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Author response to reviewer comments 
 
We thank the two anonymous reviewers for their comments on our manuscript, “Using 
satellite-based estimates of evapotranspiration and groundwater changes to determine 
anthropogenic water fluxes in land surface models”.  We detail our responses to the 
reviewers below in this font (Arial, font size 12 point, blue text).  Potential, concrete 
changes to the manuscript in response to reviewer comments are detailed in the same 
font, but are additionally underlined to distinguish the manuscript changes from our 
responses. 
 

Anonymous Reviewer 1 

The authors use satellite-estimated ET over the California Central Valley to modify the 

CLM land surface model in order to better represent diversion and extraction for irrigation. 

This is an interesting analysis. As it stands, the m/s lacks context, explanation and interpretation 

in some important aspects, but with moderate revision it should be a worthwhile addition to the 

literature. 

We thank the reviewer for recognizing the contribution of this manuscript, and we will 
make changes to add to the interpretation as detailed below. 
 

General comments: 

- More description of the Central Valley water system is needed : hydrogeology, the surface 

water system (sources, reservoirs, diversion points) where does the surface water come from, 

what is the spatial and/or temporal pattern of surface vs groundwater use? 

We agree that more details would be useful to the reader, but we feel a strong need to 
balance this against making the manuscript too long.  We will add the following text in a 
revision, “Relevant aspects of the Central Valley’s geology (Planert and Williams, 1995; 
Faunt et al., 2009), climatology (Zhong et al., 2004), hydrology (Scanlon et al., 2012) 
and anthropogenic inter-basin water transfers (Chung and Helweg, 1985; Fischhendler 
and Zilberman, 2005) are extensively reviewed elsewhere.”  We also will add details 
about the consumption of blue water in the Central Valley.  We feel that it is relevant to 
point out that the pattern of surface vs. groundwater use varies extensively depending 
how wet or dry the preceding winter is as many farmers can use both surface and 
groundwater in their irrigation system.  Furthermore, until recently, there were minimal 
reporting requirements for well owners, so per well water extraction is often publicly 
unknown. 
 

- in several instances you use “observed” when referring to satellite-based ET estimates. 

In my view that is stretching the term too far; ET is estimated using a model that requires not 

only satellite data but also other input data, and the uncertainty in the assumptions and input data 

is considerable. Using “satellite ET” or “remotely sensed ET” would be appropriate. 

While we agree that satellite techniques for determining ET may not be precise as good 
micrometeorological or lysimetric methods, the precision of some satellite algorithms is 
sufficiently good to permit their use for water management and water rights regulation 
by governmental agencies (see, for example, 
http://idwr.idaho.gov/GeographicInfo/mapping_evapotranspiration.htm ).  Nevertheless 
in recognition of the reviewer’s concerns, we will rename “observed ET” to “satellite 

http://idwr.idaho.gov/GeographicInfo/mapping_evapotranspiration.htm
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observed ET” throughout the text where there is not already a sufficient modifier present 
(e.g. remote-sensing).  We believe this change should indicate that the data come from 
satellite algorithms while still conveying our opinion that the satellite data have sufficient 
quality, precision, and independence to be an “observation” against which modeling 
results can be tested. 
 

- The relevance of comparing to GLDAS-1 and NLDAS-2 for this study is not clear. 

Please explain better. 

We do not intend to compare GLDAS-1 and NLDAS-2, but we use all of them to 
increase the number of models and forcings in ensemble average to have more 
confidence on the model's natural simulations of ET. GLDAS and NLDAS use different 
forcing and different models (only NOAH is the same), so we just want to increase our 
confidence in the mean and uncertainty of non-irrigation ET. 
 

Specific comments: 

Page 3567, Line 6) “for” rephrase 

We agree this could be better phrased.  We will change the surrounding text “and 
conservation of water volume for soil moisture approach” to “and a lack of conservation 
of water volume for models using a prescribed soil moisture approach” 
 

8) “against” replace with “using”? 

We will replace “against” with “compared to” to better indicate that we are using the 
difference for our irrigation parameterization. 
 

10) Pls better explain what you mean by iterative and partition 

We will revise the manuscript to improve clarity here.  It will read, “We then incorporate 
the irrigation flux into the Community Land Model (CLM), and use a systematic trial-and-
error procedure to determine the ground- and surface-water withdrawals that are 
necessary to balance the new irrigation flux.  The resulting CLM simulation with 
irrigation produces ET that matches . . .”. 
 

11-12) Is it surprising it matches it well? That is by design, is it not? 

It is not surprising that the new ET parameterization matches well, but it is not 
guaranteed given that a different ensemble of models was used to parameterize non-
irrigation ET.  The good agreement indicates that irrigation is an essential hydrologic 
flux in the Central Valley. 
 
P3568, l1) consider including China. 

We will add the recent study of Lei et al. (2015) who examine similar issues over the 
Haihe Basin, China. 
 

4) You can find more analysis on the effect of groundwater extraction on sea water 

level in this paper: http://www.hydrol-earth-syst-sci.net/18/2955/2014/hess-18-2955- 

2014.html 

We thank the reviewer for bringing this study to our attention.  We will cite this study 
alongside Wada et al., 2010. 
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10) it may be worth adding that many irrigation areas are in (semi-) arid areas, which 

increases the contrast. 

We wholeheartedly agree on this point and further point out the enhanced contrast due 
to the asynchronous precipitation and growing seasons.  We would add the following 
text to a revised manuscript, “Given that irrigation is predominantly used in semi-arid to 
arid regions or where precipitation and growing seasons are asynchronous, this lack of 
parameterization can be highly significant for modeling regional hydrology.” 
 

21-25) Pls be explicit which of these limitations apply to which of the numbered items. 

More in general, please explain in more detail the assumptions and approach in each 

case, along with the benefits and limitations. 

We agree that better connecting the approaches to disadvantages would benefit the 
reader.  We have sought to distill the most essential differences in parameterizations 
between the four approaches.  In our view, adding more details about each study and 
its assumptions would add greatly to the length of the text without further clarifying our 
approach in comparison to previous work.  In a revised manuscript, we will add text that 
more explicitly identifies which limitation goes with which approach. 
 

24) “drought and pluvial” change to “dry and wet”; more generally, please do not use the 

terms dry (below-average rainfall) and drought (extremely low rainfall) indiscriminately. 

California tends to have more extreme hydrologic variability.  For instance, during the 
last decade, there have only been three years that have had a Palmer Hydrologic 
Drought Index within the range of +2 to -2 (see chart from NOAA below).  However, we 
will change “drought” to “dry” and “pluvial” to “wet” in most locations in the manuscript. 
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29) Why “although” what is the apparent contradiction? 

There is no apparent contradiction.  We used “although” to draw attention to multiple 
potential causes of different results in irrigation-climate feedback studies.  To enhance 
clarity on this point, we will change “although” to “while”. 
 

3569, 5) change to “more robust” 

We will change “robust” to “more robust”. 
 

15) Explain what exactly they did that you are building on here. 

Lo and Famiglietti used a static surface and ground water irrigation inventory dataset to 
parameterize their LSM.  We will add text in a revised manuscript clarifying this 
difference. 
 

18) Provide reference for CLM 

We will add reference to Lawrence et al. (2011) and Oleson et al. (2008), which covers 
CLM. 
 

24) suggest “value” instead of “importance” 

We will change “importance” to “value” in a revised manuscript. 
 

3570, 22-25) Don’t see why this is relevant here? 

The potential for restricted groundwater pumping and altered irrigation methods could 
have a considerable impact on land surface parameterizations due to altered timing and 
amount of irrigation water.  In a revised manuscript, we would add the following text to 
the end of this paragraph:  “and potentially altering the amount and seasonality of 
irrigation.  The potential for rapid hydrologic changes in the Central Valley is one reason 
why a potentially dynamic, satellite-based irrigation parameterization would be useful for 
land surface modeling.” 
 

3571, 3) Does it have a name? 

This implementation of the SEBAL algorithm is unnamed in Anderson et al. (2012) and 
remains unnamed here. 
 

7) Sounds like the trapezoid method. Is it different? 

Tang et al.’s method is effectively the trapezoid method.  However, they do not describe 
it by the theoretical shape (I have also seen it called the triangle method).  We would 
prefer to leave the description as is to keep precision and to avoid adding additional text 
or potential for confusion. 
 

11-14) How do irrigation areas stand out using this method, not explained. Also, pls explain why 

the several publicly available ET products (e.g., MODIS, MPI, GLEAM etc) are not used. I 

imagine it may be because of their coarse resolution, but it is left unexplained. 

Although active delineation of irrigation areas is not required for this methodology to 
work, irrigation areas are quite clear in the Central Valley due to the asynchronicity 
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between winter precipitation and summer ET.  We will modify the manuscript in this 
section to read, “All three products were clearly able to distinguish peak summertime ET 
in the Central Valley, which is asynchronous with largely winter precipitation and a 
characteristic sign of irrigation.  Other ET products (Miralles et al., 2011; Mu et al., 2011; 
Jung et al., 2010) were not used as they were either too coarse in resolution (>0.25° X 
0.25° cell size) or were unable to detect irrigation in the Central Valley.” 
 

3572, 19) Confused terminology: I assume you mean groundwater discharge into rivers, rather 

than runoff; furthermore that is not equal to baseflow (baseflow describes a part of the 

hydrograph, it’s not itself an interpretation of hydrological pathway) 

To reduce confusion, we changed “groundwater runoff (base flow)” to “groundwater 
discharge”. 
 

3573, eq. 4) Your figure shows an unconfined and a confined aquifer. Please discuss 

this conceptualisation and explain which of these terms you assume affect which. 

Fig. 2 is a very basic conceptualization of how CLM handles confined and unconfined 
aquifers.  We will revise the figure caption as follows “Figure 2: Conceptual schematic of 
land hydrological processes, modified from Oleson et al. (2008). Blue dash and green 
lines indicate the irrigation water fluxes applied in the CLM. In the Central Valley, the 
groundwater is variably confined with some regions having no confinement.” 
 

9) that doesnt sound very realistic; presumably farmers would not apply water if it rains. 

Perhaps summer rain is a rare event? Pls discuss. 

Summer rain is very rare in the Central Valley.  This fact will be referred to both in the 
study area section and in the discussion of ET products. 
 

14-15) I am confused about this. Presumably q_recharge is a function of soil water 

content? 

In general, yes q_recharge would be a function of soil moisture content.  However, in 
order to determine GW_WD where pumping data are not available, we force 
q_recharge in equation 4 to a specified value, which allows us to determine GW_WD as 
described in this section.  We then obtain q_recharge in equation 3.  When q_recharge 
in both equation 3 and 4 match, we then have a GW_WD that we can use to partition 
the irrigation flux.  This process is used only to determine GW_WD. 
 

15) But GRACE total water storage anomalies include contributions from both soil moisture 

(DELTA SMH) and groundwater (DELTA GW), whereas here you appear to ignore the former. 

If I interpret this correctly you need to demonstrate that that is a reasonable assumption. 

We used GRACE data (Famiglietti et al., 2011) that has already had storage variations 
from soil moisture, snow, and surface water removed, leaving only delta GW.  We 
recognize that the original phrasing lead to confusion about the level of processing.  We 
will change “GRACE GW observations” to “processed GRACE delta GW”. 
 

21) “locate”do you mean “spatially distribute”? 

No, we meant “find”.  We will change “locate” to “find”. 
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3573, 3) What basis do you have for that assumption? Needs discussion and potentially 

uncertainty analysis. 

The US Geologic Survey atlas (Planert and Williams, 1995 -  citation in manuscript) 
reports well depths in the Central Valley from near surface to as deep as >1000 m in the 
southern part of the San Joaquin Valley.  We acknowledge that precise determination of 
this ratio of confined to unconfined pumping is difficult as well operators are not yet 
required to publicly post their well depths and as the aquifer is partially confined.  We 
can reasonably presume that a farmer would not pump from a deeper confined layer 
when water in the shallower unconfined layer is available in order to conserve on 
expensive well drilling and electrical costs.  Confined pumping would be expected to 
occur in the Southern and Western parts of the Central Valley where surface water is 
scarcer and the unconfined aquifer is already depleted.  In the Northern and Eastern 
parts, we would expect to find more pumping in the unconfined aquifer as it is shallower 
there.  We would not expect to find confined pumping leading to increased discharge 
due to a shallow aquifer table rising. 
 

3574, 7) “occurring” rather than “coming” 

We have changed “coming” to “occurring”. 
 

12) Are there no reservoir dams? Or are they too small to mitigate against year-to-year 

variations? Pls explain. 

There are significant reservoirs in the Central Valley, but they are of insufficient size and 
operational flexibility to mitigate against multi-year drought (as compared to the 
Colorado River Basin).  Many reservoirs (particularly in the Southern Central Valley) 
mainly serve to protect against major floods and to hold surface water for release later 
in the summer. 
 

17-19) That suggests to me that additional constraints are needed. Are there no data 

on dam releases or the surface water budget that you could use? 

We do not believe this section requires additional constraints.  Dam releases, outflow 
through the California delta, and a surface water budget was calculated in Anderson et 
al. (2012 – cited in manuscript).  The purpose of our manuscript is to introduce 
constraints on the irrigation flux using only remotely-sensed data so that the method can 
be applied to other, data-poor, regions of the world. 
 

3575, 1) Presumably you mean fig. 5? I don’t understand how to interpret fig. 5, pls 

explain. 

We do mean Fig. 5, and we will correct this in a revised manuscript.  We will also add 
additional text to the caption of Fig. 5: “The x-axis represents the trial recharge used in 
equation 4 to obtain GWWD and the y-axis represents the output recharge from 
equation 3.” 
 

9) why call it an inventory approach? What you describe sounds like a water budget 

approach. 

We called it an inventory approach because that was the description that was used in 
Anderson et al. (2012).  It refers to using the data from dam releases and outflow to 
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construct an inventory.  We prefer this over “water budget” as we believe water budget 
is a more generic term. 
 

11) “Agreement” not “comparison”. Also, how did Anderson et al estimate GW_wd? 

Anderson et al. (2012) did not estimate GW_wd.  They focused on estimating surface 
water consumption using remote-sensing and intercomparison to the inventory 
approach.  Using the iterative approach in Fig. 5 is one significant advance on Anderson 
et al. (2012) and is necessary to obtain direction hydrologic fluxes (as opposed to net 
flux) to better use satellite data in land surface modeling.  We will change “comparison” 
to “agreement”. 
 

25-26) This needs an interpretation. I assume this may be a consequence of wetter soil conditions 

causing greater rainfall-runoff response, but given it is modelled you can (and should) trace why 

this is predicted. 

We agree that more interpretation is needed.  We will add the following to the end of the 
sentence, “which is an expected consequence due to the wet soil from irrigation leading 
to higher surface runoff”. 
 

29) losing streams – this term is missing in Eq. 4. Pls discuss. 

Losing streams would be represented by a negative Q_discharge (representing river 
recharging aquifers), and would not require an additional term.  The discussion of this 
stream property is meant to refer to that groundwater tables no longer intersect stream 
beds in many parts of the Central Valley (unlike historical conditions).  Therefore, 
changes in irrigation are unlikely to increase Q_discharge. 
 

3577, 2) once again, no need for “may” – you should be able to deduct this from your 

modelling. 

We feel this hedge with “may” is warranted given the heterogeneous cropping patterns 
that exist at sub-CLM (0.125°X0.125° grid cell) resolution.  All of the CLM grid cells in 
the Central Valley have both annual and perennial crops, with flood and drain crops 
(rice) present primarily in the Northern Central Valley. 
 

28) “global inventory” - pls explain. 

We refer to the irrigation data set of Siebert et al. (2010) here.  We will revise this 
sentence to read, “than a global inventory (Siebert et al., 2010), based approach”. 
 

3578, 14-17) sounds like a fairly speculative thought bubble. Argue better or delete. 

Right now, observations of soil moisture are either non-existent or too coarse or 
inaccurate (SMOS, AMSR-E) to enable regional soil moisture mapping.  SMAP was 
specifically designed to produce soil moisture observations at a sufficiently high 
spatiotemporal resolution for weather and land surface models.  We will rephrase this 
section to “. . . with precise and accurate regional and global soil moisture observations 
from upcoming missions such as the Soil Moisture Active Passive, whose outputs are 
specifically designed to improve inputs to numerical weather prediction and land surface 
models  (Entekhabi et al., 2010).” 
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18) “sufficiently coarse”?? Rephrase. 

We will change “coarse” to “low”. 
 

26) “dry” not “drought”. “missions” - what missions? 

We will replace “drought” with “dry” and specify the four missions discussed by the 
citations at the end of this sentence. 
 

28) “higher spatial scales” – do you mean higher spatial resolution? 

 Yes, and we will change “scales” to “resolution”. 
 

 

 

Anonymous reviewer 2: 

General comments This paper introduces a new method to account for irrigation water 

management in land surface models using optical and gravimetry satellite data. 

This is an important topic because it will help analyzing the impacts of irrigation water 

abstraction on the hydrological and the climate system. 

We appreciate the reviewer’s recognition of these aspects of our manuscript. 
 

The method is developed for the Central Valley in California that is probably a very unique 

irrigated region with a lot of available data and large irrigated fields that are easily ’seen’ by the 

remote sensing ET products. In many other regions in the world where plot sizes are and perhaps 

irrigation intensity is much smaller the signal might not be as strong, and the approach might not 

work at all. Some methods use absolute values as thresholds and it is not clear how they will be 

determined elsewhere. To be more relevant for the problem, it would be interesting to see at least 

some discussion on how the approach can be applied in other regions with different irrigation 

practices and hydro-geolocial conditions. Ideally, the approach should be tested in another 

region.  Some of the methods are not sufficiently well justified and should be clarified for 

somebody who is not familiar with the CLM modeling system (see detailed comments below). 

We note that satellite ET products come in many spatial resolutions.  Landsat based 
products (e.g. METRIC) can come in resolutions as high as 30m, so we do not think that 
the spatial resolution will be a hindrance in applying this approach elsewhere.  We note 
that the satellite ET algorithms used here do not rely on absolute thresholds, 
determination of irrigation practices, or knowledge of underlying hydrogeological 
conditions.  Our method and approach was to use as little in-situ observations or data to 
develop the method (hence the use of satellite-based ET and running the land surface 
model with reanalysis products), but to assess the results using our knowledge of the 
Central Valley and the in-situ observations.  We also note that the Central Valley is still 
an important study region given the conflicting previous studies on the implications of 
Central Valley irrigation for precipitation elsewhere in the Western United States (Lo and 
Famiglietti, 2013; Soorooshian et al., 2011), which is especially relevant given current 
and potential future drying in the Western US.  We agree that testing this type of 
parameterization in other, data-poor, irrigated regions would be a good future research 
direction. 
 

Specific questions and technical corrections 
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Section 2.1. A bit more information on the irrigation practices would be useful :Fraction of total 

area irrigated, main crops, number of crops per year, irrigation infrastructure (canals, sw 

reservoirs, etc) , water use as fraction of total available water resources? Parts of section 3.2 

could be moved here. 

Unlike many irrigated regions around the world, the Central Valley is notable for its 
incredible diversity of crops and lack of a few predominant crops.  For example, in one 
Central Valley county (Fresno) where the one of the authors (Anderson) has previously 
worked, there are more than 300 varieties of different crops/cultivars (the more than 200 
crops number was a conservative number to distinguish between different crops).  
Some additional information requested by reviewer 2 will already be provided in 
response to reviewer 1.  Additional details, including total blue water consumption and a 
reference to the Census of Agriculture details on cropping and irrigation area, will be 
included in a revision. 
 

Section 2.2. Somehow it is unclear why the ensemble ET is superior to any of the individual 

products. What is the spatial resolution of the ET, Precip, and the CLM grid cell resolution? 

There are significant uncertainties in the remote sensing estimates that should at least be 

discussed and perhaps the ET ensemble should not be called ’observed’ values (later in the 

manuscript). What is meant by uncertainty of ET (line 1). 

Using an ensemble of satellite hydrology products developed using different 
methodologies is a well-recognized approach to constraining the value of the parameter 
one wants to observe.  By avoiding a single approach (and its assorted biases) we 
obtain a range where there is greater confidence in the actual ET value.  Following the 
suggestion of both reviewers, we will revise the “observed” language as detailed in 
response to reviewer 1.  Spatial resolutions are now reported for all products.  To 
reduce confusion, “uncertainty” has been replaced by “standard deviation” 
 

Section 2.3. Some more details for the CLM (spatial and temporal resolution) and a justification 

for the use of the 9 member ensemble would be interesting.  

The reason to use the 9 member ensemble is to include as many as possible of the 
current the state-of-the-art models' simulations. The 9 member ensembles are based on 
different models and different atmospheric forcings. Therefore, we have more 
confidence on their ET simulations in a pre-irrigation, pre-development environment.   
 

Eq. 5 assumes that all water abstracted from ground and surface water becomes ET. In reality, a 

considerable amount is returned to the soil and gw storage, as loss. It is probably not relevant on 

monthly time steps if you consider the net abstraction only but at least it should be mentioned. 

Line 24 on 3572 and Fig.2 seem to suggest that the abstraction (delta ET) will be added to 

precipitation in the model, in which case it will be redistributed. Will this violate the grid cell 

water balance? Why is deltaET in Eq. 5 taken as the 6 year mean? There should be considerable 

differences between wet and dry years that are worth exploring. This can be seen in figure 3a and 

3b. 

The irrigation water is taken from both surface water and groundwater. The Central 
Valley aquifer system is a combination of unconfined and confined aquifers; we assume 
that groundwater withdrawals are equally distributed between both types of aquifers. 
Because the CLM lacks a confined aquifer component, confined withdrawal is from a 
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hypothetical water store. Unconfined withdrawals were taken from the saturated zone of 
the soil.  The reviewer is correct that Eq. 5 assumes all abstracted water becomes ET.  
But Eq. 5 is used only to obtain an estimate for SW_WD, which then determines (in 
part) the P to be input in a simulation.  So the CLM cell water balance in a given 
simulation is not affected.  We will mention the limitation with equation 5 in our revision.  
We will also revise the last part of section 2.4 to read “Since the Central Valley aquifer 
system is a combination of unconfined and confined aquifers; we assume that 
groundwater withdrawals are equally distributed between both types of aquifers (Fig 2). 
Because the CLM lacks a confined aquifer component, confined withdrawal is taken 
from a hypothetical water store which is constrained together with the unconfined 
aquifer using equation 4 and GRACE estimated groundwater. Unconfined withdrawals 
were taken from the saturated zone of the soil.” 
 
With respect to the deltaET, we agree that there are some differences between wet and 
dry years, and that the use of such additional information could use the annual data to 
make the simulations better. However, high resolution estimates of ET may not be 
available for other regions or times, so in this study we would rather use the 
climatological irrigation water demand as determined from the multi-annual mean of the 
satellite observed ET.   
 

 

The ’grid search’ is unclear. Is there is search distance or is water only taken from the same grid 

cell? If so, the amount of water available from surface water will highly depend on the resolution 

of the model. The ’trial and error’ approach in figure 5 is not clear and needs a better 

explanation. What is the justification for using values between 5 and 20 mm? Are these values 

related to the total Central valley area or only the irrigated areas? Here and elsewhere in the 

manuscript it would be worthwhile to report number (irrigation depth etc.) related to the irrigated 

area, and not averaged over the entire area. 

Our inclusion of “grid search” as a parenthetical comment was not necessary and 
needlessly created confusion; the “grid” we were referring to was not the CLM grid, but 
rather the gridded values of groundwater recharge shown in Fig. 5.  We trust that our 
removal of that comment will help clarify things.  As noted on pg. 3573, ln 23, we started 
the search for a satisfactory value of GW_{WD} at 20 mm because that was the value 
necessary to match the no-irrigation, baseline simulation.  The choice to increase 
GW_{WD} in increments of 5 mm was arbitrary, but was made because it seemed to 
provide reasonably fine resolution without requiring an excessive number of model 
simulations.  We will remove “grid search”. 
 

 

Section 3.2. The mean deltaET (376mm) needs to be put into perspective with total water use 

and available water. Can you add a figure showing the monthly time series of reported 

(inventory) and simulated abstraction from gw and sw ? What would be interesting is the 

different partitioning of the two in response to drought conditions. 

The inventory of water use for the Central Valley and partitioning of surface and 
groundwater consumption (not abstraction) is already reported in Anderson et al. (2012) 
and a figure of inventory water use would duplicate that report (see Table 1 and Fig 2. 
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from Anderson et al. (2012) below).  The simulated abstraction of gw and sw is constant 
during the summer months (May-October) as we discuss in section 3.2.  Following the 
suggestion of both reviewers, we now report the total blue water consumption to better 
conceptualize the size of the Central Valley hydrologic system.  However, we want to 
keep the emphasis of the study on the model development aspect instead of focusing 
on the nuances of the Central Valley. 
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Figure 3.a Explain the range of the shaded regions. The thick lines are mean values 

? Figure 3.c. Should “time” be replaced by “month”? Figure 6 needs a better legend. 

Align the color schemes in figures 6 and 7. 

 We will add text explaining the range of the shaded region and will alter the figures as 
the reviewer suggests. 
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 7 

Abstract 8 

Irrigation is a widely used water management practice that is often poorly parameterized in 9 

land surface and climate models.  Previous studies have addressed this issue via use of 10 

irrigation area, applied water inventory data, or soil moisture content.  These approaches have 11 

a variety of drawbacks including data latency, accurately prescribing irrigation intensity, and a 12 

lack of conservation of water volume for models using a prescribed soil moisture approach.  13 

In this study, we parameterize irrigation fluxes using satellite observations of 14 

evapotranspiration (ET) againstcompared to ET from a suite of land surface models without 15 

irrigation.  We then apply this water incorporate the irrigation flux into the Community Land 16 

Model (CLM)), and use an iterative approach to estimate groundwater recharge a systematic 17 

trial-and partition the water flux between groundwater-error procedure to determine the 18 

ground- and surface water. -water withdrawals that are necessary to balance the new irrigation 19 

flux.  The ET simulated byresulting CLM simulation with irrigation produces ET that matches 20 

the magnitude and seasonality of observed satellite ET well, with a mean difference of 6.3 21 

mm/month and a correlation of 0.95.  Differences between the new CLM ET values and 22 



 

3 
 

satellite observed ET values are always less than 30 mm/month and the differences show no 1 

pattern with respect to seasonality.  The results reinforce the importance of accurately 2 

parameterizing anthropogenic hydrologic fluxes into land surface and climate models to 3 

assess environmental change under current and future climates and land management regimes.   4 

 5 

1 Introduction 6 

 Agricultural irrigation is the dominant anthropogenic use of surface and groundwater 7 

globally (Postel et al., 1996; Siebert et al., 2010; Wisser et al., 2008).  Irrigation, and its 8 

associated movement, storage, and depletion of surface and ground waters, can induce major 9 

changes in regional hydrology (Ferguson and Maxwell, 2012; Haddeland et al., 2006; Tang et 10 

al., 2008) and climatology (Kueppers et al., 2007; Lo and Famiglietti, 2013).  Irrigation 11 

demand has resulted in groundwater depletion across multiple regions of the world 12 

(Famiglietti, 2014), including the Western United States (Famiglietti et al., 2011; Scanlon et 13 

al., 2012), the Middle East (Voss et al., 2013), and India (Rodell et al., 2009).  Globally, this 14 

depletion has a net effect on continental runoff and sea level rise (Van Djik et al., 2014; Wada 15 

et al., 2010).  Given the impact of irrigation on hydrology, climate, and food production, it is 16 

crucial to be able to accurately model irrigation in current land surface models (e.g. Rodell et 17 

al., 2004; Xia et al., 2012a) in order to assess potential land-atmosphere feedback mechanisms 18 

that may impact future water availability for irrigation, municipal, and environmental uses. 19 

 Current land surface models (LSMs), such as the Community Land Model (CLM  – 20 

Oleson et al., 2008), that are run without an irrigation parameterization usually have 21 

unrealistically low evapotranspiration in agricultural regions (Lei et al., 2015; Lo et al., 2013; 22 
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Lobell et al., 2009; Sorooshian et al., 2011; Ozdogan, 2010).  Given that irrigation is 1 

predominantly used in semi-arid to arid regions and/or regions where precipitation and 2 

growing seasons are asynchronous, this lack of parameterization can be highly significant for 3 

modeling regional hydrology.  Some LSMs and their associated regional climate models 4 

(RCMs) or global climate models (GCMs) prescribe enhanced water availability in 5 

agricultural regions due to irrigation.  Representations vary considerably depending on the 6 

simulation; they include (1) prescribing a static soil moisture at field capacity for all irrigated 7 

crops (Kueppers et al., 2007), (2) prescribing a total flux based on a prescribed estimate across 8 

the entire agricultural domain (Lo and Famiglietti, 2013),  (3) assigning a fraction of land 9 

surface to be irrigated (Leng et al., 2013 and 2014; Lobell et al., 2009; Tang et al. 2007), and 10 

(4) assigning a seasonally-based soil moisture curve to represent irrigation only during the 11 

active irrigation season (Sooroshian et al., 2011).  Each of these approaches has significant 12 

disadvantages.  The approaches that assign irrigation based on soil moisture (approaches 1 13 

and 4 above) do not consider basin scale limitations on available irrigation water (particularly 14 

during droughtdry years) and may overestimate the total amount of irrigation water as well as 15 

the differential impacts between droughtdry and pluvialwet years. The prescribed/inventory 16 

based flux (approach 2) has the advantage of a mostly conserved water budget, but there are 17 

latency issues for much of the data which are based on potentially outdated or incomplete 18 

national and regional statistics.  Assigning a fraction of land area to be irrigated (approach 3) 19 

has the disadvantage of assuming a particular irrigation intensity, and this approach cannot 20 

easily distinguish between full and deficit irrigation.  Finally some prescribed flux approaches 21 

work primarily where groundwater is the sole source for applied irrigation and others based 22 

on irrigated area may not account for irrigation intensity.  AlthoughWhile process differences 23 
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in RCMs/GCMs and LSMs can account for variations in the sensitivity of irrigation-climate 1 

feedbacks and teleconnections, it should be noted that studies with different irrigation 2 

parameterizations over the same region have had significantly different climatic feedbacks 3 

and downwind impacts (Kueppers et al., 2007; Lo and Famiglietti, 2013; Sooroshian et al., 4 

2011). 5 

 Satellite remote sensing can be used to provide more robust, regional observations of 6 

irrigation water consumption.  Evapotranspiration (ET) is routinely monitored over irrigated 7 

agriculture using observations of surface temperature and vegetation greenness (Allen et al., 8 

2007; Anderson et al., 2007; Tang et al., 2009).  When combined with satellite gravimetry 9 

(Swenson and Wahr, 2003) and large scale meteorological products (Hart et al., 2009) the 10 

amount of irrigation water coming from surface water supplies (Anderson et al., 2012) and net 11 

groundwater depletion (Famiglietti et al., 2011) can be assessed.  Together, these satellite 12 

algorithms can provide a much more detailed and current input dataset for LSMs and 13 

RCMs/GCMs to assess irrigation-climate feedbacks. 14 

 In this study, we follow on the work of Lo and Famiglietti (2013) by using remote 15 

sensing observations of ET, surface water consumption, and total water storage anomalies to 16 

infer surface and ground water fluxes., instead of using a static surface and ground water 17 

irrigation inventory dataset for parameterization.  We use these fluxes to improve and test an 18 

irrigation parameterization in the Community Land Model (Lawrence et al., 2011; Oleson et 19 

al., 2008) in a well instrumented basin with a large amount of irrigated agriculture, the Central 20 

Valley of California.  We use ET from an ensemble of three satellite products, combined with 21 

gridded precipitation, to determine the seasonality and interannual variability of additional ET 22 
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from irrigation.  We then use an iterative recharge parameterization, combined with satellite 1 

gravimetry, to determine relative amounts of irrigation applied from groundwater and surface 2 

water.  The results show the ability and importancevalue of using diagnostic remote sensing 3 

observations and models for improving prognostic algorithms necessary to increase LSM skill 4 

in predicting hydrologic, biogeochemical, and climatic impacts and feedbacks under future 5 

greenhouse gas emission and land used change scenarios. 6 

 7 

2 Methods 8 

2.1 Study region 9 

 We evaluate our approach in the Central Valley of California.  The Central Valley, 10 

which is a large (~54,000 km
2
), low elevation (<200 m a.s.l) valleyregion (Fig. 1).  The 11 

Central Valley is a highly-productive agricultural region, with over 200 cultivated crops and 12 

an annual crop value of more than $35 billion US Dollars in 2012 (California Department of 13 

Food and Agriculture, 2014)., USDA National Agricultural Statistics Service, 2014).  14 

Relevant aspects of the Central Valley’s geology (Planert and Williams, 1995; Faunt et al., 15 

2009), climatology (Zhong et al., 2004), hydrology (Scanlon et al., 2012), and anthropogenic 16 

inter-basin water transfers (Chung and Helweg, 1985; Fischhendler and Zilberman, 2005) are 17 

extensively reviewed elsewhere.  Average (2004-2009 water years) blue water (surface water 18 

plus ground water) consumption was 2.03±0.02 X10
10

 m
3
 as determined using an inventory 19 

method (Anderson et al., 2012).  Agriculture in the Central Valley is heavily dependent upon 20 

irrigation from both surface and ground waters, with a large variation in the relative 21 
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consumption of surface and ground water due to high inter-annual variation in precipitation 1 

and an almost complete lack of precipitation during the peak summer growing season 2 

(Anderson et al., 2012; Scanlon et al. 2012).  In addition to its agricultural importance, the 3 

Central Valley has multiple attributes that are useful for developing and validating new model 4 

processes to better represent anthropogenic impacts on regional hydrology and climatology.  5 

These include (a) well understood hydrogeology, surface water use, and extensive in-situ 6 

meteorological observations (Hart et al., 2009; Faunt et al., 2009; Planert and Williams, 7 

1995); (b) well constrained groundwater systems with little to no subsurface outflow to the 8 

ocean (Faunt et al., 2009), (b); (c) well gauged and modeled surface water flows into and out 9 

of the Valley (Anderson et al., 2012),); and (cd) anthropogenic hydrologic processes 10 

(irrigation, crop evapotranspiration, and drainage) that have a very distinct seasonality from 11 

the winter precipitation and spring runoff dominated natural processes that occurred prior to 12 

irrigation and agricultural development (Lo and Famiglietti, 2013). 13 

Previous remote-sensing based and mechanistic modeling studies have shown sustained 14 

and substantial depletion of groundwater in the Central Valley (Famiglietti et al., 2011; Faunt 15 

et al., 2009), which has accelerated in the most recent drought from 2012 to present (Borsa et 16 

al., 2014; Famiglietti, 2014).  Recent groundwater regulation legislation will likely restrict 17 

future groundwater pumping differentially across groundwater basins (Harter and Dahlke, 18 

2014), making alternative irrigation methods and strategies, such as drip and deficit irrigation, 19 

more common.   and potentially altering the amount and seasonality of irrigation.  The 20 

potential for rapid hydrologic changes in the Central Valley is one reason why a potentially 21 
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dynamic, satellite-based irrigation parameterization would be useful for land surface 1 

modeling. 2 

 3 

2.2 Evapotranspiration, precipitation and total water observations 4 

We calculated the monthly mean and uncertaintystandard deviation of evapotranspiration 5 

(ET) using an ensemble of three products.  One is a surface energy balance product (Anderson 6 

et al., 2012) based on the SEBAL algorithm (Bastiaanssen et al., 1998) that is applied to the 7 

Central Valley at 250 m resolution using a 250 m vegetation index and 1 km thermal data 8 

from the MODerate resolution Imaging Spectroradiometer (MODIS) in conjunction with 9 

gridded meteorology.  The second product (Tang et al., 2009) uses the scatter plot relationship 10 

between the vegetation index and surface temperature (VI-Ts) to estimate the Evaporative 11 

Fraction (EF) and ET at 0.05° resolution using MODIS vegetation and thermal data in 12 

conjunction with Geostationary Operational Environmental Satellite (GOES) surface radiation 13 

products.  The third product (Jin et al., 2011), uses the Priestley-Taylor equation (Priestley 14 

and Taylor, 1972) with the coefficient term (α) optimized using Ameriflux data and net 15 

radiation and ground heat flux parameterized from the MODIS and Clouds and the Earth’s 16 

Radiant Energy System (CERES) instruments to estimate ET at 1 km resolution.  All three 17 

products were clearly able to distinguish peak summertime ET in the Central Valley, which is 18 

asynchronous with largely winter precipitation and which is a characteristic sign of irrigation.  19 

Other ET products (e.g. Miralles et al., 2011; Mu et al., 2011; Jung et al., 2010) were not used 20 

as they were either too coarse in resolution (>0.25° X 0.25° cell size) or were unable to detect 21 

irrigation in the Central Valley. 22 
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Monthly precipitation (approximately 4 km spatial resolution) was obtained using the 1 

Parameter-elevation Regressions on Independent Slopes Model (PRISM), which interpolates 2 

station precipitation data, accounting for orography (Daly, 1994; Daly et al., 2008).  3 

Observations of total water changes were obtained from Gravity Recovery And Climate 4 

Experiment (GRACE) mission (Tapley et al., 2004) for the entire Sacramento and San 5 

Joaquin River Basins (including the usually endoheric Tulare Lake Bain).  Using the 6 

methodology of Famiglietti et al. (2011), groundwater changes were obtained by removing 7 

snow, soil moisture, and surface reservoir storage variations from the total water storage 8 

anomalies from GRACE.  Groundwater changes in the combined basins were assumed to 9 

have occurred entirely within the Central Valley where major agricultural and municipal wells 10 

exist rather than in the non-irrigated, sparsely–populated, mountainous regions surrounding 11 

the Valley. 12 

 13 

2.3 Land surface models  14 

For intercomparison with satellite observed fluxes and determination of additional water 15 

application in CLM, we use an ensemble (9 members) of three North American Land Data 16 

Assimilation System (NLDAS-2 - Mitchell et al., 2004; Xia et al., 2012b), four Global Land 17 

Data Assimilation System (GLDAS-1 - Rodell et al., 2004) outputs, and two CLM 18 

simulations.  For NLDAS-2 and GLDAS-1, we used the Noah, Mosaic, VIC, or CLM models 19 

from each system with the primary NLDAS-2 and GLDAS-1 forcings.  Along with the 20 

NLDAS/GLDAS outputs, we also include outputs from different versions of the CLM 21 

(including CLM3.5 and CLM4) with the GLDAS-1 atmospheric forcings. In addition, we 22 
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evaluated the CMIP5 control outputs (Taylor et al., 2012) to assess the larger performance of 1 

climate models in assessing latent heat fluxes across agricultural regions.  Details about the 2 

CMIP5 models and simulations are provided in supplemental section S1.  For our study, CLM 3 

is run at 0.125° by 0.125° grid cells with 30 minute temporal resolution. 4 

The water budget for the soil layer and groundwater in CLM can be written as: 5 

∆𝑆𝑀 = 𝑃 − 𝐸𝑇 − 𝑄𝑆 − 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒     (1) 

∆𝐺𝑊 = 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  −  𝑄𝑑  (2) 

where ∆𝑆𝑀 is soil moisture change, 𝑃 is precipitation, 𝐸𝑇 is evapotranspiration, 𝑄𝑆 is surface 6 

runoff, 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  is groundwater recharge, ∆𝐺𝑊 is groundwater storage changes, and 𝑄𝑑  is 7 

groundwater runoff (base flow).discharge. However, equations 1 and 2 only reflect the natural 8 

hydrology and neglect the substantial contribution of irrigation in major agricultural regions 9 

as previously discussed. A more reasonable equation should include the aforementioned 10 

irrigation water from surface (river) water ( 𝑆𝑊𝑊𝐷 ) and from groundwater withdrawal 11 

(𝐺𝑊𝑊𝐷) as shown in Figure 2 and equations 3 and 4.  We will incorporate the estimated 12 

irrigation water use into the CLM version 4 and the withdrawn water in the irrigation process 13 

will be treated as an extra water input (effective precipitation).  14 

∆𝑆𝑀 = 𝑃 − 𝐸𝑇 − 𝑄𝑆 − 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + 𝐺𝑊𝑊𝐷 + 𝑆𝑊𝑊𝐷    (3) 

∆𝐺𝑊 = 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  −  𝑄𝑑 − 𝐺𝑊𝑊𝐷  (4) 

 15 

2.4  CLM groundwater and surface water application parameterization 16 
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We use the difference (∆𝐸𝑇) between remote sensing observed ET (𝐸𝑇𝑜𝑏𝑠) and the original 1 

model parameterized ET (𝐸𝑇𝑜𝑚) to constrain total applied surface and groundwater as shown 2 

in equation 5. 3 

∆𝐸𝑇 = 𝐸𝑇𝑜𝑏𝑠  −  𝐸𝑇𝑜𝑚 = 𝑆𝑊𝑊𝐷 + 𝐺𝑊𝑊𝐷  (5) 

∆𝐸𝑇  in equation 5 is determined as an inter-annual (2004-09) mean difference between 4 

satellite observed and modeled ET. Water is applied evenly in CLM4 throughout the primary 5 

growing and irrigation season (May-October).  We can constrain the partitioning of the total 6 

withdrawn irrigation water into 𝑆𝑊𝑊𝐷 and 𝐺𝑊𝑊𝐷 by requiring that equations 3 and 4 are both 7 

satisfied by the CLM4 simulation. A systematic, trial-and-error procedure (grid search) is used 8 

to determine the necessary partitioning using groundwater recharge since it is a common 9 

variable to both equations.  For each trial, a value of 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 is guessed.   𝐺𝑊𝑊𝐷 is then 10 

determined from re-arranging equation 4, with ∆𝐺𝑊 and 𝑄𝑑 being set to average values 11 

derived from processed GRACE observations∆𝐺𝑊 and the baseline simulations for the study 12 

period (2004-2009), respectively.  𝑆𝑊𝑊𝐷 is then found as a residual from equation 5, and 13 

CLM4 is run.  The model run generates a simulated recharge (equation 3).  If the trial (or 14 

“parameterized”) recharge value and the simulated recharge value agree, then equations 3 and 15 

4 are satisfied and the partitioning is accepted.  Equation 5 notes that all abstracted water 16 

eventually contributes to ET.  While this assumption may be violated at a field scale, it likely 17 

holds at a regional scale in the Central Valley where extensive conjunctive use and reuse of 18 

water occurs (Canessa et al., 2011). 19 

To locatefind the correct recharge and withdrawal partitioning, we ran a series of trials in 20 

which the parameterized recharge was increased in 5 mm/year increments, from 20 mm/year 21 
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(the first point in the left in Figure 5 and the minimum value of recharge necessary to generate 1 

the baseline 𝑄𝑑  of 20 mm/year) to 115 mm/year.  With the average ∆𝐺𝑊 and 𝑄𝑑 (section 2 

3.1), this corresponds to a 𝐺𝑊𝑊𝐷 range of 60 to 155 mm/year.  The procedure assumes only 3 

minimal differences exist in 𝑄𝑑 computed for the baseline and trial simulations, an 4 

assumption that we verified by inspecting irrigation simulation outputs.  For all simulations, 5 

we assumed that pumping removed groundwater equally from the confined and unconfined 6 

aquifer layers (Fig. 2).Since the Central Valley aquifer system is a combination of unconfined 7 

and confined aquifers, we assume that groundwater withdrawals are equally distributed 8 

between both types of aquifers (Fig 2). Because the CLM lacks a confined aquifer component, 9 

confined withdrawal is assumed to come from a hypothetical water store. Unconfined 10 

withdrawals were taken from the saturated zone of the soil. 11 

 12 

3 Results and Discussion 13 

3.1 Existing model parameterizations and satellite observed hydrologic 14 

fluxes 15 

Monthly satellite observed and simulated evapotranspiration (ET) for the Central Valley 16 

showed strong and differing seasonality (Fig. 3a).  ObservedSatellite observed monthly ET 17 

ranged from 13 mm (December 2009) to 106 mm (July 2005).  Seasonal maxima and minima 18 

of observed ET coincided with seasonal maxima and minima of regional solar radiation and 19 

temperatures that control potential ET (solar radiation and temperature data not shown).  Over 20 

the entire 2004-2009 study period, mean (± one standard deviation) satellite observed ET was 21 
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54.6±12.8 mm/month (655 mm/year).  GLDAS-1, NLDAS-2, and CLM simulated ET was 1 

substantially lower than satellite observed ET (Fig. 3a), with mean simulated ET of 23.3±5.0 2 

mm/month (280 mm/year).  Simulated ET ranged from 19 mm/month (September 2008) to 69 3 

mm/month (April 2006).  GLDAS-1/NLDAS-2/CLM simulated seasonal maxima and minima 4 

of ET coincided with maximal and minimal natural soil moisture availability following the 5 

end of the winter rainy season and at the end of the dry summer season (Fig. 3c).  On an 6 

average seasonal basis, satellite observed ET showed the greatest difference from simulated 7 

ET in July, when observedsatellite ET was 79 mm/month larger.  In winter (November-8 

February), observed ET exceeded simulated ET by less than 10 mm/month (Fig. 3c). 9 

While the seasonality of satellite observed and simulated ET was different, the annual patterns 10 

of observed and simulated ET matched annual precipitation well, although satellite observed 11 

ET had considerably lower interannual variation than simulated ET (Fig. 3).  Annual 12 

precipitation ranged from 202 mm/year (2007 calendar year) to 416 mm/year (2005 calendar 13 

year).  Mean (± one standard deviation) calendar year precipitation for 2004-2009 was 14 

315.8±84.8 mm/year.  Annual changes in groundwater vary considerably from year to year, 15 

with a maximum increase of 120 mm/year in 2006 and a maximum decrease of 220 mm/year 16 

in 2007 (Fig. 4).  Mean groundwater decrease across the entire study period is approximately 17 

60 mm/year.  Annual precipitation and groundwater change are well correlated (r=0.78), with 18 

the largest groundwater decrease comingoccurring in one of the driest years in California 19 

history (2007) and the largest increase in 2006 following a succession of wet years.  Mean 20 

annual satellite observed ET showed less variation than precipitation, ranging from 624 21 

mm/year in 2009 to 690 mm/year in 2005.  Since precipitation in the surface water source 22 
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regions for the Central Valley (Sierra Nevada Mountains) is very well correlated with 1 

precipitation in the Valley (Daly, 1994; Daly et al., 2008), variations in precipitation are also 2 

assumed to be variations in surface water availability.  Together, this lower variation in ET in 3 

spite of higher variation in precipitation and surface water availability and the inverse 4 

relationship between groundwater level change and precipitation is consistent with the 5 

relatively steady water demand from Californian agricultural crops, many of which are 6 

perennial crops with large, multi-year investments (Ayars, 2013; Blank, 2000), and the long-7 

standing practice of increasing groundwater use to compensate for deficits in surface supplies 8 

and precipitation (Howitt, 1991). 9 

  10 

3.2. Application of Groundwater and Surface Water in CLM and impact on CLM-11 

simulated ET 12 

The mean amount of additional water that is consumed or transpired under irrigation in the 13 

Central Valley is 376 mm/year (satellite observed ET minus mean GLDAS-1/NLDAS-2/CLM 14 

ensemble simulated ET).  The parameterized recharge estimates plotted against CLM 15 

simulated recharge are shown in Figure 5.  Simulated recharge (𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒) showed a more 16 

dampened response to a wide range of parameterized recharges, with simulated recharge 17 

ranging from 47 to 66 mm/year across the parameterized recharge space (20-115 mm/year).  18 

The parameterized and simulated recharge comes to convergence at approximately 55 19 

mm/year (Fig. 45), which is the value we used to partition applied surface water and 20 

groundwater.  Using equation 4, we calculated mean applied groundwater (𝐺𝑊𝑊𝐷) as 95 21 
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mm/year over the 2004-2009 study period.    Mean applied surface water (𝑆𝑊𝑊𝐷) was 281 1 

mm/year. 2 

The model optimized 𝑆𝑊𝑊𝐷 compares well with previous remote sensing and high resolution 3 

inventory estimates of surface water consumption in the Central Valley.  For the 2004-08 4 

water years, Anderson et al. (2012) found a mean (± uncertainty) surface water consumption 5 

of 291±32 mm/year using remote sensing and 308±7 mm/year using an inventory approach 6 

calculated from dam releases into the Central Valley, canal exports to coastal basins to the 7 

south, and outflow through the California Delta.  The close comparison of these values to 8 

𝑆𝑊𝑊𝐷 gives us further confidence in our optimization method and its underlying assumptions. 9 

Figure 6 shows the impact of the irrigation water parameterization on CLM simulated ET 10 

compared to observational data.  With the new parameterization, monthly CLM simulated ET 11 

ranged from a minimum of 10 mm (December 2008) to a maximum of 96 mm (June 2006), 12 

with a mean of 48.3 mm.  The differences between CLM simulated ET and satellite observed 13 

ET (CLM minus observedsatellite) ranged from -30 mm/month to 11 mm/month with a mean 14 

difference of -6.3 mm/month.  There was low correlation between seasonality (month) and the 15 

discrepancy between satellite observed and non-irrigated simulated ET (r<0.5) as assessed 16 

with a geometric mean regression.  Conversely, the relationship between satellite observed 17 

monthly ET and CLM simulated ET was excellent (r=0.95, slope=0.94, intercept=-3.1 18 

mm/month). 19 

With respect to other hydrologic fluxes, simulated groundwater base flow (𝑄𝑑) changed little 20 

with irrigation over the 2004-09 study period (27 mm/year in experimental run versus 18 21 

mm/year in control – data not shown).  Surface runoff (𝑄𝑆) changed more considerably (68 22 
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mm/year in experimental run versus 38 mm/year in control., which is an expected 1 

consequence due to the wet soil from irrigation leading to higher surface runoff.  The small 2 

change in 𝑄𝑑  despite additional irrigation concurs with GRACE-derived groundwater 3 

changes, simulated reductions in groundwater in CLM, and previous hydrogeologic 4 

observations that many rivers and streams in the Central Valley are now losing streams due to 5 

long-term groundwater depletion (Planert and Williams, 1995).  The larger increase in 𝑄𝑆 may 6 

reflect on the ground spatial differences in cropping patterns and water management within 7 

the Central Valley.  For example, the northern part of the Central Valley (Sacramento Valley) 8 

has extensive rice production that results in multiple flooding and drainage events in the 9 

course of a production season (Hill et al., 2006).  Much of this water is reused further 10 

downstream (south).  Other cropping systems, particularly those in parts of the southern 11 

Central Valley (San Joaquin Valley) affected by drainage issues, use tail water recovery 12 

systems as required by state and local regulations which minimize surface runoff from 13 

irrigation (Schwankl et al. 2007). 14 

 15 

3.3 Impact of parameterizations of irrigated agriculture in land surface 16 

modeling 17 

The significant underestimation of peak growing season ET in irrigated agricultural regions is not 18 

confined to the NLDAS/GLDAS and default CLM models.  Figure 7 shows the mean climatology 19 

of ET for the control runs of the CMIP5 models over the Central Valley compared to satellite 20 

observed ET.  The mean (± one standard deviation) ET is 45.9±15.8 mm/month.  While the peak 21 

ET of the mean of the CMIP5 ensemble is higher (68 vs. 48 mm/month) and later (May vs. April) 22 
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than the NLDAS/GLDAS/CLM ensemble, the CMIP5 ET still is more than 100 mm/year lower 1 

than satellite observed ET (550 vs. 655 mm/year) and exhibits minima and maxima characteristic 2 

of the natural hydrologic cycle.  Furthermore, some of the improved closure between CMIP5 and 3 

satellite observed ET compared to NLDAS/GLDAS/CLM could be due to substantially higher 4 

CMIP5 modeled ET during the winter.  Despite the relatively large uncertainty of the CMIP5 5 

models over the Central Valley, the satellite observed ET for over half of the year is significantly 6 

outside of the CMIP5 envelope. 7 

Compared with previous parameterizations of irrigation water in the Central Valley our remote-8 

sensing based approach resulted in a lower consumed amount of water than the soil moisture-9 

based parameterizations (Kueppers et al., 2007; Sorooshian et al., 2011) and a slightly higher 10 

amount of consumed water  than a global inventory- (Siebert et al., 2010), based approach (Lo and 11 

Famiglietti, 2013).  For the summer months of May-August, a high soil moisture parameterization 12 

at field capacity (Kueppers et al., 2007) resulted in an annual summer irrigation water 13 

consumption of 612 mm/summer whereas a variable soil moisture parameterization (Sorooshian et 14 

al., 2011) resulted in a summer irrigation water consumption of 430 mm/summer.  These values 15 

do not include potential water consumption from the shoulder irrigation months of April, 16 

September, and October.  The inventory data of Siebert et al. (2010) used in the Lo and 17 

Famiglietti (2013) parameterization  was only about 25 mm lower (350 mm/year versus 376 18 

mm/year) than our remote sensing parameterization, but the amount of consumed water from 19 

groundwater (140 mm/year) was substantially higher than our applied groundwater (95 mm/year).  20 

Furthermore, our satellite-ET derived estimate is also likely to be a lower envelope estimate of 21 

applied water due to the slight increase in surface runoff observed in CLM.  The overestimation of 22 
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ET and latent heat fluxes with the soil moisture parameterization suggests challenges in using this 1 

type of parameterization; however, soil moisture parameterization may become significantly more 2 

feasible andwith precise withand accurate  regional and global soil moisture observations from 3 

upcoming missions such as the Soil Moisture Active Passive, whose outputs are specifically 4 

designed to improve inputs to numerical weather prediction and land surface models  (Entekhabi 5 

et al., 2010). 6 

Currently, both inventory and remote sensing based approaches have sufficiently coarselow 7 

spatial and temporal resolution so that irrigation water parameterization is typically done on 8 

inter-annual time scales for large basins.  This temporal resolution for water parameterization 9 

works well for accurately modeling the hydrology of the Central Valley, likely due to the 10 

lower amount of inter-annual variation in ET and the use of groundwater to compensate for 11 

surface water deficits.  However, it is unclear how well this approach will work in irrigated 12 

regions where ET may be more variable due to a lack of supplemental reservoirs and thus a 13 

necessary fallowing of land during droughtdry periods.  Current and future missions (GPM, 14 

SMAP, SWOT, GRACE-Follow On/GRACE II)  have the potential to sufficiently improve the 15 

resolution of satellite hydrologic products to enable annual quantification of surface and 16 

ground water application at higher spatial scalesresolution (Biancamaria et al., 2010; 17 

Entekhabi et al., 2010, Smith et al., 2007; Zheng et al., 2015).  These higher resolution 18 

parameterizations may enable better quantification of hydrologic impacts of changing 19 

management and cropping patterns, including shifts in irrigation regimes and changes 20 

between annual and perennial crops.  Parameterizations from inventory methods may improve 21 



 

19 
 

if public monitoring and reports requirements become more widespread (similar to those for 1 

Arizona’s Active Management Areas – see Jacobs and Holway, 2004).  2 

 3 

4 Summary and Conclusion 4 

We used satellite-based estimates of evapotranspiration (ET) and groundwater change 5 

combined with precipitation data to constrain and parameterize the additional water applied to 6 

a major irrigated agricultural region (Central Valley, California, USA) for simulation of land 7 

surface fluxes using the Community Land Model (CLM) version 4.  We evaluated the baseline 8 

amount of consumed water using a suite of nine land surface models/forcing data sets and 9 

estimating the additional water consumed as a residual of current satellite observations.  We 10 

used an iterative solution of parameterizing and then simulating groundwater recharge to 11 

partition the total water withdrawals among ground and surface water.  The additional water 12 

parameterization resulted in CLM tracking the total amount and seasonality of ET closely.  13 

The remote sensing parameterization of irrigation water consumption results in a smaller total 14 

amount of water being consumed than in previous soil moisture-based parameterizations. 15 

The results emphasize the need for irrigation parameterization in land and climate models to 16 

accurately assess land-atmosphere energy and mass fluxes in regions with major 17 

anthropogenic modifications.  Given the potential for intense irrigation to modify regional 18 

climate (Kueppers et al., 2007) and to enhance convection precipitation in downwind regions 19 

(Lo and Famiglietti, 2013), it is important that the additional water consumption from 20 

irrigation is properly represented to better model the local and more distant impacts of 21 

anthropogenic land surface modification.  An improved parameterization will also be useful 22 
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for assessing regional climatic impacts of possible future changes in irrigated agricultural 1 

regions due to increased logistical, political, and/or economic restrictions on groundwater 2 

pumping or changes in surface water use. 3 
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 1 

Figure 1: Map of Central Valley, California.  a)  Underlying Normalized Differential 2 

Vegetation Index (NDVI) from the MODerate resolution Imaging Spectroradiometer 3 

(MODIS) 250m, 16 day product (July 2006) illustrating irrigated regions of the Central Valley 4 

(black outline).  Darker green indicates higher NDVI and vegetation cover.  b) Map of the 5 

United States with the inset area of (a) outlined in red. 6 
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 1 

 2 

Figure 2: SchematicConceptual schematic of land hydrological processes, modified from 3 

Oleson et al. (2008). Blue dash and green lines indicate the irrigation water fluxes applied in 4 

the CLM. In the Central Valley, the aquifer is variably confined with some regions having no 5 

confinement.    6 



 

33 
 

 1 



 

34 
 

 1 

Figure 3:  (a) the comparison between the remote sensing estimated ET, and 9 GLDAS, 2 

NLDAS, and CLM models.  The lines indicate the ensemble mean while the shading indicates 3 

uncertainty around the ensemble mean, (b) annual precipitation for the Central Valley, and (c) 4 

monthly climatology for satellite observed and modeled ET  5 
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 1 

Figure 4: Annual groundwater change for the Central Valley derived from GRACE. 2 
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 1 

Figure 5: Parameterized (guessed) groundwater recharge versus recharge simulated in 2 

CLM 4 (see section 2.3).  The x-axis represents the trial recharge used in equation 4 to 3 

obtain GWWD and the y-axis represents the output recharge from equation 3.  The 4 

intersection of the parameterized values with simulated values (55 mm/year) represents 5 

where recharge comes to convergence, and is the value of recharge used to separate total 6 

water use into ground and surface water pumping components. 7 
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 10 
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 3 

Figure 6:  Monthly ET from CLM 4 with the improved irrigation parameterization when 4 

compared to observations.  Lines indicate model or ensemble mean while shading 5 

indicates uncertainty of the satellite observed ET. 6 
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 1 

Figure 7:  Mean seasonal cycle from the CMIP5 suite of models compared against satellite 2 

observed ET.  Solid line shows mean value of CMIP5 model members and shaded region 3 

shows uncertainty (two standard deviations around mean). 4 
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