter sensitivity process to eliminate insensitive parameters
and an initial value selection process to help improving optimization converging quality.
Results show that by finding an optimal set of parameter values, the method is able to
improve the climate simulation compared with default parameter values. At the same
time, the computation time required is reduced compared with traditional methods.
However, there are great deficiencies in illustrating the methodology. Both the core
procedure downhill simplex method and the extended parameter sensitivity process and
initial value process are not clearly presented, making it very difficult for readers to
follow and learn. Also, there is not enough meaningful comparisons between the results
of new method and those of traditional methods for readers to judge whether it is a
progressive method. A future version of this manuscript may potentially be acceptable.

But that apparently requires a lot more work.

Reply: We agree with the reviewer that the description of the method is not clear. We
have substantially revised this part for better clarification and presentation. More details
can be found in the revised manuscript and the point to point responses to the reviewer.
First of all, the use of “local vs global” in several places has induced confusions. There
are two groups of usage of “local vs global” in the manuscript. The first one refers to the
parameter sensitivity, in which “local” means the model’s sensitivity to a single
parameter and “global” means the model’s sensitivity to all the parameters in
consideration. The second one refers to the optimization methods, in which “local”
means the method searching for a local optimum solution and “global” means the
method aiming for the global optimum solution. We have thought to change the first use
of “local vs global” to some other nomenclatures, such as “single parameter sensitivity or
combined parameter sensitivity” for better clarification. However, it is a common

practice to use “local vs global” in statistics and sensitivity analysis and so we keep them



in the manuscript. Nevertheless, we have paid special attention to the presentation for the

clarification in the revised manuscript.

Second, some confusion comes from the usage of special words from mathematics and
computer science. These words include “trajectory”, “distance”, “simplex”, “dimension”,
among others. We have tried our best to give a brief explanation or description of these

words in the text. It is hoped that it will help readers for better understanding.

Regarding the comparison of the new method and traditional methods, we have not
illustrated the progress clearly, especially about the explanation of Table 3 and 4.
Two performance criteria are used to evaluate the effectiveness and efficiency of the
optimization algorithms in this study. Selection of optimization algorithms for parameter
calibration of climate system models is a balance between model improvement
(effectiveness) and computational cost (efficiency). In this study, model improvement is
measured by an index defined in Eq. (3). The lower of this value is, the better model
tuning is. Computational cost is measured by "core-hours", standing for the
computational efficiency. It is computed by (Niep) * (Nsize) * (the number of process of a
single model run) * (hours used for a single 5-year model run). Ny, is the total numbers
of iterations of optimization algorithms for convergence. N is the number of model

runs during each iteration, and it is 1 for the downhill simplex method.

Effectiveness and efficiency of the three traditional algorithms are compared in Table 3.
“Downhill 1 step” represents the original downhill simplex method, which is one of the
most widely-used local optimization algorithms and has been successfully used in
Speedy model (Severijns and Hazeleger, 2005). PSO and DE are the most widely-used
global optimization algorithms and easy-to-use. Although “Downhill 1 step” achieves
slightly worse improvement compared to the two global optimization methods (Table 3),
its computation cost is much less (only 20% and 28% of DE and PSO respectively). The
most important contribution of the study is adding two extra steps to the original
downhill simplex method. We are able to achieve better improvement with less
computational cost than the two global methods (Table 4). The “Downhill 2 steps”

method includes the initial value pre-processing before the downhill simplex method.



And the “Downhill 3 steps” method further introduces an extra step to determine
parameters for tuning by sensitivity analysis. Table 3 and 4 show that the proposed
“Downhill 3 steps” is able to overcome the inherent ineffectiveness of the original
downhill simplex method with much lower computational cost than global methods. We

have clarified and emphasized this in the revised manuscript.

In addition, a comparison of the CNTL and EXP is used to illustrate how the tuning of
these parameters improves the model results in terms of various atmospheric fields. This
helps the readers for a better understanding of the physical reasons behind the automatic

tuning process.

Once again, we thank the reviewer for his/her effort and time to help us improve the
manuscript. A lot of works have been done to develop the methodology and we hope it

would be a useful tool for the model development community.
Point to point responses:

1. Page 3792, Line 9: “parameter sensitivity” should be more specified, such as the
model’s sensitivity to the parameters. “optimum initial value” should be specified for

the parameter estimation process.

Reply: This sentence has been rewritten as “Different from the traditional
optimization methods, two extra steps, one determining the model’s sensitivity to the
parameters and the other choosing the optimum initial value for those sensitive
parameters, are introduced before the downhill simplex method. This new method
reduces the number of parameters to be tuned and accelerates the convergence of the

downhill simplex method. ”

2. Page 3792, (37947) Line 10: What does the “step” refer to? Parameter optimization

cycles? Model integration steps? Or method cycles?

Reply: The “step” here refers to the optimization cycles involved within the

optimization algorithm.

3. Page 3794, Line 3: “high” should be “high-dimensional”.



4.

5.

Reply: Corrected.

Page 3794, Line 19-20: ENKF and PF have the difficulty in looking for the
representative samples: This problem needs to be explained more clearly and needs

to be extended a little, and references should be introduced.

Reply: The sentence “ENKF and PF have the difficulty in looking for the
representative samples” has been rewritten as “The EnKF and PF use an ensemble of
model simulations to estimate the background error covariance, which approximate
the traditional Kalman filter with a recurrence process (Evensen 2003, Arulampalam
2002). The accuracy of the error covariance relies on samples. In general, the larger
the ensemble size, the more accurate the estimates are. The limitation of ensemble
size for practice use and imperfect models make it difficult to select representative

samples (Poterjoy 2014).
References:

Evensen G. The ensemble Kalman filter: Theoretical formulation and practical

implementation. Ocean dynamics, 2003, 53(4): 343-367.

Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. Signal Processing, IEEE Transactions on,

2002, 50(2): 174-188.

Poterjoy J, Zhang F, Weng Y. The effects of sampling errors on the EnKF
assimilation of inner-core hurricane observations. Monthly Weather Review, 2014,

142(4): 1609-1630.

Page 3794, Line 25-26: “The above mentioned methods generally require long
iterations for convergence.” This is not necessary. It also depends on observation

amounts and estimation frequencies.

Reply: This sentence has been deleted since it does not fit in the paragraph.



6. Page 3795, Line 8-10: “Finally, the downhill simplex algorithm is used to solve the
optimization problem because of its low computational cost and fast convergence for
low dimension space.” This dimension space corresponds to parameter space? Also,
you have said that the parameter space in climate models are usually
high-dimensional. Does it mean that this method is not suitable for climate model

tuning?

Reply: Yes, here dimensional space means parametric space. The default downbhill
simplex is not good at high-dimensional parametric space. This is why we propose a
“three-step” method to reduce the number of parameters (i.e., dimension of space) by
sensitivity analysis. The results of Table 4 show that the “three-step” method is able
to achieve the best tuning results compared to other tuning algorithms with relatively

low computational cost.
7. Page 3795, Line 12. “This is result already.” What does it mean here?
Reply: This is a typo. We have deleted this sentence.

8. Page 3797, Line 13-14: “Previous studies have shown 5 years of this type of
simulation is enough to capture some basic model characteristics.” What are these

basic model characteristics? Should be extended and necessary references should be

included.

Reply: This sentence is rewritten as “Previous studies have shown 5 years of this
type of simulation is enough to capture the basic characteristics of simulated mean

climate states (Golaz et al. 2011, Lin et al. 2013)”.
References:

Golaz J C, Salzmann M, Donner L J, et al. Sensitivity of the aerosol indirect effect to
subgrid variability in the cloud parameterization of the GFDL atmosphere general

circulation model AM3[J]. Journal of Climate, 2011, 24(13): 3145-3160.



9.

10.

11.

12.

Lin Y, Zhao M, Ming Y, et al. Precipitation partitioning, tropical clouds, and
intraseasonal variability in GFDL AMZ2[J]. Journal of Climate, 2013, 26(15):
5453-5466.

Page 3797, Line 17: “reference metrics”. what is this metric like? It is a metric

containing those climate variables? How is it formed?

Reply: Thanks for pointing out the confusing presentation. The model performance
during parameter tuning process depends on the metrics used for the evaluation. In
this study, a basic metrics including the mean states of wind, humidity, geopotential
height field, and various radiative fields, is used for illustration. Note that the metrics
can be easily expanded. Page 3797, Line 17: “reference metrics” and Page 3797, Line
24: “evaluation metrics” are the same. And we changed the evaluation metrics to
reference metrics in line 24. Accordingly, “A comprehensive metrics,...” in line 26 is
changed to “the reference metrics, . The metrics is described at Page 8, Eq. (1) ~ (3).
It is an improvement index to evaluate the tuning results, which weight each variable
equally and compute the average normalized RMSE. The index indicates an overall
improvement of the performance of the tuned simulation relative to the control
simulation according to a number of model outputs (Table 2). If the index is less than
1, it means the tuned simulation gets better performance than the control run. The

smaller this value, the better improvement is.

Page 3797, Line 24: “evaluation metrics”. What is the difference between the

reference metric and evaluation metric? What is this evaluation metric like again?
Reply: Please see the 9™ reply.

Page 3797, Line 26: “metrics”. So this metric is the evaluation metric?

Reply: Please see the 9™ reply.

Page 3798, Line 2: “control simulation”. What is this control simulation here?

With default parameter values? Please specify.



Reply: Yes, the control simulation refers to the simulation using default parameter
values. The sentence is changed to “we normalize the RMSE of each simulation

output by that of the control simulation using default parameter values.”

13. Page 3798, Line 10: “w is the weight due to the different grid area”. What is w like?

Is it the same weight?

Reply: This is because the model output is on regular latitude longitude grids, which
have varying grid areas. The grid weight (w) is computed as cos(the latitude of each
grid) to consider the area change of different grid cells. The sentence is changed to “w
is the weight due to the different grid area on regular latitude longitude grids on the

sphere.”

14. Page 3798, Line 13: “Global and local optimization method.” This section is
supposed to tell the methodology of global and local optimization method. But the
authors only listed typical examples and names of each kind without explaining the
methodology. The whole section is rather too simplified that it is difficult to

understand.

Reply: A nice point. The title of section 4.1 is changed to “Parameters tuning with
global and local optimization methods”. We revise the first paragraph and summarize
the main differences between the global and local optimization methods. The first

paragraph has been rewritten as:

“Parameter tuning for a climate system model is to solve a global optimization
problem in theory. As the well-known global optimization algorithms, traditional
evolutionary algorithms, such as genetic algorithm (Goldberg et al., 1989), differential
evolutionary (DE) (Storn and Price, 1995), and particle swarm optimization (PSO)
(Kennedy, 2010), can approach the global optimal solution but generally require high
computational cost. This is because these algorithms are designed following
biological evolution of survival of the fittest. In contrast, the local algorithms utilize
the greedy strategy, and thus may stick at a locally optimal solution after convergence.

The advantage of local algorithms is the low computational cost due to relatively less



samples required. In this sense, the local optimization algorithms are the viable

options considering their significantly reduced computational cost.”

15. Page 3799, Line 14: “local downhill simplex method”. So the local downhill simplex
method gives an optimal parameter value sets locally? Say, each region has an
optimal set? And these parameter sets are assigned into next model integration cycle
locally? Could you add some explanation about the specific methodology of downhill
simplex method? And what is the difference between a local optimization and global
optimization? If local, then local to where? spatially or in other space? If this "local”
refers to spatial local concept, then why in Table 3 the optimization is one value set?
Is it because it is local optimization to some specific region? Also without a clear
explanation of the methodology of "local" and "global" method, there is no way for
readers to understand the results and why global optimization gives better tuning
results. And how do you judge "better" results. There is no direct comparison with a

certain reference criterion here.

Reply: Thanks for pointing out the confusion. “local” and “global” here does not refer
to the spatial locations of the GCM, but the local or global optimum solution
algorithms can approach as emphasized in the summary section of this response. We
add the following sentences for a better clarification of “local vs. global”. The “local”
and “global” refer to that the optimization algorithms can achieve the “local” or
“global” convergence performance. For example in the following figure, the
horizontal coordinate stands for the two-dimension parametric space, and the vertical
coordinate presents the metrics. If the optimal target is the maximum metrics, there

are many local optimal solutions and one global optimal solution.

The downhill simplex is a local method and can be trapped within a local solution
space. Instead, the global methods, such as genetic algorithm, DE and PSO, are able
to find the global optimal solution. However, the local method is faster and requires
much less model runs than the global method. In this study, we try to overcome the
problems of local method (the downhill simplex) by introducing two extra steps:

parameter sensitivity analysis and initial values selection. With relatively low



computational cost, this new method can reduce the number of parameters to be tuned,
determine the local parametric space for final solution, and accelerate the convergence

of the downhill simplex method.
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The revised version adds the following text to explain the estimation criteria in the

third paragraph of section 4.1 before the sentence “According to tuning GAMIL2...”:

“Two performance criteria are used to evaluate the effectiveness and efficiency of the
optimization algorithms in this study. Selection of optimization algorithms for
parameter calibration of climate system models is a balance between model
improvement (effectiveness) and computational cost (efficiency). In this study, model
improvement is measured by an index defined in Eq. (3). The lower of this value is,
the better model tuning is. Computational cost is measured by "core-hours", standing
for the computational efficiency. It is computed by (Ngiep) * (Nsize) * (the number of
processes of a single model run) * (hours used for a single 5-year model run). Ny 1S
the total numbers of iterations of optimization algorithms for convergence. Ny is the
number of model runs during each iteration, and it is 1 for the downhill simplex

method. In GAMIL?2 case, each model run takes 6 hours using 30 processes. ”

16. Page 3800, Line 6: “The Morris method”. At least a simple explanation about this
"global" method should be provided. So it is a method of perturbing all parameters?
After reading this paragraph, I still didn’t get how the sensitivity experiment is

carried out.



Reply: Thanks for the nice point. The second and third paragraphs in Section 4.2 has

been rewritten as:

“Parameter sensitivity analysis can be divided into local and global methods (Gan et
al., 2014). The local method determines the sensitivity of a single parameter by
perturbing one parameter with all other parameters fixed. Consequently, it does not
consider the combined sensitivity of multiple parameters. On the other hand, the
global method perturbs all the parameters to explore the sensitivity of the whole
parametric space. In this study, the Morris (Morris, 1991; Campolongo et al., 2007), a
global method, is used to screen out the sensitive parameters. Another global method

(Sobol 2001), is used to validate the results of the Morris method.

The Morris method, based on the MOAT sampling strategy, reduces the number of
samples required by other global sensitivity methods (Li et al., 2013). Note that a
sample is a set of all parameters, not just one parameter. The method is described
briefly here, and more details can be found in Morris (1991). Assume we have k
parameters relative to a random sample S; = { xi, X2, ..., X¢ }, another sample S, =
{ X1, X2, ..., Xit A;, ..., Xx } can be constructed by perturbing the iy, parameter by A;,
where A; is a perturbation of this parameter. The elementary effect of the i

parameter X; is defined as:

_f(GS) = f(S)
= y

d; 4)

where f stands for the improvement index as defined in Eq. (3). A third sample S; =
{ X1, X2, ..oy Xi Ay, ..., Xj+ A, X } can be generated by perturbing another
parameter. In so doing k times, we will get k+1 samples {S;, S,,..., Sk+1}, and k
elementary effects {d;, da,..., dx} after perturbing all the parameters. The vector of
{Si1, Sa,..., Sk+1} 1s called a trajectory. This procedure is repeated for r iterations and
finally we get r trajectories. The starting point of any trajectory is selected randomly
as well as the ordering of the parameters to perturb and the A for each perturbation in

one trajectory. In practice, a number of 10 to 50 trajectories are enough to determine



the feasible sensitivity of parameters (Gan et al., 2014; Morris, 1991). In this study,

we have a total of 7 parameters and 80 simulations are conducted.

We define D = {di(t)}, where t is the t trajectory, and i is the iy elementary effect of
the parameter x;. y;, the mean of |d;|, and o;, the standard deviation of d;, are used

to measure the parameter sensitivity, defined as:

rdi
—_— (5)

r

0i= ) @O - w?r (©)

u; estimates the effect of x; on the model improvement, while o; assesses the
interactive effect of x; with other parameters. Those parameters with large p; and o;

are the sensitive parameters. The Morris method results are shown in Fig. 2.”

17. Page 3800, Line 11-12: “n is the number of calibration parameters”. Is n different
from N? If so, a consistent denotation should be used. What does it mean by

trajectories? Sample simulations?

Reply: This is a typo. “n” is the “N”. Also, we can find the description of trajectory in
the 16" reply.

18. Page 3800, Line 14: “step size”. What do you mean by step size here? Number of

integration steps?
Reply: This is a typo. It is “perturbation”. For more details, please see the 16" reply.

19. Page 3800, Line 15: “The starting point of a trajectory is selected randomly”. What
do you mean by trajectory? How do you provide initial condition? How is the
parameter initial values chosen? Randomly? If the parameter initial values are
chosen randomly, it is not convincing that the randomly given values would give

accurate estimation of parameter sensitivity. And for sure it would take a very long



time for parameter optimization to converge. And it is highly likely that the parameter

would converge to a total wrong value.

Reply: Please see the 16™ reply for the description about the trajectory. As in the 16"
reply, the iy elementary effect of the parameter x; only perturbs the x; with other
parameters fixed in a trajectory. If the starting point of any trajectory is selected
randomly, it can ensure that all parameters can be perturbed in different trajectories.

Therefore, we get the global sensitive results with the Morris method.

The sensitivity analysis is used to determine the sensitive parameters. After this step,
we begin to tune the parameters by optimization algorithms. The wrong results of

parameter screening may lead to low quality solution in the optimization step.

20. Page 3800, Line 22: what is y? How to choose the integration time? Because after
changing a parameter, the model would shortly respond in a linear manner and later
exhibit nonlinear response? How to choose the integration time to compare y?

Besides, how do you choose the parameter step size? Based on what?

Reply: In this paper, y is the improvement index as defined in Eq. (3). The
atmosphere simulations are conducted for 5 years. We describe it in Page 8. Previous
studies have shown 5 years of simulation is enough to capture the response of climate
mean states. The “parameter step size” means the parameter perturbation, which is an
integer multiple of the discrete perturbation scale mentioned in the 16™ reply. Please

see the revised text for more details.
21. Page 3800, Line 25: I didn’t see any sensitivity results in Fig.1. It should be Fig. 2.
Reply: Corrected. It is changed to Fig.2.

22. Page 3800, Line 25-27. The model’s sensitivity to the parameters is somehow
dependent on the perturbation magnitude. In terms of response time, model can be
very sensitive to some parameters that the quickly displayed spread. However, to
some parameters, the model’s response is rather slow. In terms of sensitivity

magnitude, the model could respond to the parameter, however, the magnitude of the



spread could be small. In your study, it seems that only the magnitude is included as a
criterion of sensitivity. And the parameter perturbation, step size, is not well

explained here.

Reply: Thanks for pointing out this. If we understand correctly, the reviewer suggests
we should take both the model response magnitude and the response time into account
here. It depends on the design of metrics. As an example, in this study we use the
mean states of different model outputs as the metrics, an improvement index to
evaluate the tuning performance, and the parameters with larger response in 5-year
simulations will be chosen for during tuning. If we want to take the response time into

account, we need to design a new metrics first.

Moreover, since all the parameters tested in this study are related to cloud and
convection, which are generally called the fast physics and their impacts on model
climate states will manifest quickly. In addition, atmospheric-only simulations do not
involve ocean and other slow components of the climate system. A few years of such
types of simulation are long enough to capture the overall climate states as measured

by the defined metrics.

The detail explanations for “parameter perturbation” and “step size” can be found in

the 16" reply.

23. Page 3801, Line 1-10: This paragraph seems to be an old version of the next
paragraph.

Reply: Corrected.

24. Page 3801, Line 24-25: Why is that? As I understand from your previous description,
"local" here means the model’s response to one single parameter. And this does not

necessarily lead to a dependence on the initial value.

Reply: “local” here refers to the local optimization algorithm, not the model’s
response to one single parameter. For a local optimization algorithm, it only searches

for a local optimal solution and its convergence strongly depends on the initial value



of the parameter. Actually, some bad initial values of parameters may lead to

non-convergence for the local method. We have clarified this in the revision version.

25. Page 3802, Line 4: what do you mean by a longer distance? What is the distance?

Compared to what it is longer?

Reply: We are sorry about the confusion here. The first and second paragraphs have

been rewritten as:

“The downhill simplex method is a local optimization algorithm and its convergence
performance strongly depends on the quality of the initial values. We need to find the
parameters with the smaller metrics around the final solution. Moreover, we have to
finish the searching as fast as possible with minimal overhead. For these two
objectives, a hierarchical sampling strategy based on the single parameter perturbation
(SPP) sample method is used. The SPP is similar to local sensitivity methods, in
which only one parameter is perturbed at one time with other parameters fixed. The
perturbation samples are uniformly distributed across parametric space. First, the
improvement index as defined in Eq. (3) of each parameter sample is computed. The
distance is defined as the difference between the improvement indexes using two
adjacent samples, i.e., the model response measured by certain percentage change of
one parameter. We call this step the first level sampling. The specific perturbation size
for one parameter can be set based on user experience. In our implementation, user
needs to set the number of samples. For the first level sampling, we can use a larger
perturbation size to reduce computational cost. If the distance between two adjacent
samples is greater than a predefined threshold, more SPP samples between the
previous two adjacent samples are conducted. And this is called the second level
sampling. Finally, k+1 samples with the best improvement index value are chosen as
the candidate initial values for the optimization method. With this hierarchical
sampling strategy, we can determine the local parametric space for final solution and
can accelerate the convergence of the following downhill simplex method. This
procedure is described in Algorithm 1. It is easy to implement and has lower overhead

compared to other complex adaptive sampling methods.



Algorithm 1 Preprocessing the initial values of Downhill Simplex Algorithm.

1: //Single parameter perturbation sample(SPP)

2: N=number_of_parameters

3: sampling_sets={}

4: for each parameter P; of N parameters do

5:  sampling_sets+=SPP(P;_range, number_of_samples)

6:  //refine sample in the sensitivity range if needed

7 if metrics of the the adjacent same parameter sampling points >= sensitivity_threhold then

8: sampling_sets+=SPP(P;_adjacent_parameter_range, refine_ number_of_factors)
9: endif

10: end for

12: //Initial vertexes with parameters of the N 4 1 minimum metrics
13: for each initial V; of N + 1 vertexes do

14:  //get the parameters of the ith minimum metrics

15:  candidate_init_sets += min(i, sampling_sets)

16: end for

18: //make sure the initial simplex geometry is well-conditioned

19: while one parameter k£ have the same values in the N + 1 sets do

20: gj=1

21:  /lremove the parameter set with the worst metrics from candidate_init_sets

22: remove_parameter_set(the parameter set with worse metrics, candidate_init_sets)
23:  //get the parameters of the N + 1+ jth minimum metrics

24: candidate_init_sets += min(/N + 1+ j, sampling_sets)

25 j+=1

26: end while

At the same time, inappropriate initial values may lead to ill-conditioned simplex
geometry, which can be found in model tuning process. One issue we meet is that
some vertexes in the downhill simplex optimization may have the same values for one
or more parameters. As a result, these parameters remain invariant during the
optimization and this may degrade the quality of final solution as well as the
convergence speed. A simplex checking is conducted to keep as many different values
of parameters as possible during the process of looking for initial values.
Well-conditioned simplex geometry will increase the parameter freedom for
optimization. In our implementation (Algorithm 1), the vertex leading to the
ill-conditioned simplex is replaced by another parameter sample which gives another

minimum improvement index value.”

26. Page 3802, Line 5-6: “a smaller distance”. I don’t understand the distance here? Is

it represented by any denotations in the Equations listed before?



Reply: Please see the 25" reply.

27. Page 3802, section 4.3: After reading the whole section, I still cannot get how to get

the inital value.
Reply: Please see the 25" reply.

28. Page 3802, Line 22-23: “In Table 3, PSO gets the best solution.” How do you get
this conclusion? Can you provide any reference parameter value or error information

so that we can tell which estimation is the best?

Reply: We are sorry about the confusion here. The conclusion comes from the revised

third paragraph of section 4.1.

“Two performance criteria are used to evaluate the effectiveness and efficiency of the
optimization algorithms in this study. Selection of optimization algorithms for
parameter calibration of climate system models is a balance between model
improvement (effectiveness) and computational cost (efficiency). In this study, model
improvement is measured by an index defined in Eq. (3). The lower of this value is,
the better model tuning is. Computational cost is measured by "core-hours", standing
for the computational efficiency. It is computed by (Nyiep) * (Nsize) * (the number of
processes of a single model run) * (hours used for a single 5-year model run). Ny 1S
the total numbers of iterations of optimization algorithms for convergence. Ny is the
number of model runs during each iteration, and it is 1 for the downhill simplex

method. In GAMIL?2 case, each model run takes 6 hours using 30 processes. ”

PSO has the lowest “final optimal model metrics”, meaning that it gets the best
effective solution compared with other traditional methods in Table 3. This sentence

is changed to “In Table 3, PSO gets the best effective solution.”

29. Page 3803, Line 2-3: I still didn’t get how you judge whether this estimation is good
or bad.

Reply: As in the 15th and 28th responses, the “final optimal model metrics” is used to

estimate the model improvement (effectiveness), and the “core-hours” for



computational cost (efficiency). Selection of optimization algorithms for parameter
calibration of climate system models is a balance between effectiveness and
computational cost efficiency. Effectiveness and efficiency of the three traditional
algorithms are compared in Table 3. “Downhill 1 step” represents the original
downhill simplex method, which is one of the most widely-used local optimization
algorithms and has been successfully used in Speedy model (Severijns and Hazeleger,
2005). PSO and DE are the most widely-used global optimization algorithms and
easy-to-use. Although “Downhill 1 step” achieves slightly worse improvement
compared to the two global optimization methods (Table 3), its computation cost is
much less (only 20% and 28% of DE and PSO respectively). The most important
contribution of the study is that by adding two extra steps to the original downhill
simplex method, we are able to achieve better improvement with less computational
cost than the two global methods (Table 4). The “Downhill 2 steps” method includes
the initial value pre-processing before the downhill simplex method. And the
“Downhill 3 steps” method further introduces an extra step to determine parameters
for tuning by sensitivity analysis. Table 3 and 4 show that the proposed
“Downhill 3 steps” is able to overcome the inherent ineffectiveness of the original
downhill simplex method with much lower computational cost than global methods.
Therefore, our proposed method has a good trade-off between accuracy and

computational cost.

30. Page 3803, Line 21: “The change in terms of the RMSE factor”. So how to calculate
this change in RMSE? What RMSE quantity is shown in FIg.5?

Reply: The RMSE is the metrics described at Page 8, Eq. (1) ~ (3) in the revised

manuscript.
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xk is the model outputs, and x[ is the corresponding observation or reanalysis data.

Xt

is the model outputs from the control simulation using the default values for the
parameters in Table 1. w is the weight due to the different grid area on a regular
latitude longitude grids on the sphere. I is the total grid number in model. N is the

number of the chosen variables.

Eq. (3) thus defines an improvement index. If the index is less than 1, it means the
tuned simulation gets better performance than the control run based on the reference

metrics (Table 2). The smaller this value, the better improvement is.

31. Page 3803, Line 26-27: Maybe, but temperature obs is also included as a criterion
in parameter optimization. It is possible that the compromising result will degrade the
simulation of temperature, but it is still not very convincing...Have you checked the
temperature’s and other varibales’ sensitivity to the parameters? If the sensitivity of
temperature is much smaller than those of others, it may help support your

arguement...

Reply: We deleted this sentence since winds and temperatures are also closely
influenced by these parameters. Because the improvement is evaluated by the metrics
consisted of all 16 variables, it is possible that some variables become worse in EXP

than in CNTL.

32. Page 3805, Line 14-15: There is no standard criterion for the readers to judge

whether the estimation is good or bad.
Reply: Please see the 29" reply.

33. Page 3805, Line 21-23: References should be included here. However, the
surrogate-based optimization method seems to have no relation with this study at all,

thus inappropriate to be formed as a comparison.

Reply: Yes. The surrogate-based optimization method is not addressed in this study

and is still under investigated by the authors as well as other scientists. Moreover, the



proposed method in this paper can also work well together with surrogate models for

climate system models. We just delete this paragraph in the revised manuscript.

34. Page 3805, Line 25-27: Since you have said that the surrogate-based method cannot
meet the requirement of climate systems, simply stating that future work focus on
evaluate surrogate models seems not very relevant with this study, nor as an extension

of this study. More justification is needed.
Reply: Please see the 33" reply.

35. Figures: To justify that the three-step method is more effective and more efficient,
more comparisons between this new method and the traditional method should be

provided. Only comparing between EXP and CNTL is not enough.

Reply: The effectiveness and efficiency of the three-step method and the comparison
with other methods are illustrated in Table 3 and 4. As in the 15™ and 28™ responses,
the “final optimal model metrics” is used to estimate the model improvement
(effectiveness), and the “core-hours” for computational cost (efficiency). Selection of
optimization algorithms for parameter calibration of climate system models is a
balance between effectiveness and computational cost efficiency. Effectiveness and
efficiency of the three traditional algorithms are compared in Table 3.
“Downhill 1 step” represents the original downhill simplex method, which is one of
the most widely-used local optimization algorithms and has been successfully used in
Speedy model (Severijns and Hazeleger, 2005). PSO and DE are the most
widely-used global optimization algorithms and easy-to-use. Although
“Downhill 1 step” achieves slightly worse improvement compared to the two global
optimization methods (Table 3), its computation cost is much less (only 20% and 28%
of DE and PSO respectively). The most important contribution of the study is that by
adding two extra steps to the original downhill simplex method, we are able to
achieve better improvement with less computational cost than the two global methods
(Table 4). The “Downhill 2 steps” method includes the initial value pre-processing
before the downhill simplex method. And the “Downhill 3 steps” method further

introduces an extra step to determine parameters for tuning by sensitivity analysis.



Table 3 and 4 show that the proposed “Downhill 3 steps” is able to overcome the
inherent ineffectiveness of the original downhill simplex method with much lower
computational cost than global methods. Therefore, our proposed method has a good

trade-off between accuracy and computational cost.

In addition, a comparison of the CNTL and EXP is used to illustrate how the tuning of
these parameters improves the model results in terms of various atmospheric fields.
This helps the readers for a better understanding of the physical reasons behind the

automatic tuning process.
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Abstract

Physical parameterizations in General Circulation Models (GCMs), having various uncertain
parameters, greatly impact model performance and model climate sensitivity. Traditional
manual and empirical tuning of these parameters is time consuming and ineffective. In this
study, a “three-step” methodology is proposed to automatically and effectively obtain the

optimum combination of some key parameters in cloud and convective parameterizationj Q*

according to a comprehensive objective evaluation metrics. Different from the tradition
optimization methods, two extra steps, one determining the model’'s sensitivity to the pa-
rameters and the other choosing the optimum initial value for those sensitive parameters,
are introduced before the downhill simplex method. This new method reduces the number
of parameters to be tuned and accelerates the convergence of the downhill simplex method.
Atmospheric GCM simulation results show that the optimum combination of these param-
eters determined using this method is able to improve the model’'s overall performance by
9%. The proposed methodology and software framework can be easily applied to other
GCMs to speed up the model development process, especially regarding unavoidable com-
prehensive parameters tuning during the model development stage.

1 Introduction

Due to their current relatively low model resolutions, General Circulation Models (GCMs)
need to parameterize various sub-grid scale processes. Physical parameterizations aim to
approximate the overall statistical outcomes of various sub-grid scale physics (Williams,
2005). However, due to the complexities involved in these processes, parameterizations
representing sub-grid scale physical processes unavoidably involve some empirical or sta-
tistical parameters (Hack et al., 1994), especially within cloud and convective parameteriza-
tions. Consequently, these parameterizations introduce uncertainties to climate simulations
using GCMs (Warren and Schneider, 1979). In general, these uncertain parameters need
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to be calibrated or constrained when new parameterization schemes are developed and
integrated into models (Li et al., 2013).

Traditionally, the uncertain parameters are manually tuned by comprehensive compar-
isons of model simulations with available observations. Such an approach is subjective,
labor intensive, and hard to be extended (Hakkarainen et al., 2012; Allen et al., 2000). By
contrast, the automatic parameter calibration techniques have progressed quickly because
of their efficiency, effectiveness and broader applications (Bardenet et al., 2013; Elkinton
et al., 2008; Jakumeit et al., 2005; Chen et al., 1999). In previous studies applying to GCMs,
the methods can be categorized into three major types based on probability distribution
function (PDF) method, optimization algorithms, and data assimilation techniques.

For the PDF method, the confidence ranges of the optimization parameters are evaluated
based on likelihood and Bayesian estimation. Cameron et al. (1999) improves the forecast
by the generalized likelihood uncertainty estimation (Beven and Binley, 1992), a method
obtaining parameter uncertain ranges of a specific confidence level. The Bayesian Markov
Chain Monte Carlo (MCMC) (Gilks, 1995) is widely used to obtain posterior probability dis-
tributions from prior knowledge. A couple of specific algorithms based on the MCMC theory
are used to calibrate models in the previous literatures, such as Metropolis—Hasting (Sun
et al., 2013), adaptive Metropolis algorithm (Hararuk et al., 2014), and multiple very fast sim-
ulated annealing (MVFSA) (Jackson et al., 2008). The MVFSA method is one to two orders
of magnitude faster than the Metropolis—Hasting algorithm (Jackson et al., 2004). However,
these methods only attempt to determine the most likely area of uncertain parameters and
cannot directly give the best combination of uncertain parameters with a optimum metrics
value. Moreover, the PDF heavily depends on the likelihood function assumed, which is
usually difficult to determine for climate system model tuning problem.

Optimization algorithms can be used to search the maximum or minimum metrics value
in a given parametric space. Severijns and Hazeleger (2005) calibrates parameters of ra-
diation, clouds, and convection in Speedy model with the downhill simplex (Press et al.,
1992; Nelder and Mead, 1965) to improve the radiation budget at the top of the atmosphere
and at the surface, as well as the large scale circulation. The downhill simplex is a fast

3

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSIOSI(]



convergence algorithm when the parametric space is not high-dim Q nal. However, it is
a local optimization algorithm, not aiming to find the global optimal solution. Moreover, the
algorithm has convergence issue when the simplex becomes ill-conditioned. Besides the
downhill simplex, a few global optimization algorithms are introduced to tune uncertain pa-
rameters of climate system models, such as simulated stochastic approximation annealing
(SSRR) (Yang et al., 2013), MVFSA (Yang et al., 2014), and multi-objective particle swarm
optimization (MOPSOQ) (Gill et al., 2006). SSRR requires at least ten thousands of steps
to get a stable solution (Liang et al., 2013), and MVFSA also requires thousands of steps
to get a stable solution (Jackson et al., 2004). MOPSO needs dozens of individual cases
in each iteration. All these global optimization algorithms require a large number of model
runs and very high computational cost during the model tuning process.

Data assimilation method has been well addressed for state estimation, and can be
a potential solution for parameter estimation. Aksoy et al. (2006) estimates the parame-
ter uncertainty in a mesoscale model (Grell et al., 1994) using the Ensemble Kalman Fil-
ter (EnKF). Santitissadeekorn and Jones (2013) presents a two-step filtering for the joint
state-parameter estimation with a combination method of particle filtering (PF) and EnKF.
The EnKF and PF use an ensemble of model simulations to estimate the background er-
ror covariance, which approximate the traditional Kalman filter with a recurrence process
(Evensen , 2003; Arulampalam et al., 2002). The accuracy of the error covariance relies
on samples. In general, the larger the ensemble size, the more accurate the estimates
are. The limitation of ensemble size for practice use and imperfect models make it difficult
to select representative samples (Poterjoy et al., 2014). Moreover, same as the MOPSO
method, they require a large number of model runs in each iteration with greatly increased
computational cost.

Climate system model is a strongly nonlinear system, having a large number of un-
certain parameters. As a result, the parametric space of a climate system model is high-
dimensional, multi-modal, strongly nonlinear, unseparable. More seriously, one model run
of a climate system model might require tens or even hundreds years of simulation to get
scientifically meaningful results.
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To overcome these challenges, we propose a “three-step” strategy to calibrate the uncer-
tain parameters in climate system models effectively and efficiently. First, the Morris method
(Morris, 1991; Campolongo et al., 2007), a global sensitivity analysis method, is chosen to
eliminate the insensitive parameters by analyzing the main and interactive effects among
parameters. Another global method by Sobol (Sobol, 2001) is used to validate the results
of the Morris method. Second, a pre-processing of initial values of selected parameters is
presented to accelerate the convergence of optimization algorithm and to resolve the is-
sue of ill-conditioned problem. Finally, the downhill simplex algorithm is used to solve the
optimization problem because of its low computational cost and fast convergence for low di-
mensional space. Taking into account the complex configuration and manipulation of model
tuning, an automatic workflow is designed and implemented to make the calibration process
more efficient. The method and workflow can be easily applied to GCMs to speed up model
development process.

The paper is organized as follows. Section 2 introduces the proposed automatic work-
flow. Section 3 describes the details of the example model, reference data, and calibration
metrics. The three-step calibration strategy is presented in Section 4. Section 5 evaluates
the calibration results, followed by a summary in Section 6.

2 The end-to-end automatic calibration workflow

We design a software framework for the overall control of the tuning practice. This frame-
work can automatically execute any part of our proposed “three-step” calibration strategy,
determine the optimal parameters and produce its corresponding diagnostic results. It in-
corporates various tuning methods and facilitate model tuning process with minimal manual
management. It effectively manages the dependence and calling sequences of various pro-
cedures, including parameter sampling, sensitivity analysis and initial value selection, model
configuration and running, evaluation of model outputs using user provided metrics. Users
only need to specify the model to tune, parameters to be tuned with their valid ranges, and
the calibration method to use.
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There are four main modules within the framework as shown in Fig. 1. The scheduler
module manages model simulations with the capability for simultaneous runs. It also coordi-
nates different tasks to reduce the contention and improve throughput. Simulation diagnosis
and evaluation is included in a post-processing module. The preparation module contains
various sensitivity analysis and sampling methods, such as Morris (Morris, 1991; Campo-
longo et al., 2007) and Sobol (Sobol, 2001) method, full factorial (FF) (Raktoe et al., 1981),
Latin Hypercube (LH) (McKay et al., 1979), Morris one-at-a-time (MOAT) (Morris, 1991),
and Central Composite Designs (CCD) (Hader and Park, 1978). The sensitivity analysis
is able to eliminate the duplicated samples to reduce unnecessary model runs. A MCMC
method based on adaptive Metropolis—Hastings algorithms is also provided to get the pos-
terior distribution of uncertain parameters. The tuning algorithm module offers various local
and global optimization algorithms including the downhill simplex, genetic algorithm, parti-
cle swarm optimization, differential evolution and simulated annealing. In addition, all the
intermediate metrics and their corresponding parameters within the framework are stored
in a MySQL database and can be used for posterior knowledge analysis. More importantly,
the workflow is flexible and expandable for easy integration of other advanced algorithms
as well as tools like the Problem Solving Environment for Uncertainty Analysis and Design
Exploration (PSUADE) (Tong, 2005), Design Analysis Kit for Optimization and Terascale
Applications (DAKOTA) (Eldred et al., 2007). Although, uncertainty quantification toolkits,
such as PSUADE, DAKOTA, support various calibration and uncertainty analysis methods
and pre-defined function interfaces, they cannot organize the above model tuning process
as effectively as the proposed model tuning framework.

3 Model description and reference metrics

We use the Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) as an example
for the demonstration of the tuning workflow and our calibration strategy. GAMIL2 is the
atmospheric component of the Flexible Global-Ocean—Atmosphere—Land System Model
grid version 2 (FGOALS-g2), which participated in the CMIP5 program. The horizontal res-
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olution is 2.8° x 2.8°, with 26 vertical levels. GAMIL2 uses a finite difference scheme that
conserves mass and energy (Wang et al., 2004). A two-step shape-preserving advection
scheme (Yu, 1994) is used for tracer advection. Compared to the pervious version, GAMIL2
has modifications in cloud-related processes (Li et al., 2013), such as the deep convection
parameterization (Zhang and Mu, 2005), the convective cloud fracQ Xu and Krueger,
1991), the cloud microphysics (Morrison and Gettelman, 2008), g e stratiform frac-
tional cloud condensation scheme (Zhang et al., 2003). More details are in Li et al. (2013).
Empirical tunable parameters are selected from schemes of deep convection, shallow con-
vection, and cloud fraction schemes (Table 1). Default parameter values are from the model
configuration for CMIP5 experiments.

To save computational cost, atmosphere-only simulations are conducted for 5 years using
prescribed seasonal climatology (no interannual variation) of SST and sea ice. Previous
studies have shown 5 years of this type of simulation is enough to capture the basic char-
acteristics of simulated mean climate states (Golaz et al., 2011; Lin et al., 2013). The goal
of these simulations is not to determine their resemblance to observations, but to compare
the results between the control simulation and various tuned simulations.

Model tuning results depend on the reference metrics used. For a simple justification, we
use some conventional climate variables for the evaluation. Wind, humidity, and geopoten-
tial height are from the European Center for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA) — Interim reanalysis from 1989 to 2004 (Simmons et al., 2007). We use
GPCP (Global Precipitation Climatology Project, Adler et al., 2003) for precipitation and
ERBE (Earth Radiation Budget Experiment, Barkstrom, 1984) for radiative fields. All obser-
vational and reanalysis data are gridded to the same grid as GAMIL2 before the compari-
son. Note that the reference metrics cgnhe extended depending on the model performance
requirement.

The reference metrics, including varrous variables in Table 2, is used to quantitatively
evaluate the performance of overall simulation skills (Murphy et al., 2004; Gleckler et al.,
2008; Reichler and Kim, 2008). The calibration RMSE is defined as the spatial standard de-
viation (SD) of the model simulation against observations/re-analysis, as in Eq. (1) (Taylor,
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2001; Yang et al., 2013). For an easy comparison, we normalize the RMSEQach simula-
tion output by that of the control simulation using default parameter values. We introduce an
improvement index to evaluate the tuning results, which weight each variable equally and
compute the average normalized RMSE. The index indicates an overall improvement of the
performance of the tuned simulation relative to the control simulation based on a number
of model outputs (Table 2). If the index is less than 1, it means the tuned simulation gets
better performance than the control run. The smaller this value, the better improvement is.

Zw Yk (i) — 2L (4))? (1)
Zw — x5 (i) (2)
oF
K= % 2(0—2)2 @
F=1 T

xk (i) is the model outputs, and x%'(4) is the corresponding observation or reanalysis data.
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x¥(4) is model outputs from the control simulation using the default values for the parameQ

ters in Table 1. w is the weight due to the different grid area on a regular latitude longitu

grids on the sphere. I is the total grid number in model. N is the number of the chosen
variables.

4 Method

4.1 Parameters tuning with global and local optimization methods

»

Parameter tuning for a climate system model is to solve a global optimization problent-m

theory. As the well-known global optimization algorithms, traditional evolutionary algorithms,
such as genetic algorithm (Goldberg et al., 1989), differential evolutionary (DE) (Storn and
8
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Price, 1995), and particle swarm optimization (PSO) (Kennedy, 2010), can approach the
global optimal solution but generally require high computational cost. This is because these
algorithms are designed following biological evolution of survival of the fittest. In contrast,
the local algorithms utilize the greedy strategy, and thus may stick at a locally optimal so-
lution after convergence. The advantage of local algorithms is the low computational cost
due to relatively less samples required. In this sense, the local optimization algorithms are
the viable options considering their significantly reduced computational cost.

We choose the downhill simplex method for climate model tuning considering its rela-
tively low computation cost. The downhill simplex method searches the optimal solution by
changing the shape of a simplex, which represents the optimal direction and step length.
A simplex is a geometry, consisting of NV +1 vertexes and their interconnecting edges, where
N is the number of calibration parameters. One vertex stands for a pair of a set of param-
eters and their improvement index as defined in Eq. (3). The new vertex is determined by
expanding or shrinking the vertex with the highest metrics value, leading to a new simplex
(Press et al., 1992; Nelder and Mead, 1965).

Two performance criteria are used to evaluate the effectiveness and efficiency of the
optimization algorithms in this study. Selection of optimization algorithms for parameter cal-
ibration of climate system models is a balance between model improvement (effectiveness)
and computational cost (efficiency). In this study, model improvement is measured by an in-
dex defined in Eq. (3). The lower of this value is, the better model tuning is. Computational
cost is measured by “core-hours”, standing for the computational efficiency. It is computed
by (Nstep) X (Nsize)x (the number of processes of a single model run) x (hours used for
a single 5-year model run ). Ny, is the total numbers of iterations of optimization algo-
rithms for convergence. Ng;.. is the number of model runs during each iteration, and it is 1
for the downhill simplex method. In GAMIL2 case, each model run takes 6 hours using 30
processes.

According to tuning GAMIL2, two global methods, PSO and DE, give better tuning effec-
tiveness than the downhill simplex method, but their computational costs are approximately
4 and 5 times of the downhill simplex method, respectively (Table 3).
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To improve the effectiveness of the downhill simplex method, we propose two impor-
tant steps to significantly improve its performance. In the first step, the number of tuning
parameters is reduced by eliminating the insensitive parameters; In the second step, fast
convergence is achieved by pre-selecting proper initial values for the parameters before
using the downhill simplex method.

4.2 Parameter sensitivity analysis

The numbeQJncertain parameters in physical parameterizations of a climate system
model is q arge. Most optimization algorithms, such as PSO, the downhill simplex
method, and the simulated annealing algorithm (Van Laarhoven and Aarts, 1987), are inef-
fective in high dimensional problems. lterations for convergence will increase exponentially
with the number of tuning parameters. In addition, climate models generally need a long
simulation to have meaningful results. Therefore, high dimensional parameter tuning prob-
lem suffers from extremely high computational cost. It is necessary to reduce the parameter
dimension before the optimization.

Parameter sensitivity analysis can be divided into local and global methods (Gan et al.,
2014). The local method determines the sensitivity of a single parameter by perturbing one
parameter with all other parameters fixed. Consequently, it does not consider the combined
sensitivity of multiple parameters. On the other hand, the global method perturbs all the
parameters to explore the sensitivity of the whole parametric space. In this study, the Morris
(Morris, 1991; Campolongo et al., 2007), a global method, is used to screen out the sensi-
tive parameters. Another global method (Sobol, 2001), is used to validate the results of the
Morris method.

The Morris method, based on the MOAT sampling strategy, reduces the number of sam-
ples required by other global sensitivity methods (Li et al., 2013). Note that a sample is a
set of all parameters, not just one parameter. The method is described briefly here, and
more details can be found in Morris (1991). Assume we have k parameters, relative to
a random sample S1 = {x1,x2,...,xx}, another sample S5 = {x1,z2,...,x; + A,,...,xx} can
be constructed by perturbing the i;, parameter by A;, where A; is a perturbation of this
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parameter. The elementary effect of the i, parameter z; is defined as:

f(S2) — f(S1)
Y v (4)

d; =
where f stands for the improvement index as defined in Eqg. (3). A third sample S; =
{1,200, ..., 2 + A, ...,z + Aj,...,x1} can be generated by perturbing another parameter,
where jis not i. In so doing k times, we will get k+1 samples {S1, 52, ..., Sk+1}, and k elemen-
tary effects {d1,d>, ..., di} after perturbing all the parameters. The vector of {S1, 5>, ..., Sk+1}
is called a trajectory. This procedure is repeated for r iterations and finally we get r trajec-
tories. The starting point of any trajectory is selected randomly as well as the ordering of
the parameters to perturb and the A for each perturbation in one trajectory. In practice, a
number of 10 to 50 trajectories are enough to determine the feasible sensitivity of parame-
ters (Gan et al., 2014; Morris, 1991). In this study, we have a total of 7 parameters and 80
simulations are conducted.

We define D = {D;(¢)}, where t is the ¢, trajectory, and i is the i;;, elementary effect of the
parameter ;. u;, the mean of |d;|, and o;, the standard deviation of d;, are used to measure
the parameter sensitivity, defined as:

w=3" \diﬁt)\ (5)
t=1

o= A/ (di(t) = mi)?/r (6)
t=1

w; estimates the effect of z; on the model improvement index as defined in Eq. (3), while
o; assesses interactive effect of x; with other parameters. Those parameters with large p;
and o; are the sensitive parameters. The Morris method results are shown in Fig. 2.

The parameter elimination step is critical for the final result of model tuning. To vali-
date the results obtained by the Morris method, we compare the results with a benchmark
method (Sobol, 2001). Based on variance decomposition, the Sobol method requires more
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samples than the Morris method, leading to a higher computation cost. The variance of the
model output can be decomposed as Eq. (7), where n is the number of parameters, and V;
is the variance of the 7th parameter, and V;; is the variance of the interactive effect between
the ith and jth parameters, and so on. The total sensitivity effect of ith parameter can be
presented as Eq. (8), where V_; is the total variance except for the x; parameter. The Sobol
results are shown in Fig. 3. The screened out parameters are the same as those of the
Morris.

V:ZVH— Z Vij+...+ Vi .n (7)
i=1 1<i<j<n
Vi
STi =1- Vv (8)

4.3 Proper initial value selection for the downhill simplex method
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The downhill simplex method is a local optimization algorithm and its convergence perfor=
mance strongly depends on the quality of the initial values. We need to find the parameters
with the smaller metrics around the final solution. Moreover, we have to finish the searching
as fast as possible with minimal overhead. For these two objectives, a hierarchical sampling
strategy based on the single parameter perturbation (SPP) sample method is used. The
SPP is similar to local sensitivity methods, in which only one parameter is perturbed at one
time with other parameters fixed. The perturbation samples are uniformly distributed across
parametric space. First, the improvement index as defined in Eq. (3) of each parameter
sample is computed. The distance is defined as the difference between the improvement
indexes using two adjacent samples, i.e., the model response measured by certain per-
centage change of one parameter. We call this step the first level sampling. The specific
perturbation size for one parameter can be set based on user experience. In our imple-
mentation, user needs to set the number of samples. For the first level sampling, we can
use a larger perturbation size to reduce computational cost. If the distance between two
adjacent samples is greater than a predefined threshold, more SPP samples between the
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previous two adjacent samples are conducted. And this is called the second level sampling.
Finally, k+1 samples with the best improvement index value are chosen as the candidate
initial values for the optimization method. With this hierarchical sampling strategy, we can
determine the local parametric space for final solution and can accelerate the convergence
of the following downhill simplex method. This procedure is described in Algorithm 1. |t is
easy to implement and has lower overhead compared to other complex adaptive sampling
methods.

At the same time, inappropriate initial values may lead to ill-conditioned simplex geome-
try, which can be found in model tuning process. One issue we meet is that some vertexes
in the downhill simplex optimization may have the same values for one or more parame-
ters. As a result, these parameters remain invariant during the optimization and this may
degrade the quality of final solution as well as the convergence speed. A simplex check-
ing is conducted to keep as many different values of parameters as possible during the
process of looking for initial values. Well-conditioned simplex geometry will increase the
parameter freedom for optimization. In our implementation (Algorithm 1), the vertex leading
to the ill-conditioned simplex is replaced by another parameter sample which gives another
minimum improvement index value.

These methods mentioned above are summarized as the initial value pre-processing
of the downhill simplex algorithm. Sometimes, the samples used during the initial value
selection are the same as those in the parameter sensitivity analysis step. In this case, one
model run can be used in both steps to further reduce the computational cost.

4.4 Evaluation of the proposed strategy

Effectiveness and efficiency of the three traditional algorithms are compared in Table 3.
“Downhill_1_step” represents the original downhill simplex method, which is one of the
most widely-used local optimization algorithms and has been successfully used in Speedy
model (Severijns and Hazeleger, 2005). PSO and DE are the most widely-used global op-
timization algorithms and easy-to-use. Although “Downhill_1_step” achieves slightly worse
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improvement compared to the two global optimization methods (Table 3), its computation

cost is much less (only 20% and 28% of DE and PSO respectively). Q

Two extra steps are included before the original downhill simplex method to overcomets
limited effectiveness on model performance improvement. The “Downhill_2_steps” method
includes an initial value pre-processing step before the downhill simplex method. And the
“Downhill_3_steps” method further introduces another step to eliminate insensitive param-
eters for tuning by sensitivity analysis. The two steps bring in additional overhead, 80 sam-
ples for the parameter sensitivity analysis with the Morris method, and 25 samples for
the initial value pre-processing. Table 3 and 4 show that the proposed “Downhill_3_steps”
achieves the best effectiveness, improving the model’s overall performance by 9%. It over-
comes the inherent ineffectiveness of the original downhill simplex method with much lower
computational cost than global methods.

5 Analysis of model optimal results

This section compares the default simulation and the tuned simulation by three-step method
with a focus on the cloud and TOA radiation changes. Table 1 shows the values of the
four pairs of sensitive parameters between the control (labeled as CNTL) and optimized
simulation (labeled as EXP). Significant change is found for c0, which represents the auto-
conversion coefficient in the deep convection scheme, and rhminh, which represents the
threshold relative humidity for high cloud appearance. The other two parameters have neg-
ligible change of the values before and after the tuning and thus it is expected their impacts
on model performance will be accordingly small.

The overall improvement after the tuning from the control simulation can be found in
the Taylor diagram (Fig. 4), with improvement for almost all the variables, especially for
the meridional winds and mid-tropospheric (400 hPa) humidity. Improvements for other vari-
ables are relatively small. The change in terms of the RMSE factor over the globe and three
regions (tropics, SH mid- and high-latitude and NH mid- and high-latitude) are shown in
Fig. 5. First, radiative fields and moisture are improved over all the four areas. By contrast,
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wind and temperature field changes are more diverse among different areas. For example,
temperatures over the tropics become worse compared to the control run. There is an over-
allimprovement in the SH mid- and high-latitude for all variables except for the 200 hPa tem-
perature. Winds and precipitation in the NH mid- and high-latitude become slightly worse
in the tuned simulation. Such changes are kind of intriguing and we attempt to relate these
changes to the two parameters significantly tuned. Q

With reduced RH threshold for high cloud (from 0.78 in CNTL to 0.63 in EXl; le 1),
the stratiform condensation rate increases and the atmospheric humidity decreases (Zhang
et al., 2003). In addition, with increased auto-conversion coefficient in the deep convection,
less condensate is detrained to the environment. As a result, mid- and upper-troposphere
is overall drier, especially over the tropics where deep convection dominates the vertical
moisture transport (Fig. 6c). Although the mid- and upper-troposphere become drier over
the tropics, reduced RH threshold for high cloud makes clouds easier to be present. Con-
sequently, middle and high clouds increase over the globe, especially over the mid- and
high-latitudes with the largest increase up to 4-5 % (Fig. 6f). In the tropics, due to the drier
tendency induced by the reduced detrainment, high cloud increase is relatively small (2—
3 %) compared to the mid- and high-latitudes. On the contrary, low cloud below 800 hPa
decreases by 1-2 % over the mid- and high-latitudes with slightly decreased RH (Fig. 6)
because of the negligible change of RH threshold for low cloud (Table 1). Overall, the com-
bined effects of all relevant parameterizations lead to the changes of atmospheric humidity
and cloud fraction.

Changes in moisture and cloud fields impact radiative fields. With reference to ERBE,
TOA outgoing longwave radiation (OLR) is improved in the mid-latitudes for EXP, but it
is degraded over the tropics (Fig. 7a). Compared with the CNTL, middle and high cloud
significantly increase in the EXP (Fig. 6). Consequently, it enhances the blocking effect on
the longwave upward flux at TOA (FLUT), reducing the FLUT in mid-latitudes of the southern
and Northern Hemisphere (Fig. 7a). Clear sky OLR increases for the EXP and this is due
to the drier upper troposphere in the EXP (Fig. 6). The decrease in the atmospheric water
vapor reduces the greenhouse effect. Therefore, it emits more outgoing longwave radiation
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and reduces the negative bias of clear sky long wave upward flux at TOA (FLUTC, Fig. 7b).
Longwave cloud forcing (LWCF) in the middle and high latitudes is improved due to the
improvement of FLUT in these areas (Fig. 7c), but improvement in the tropics is negligible
due to the cancellation between the FLUT and FLUTC.

TOA clear sky shortwave are the same between the control and the tuned simulation
since both simulations have the same surface albedo. With increased clouds, the tuned
simulation has smaller TOA shortwave absorbed than the control. Compared with ERBE,
the tuned simulation has better TOA shortwave absorbed in the mid- and high-latitudes, but
it slightly degrades over the tropics.

6 Conclusions

An effective and efficient three-step method for GCM physical parameter tuning is pro-
posed. Compared with conventional methods, a parameter sensitivity analysis step and
a proper initial value selection step are introduced before the low cost downhill simplex
method. This effectively reduces the computational cost with an overall good performance.
In addition, an automatic parameter calibration workflow is designed and implemented to
enhance operational efficiency and support different uncertainty quantification analysis and
calibration strategies. Evaluation of the method and workflow by calibrating GAMIL2 model
indicates the three-step method outperforms the two global optimization methods (PSO
and DE) in both effectiveness and efficiency. A better trade-off between accuracy and com-
putational cost is achieved compared with the two-step method and the original downhill
simplex method. The optimal results of the three-step method demonstrate that most of the
variables are improved compared with the control simulation, especially for the radiation
related ones. The mechanism analysis is conducted to explain why these radiation related
variables have an overall improvement. In future work, more analyses are needed to better
understand the model behavior along with the physical parameter changes.
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Algorithm 1 Preprocessing the initial values of Downhill Simplex Algorithm.

//Single parameter perturbation sample(SPP)
N=number_of_parameters
sampling_sets={}
for each parameter P; of N parameters do
sampling_sets+=SPP(P;_range, number_of_samples)
/Irefine sample in the sensitivity range if needed
if metrics of the the adjacent same parameter sampling points >= sensitivity_threhold then
sampling_sets+=SPP(P;_adjacent_parameter_range, refine_ number_of_factors)
9: endif
10: end for

NG RN

12: //Initial vertexes with parameters of the NV + 1 minimum metrics
13: for each initial V; of V 4 1 vertexes do

14:  /I/get the parameters of the ith minimum metrics

15:  candidate_init_sets += min(i, sampling_sets)

16: end for

18: //make sure the initial simplex geometry is well-conditioned

19: while one parameter k have the same values in the IV + 1 sets do

20: j=1

21:  //remove the parameter set with the worst metrics from candidate_init_sets

22: remove_parameter_set(the parameter set with worse metrics, candidate_init_sets)
23:  //get the parameters of the N + 1 + jth minimum metrics

24: candidate_init_sets += min(N + 1 + j, sampling_sets)

25 j+=1

26: end while
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Table 1. A summary of parameters to be tuned in GAMIL2. The default and the final tuned opti-
mum value are also shown. The valid range of each parameter is also included. Note that only four

IodeJ UOISSNOSI(]

sensitive parameters are tuned and have optimum values.

Parameter Description Default Range Optimal

c0 rain water autoconversion coefficient 3.0 x 107* 1.x107%-5.4x 1073 5.427294 x 10~*
for deep convection

ke evaporation efficiency for deep con- 7.5x 107° 5x10~"-5x 107 -
vection

capelmt threshold value for cape for deep con- 80 20-200 -
vection

rhminl threshold RH for low clouds 0.915 0.8-0.95 0.917661

rhminh threshold RH for high clouds 0.78 0.6-0.9 0.6289215

c0_shc rain water autoconversion coefficient 5x1075 3x107°%-2x10~* -
for shallow convection

cmftau characteristic adjustment time scale 7200 900-14 400 7198.048

of shallow cape
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Table 2. Atmospheric fields included in the evaluation metrics and their sources.

Variable Observation  Variable Observation
Meridional wind at 850 hPa ECMWF Geopotential Z at 500 hPa ECMWF
Meridional wind at 200 hPa ECMWF Total precipitation rate GPCP
Zonal wind at 850 hPa ECMWF Long-wave cloud forcing ERBE
Zonal wind at 200 hPa ECMWF Short-wave cloud forcing ERBE
Temperature at 850 hPa ECMWF Long-wave upward flux at TOA ERBE
Temperature at 200 hPa ECMWF Clearsky long-wave upward flux at TOA ERBE
Specific Humidity at 850 hPa ECMWF Short-wave net flux at TOA ERBE
Specific Humidity at 400hPa  ECMWF Clearsky short-wave net flux at TOA ERBE
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Table 3. Effectiveness and efficiency comparison between the original downhill simplex method and
the two global methods. N, is the total numbers of calibrating iteration for convergence. N is
is the number of model runs during each iteration. Core-hours is computed by Ngiep X Nsize X {the
number processes of a single model run} x {hours used for a single 5-year model run }. In GAMIL2
case, each model run takes 6 h and using 30 processes.

Improvement index Ngep Nsize Core-hours

Downhill_1_step 0.9585 80 1 14400
PSO 0.9115 24 12 51840
DE 0.9421 33 12 71280
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Table 4. The same as Table 3, but showing the comparison among the three downhill simplex meth-

ods.

Improvement index Nstiep Nsize Core hours
Downhill_1_step 0.9585 80 1 14400
Downhill_2_steps 0.9257 25+ 34 1 10620
Downhill_3_steps 0.9099 80+25+50 1 27900
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Figure 1. The structure of the automatic calibration workflow. The input of the workflow is the pa-
rameters of interest and their initial value ranges. The output is the optimal parameters and its
corresponding diagnostic results after calibration. The preparation module provides the parameter
sensitivity analysis. The tuning algorithm module offers local and global optimization algorithms in-
cluding downhill simplex, genetic algorithm, particle swarm optimization, differential evolution and
simulated annealing. The scheduler module schedules as many as cases to run simultaneously
and coordinates different tasks over parallel system. The post-processing module is responsible for
metrics diagnostics, re-analysis and observational data management.
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Modified Morris Diagram for Output 1
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Figure 2. Scatter diagram showing the parameter sensitivity using the Morris sensitivity analysis.
The x axis stands for the main effect sensitivity of a single parameter. The y axis stands for the
interactive effect sensitivity among multi-parameters. In GAMIL2, c0, rhminl, rhminh, and cmftau
have high sensitivity and ke, c0_shc, and capelmt have low sensitivity.
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Figure 3. Sensitivity analysis results from the Sobel method. The total sensitivity in Eq. (8) is denoted
by the size of color area. The total sensitivities of ke, cO_shc, and capelmt are less than 0.5 in terms
of each variable.
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Figure 4. Taylor diagram of the climate mean state of each output variable from 2002 to 2004 of

EXP and CNTL.
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Figure 5. Improvement indices over the global, tropical and mid-high latitudes of northern and south-
ern hemisphere (MLN and MLS) for each variable of the EXP simulation.
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Figure 6. Pressure—latitude distributions of relative humidity and cloud fraction of EXP (a, d), CNTL
(b, ), EXP-CNTL (c, f).
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Figure 7. Meridional distributions of the annual mean difference between EXP/CNTL and observa-
tions of TOA outgoing longwave radiation (a), TOA clearsky outgoing longwave radiation (b), TOA
longwave cloud forcing (c), TOA net shortwave flux (d), TOA clearsky net shortwave flux (e), and
TOA shortwave cloud forcing (f).
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