
Dear Editor and Referees, 

We really appreciate the careful reading, detailed comments and constructive suggestions 

by the reviewers, which greatly improve the clarity of our presentation and help our 

revision.  

Responses to comments from Referee 1: 

 

1. Page 3798, line 17, “quit” should be “quite”.  

Reply: Corrected 

2. Page 3801, the sentence in line 16 is a repeat of the 1st sentence on the same page. It 

should be removed. 

Reply: Corrected 

3. Page 3802, line 25: This long sentence is not clear. It should be rewritten. 

Reply: We are sorry about that. This section has been reorganized for better 

clarification. The corresponding sentence is changed to “Two extra steps are included 

before the original downhill simplex method to overcome its limited effectiveness on 

model performance improvement. The “Downhill_2_steps” method includes an 

initial value pre-processing step before the downhill simplex method. And the 

“Downhill_3_steps” method further introduces another step to eliminate insensitive 

parameters for tuning by sensitivity analysis.”  

4. Line 3804, 2nd paragraph: The physical explanations should be improved. If the 

model used the stratiform fractional cloud condensation scheme of CAM3 or CAM4 

(Zhang, et al. 2003), reducing the “rhminh” threshold will not only increase the 

cloud amount, but also increase the stratiform condensation rate and decrease the 

atmospheric humidity. Likewise, increasing the “rhminl” will do the opposite. This is 

why you see clear opposite changes of RH and CLOUD in the lower troposphere and 

upper troposphere in Figure 6. 



Reply: We thank the reviewer for pointing out this important linkage and the 

illuminating explanation for Fig. 6. Yes, the stratiform fractional cloud condensation 

scheme of CAM4 (Zhang, et al.2003) was used in GAMIL2. Accordingly, we have 

included the following to the model description section on page 7, line 5. At the same 

time, we rewrite the 1st paragraph on page 15 of the revised manuscript. 

“Compared to the previous version, GAMIL2 has modifications in cloud-related 

processes (Li et al. 2013), such as the deep convection parameterization (Zhang and 

Mu, 2005), the convective cloud fraction (Xu and Krueger, 1991), the cloud 

microphysics (Morrison and Gettelman, 2008), and the stratiform fractional cloud 

condensation scheme (Zhang et al. 2003).” 

“With reduced RH threshold for high cloud (from 0.78 in CNTL to 0.63 in EXP, 

Table 1), the stratiform condensation rate increases and the atmospheric humidity 

decreases (Zhang et al. 2003). In addition, with increased auto-conversion coefficient 

in the deep convection, less condensate is detrained to the environment. As a result, 

mid- and upper-troposphere is overall drier, especially over the tropics where deep 

convection dominates the vertical moisture transport (Fig. 6c). Although the mid- and 

upper-troposphere become drier over the tropics, reduced RH threshold for high 

cloud makes clouds easier to be present. Consequently, middle and high clouds 

increase over the globe, especially over the mid- and high-latitudes with the largest 

increase up to 4–5 % (Fig. 6f). In the tropics, due to the drier tendency induced by 

the reduced detrainment, high cloud increase is relatively small (2–3%) compared to 

the mid- and high-latitudes. On the contrary, low cloud below 800 hPa decreases by 

1–2% over the mid- and high-latitudes with slightly decreased RH (Fig.6) because of 

the negligible change of RH threshold for low cloud (Table 1). Overall, the combined 

effects of all relevant parameterizations lead to the changes of atmospheric humidity 

and cloud fraction.” 

 

 

 



Responses to comments from Referee 2: 

 

General comments: This study proposed a “three-step” parameter optimization 

procedure which can help tuning important parameters in general climate models with 

reduced computation load. This “three-step” procedure is an extension of downhill 

simplex method with a parameter sensitivity process to eliminate insensitive parameters 

and an initial value selection process to help improving optimization converging quality. 

Results show that by finding an optimal set of parameter values, the method is able to 

improve the climate simulation compared with default parameter values. At the same 

time, the computation time required is reduced compared with traditional methods. 

However, there are great deficiencies in illustrating the methodology. Both the core 

procedure downhill simplex method and the extended parameter sensitivity process and 

initial value process are not clearly presented, making it very difficult for readers to 

follow and learn. Also, there is not enough meaningful comparisons between the results 

of new method and those of traditional methods for readers to judge whether it is a 

progressive method. A future version of this manuscript may potentially be acceptable. 

But that apparently requires a lot more work. 

 

Reply: We agree with the reviewer that the description of the method is not clear. We 

have substantially revised this part for better clarification and presentation. More details 

can be found in the revised manuscript and the point to point responses to the reviewer. 

First of all, the use of “local vs global” in several places has induced confusions. There 

are two groups of usage of “local vs global” in the manuscript. The first one refers to the 

parameter sensitivity, in which “local” means the model’s sensitivity to a single 

parameter and “global” means the model’s sensitivity to all the parameters in 

consideration. The second one refers to the optimization methods, in which “local” 

means the method searching for a local optimum solution and “global” means the 

method aiming for the global optimum solution. We have thought to change the first use 

of “local vs global” to some other nomenclatures, such as “single parameter sensitivity or 

combined parameter sensitivity” for better clarification. However, it is a common 

practice to use “local vs global” in statistics and sensitivity analysis and so we keep them 



in the manuscript. Nevertheless, we have paid special attention to the presentation for the 

clarification in the revised manuscript.  

Second, some confusion comes from the usage of special words from mathematics and 

computer science. These words include “trajectory”, “distance”, “simplex”, “dimension”, 

among others. We have tried our best to give a brief explanation or description of these 

words in the text. It is hoped that it will help readers for better understanding. 

Regarding the comparison of the new method and traditional methods, we have not 

illustrated the progress clearly, especially about the explanation of Table 3 and 4. 

Two performance criteria are used to evaluate the effectiveness and efficiency of the 

optimization algorithms in this study. Selection of optimization algorithms for parameter 

calibration of climate system models is a balance between model improvement 

(effectiveness) and computational cost (efficiency). In this study, model improvement is 

measured by an index defined in Eq. (3). The lower of this value is, the better model 

tuning is. Computational cost is measured by "core-hours", standing for the 

computational efficiency. It is computed by (Nstep) * (Nsize) * (the number of process of a 

single model run) * (hours used for a single 5-year model run). Nstep is the total numbers 

of iterations of optimization algorithms for convergence. Nsize is the number of model 

runs during each iteration, and it is 1 for the downhill simplex method.  

Effectiveness and efficiency of the three traditional algorithms are compared in Table 3. 

“Downhill_1_step” represents the original downhill simplex method, which is one of the 

most widely-used local optimization algorithms and has been successfully used in 

Speedy model (Severijns and Hazeleger, 2005). PSO and DE are the most widely-used 

global optimization algorithms and easy-to-use. Although “Downhill_1_step” achieves 

slightly worse improvement compared to the two global optimization methods (Table 3), 

its computation cost is much less (only 20% and 28% of DE and PSO respectively). The 

most important contribution of the study is adding two extra steps to the original 

downhill simplex method. We are able to achieve better improvement with less 

computational cost than the two global methods (Table 4). The “Downhill_2_steps” 

method includes the initial value pre-processing before the downhill simplex method. 



And the “Downhill_3_steps” method further introduces an extra step to determine 

parameters for tuning by sensitivity analysis. Table 3 and 4 show that the proposed 

“Downhill_3_steps” is able to overcome the inherent ineffectiveness of the original 

downhill simplex method with much lower computational cost than global methods. We 

have clarified and emphasized this in the revised manuscript.   

In addition, a comparison of the CNTL and EXP is used to illustrate how the tuning of 

these parameters improves the model results in terms of various atmospheric fields. This 

helps the readers for a better understanding of the physical reasons behind the automatic 

tuning process. 

Once again, we thank the reviewer for his/her effort and time to help us improve the 

manuscript. A lot of works have been done to develop the methodology and we hope it 

would be a useful tool for the model development community. 

Point to point responses: 

1. Page 3792, Line 9: “parameter sensitivity” should be more specified, such as the 

model’s sensitivity to the parameters. “optimum initial value” should be specified for 

the parameter estimation process.  

Reply: This sentence has been rewritten as “Different from the traditional 

optimization methods, two extra steps, one determining the model’s sensitivity to the 

parameters and the other choosing the optimum initial value for those sensitive 

parameters, are introduced before the downhill simplex method. This new method 

reduces the number of parameters to be tuned and accelerates the convergence of the 

downhill simplex method. ”  

2. Page 3792, (3794?) Line 10: What does the “step” refer to? Parameter optimization 

cycles? Model integration steps? Or method cycles?    

Reply: The “step” here refers to the optimization cycles involved within the 

optimization algorithm.  

3. Page 3794, Line 3: “high” should be “high-dimensional”.  



Reply: Corrected.  

4. Page 3794, Line 19-20: ENKF and PF have the difficulty in looking for the 

representative samples: This problem needs to be explained more clearly and needs 

to be extended a little, and references should be introduced.  

Reply: The sentence “ENKF and PF have the difficulty in looking for the 

representative samples” has been rewritten as “The EnKF and PF use an ensemble of 

model simulations to estimate the background error covariance, which approximate 

the traditional Kalman filter with a recurrence process (Evensen 2003, Arulampalam 

2002). The accuracy of the error covariance relies on samples. In general, the larger 

the ensemble size, the more accurate the estimates are. The limitation of ensemble 

size for practice use and imperfect models make it difficult to select representative 

samples (Poterjoy 2014). ” 

References: 

Evensen G. The ensemble Kalman filter: Theoretical formulation and practical 

implementation. Ocean dynamics, 2003, 53(4): 343-367.  

Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online 

nonlinear/non-Gaussian Bayesian tracking. Signal Processing, IEEE Transactions on, 

2002, 50(2): 174-188. 

Poterjoy J, Zhang F, Weng Y. The effects of sampling errors on the EnKF 

assimilation of inner-core hurricane observations. Monthly Weather Review, 2014, 

142(4): 1609-1630. 

5. Page 3794, Line 25-26: “The above mentioned methods generally require long 

iterations for convergence.” This is not necessary. It also depends on observation 

amounts and estimation frequencies.  

Reply: This sentence has been deleted since it does not fit in the paragraph.   



6. Page 3795, Line 8-10: “Finally, the downhill simplex algorithm is used to solve the 

optimization problem because of its low computational cost and fast convergence for 

low dimension space.” This dimension space corresponds to parameter space? Also, 

you have said that the parameter space in climate models are usually 

high-dimensional. Does it mean that this method is not suitable for climate model 

tuning?  

Reply: Yes, here dimensional space means parametric space. The default downhill 

simplex is not good at high-dimensional parametric space. This is why we propose a 

“three-step” method to reduce the number of parameters (i.e., dimension of space) by 

sensitivity analysis. The results of Table 4 show that the “three-step” method is able 

to achieve the best tuning results compared to other tuning algorithms with relatively 

low computational cost.   

7. Page 3795, Line 12. “This is result already.” What does it mean here?   

Reply: This is a typo. We have deleted this sentence.  

8. Page 3797, Line 13-14: “Previous studies have shown 5 years of this type of 

simulation is enough to capture some basic model characteristics.” What are these 

basic model characteristics? Should be extended and necessary references should be 

included. 

Reply: This sentence is rewritten as “Previous studies have shown 5 years of this 

type of simulation is enough to capture the basic characteristics of simulated mean 

climate states (Golaz et al. 2011, Lin et al. 2013)”.  

References:  

Golaz J C, Salzmann M, Donner L J, et al. Sensitivity of the aerosol indirect effect to 

subgrid variability in the cloud parameterization of the GFDL atmosphere general 

circulation model AM3[J]. Journal of Climate, 2011, 24(13): 3145-3160. 



Lin Y, Zhao M, Ming Y, et al. Precipitation partitioning, tropical clouds, and 

intraseasonal variability in GFDL AM2[J]. Journal of Climate, 2013, 26(15): 

5453-5466. 

9. Page 3797, Line 17: “reference metrics”. what is this metric like? It is a metric 

containing those climate variables? How is it formed?  

Reply: Thanks for pointing out the confusing presentation. The model performance 

during parameter tuning process depends on the metrics used for the evaluation. In 

this study, a basic metrics including the mean states of wind, humidity, geopotential 

height field, and various radiative fields, is used for illustration. Note that the metrics 

can be easily expanded. Page 3797, Line 17: “reference metrics” and Page 3797, Line 

24: “evaluation metrics” are the same. And we changed the evaluation metrics to 

reference metrics in line 24. Accordingly, “A comprehensive metrics,…” in line 26 is 

changed to “the reference metrics, ”. The metrics is described at Page 8, Eq. (1) ~ (3). 

It is an improvement index to evaluate the tuning results, which weight each variable 

equally and compute the average normalized RMSE. The index indicates an overall 

improvement of the performance of the tuned simulation relative to the control 

simulation according to a number of model outputs (Table 2). If the index is less than 

1, it means the tuned simulation gets better performance than the control run. The 

smaller this value, the better improvement is. 

10. Page 3797, Line 24: “evaluation metrics”. What is the difference between the 

reference metric and evaluation metric? What is this evaluation metric like again? 

Reply: Please see the 9th reply. 

11. Page 3797, Line 26: “metrics”. So this metric is the evaluation metric? 

Reply: Please see the 9th reply.  

12. Page 3798, Line 2: “control simulation”. What is this control simulation here?  

With default parameter values? Please specify.  



Reply: Yes, the control simulation refers to the simulation using default parameter 

values. The sentence is changed to “we normalize the RMSE of each simulation 

output by that of the control simulation using default parameter values.” 

13. Page 3798, Line 10: “w is the weight due to the different grid area”. What is w like? 

Is it the same weight? 

Reply: This is because the model output is on regular latitude longitude grids, which 

have varying grid areas. The grid weight (w) is computed as cos(the latitude of each 

grid) to consider the area change of different grid cells. The sentence is changed to “w 

is the weight due to the different grid area on regular latitude longitude grids on the 

sphere.” 

14. Page 3798, Line 13: “Global and local optimization method.” This section is 

supposed to tell the methodology of global and local optimization method. But the 

authors only listed typical examples and names of each kind without explaining the 

methodology. The whole section is rather too simplified that it is difficult to 

understand. 

Reply: A nice point. The title of section 4.1 is changed to “Parameters tuning with 

global and local optimization methods”. We revise the first paragraph and summarize 

the main differences between the global and local optimization methods. The first 

paragraph has been rewritten as: 

“Parameter tuning for a climate system model is to solve a global optimization 

problem in theory. As the well-known global optimization algorithms, traditional 

evolutionary algorithms, such as genetic algorithm (Goldberg et al., 1989), differential 

evolutionary (DE) (Storn and Price, 1995), and particle swarm optimization (PSO) 

(Kennedy, 2010), can approach the global optimal solution but generally require high 

computational cost. This is because these algorithms are designed following 

biological evolution of survival of the fittest. In contrast, the local algorithms utilize 

the greedy strategy, and thus may stick at a locally optimal solution after convergence. 

The advantage of local algorithms is the low computational cost due to relatively less 



samples required. In this sense, the local optimization algorithms are the viable 

options considering their significantly reduced computational cost.” 

15. Page 3799, Line 14: “local downhill simplex method”. So the local downhill simplex 

method gives an optimal parameter value sets locally? Say, each region has an 

optimal set? And these parameter sets are assigned into next model integration cycle 

locally? Could you add some explanation about the specific methodology of downhill 

simplex method? And what is the difference between a local optimization and global 

optimization? If local, then local to where? spatially or in other space? If this "local" 

refers to spatial local concept, then why in Table 3 the optimization is one value set? 

Is it because it is local optimization to some specific region? Also without a clear 

explanation of the methodology of "local" and "global" method, there is no way for 

readers to understand the results and why global optimization gives better tuning 

results. And how do you judge "better" results. There is no direct comparison with a 

certain reference criterion here. 

Reply: Thanks for pointing out the confusion. “local” and “global” here does not refer 

to the spatial locations of the GCM, but the local or global optimum solution 

algorithms can approach as emphasized in the summary section of this response. We 

add the following sentences for a better clarification of “local vs. global”. The “local” 

and “global” refer to that the optimization algorithms can achieve the “local” or 

“global” convergence performance. For example in the following figure, the 

horizontal coordinate stands for the two-dimension parametric space, and the vertical 

coordinate presents the metrics. If the optimal target is the maximum metrics, there 

are many local optimal solutions and one global optimal solution.  

The downhill simplex is a local method and can be trapped within a local solution 

space. Instead, the global methods, such as genetic algorithm, DE and PSO, are able 

to find the global optimal solution. However, the local method is faster and requires 

much less model runs than the global method. In this study, we try to overcome the 

problems of local method (the downhill simplex) by introducing two extra steps: 

parameter sensitivity analysis and initial values selection. With relatively low 



computational cost, this new method can reduce the number of parameters to be tuned, 

determine the local parametric space for final solution, and accelerate the convergence 

of the downhill simplex method. 

  

 

 

 

 

 

The revised version adds the following text to explain the estimation criteria in the 

third paragraph of section 4.1 before the sentence “According to tuning GAMIL2…”: 

“Two performance criteria are used to evaluate the effectiveness and efficiency of the 

optimization algorithms in this study. Selection of optimization algorithms for 

parameter calibration of climate system models is a balance between model 

improvement (effectiveness) and computational cost (efficiency). In this study, model 

improvement is measured by an index defined in Eq. (3). The lower of this value is, 

the better model tuning is. Computational cost is measured by "core-hours", standing 

for the computational efficiency. It is computed by (Nstep) * (Nsize) * (the number of 

processes of a single model run) * (hours used for a single 5-year model run). Nstep is 

the total numbers of iterations of optimization algorithms for convergence. Nsize is the 

number of model runs during each iteration, and it is 1 for the downhill simplex 

method. In GAMIL2 case, each model run takes 6 hours using 30 processes. ”  

16. Page 3800, Line 6: “The Morris method”. At least a simple explanation about this 

"global" method should be provided. So it is a method of perturbing all parameters? 

After reading this paragraph, I still didn’t get how the sensitivity experiment is 

carried out. 

Local&optimal&
solution&

Local&optimal&
solution&

&

Global&optimal&
solution&

&



Reply: Thanks for the nice point. The second and third paragraphs in Section 4.2 has 

been rewritten as: 

“Parameter sensitivity analysis can be divided into local and global methods (Gan et 

al., 2014).  The local method determines the sensitivity of a single parameter by 

perturbing one parameter with all other parameters fixed. Consequently, it does not 

consider the combined sensitivity of multiple parameters. On the other hand, the 

global method perturbs all the parameters to explore the sensitivity of the whole 

parametric space. In this study, the Morris (Morris, 1991; Campolongo et al., 2007), a 

global method, is used to screen out the sensitive parameters. Another global method 

(Sobol 2001), is used to validate the results of the Morris method. 

The Morris method, based on the MOAT sampling strategy, reduces the number of 

samples required by other global sensitivity methods (Li et al., 2013). Note that a 

sample is a set of all parameters, not just one parameter. The method is described 

briefly here, and more details can be found in Morris (1991). Assume we have k 

parameters relative to a random sample S1 = { x1, x2, …, xk }, another sample S2 = 

{ x1, x2, …, xi + ∆!, …, xk } can be constructed by perturbing the ith parameter by ∆!, 
where ∆!  is a perturbation of this parameter. The elementary effect of the ith 

parameter xi is defined as: 

!! =
! !S! − ! S!

∆!
!!!!!!!!(4) 

where f stands for the improvement index as defined in Eq. (3). A third sample S3 = 

{ x1, x2, …, xi + ∆! , …, xj + ∆! , xk } can be generated by perturbing another 

parameter. In so doing k times, we will get k+1 samples {S1, S2,…, Sk+1}, and k 

elementary effects {d1, d2,…, dk} after perturbing all the parameters. The vector of 

{S1, S2,…, Sk+1} is called a trajectory. This procedure is repeated for r iterations and 

finally we get r trajectories. The starting point of any trajectory is selected randomly 

as well as the ordering of the parameters to perturb and the ∆ for each perturbation in 

one trajectory. In practice, a number of 10 to 50 trajectories are enough to determine 



the feasible sensitivity of parameters (Gan et al., 2014; Morris, 1991). In this study, 

we have a total of 7 parameters and 80 simulations are conducted. 

We define D = {di(t)}, where t is the tth trajectory, and i is the ith elementary effect of 

the parameter xi. !!, the mean of |!! |, and !!, the standard deviation of !!, are used 

to measure the parameter sensitivity, defined as: 

!! =
|!! ! |
!

!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!! 5  

σ! = (!! ! − !!)!/!!
!

!!!
!!!(6) 

!!  estimates the effect of xi on the model improvement, while σ! !assesses the 

interactive effect of xi with other parameters. Those parameters with large !! and σ! 
are the sensitive parameters. The Morris method results are shown in Fig. 2.”  

17. Page 3800, Line 11-12: “n is the number of calibration parameters”. Is n different 

from N? If so, a consistent denotation should be used. What does it mean by 

trajectories? Sample simulations? 

Reply: This is a typo. “n” is the “N”. Also, we can find the description of trajectory in 

the 16th reply. 

18. Page 3800, Line 14: “step size”. What do you mean by step size here? Number of 

integration steps? 

Reply: This is a typo. It is “perturbation”. For more details, please see the 16th reply.  

19. Page 3800, Line 15: “The starting point of a trajectory is selected randomly”. What 

do you mean by trajectory? How do you provide initial condition? How is the 

parameter initial values chosen? Randomly? If the parameter initial values are 

chosen randomly, it is not convincing that the randomly given values would give 

accurate estimation of parameter sensitivity. And for sure it would take a very long 



time for parameter optimization to converge. And it is highly likely that the parameter 

would converge to a total wrong value. 

Reply: Please see the 16th reply for the description about the trajectory. As in the 16th 

reply, the ith elementary effect of the parameter xi only perturbs the xi with other 

parameters fixed in a trajectory. If the starting point of any trajectory is selected 

randomly, it can ensure that all parameters can be perturbed in different trajectories. 

Therefore, we get the global sensitive results with the Morris method.  

The sensitivity analysis is used to determine the sensitive parameters. After this step, 

we begin to tune the parameters by optimization algorithms. The wrong results of 

parameter screening may lead to low quality solution in the optimization step. 

20. Page 3800, Line 22: what is y? How to choose the integration time? Because after 

changing a parameter, the model would shortly respond in a linear manner and later 

exhibit nonlinear response? How to choose the integration time to compare y? 

Besides, how do you choose the parameter step size? Based on what?  

Reply: In this paper, y is the improvement index as defined in Eq. (3). The 

atmosphere simulations are conducted for 5 years. We describe it in Page 8. Previous 

studies have shown 5 years of simulation is enough to capture the response of climate 

mean states. The “parameter step size” means the parameter perturbation, which is an 

integer multiple of the discrete perturbation scale mentioned in the 16th reply. Please 

see the revised text for more details.    

21. Page 3800, Line 25: I didn’t see any sensitivity results in Fig.1. It should be Fig. 2. 

Reply: Corrected. It is changed to Fig.2. 

22. Page 3800, Line 25-27. The model’s sensitivity to the parameters is somehow 

dependent on the perturbation magnitude. In terms of response time, model can be 

very sensitive to some parameters that the quickly displayed spread. However, to 

some parameters, the model’s response is rather slow. In terms of sensitivity 

magnitude, the model could respond to the parameter, however, the magnitude of the 



spread could be small. In your study, it seems that only the magnitude is included as a 

criterion of sensitivity. And the parameter perturbation, step size, is not well 

explained here. 

Reply: Thanks for pointing out this. If we understand correctly, the reviewer suggests 

we should take both the model response magnitude and the response time into account 

here. It depends on the design of metrics. As an example, in this study we use the 

mean states of different model outputs as the metrics, an improvement index to 

evaluate the tuning performance, and the parameters with larger response in 5-year 

simulations will be chosen for during tuning. If we want to take the response time into 

account, we need to design a new metrics first.  

Moreover, since all the parameters tested in this study are related to cloud and 

convection, which are generally called the fast physics and their impacts on model 

climate states will manifest quickly. In addition, atmospheric-only simulations do not 

involve ocean and other slow components of the climate system. A few years of such 

types of simulation are long enough to capture the overall climate states as measured 

by the defined metrics.  

The detail explanations for “parameter perturbation” and “step size” can be found in 

the 16th reply.  

23. Page 3801, Line 1-10: This paragraph seems to be an old version of the next 

paragraph. 

Reply: Corrected. 

24. Page 3801, Line 24-25: Why is that? As I understand from your previous description, 

"local" here means the model’s response to one single parameter. And this does not 

necessarily lead to a dependence on the initial value. 

Reply: “local” here refers to the local optimization algorithm, not the model’s 

response to one single parameter. For a local optimization algorithm, it only searches 

for a local optimal solution and its convergence strongly depends on the initial value 



of the parameter. Actually, some bad initial values of parameters may lead to 

non-convergence for the local method. We have clarified this in the revision version. 

25. Page 3802, Line 4: what do you mean by a longer distance? What is the distance? 

Compared to what it is longer?  

Reply: We are sorry about the confusion here. The first and second paragraphs have 

been rewritten as: 

“The downhill simplex method is a local optimization algorithm and its convergence 

performance strongly depends on the quality of the initial values. We need to find the 

parameters with the smaller metrics around the final solution. Moreover, we have to 

finish the searching as fast as possible with minimal overhead. For these two 

objectives, a hierarchical sampling strategy based on the single parameter perturbation 

(SPP) sample method is used. The SPP is similar to local sensitivity methods, in 

which only one parameter is perturbed at one time with other parameters fixed. The 

perturbation samples are uniformly distributed across parametric space. First, the 

improvement index as defined in Eq. (3) of each parameter sample is computed. The 

distance is defined as the difference between the improvement indexes using two 

adjacent samples, i.e., the model response measured by certain percentage change of 

one parameter. We call this step the first level sampling. The specific perturbation size 

for one parameter can be set based on user experience. In our implementation, user 

needs to set the number of samples. For the first level sampling, we can use a larger 

perturbation size to reduce computational cost. If the distance between two adjacent 

samples is greater than a predefined threshold, more SPP samples between the 

previous two adjacent samples are conducted. And this is called the second level 

sampling. Finally, k+1 samples with the best improvement index value are chosen as 

the candidate initial values for the optimization method. With this hierarchical 

sampling strategy, we can determine the local parametric space for final solution and 

can accelerate the convergence of the following downhill simplex method. This 

procedure is described in Algorithm 1. It is easy to implement and has lower overhead 

compared to other complex adaptive sampling methods.  



 

At the same time, inappropriate initial values may lead to ill-conditioned simplex 

geometry, which can be found in model tuning process. One issue we meet is that 

some vertexes in the downhill simplex optimization may have the same values for one 

or more parameters. As a result, these parameters remain invariant during the 

optimization and this may degrade the quality of final solution as well as the 

convergence speed. A simplex checking is conducted to keep as many different values 

of parameters as possible during the process of looking for initial values. 

Well-conditioned simplex geometry will increase the parameter freedom for 

optimization. In our implementation (Algorithm 1), the vertex leading to the 

ill-conditioned simplex is replaced by another parameter sample which gives another 

minimum improvement index value.” 

26. Page 3802, Line 5-6: “a smaller distance”. I don’t understand the distance here? Is 

it represented by any denotations in the Equations listed before? 



Reply: Please see the 25th reply. 

27. Page 3802, section 4.3: After reading the whole section, I still cannot get how to get 

the inital value.  

Reply: Please see the 25th reply. 

28. Page 3802, Line 22-23: “In Table 3, PSO gets the best solution.” How do you get 

this conclusion? Can you provide any reference parameter value or error information 

so that we can tell which estimation is the best?  

Reply: We are sorry about the confusion here. The conclusion comes from the revised 

third paragraph of section 4.1.  

“Two performance criteria are used to evaluate the effectiveness and efficiency of the 

optimization algorithms in this study. Selection of optimization algorithms for 

parameter calibration of climate system models is a balance between model 

improvement (effectiveness) and computational cost (efficiency). In this study, model 

improvement is measured by an index defined in Eq. (3). The lower of this value is, 

the better model tuning is. Computational cost is measured by "core-hours", standing 

for the computational efficiency. It is computed by (Nstep) * (Nsize) * (the number of 

processes of a single model run) * (hours used for a single 5-year model run). Nstep is 

the total numbers of iterations of optimization algorithms for convergence. Nsize is the 

number of model runs during each iteration, and it is 1 for the downhill simplex 

method. In GAMIL2 case, each model run takes 6 hours using 30 processes. ” 

PSO has the lowest “final optimal model metrics”, meaning that it gets the best 

effective solution compared with other traditional methods in Table 3. This sentence 

is changed to “In Table 3, PSO gets the best effective solution.” 

29. Page 3803, Line 2-3: I still didn’t get how you judge whether this estimation is good 

or bad.     

Reply: As in the 15th and 28th responses, the “final optimal model metrics” is used to 

estimate the model improvement (effectiveness), and the “core-hours” for 



computational cost (efficiency). Selection of optimization algorithms for parameter 

calibration of climate system models is a balance between effectiveness and 

computational cost efficiency. Effectiveness and efficiency of the three traditional 

algorithms are compared in Table 3. “Downhill_1_step” represents the original 

downhill simplex method, which is one of the most widely-used local optimization 

algorithms and has been successfully used in Speedy model (Severijns and Hazeleger, 

2005). PSO and DE are the most widely-used global optimization algorithms and 

easy-to-use. Although “Downhill_1_step” achieves slightly worse improvement 

compared to the two global optimization methods (Table 3), its computation cost is 

much less (only 20% and 28% of DE and PSO respectively). The most important 

contribution of the study is that by adding two extra steps to the original downhill 

simplex method, we are able to achieve better improvement with less computational 

cost than the two global methods (Table 4). The “Downhill_2_steps” method includes 

the initial value pre-processing before the downhill simplex method. And the 

“Downhill_3_steps” method further introduces an extra step to determine parameters 

for tuning by sensitivity analysis. Table 3 and 4 show that the proposed 

“Downhill_3_steps” is able to overcome the inherent ineffectiveness of the original 

downhill simplex method with much lower computational cost than global methods. 

Therefore, our proposed method has a good trade-off between accuracy and 

computational cost.   

30. Page 3803, Line 21: “The change in terms of the RMSE factor”. So how to calculate 

this change in RMSE? What RMSE quantity is shown in FIg.5?  

Reply: The RMSE is the metrics described at Page 8, Eq. (1) ~ (3) in the revised 

manuscript. 

 

 

 



!!!  is the model outputs, and !!! is the corresponding observation or reanalysis data. 

!!! is the model outputs from the control simulation using the default values for the 

parameters in Table 1. w is the weight due to the different grid area on a regular 

latitude longitude grids on the sphere. I is the total grid number in model. NF is the 

number of the chosen variables.  

Eq. (3) thus defines an improvement index. If the index is less than 1, it means the 

tuned simulation gets better performance than the control run based on the reference 

metrics (Table 2). The smaller this value, the better improvement is.   

31. Page 3803, Line 26-27: Maybe, but temperature obs is also included as a criterion 

in parameter optimization. It is possible that the compromising result will degrade the 

simulation of temperature, but it is still not very convincing...Have you checked the 

temperature’s and other varibales’ sensitivity to the parameters? If the sensitivity of 

temperature is much smaller than those of others, it may help support your 

arguement... 

Reply: We deleted this sentence since winds and temperatures are also closely 

influenced by these parameters. Because the improvement is evaluated by the metrics 

consisted of all 16 variables, it is possible that some variables become worse in EXP 

than in CNTL.  

32. Page 3805, Line 14-15: There is no standard criterion for the readers to judge 

whether the estimation is good or bad. 

Reply: Please see the 29th reply. &

33. Page 3805, Line 21-23: References should be included here. However, the 

surrogate-based optimization method seems to have no relation with this study at all, 

thus inappropriate to be formed as a comparison.  

Reply: Yes. The surrogate-based optimization method is not addressed in this study 

and is still under investigated by the authors as well as other scientists. Moreover, the 



proposed method in this paper can also work well together with surrogate models for 

climate system models. We just delete this paragraph in the revised manuscript. 

34. Page 3805, Line 25-27: Since you have said that the surrogate-based method cannot 

meet the requirement of climate systems, simply stating that future work focus on 

evaluate surrogate models seems not very relevant with this study, nor as an extension 

of this study. More justification is needed.  

Reply: Please see the 33th reply. 

35. Figures: To justify that the three-step method is more effective and more efficient, 

more comparisons between this new method and the traditional method should be 

provided. Only comparing between EXP and CNTL is not enough.  

Reply: The effectiveness and efficiency of the three-step method and the comparison 

with other methods are illustrated in Table 3 and 4. As in the 15th and 28th responses, 

the “final optimal model metrics” is used to estimate the model improvement 

(effectiveness), and the “core-hours” for computational cost (efficiency). Selection of 

optimization algorithms for parameter calibration of climate system models is a 

balance between effectiveness and computational cost efficiency. Effectiveness and 

efficiency of the three traditional algorithms are compared in Table 3. 

“Downhill_1_step” represents the original downhill simplex method, which is one of 

the most widely-used local optimization algorithms and has been successfully used in 

Speedy model (Severijns and Hazeleger, 2005). PSO and DE are the most 

widely-used global optimization algorithms and easy-to-use. Although 

“Downhill_1_step” achieves slightly worse improvement compared to the two global 

optimization methods (Table 3), its computation cost is much less (only 20% and 28% 

of DE and PSO respectively). The most important contribution of the study is that by 

adding two extra steps to the original downhill simplex method, we are able to 

achieve better improvement with less computational cost than the two global methods 

(Table 4). The “Downhill_2_steps” method includes the initial value pre-processing 

before the downhill simplex method. And the “Downhill_3_steps” method further 

introduces an extra step to determine parameters for tuning by sensitivity analysis. 



Table 3 and 4 show that the proposed “Downhill_3_steps” is able to overcome the 

inherent ineffectiveness of the original downhill simplex method with much lower 

computational cost than global methods. Therefore, our proposed method has a good 

trade-off between accuracy and computational cost. 

In addition, a comparison of the CNTL and EXP is used to illustrate how the tuning of 

these parameters improves the model results in terms of various atmospheric fields. 

This helps the readers for a better understanding of the physical reasons behind the 

automatic tuning process. 
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Abstract

Physical parameterizations in General Circulation Models (GCMs), having various uncertain
parameters, greatly impact model performance and model climate sensitivity. Traditional
manual and empirical tuning of these parameters is time consuming and ineffective. In this
study, a “three-step” methodology is proposed to automatically and effectively obtain the
optimum combination of some key parameters in cloud and convective parameterizations
according to a comprehensive objective evaluation metrics. Different from the traditional
optimization methods, two extra steps, one determining the model’s sensitivity to the pa-
rameters and the other choosing the optimum initial value for those sensitive parameters,
are introduced before the downhill simplex method. This new method reduces the number
of parameters to be tuned and accelerates the convergence of the downhill simplex method.
Atmospheric GCM simulation results show that the optimum combination of these param-
eters determined using this method is able to improve the model’s overall performance by
9 %. The proposed methodology and software framework can be easily applied to other
GCMs to speed up the model development process, especially regarding unavoidable com-
prehensive parameters tuning during the model development stage.

1 Introduction

Due to their current relatively low model resolutions, General Circulation Models (GCMs)
need to parameterize various sub-grid scale processes. Physical parameterizations aim to
approximate the overall statistical outcomes of various sub-grid scale physics (Williams,
2005). However, due to the complexities involved in these processes, parameterizations
representing sub-grid scale physical processes unavoidably involve some empirical or sta-
tistical parameters (Hack et al., 1994), especially within cloud and convective parameteriza-
tions. Consequently, these parameterizations introduce uncertainties to climate simulations
using GCMs (Warren and Schneider, 1979). In general, these uncertain parameters need
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to be calibrated or constrained when new parameterization schemes are developed and
integrated into models (Li et al., 2013).

Traditionally, the uncertain parameters are manually tuned by comprehensive compar-
isons of model simulations with available observations. Such an approach is subjective,
labor intensive, and hard to be extended (Hakkarainen et al., 2012; Allen et al., 2000). By
contrast, the automatic parameter calibration techniques have progressed quickly because
of their efficiency, effectiveness and broader applications (Bardenet et al., 2013; Elkinton
et al., 2008; Jakumeit et al., 2005; Chen et al., 1999). In previous studies applying to GCMs,
the methods can be categorized into three major types based on probability distribution
function (PDF) method, optimization algorithms, and data assimilation techniques.

For the PDF method, the confidence ranges of the optimization parameters are evaluated
based on likelihood and Bayesian estimation. Cameron et al. (1999) improves the forecast
by the generalized likelihood uncertainty estimation (Beven and Binley, 1992), a method
obtaining parameter uncertain ranges of a specific confidence level. The Bayesian Markov
Chain Monte Carlo (MCMC) (Gilks, 1995) is widely used to obtain posterior probability dis-
tributions from prior knowledge. A couple of specific algorithms based on the MCMC theory
are used to calibrate models in the previous literatures, such as Metropolis–Hasting (Sun
et al., 2013), adaptive Metropolis algorithm (Hararuk et al., 2014), and multiple very fast sim-
ulated annealing (MVFSA) (Jackson et al., 2008). The MVFSA method is one to two orders
of magnitude faster than the Metropolis–Hasting algorithm (Jackson et al., 2004). However,
these methods only attempt to determine the most likely area of uncertain parameters and
cannot directly give the best combination of uncertain parameters with a optimum metrics
value. Moreover, the PDF heavily depends on the likelihood function assumed, which is
usually difficult to determine for climate system model tuning problem.

Optimization algorithms can be used to search the maximum or minimum metrics value
in a given parametric space. Severijns and Hazeleger (2005) calibrates parameters of ra-
diation, clouds, and convection in Speedy model with the downhill simplex (Press et al.,
1992; Nelder and Mead, 1965) to improve the radiation budget at the top of the atmosphere
and at the surface, as well as the large scale circulation. The downhill simplex is a fast
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convergence algorithm when the parametric space is not high-dimensional. However, it is
a local optimization algorithm, not aiming to find the global optimal solution. Moreover, the
algorithm has convergence issue when the simplex becomes ill-conditioned. Besides the
downhill simplex, a few global optimization algorithms are introduced to tune uncertain pa-
rameters of climate system models, such as simulated stochastic approximation annealing
(SSRR) (Yang et al., 2013), MVFSA (Yang et al., 2014), and multi-objective particle swarm
optimization (MOPSO) (Gill et al., 2006). SSRR requires at least ten thousands of steps
to get a stable solution (Liang et al., 2013), and MVFSA also requires thousands of steps
to get a stable solution (Jackson et al., 2004). MOPSO needs dozens of individual cases
in each iteration. All these global optimization algorithms require a large number of model
runs and very high computational cost during the model tuning process.

Data assimilation method has been well addressed for state estimation, and can be
a potential solution for parameter estimation. Aksoy et al. (2006) estimates the parame-
ter uncertainty in a mesoscale model (Grell et al., 1994) using the Ensemble Kalman Fil-
ter (EnKF). Santitissadeekorn and Jones (2013) presents a two-step filtering for the joint
state-parameter estimation with a combination method of particle filtering (PF) and EnKF.
The EnKF and PF use an ensemble of model simulations to estimate the background er-
ror covariance, which approximate the traditional Kalman filter with a recurrence process
(Evensen , 2003; Arulampalam et al., 2002). The accuracy of the error covariance relies
on samples. In general, the larger the ensemble size, the more accurate the estimates
are. The limitation of ensemble size for practice use and imperfect models make it difficult
to select representative samples (Poterjoy et al., 2014). Moreover, same as the MOPSO
method, they require a large number of model runs in each iteration with greatly increased
computational cost.

Climate system model is a strongly nonlinear system, having a large number of un-
certain parameters. As a result, the parametric space of a climate system model is high-
dimensional, multi-modal, strongly nonlinear, unseparable. More seriously, one model run
of a climate system model might require tens or even hundreds years of simulation to get
scientifically meaningful results.

4

zhangtao


zhangtao


zhangtao
Reply 3 to #2

zhangtao
Reply 4 to #2



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

To overcome these challenges, we propose a “three-step” strategy to calibrate the uncer-
tain parameters in climate system models effectively and efficiently. First, the Morris method
(Morris, 1991; Campolongo et al., 2007), a global sensitivity analysis method, is chosen to
eliminate the insensitive parameters by analyzing the main and interactive effects among
parameters. Another global method by Sobol (Sobol, 2001) is used to validate the results
of the Morris method. Second, a pre-processing of initial values of selected parameters is
presented to accelerate the convergence of optimization algorithm and to resolve the is-
sue of ill-conditioned problem. Finally, the downhill simplex algorithm is used to solve the
optimization problem because of its low computational cost and fast convergence for low di-
mensional space. Taking into account the complex configuration and manipulation of model
tuning, an automatic workflow is designed and implemented to make the calibration process
more efficient. The method and workflow can be easily applied to GCMs to speed up model
development process.

The paper is organized as follows. Section 2 introduces the proposed automatic work-
flow. Section 3 describes the details of the example model, reference data, and calibration
metrics. The three-step calibration strategy is presented in Section 4. Section 5 evaluates
the calibration results, followed by a summary in Section 6.

2 The end-to-end automatic calibration workflow

We design a software framework for the overall control of the tuning practice. This frame-
work can automatically execute any part of our proposed “three-step” calibration strategy,
determine the optimal parameters and produce its corresponding diagnostic results. It in-
corporates various tuning methods and facilitate model tuning process with minimal manual
management. It effectively manages the dependence and calling sequences of various pro-
cedures, including parameter sampling, sensitivity analysis and initial value selection, model
configuration and running, evaluation of model outputs using user provided metrics. Users
only need to specify the model to tune, parameters to be tuned with their valid ranges, and
the calibration method to use.
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There are four main modules within the framework as shown in Fig. 1. The scheduler
module manages model simulations with the capability for simultaneous runs. It also coordi-
nates different tasks to reduce the contention and improve throughput. Simulation diagnosis
and evaluation is included in a post-processing module. The preparation module contains
various sensitivity analysis and sampling methods, such as Morris (Morris, 1991; Campo-
longo et al., 2007) and Sobol (Sobol, 2001) method, full factorial (FF) (Raktoe et al., 1981),
Latin Hypercube (LH) (McKay et al., 1979), Morris one-at-a-time (MOAT) (Morris, 1991),
and Central Composite Designs (CCD) (Hader and Park, 1978). The sensitivity analysis
is able to eliminate the duplicated samples to reduce unnecessary model runs. A MCMC
method based on adaptive Metropolis–Hastings algorithms is also provided to get the pos-
terior distribution of uncertain parameters. The tuning algorithm module offers various local
and global optimization algorithms including the downhill simplex, genetic algorithm, parti-
cle swarm optimization, differential evolution and simulated annealing. In addition, all the
intermediate metrics and their corresponding parameters within the framework are stored
in a MySQL database and can be used for posterior knowledge analysis. More importantly,
the workflow is flexible and expandable for easy integration of other advanced algorithms
as well as tools like the Problem Solving Environment for Uncertainty Analysis and Design
Exploration (PSUADE) (Tong, 2005), Design Analysis Kit for Optimization and Terascale
Applications (DAKOTA) (Eldred et al., 2007). Although, uncertainty quantification toolkits,
such as PSUADE, DAKOTA, support various calibration and uncertainty analysis methods
and pre-defined function interfaces, they cannot organize the above model tuning process
as effectively as the proposed model tuning framework.

3 Model description and reference metrics

We use the Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) as an example
for the demonstration of the tuning workflow and our calibration strategy. GAMIL2 is the
atmospheric component of the Flexible Global–Ocean–Atmosphere–Land System Model
grid version 2 (FGOALS-g2), which participated in the CMIP5 program. The horizontal res-
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olution is 2.8�⇥ 2.8�, with 26 vertical levels. GAMIL2 uses a finite difference scheme that
conserves mass and energy (Wang et al., 2004). A two-step shape-preserving advection
scheme (Yu, 1994) is used for tracer advection. Compared to the pervious version, GAMIL2
has modifications in cloud-related processes (Li et al., 2013), such as the deep convection
parameterization (Zhang and Mu, 2005), the convective cloud fraction (Xu and Krueger,
1991), the cloud microphysics (Morrison and Gettelman, 2008), and the stratiform frac-
tional cloud condensation scheme (Zhang et al., 2003). More details are in Li et al. (2013).
Empirical tunable parameters are selected from schemes of deep convection, shallow con-
vection, and cloud fraction schemes (Table 1). Default parameter values are from the model
configuration for CMIP5 experiments.

To save computational cost, atmosphere-only simulations are conducted for 5 years using
prescribed seasonal climatology (no interannual variation) of SST and sea ice. Previous
studies have shown 5 years of this type of simulation is enough to capture the basic char-
acteristics of simulated mean climate states (Golaz et al., 2011; Lin et al., 2013). The goal
of these simulations is not to determine their resemblance to observations, but to compare
the results between the control simulation and various tuned simulations.

Model tuning results depend on the reference metrics used. For a simple justification, we
use some conventional climate variables for the evaluation. Wind, humidity, and geopoten-
tial height are from the European Center for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA) – Interim reanalysis from 1989 to 2004 (Simmons et al., 2007). We use
GPCP (Global Precipitation Climatology Project, Adler et al., 2003) for precipitation and
ERBE (Earth Radiation Budget Experiment, Barkstrom, 1984) for radiative fields. All obser-
vational and reanalysis data are gridded to the same grid as GAMIL2 before the compari-
son. Note that the reference metrics can be extended depending on the model performance
requirement.

The reference metrics, including various variables in Table 2, is used to quantitatively
evaluate the performance of overall simulation skills (Murphy et al., 2004; Gleckler et al.,
2008; Reichler and Kim, 2008). The calibration RMSE is defined as the spatial standard de-
viation (SD) of the model simulation against observations/re-analysis, as in Eq. (1) (Taylor,
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2001; Yang et al., 2013). For an easy comparison, we normalize the RMSE of each simula-
tion output by that of the control simulation using default parameter values. We introduce an
improvement index to evaluate the tuning results, which weight each variable equally and
compute the average normalized RMSE. The index indicates an overall improvement of the
performance of the tuned simulation relative to the control simulation based on a number
of model outputs (Table 2). If the index is less than 1, it means the tuned simulation gets
better performance than the control run. The smaller this value, the better improvement is.
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(i) is the model outputs, and x

F
o

(i) is the corresponding observation or reanalysis data.
x

F
r (i) is model outputs from the control simulation using the default values for the parame-

ters in Table 1. w is the weight due to the different grid area on a regular latitude longitude
grids on the sphere. I is the total grid number in model. NF is the number of the chosen
variables.

4 Method

4.1 Parameters tuning with global and local optimization methods

Parameter tuning for a climate system model is to solve a global optimization problem in
theory. As the well-known global optimization algorithms, traditional evolutionary algorithms,
such as genetic algorithm (Goldberg et al., 1989), differential evolutionary (DE) (Storn and
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Price, 1995), and particle swarm optimization (PSO) (Kennedy, 2010), can approach the
global optimal solution but generally require high computational cost. This is because these
algorithms are designed following biological evolution of survival of the fittest. In contrast,
the local algorithms utilize the greedy strategy, and thus may stick at a locally optimal so-
lution after convergence. The advantage of local algorithms is the low computational cost
due to relatively less samples required. In this sense, the local optimization algorithms are
the viable options considering their significantly reduced computational cost.

We choose the downhill simplex method for climate model tuning considering its rela-
tively low computation cost. The downhill simplex method searches the optimal solution by
changing the shape of a simplex, which represents the optimal direction and step length.
A simplex is a geometry, consisting of N+1 vertexes and their interconnecting edges, where
N is the number of calibration parameters. One vertex stands for a pair of a set of param-
eters and their improvement index as defined in Eq. (3). The new vertex is determined by
expanding or shrinking the vertex with the highest metrics value, leading to a new simplex
(Press et al., 1992; Nelder and Mead, 1965).

Two performance criteria are used to evaluate the effectiveness and efficiency of the
optimization algorithms in this study. Selection of optimization algorithms for parameter cal-
ibration of climate system models is a balance between model improvement (effectiveness)
and computational cost (efficiency). In this study, model improvement is measured by an in-
dex defined in Eq. (3). The lower of this value is, the better model tuning is. Computational
cost is measured by “core-hours”, standing for the computational efficiency. It is computed
by (Nstep)⇥ (Nsize)⇥ (the number of processes of a single model run) ⇥ (hours used for
a single 5-year model run ). Nstep is the total numbers of iterations of optimization algo-
rithms for convergence. Nsize is the number of model runs during each iteration, and it is 1
for the downhill simplex method. In GAMIL2 case, each model run takes 6 hours using 30
processes.

According to tuning GAMIL2, two global methods, PSO and DE, give better tuning effec-
tiveness than the downhill simplex method, but their computational costs are approximately
4 and 5 times of the downhill simplex method, respectively (Table 3).
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To improve the effectiveness of the downhill simplex method, we propose two impor-
tant steps to significantly improve its performance. In the first step, the number of tuning
parameters is reduced by eliminating the insensitive parameters; In the second step, fast
convergence is achieved by pre-selecting proper initial values for the parameters before
using the downhill simplex method.

4.2 Parameter sensitivity analysis

The number of uncertain parameters in physical parameterizations of a climate system
model is quite large. Most optimization algorithms, such as PSO, the downhill simplex
method, and the simulated annealing algorithm (Van Laarhoven and Aarts, 1987), are inef-
fective in high dimensional problems. Iterations for convergence will increase exponentially
with the number of tuning parameters. In addition, climate models generally need a long
simulation to have meaningful results. Therefore, high dimensional parameter tuning prob-
lem suffers from extremely high computational cost. It is necessary to reduce the parameter
dimension before the optimization.

Parameter sensitivity analysis can be divided into local and global methods (Gan et al.,
2014). The local method determines the sensitivity of a single parameter by perturbing one
parameter with all other parameters fixed. Consequently, it does not consider the combined
sensitivity of multiple parameters. On the other hand, the global method perturbs all the
parameters to explore the sensitivity of the whole parametric space. In this study, the Morris
(Morris, 1991; Campolongo et al., 2007), a global method, is used to screen out the sensi-
tive parameters. Another global method (Sobol, 2001), is used to validate the results of the
Morris method.

The Morris method, based on the MOAT sampling strategy, reduces the number of sam-
ples required by other global sensitivity methods (Li et al., 2013). Note that a sample is a
set of all parameters, not just one parameter. The method is described briefly here, and
more details can be found in Morris (1991). Assume we have k parameters, relative to
a random sample S

1

= {x
1

,x

2

, ...,xk}, another sample S

2

= {x
1

,x

2

, ...,xi+�i, ...,xk} can
be constructed by perturbing the ith parameter by �i, where �i is a perturbation of this
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parameter. The elementary effect of the ith parameter xi is defined as:

di =
f(S

2

)� f(S
1

)

�i
(4)

where f stands for the improvement index as defined in Eq. (3). A third sample S

3

=
{x

1

,x

2

, ...,xi+�i, ...,xj +�j , ...,xk} can be generated by perturbing another parameter,
where j is not i. In so doing k times, we will get k+1 samples {S

1

,S

2

, ...,Sk+1

}, and k elemen-
tary effects {d

1

,d

2

, ...,dk} after perturbing all the parameters. The vector of {S
1

,S

2

, . . . ,Sk+1

}
is called a trajectory. This procedure is repeated for r iterations and finally we get r trajec-
tories. The starting point of any trajectory is selected randomly as well as the ordering of
the parameters to perturb and the � for each perturbation in one trajectory. In practice, a
number of 10 to 50 trajectories are enough to determine the feasible sensitivity of parame-
ters (Gan et al., 2014; Morris, 1991). In this study, we have a total of 7 parameters and 80
simulations are conducted.

We define D = {Di(t)}, where t is the tth trajectory, and i is the ith elementary effect of the
parameter xi. µi, the mean of |di|, and �i, the standard deviation of di, are used to measure
the parameter sensitivity, defined as:

µi =
rX

t=1

|di(t)|
r

(5)

�i =
rX

t=1

q
(di(t)�µi)2/r (6)

µi estimates the effect of xi on the model improvement index as defined in Eq. (3), while
�i assesses interactive effect of xi with other parameters. Those parameters with large µi

and �i are the sensitive parameters. The Morris method results are shown in Fig. 2.
The parameter elimination step is critical for the final result of model tuning. To vali-

date the results obtained by the Morris method, we compare the results with a benchmark
method (Sobol, 2001). Based on variance decomposition, the Sobol method requires more
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samples than the Morris method, leading to a higher computation cost. The variance of the
model output can be decomposed as Eq. (7), where n is the number of parameters, and Vi

is the variance of the ith parameter, and Vij is the variance of the interactive effect between
the ith and jth parameters, and so on. The total sensitivity effect of ith parameter can be
presented as Eq. (8), where V�i is the total variance except for the xi parameter. The Sobol
results are shown in Fig. 3. The screened out parameters are the same as those of the
Morris.

V =
nX

i=1

Vi+
X

1i<jn

Vij + . . .+V

1,2,...,n (7)

STi = 1� V�i

V

(8)

4.3 Proper initial value selection for the downhill simplex method

The downhill simplex method is a local optimization algorithm and its convergence perfor-
mance strongly depends on the quality of the initial values. We need to find the parameters
with the smaller metrics around the final solution. Moreover, we have to finish the searching
as fast as possible with minimal overhead. For these two objectives, a hierarchical sampling
strategy based on the single parameter perturbation (SPP) sample method is used. The
SPP is similar to local sensitivity methods, in which only one parameter is perturbed at one
time with other parameters fixed. The perturbation samples are uniformly distributed across
parametric space. First, the improvement index as defined in Eq. (3) of each parameter
sample is computed. The distance is defined as the difference between the improvement
indexes using two adjacent samples, i.e., the model response measured by certain per-
centage change of one parameter. We call this step the first level sampling. The specific
perturbation size for one parameter can be set based on user experience. In our imple-
mentation, user needs to set the number of samples. For the first level sampling, we can
use a larger perturbation size to reduce computational cost. If the distance between two
adjacent samples is greater than a predefined threshold, more SPP samples between the
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previous two adjacent samples are conducted. And this is called the second level sampling.
Finally, k+1 samples with the best improvement index value are chosen as the candidate
initial values for the optimization method. With this hierarchical sampling strategy, we can
determine the local parametric space for final solution and can accelerate the convergence
of the following downhill simplex method. This procedure is described in Algorithm 1. It is
easy to implement and has lower overhead compared to other complex adaptive sampling
methods.

At the same time, inappropriate initial values may lead to ill-conditioned simplex geome-
try, which can be found in model tuning process. One issue we meet is that some vertexes
in the downhill simplex optimization may have the same values for one or more parame-
ters. As a result, these parameters remain invariant during the optimization and this may
degrade the quality of final solution as well as the convergence speed. A simplex check-
ing is conducted to keep as many different values of parameters as possible during the
process of looking for initial values. Well-conditioned simplex geometry will increase the
parameter freedom for optimization. In our implementation (Algorithm 1), the vertex leading
to the ill-conditioned simplex is replaced by another parameter sample which gives another
minimum improvement index value.

These methods mentioned above are summarized as the initial value pre-processing
of the downhill simplex algorithm. Sometimes, the samples used during the initial value
selection are the same as those in the parameter sensitivity analysis step. In this case, one
model run can be used in both steps to further reduce the computational cost.

4.4 Evaluation of the proposed strategy

Effectiveness and efficiency of the three traditional algorithms are compared in Table 3.
“Downhill_1_step” represents the original downhill simplex method, which is one of the
most widely-used local optimization algorithms and has been successfully used in Speedy
model (Severijns and Hazeleger, 2005). PSO and DE are the most widely-used global op-
timization algorithms and easy-to-use. Although “Downhill_1_step” achieves slightly worse

13

zhangtao




D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

improvement compared to the two global optimization methods (Table 3), its computation
cost is much less (only 20% and 28% of DE and PSO respectively).

Two extra steps are included before the original downhill simplex method to overcome its
limited effectiveness on model performance improvement. The “Downhill_2_steps” method
includes an initial value pre-processing step before the downhill simplex method. And the
“Downhill_3_steps” method further introduces another step to eliminate insensitive param-
eters for tuning by sensitivity analysis. The two steps bring in additional overhead, 80 sam-
ples for the parameter sensitivity analysis with the Morris method, and 25 samples for
the initial value pre-processing. Table 3 and 4 show that the proposed “Downhill_3_steps”
achieves the best effectiveness, improving the model’s overall performance by 9%. It over-
comes the inherent ineffectiveness of the original downhill simplex method with much lower
computational cost than global methods.

5 Analysis of model optimal results

This section compares the default simulation and the tuned simulation by three-step method
with a focus on the cloud and TOA radiation changes. Table 1 shows the values of the
four pairs of sensitive parameters between the control (labeled as CNTL) and optimized
simulation (labeled as EXP). Significant change is found for c0, which represents the auto-
conversion coefficient in the deep convection scheme, and rhminh, which represents the
threshold relative humidity for high cloud appearance. The other two parameters have neg-
ligible change of the values before and after the tuning and thus it is expected their impacts
on model performance will be accordingly small.

The overall improvement after the tuning from the control simulation can be found in
the Taylor diagram (Fig. 4), with improvement for almost all the variables, especially for
the meridional winds and mid-tropospheric (400 hPa) humidity. Improvements for other vari-
ables are relatively small. The change in terms of the RMSE factor over the globe and three
regions (tropics, SH mid- and high-latitude and NH mid- and high-latitude) are shown in
Fig. 5. First, radiative fields and moisture are improved over all the four areas. By contrast,
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wind and temperature field changes are more diverse among different areas. For example,
temperatures over the tropics become worse compared to the control run. There is an over-
all improvement in the SH mid- and high-latitude for all variables except for the 200 hPa tem-
perature. Winds and precipitation in the NH mid- and high-latitude become slightly worse
in the tuned simulation. Such changes are kind of intriguing and we attempt to relate these
changes to the two parameters significantly tuned.

With reduced RH threshold for high cloud (from 0.78 in CNTL to 0.63 in EXP, Table 1),
the stratiform condensation rate increases and the atmospheric humidity decreases (Zhang
et al., 2003). In addition, with increased auto-conversion coefficient in the deep convection,
less condensate is detrained to the environment. As a result, mid- and upper-troposphere
is overall drier, especially over the tropics where deep convection dominates the vertical
moisture transport (Fig. 6c). Although the mid- and upper-troposphere become drier over
the tropics, reduced RH threshold for high cloud makes clouds easier to be present. Con-
sequently, middle and high clouds increase over the globe, especially over the mid- and
high-latitudes with the largest increase up to 4–5 % (Fig. 6f). In the tropics, due to the drier
tendency induced by the reduced detrainment, high cloud increase is relatively small (2–
3 %) compared to the mid- and high-latitudes. On the contrary, low cloud below 800 hPa
decreases by 1–2 % over the mid- and high-latitudes with slightly decreased RH (Fig. 6)
because of the negligible change of RH threshold for low cloud (Table 1). Overall, the com-
bined effects of all relevant parameterizations lead to the changes of atmospheric humidity
and cloud fraction.

Changes in moisture and cloud fields impact radiative fields. With reference to ERBE,
TOA outgoing longwave radiation (OLR) is improved in the mid-latitudes for EXP, but it
is degraded over the tropics (Fig. 7a). Compared with the CNTL, middle and high cloud
significantly increase in the EXP (Fig. 6). Consequently, it enhances the blocking effect on
the longwave upward flux at TOA (FLUT), reducing the FLUT in mid-latitudes of the southern
and Northern Hemisphere (Fig. 7a). Clear sky OLR increases for the EXP and this is due
to the drier upper troposphere in the EXP (Fig. 6). The decrease in the atmospheric water
vapor reduces the greenhouse effect. Therefore, it emits more outgoing longwave radiation
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and reduces the negative bias of clear sky long wave upward flux at TOA (FLUTC, Fig. 7b).
Longwave cloud forcing (LWCF) in the middle and high latitudes is improved due to the
improvement of FLUT in these areas (Fig. 7c), but improvement in the tropics is negligible
due to the cancellation between the FLUT and FLUTC.

TOA clear sky shortwave are the same between the control and the tuned simulation
since both simulations have the same surface albedo. With increased clouds, the tuned
simulation has smaller TOA shortwave absorbed than the control. Compared with ERBE,
the tuned simulation has better TOA shortwave absorbed in the mid- and high-latitudes, but
it slightly degrades over the tropics.

6 Conclusions

An effective and efficient three-step method for GCM physical parameter tuning is pro-
posed. Compared with conventional methods, a parameter sensitivity analysis step and
a proper initial value selection step are introduced before the low cost downhill simplex
method. This effectively reduces the computational cost with an overall good performance.
In addition, an automatic parameter calibration workflow is designed and implemented to
enhance operational efficiency and support different uncertainty quantification analysis and
calibration strategies. Evaluation of the method and workflow by calibrating GAMIL2 model
indicates the three-step method outperforms the two global optimization methods (PSO
and DE) in both effectiveness and efficiency. A better trade-off between accuracy and com-
putational cost is achieved compared with the two-step method and the original downhill
simplex method. The optimal results of the three-step method demonstrate that most of the
variables are improved compared with the control simulation, especially for the radiation
related ones. The mechanism analysis is conducted to explain why these radiation related
variables have an overall improvement. In future work, more analyses are needed to better
understand the model behavior along with the physical parameter changes.
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Algorithm 1 Preprocessing the initial values of Downhill Simplex Algorithm.
1: //Single parameter perturbation sample(SPP)
2: N=number_of_parameters
3: sampling_sets={}
4: for each parameter Pi of N parameters do
5: sampling_sets+=SPP(Pi_range, number_of_samples)
6: //refine sample in the sensitivity range if needed
7: if metrics of the the adjacent same parameter sampling points >= sensitivity_threhold then
8: sampling_sets+=SPP(Pi_adjacent_parameter_range, refine_ number_of_factors)
9: end if

10: end for
11:
12: //Initial vertexes with parameters of the N +1 minimum metrics
13: for each initial Vi of N +1 vertexes do
14: //get the parameters of the ith minimum metrics
15: candidate_init_sets += min(i, sampling_sets)
16: end for
17:
18: //make sure the initial simplex geometry is well-conditioned
19: while one parameter k have the same values in the N +1 sets do
20: j = 1
21: //remove the parameter set with the worst metrics from candidate_init_sets
22: remove_parameter_set(the parameter set with worse metrics, candidate_init_sets)
23: //get the parameters of the N +1+ jth minimum metrics
24: candidate_init_sets += min(N +1+ j, sampling_sets)
25: j+= 1
26: end while
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Table 1. A summary of parameters to be tuned in GAMIL2. The default and the final tuned opti-
mum value are also shown. The valid range of each parameter is also included. Note that only four
sensitive parameters are tuned and have optimum values.

Parameter Description Default Range Optimal

c0 rain water autoconversion coefficient
for deep convection

3.0⇥ 10�4 1.⇥ 10�4–5.4⇥ 10�3 5.427294⇥ 10�4

ke evaporation efficiency for deep con-
vection

7.5⇥ 10�6 5⇥ 10�7–5⇥ 10�5 –

capelmt threshold value for cape for deep con-
vection

80 20–200 –

rhminl threshold RH for low clouds 0.915 0.8–0.95 0.917661
rhminh threshold RH for high clouds 0.78 0.6–0.9 0.6289215
c0_shc rain water autoconversion coefficient

for shallow convection
5⇥ 10�5 3⇥ 10�5–2⇥ 10�4 –

cmftau characteristic adjustment time scale
of shallow cape

7200 900–14 400 7198.048
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Table 2. Atmospheric fields included in the evaluation metrics and their sources.

Variable Observation Variable Observation

Meridional wind at 850 hPa ECMWF Geopotential Z at 500 hPa ECMWF
Meridional wind at 200 hPa ECMWF Total precipitation rate GPCP
Zonal wind at 850 hPa ECMWF Long-wave cloud forcing ERBE
Zonal wind at 200 hPa ECMWF Short-wave cloud forcing ERBE
Temperature at 850 hPa ECMWF Long-wave upward flux at TOA ERBE
Temperature at 200 hPa ECMWF Clearsky long-wave upward flux at TOA ERBE
Specific Humidity at 850 hPa ECMWF Short-wave net flux at TOA ERBE
Specific Humidity at 400 hPa ECMWF Clearsky short-wave net flux at TOA ERBE

24



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Table 3. Effectiveness and efficiency comparison between the original downhill simplex method and
the two global methods. Nstep is the total numbers of calibrating iteration for convergence. Nsize is
is the number of model runs during each iteration. Core-hours is computed by Nstep⇥Nsize⇥ {the
number processes of a single model run}⇥ {hours used for a single 5-year model run }. In GAMIL2
case, each model run takes 6 h and using 30 processes.

Improvement index Nstep Nsize Core-hours

Downhill_1_step 0.9585 80 1 14 400
PSO 0.9115 24 12 51 840
DE 0.9421 33 12 71 280
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Table 4. The same as Table 3, but showing the comparison among the three downhill simplex meth-
ods.

Improvement index Nstep Nsize Core hours

Downhill_1_step 0.9585 80 1 14 400
Downhill_2_steps 0.9257 25+34 1 10 620
Downhill_3_steps 0.9099 80+25+50 1 27 900
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Sensi&vity*parameters*and*
posterior*distribu&on�

Op&miza&on*
parameters*�

Analysis*results�

Prepara&on*Module�
��Sampling FACT,*LHS,*MOAT�

Sensi&vity*analysis MORRIS,*SOBOL�

Posterior*distribu&on MCMC�

Tuning*algorithm*Module�
��Local*algorithm DownGhill�

Global*algorithm PSO�DE�

Diagnose*
analysis�

Post*Processing*Module�
��Management*of*results*file*�
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Figure 1. The structure of the automatic calibration workflow. The input of the workflow is the pa-
rameters of interest and their initial value ranges. The output is the optimal parameters and its
corresponding diagnostic results after calibration. The preparation module provides the parameter
sensitivity analysis. The tuning algorithm module offers local and global optimization algorithms in-
cluding downhill simplex, genetic algorithm, particle swarm optimization, differential evolution and
simulated annealing. The scheduler module schedules as many as cases to run simultaneously
and coordinates different tasks over parallel system. The post-processing module is responsible for
metrics diagnostics, re-analysis and observational data management.
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Figure 2. Scatter diagram showing the parameter sensitivity using the Morris sensitivity analysis.
The x axis stands for the main effect sensitivity of a single parameter. The y axis stands for the
interactive effect sensitivity among multi-parameters. In GAMIL2, c0, rhminl, rhminh, and cmftau
have high sensitivity and ke, c0_shc, and capelmt have low sensitivity.
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Figure 3. Sensitivity analysis results from the Sobel method. The total sensitivity in Eq. (8) is denoted
by the size of color area. The total sensitivities of ke, c0_shc, and capelmt are less than 0.5 in terms
of each variable.
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Figure 4. Taylor diagram of the climate mean state of each output variable from 2002 to 2004 of
EXP and CNTL.
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Figure 5. Improvement indices over the global, tropical and mid-high latitudes of northern and south-
ern hemisphere (MLN and MLS) for each variable of the EXP simulation.
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Figure 6. Pressure–latitude distributions of relative humidity and cloud fraction of EXP (a, d), CNTL
(b, e), EXP-CNTL (c, f).
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Figure 7. Meridional distributions of the annual mean difference between EXP/CNTL and observa-
tions of TOA outgoing longwave radiation (a), TOA clearsky outgoing longwave radiation (b), TOA
longwave cloud forcing (c), TOA net shortwave flux (d), TOA clearsky net shortwave flux (e), and
TOA shortwave cloud forcing (f).
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