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Abstract 8 

Irrigation is a widely used water management practice that is often poorly parameterized in 9 

land surface and climate models.  Previous studies have addressed this issue via use of 10 

irrigation area, applied water inventory data, or soil moisture content.  These approaches have 11 

a variety of drawbacks including data latency, accurately prescribing irrigation intensity, and a 12 

lack of conservation of water volume for models using a prescribed soil moisture approach.  13 

In this study, we parameterize irrigation fluxes using satellite observations of 14 

evapotranspiration (ET) compared to ET from a suite of land surface models without 15 

irrigation.  We then incorporate the irrigation flux into the Community Land Model (CLM), 16 

and use a systematic trial-and-error procedure to determine the ground- and surface-water 17 

withdrawals that are necessary to balance the new irrigation flux.  The resulting CLM 18 

simulation with irrigation produces ET that matches the magnitude and seasonality of 19 

observed satellite ET well, with a mean difference of 6.3 mm/month and a correlation of 0.95.  20 

Differences between the new CLM ET values and satellite observed ET values are always less 21 

than 30 mm/month and the differences show no pattern with respect to seasonality.  The 22 
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results reinforce the importance of accurately parameterizing anthropogenic hydrologic fluxes 1 

into land surface and climate models to assess environmental change under current and future 2 

climates and land management regimes.   3 

 4 

1 Introduction 5 

 Agricultural irrigation is the dominant anthropogenic use of surface and groundwater 6 

globally (Postel et al., 1996; Siebert et al., 2010; Wisser et al., 2008).  Irrigation, and its 7 

associated movement, storage, and depletion of surface and ground waters, can induce major 8 

changes in regional hydrology (Ferguson and Maxwell, 2012; Haddeland et al., 2006; Tang et 9 

al., 2008) and climatology (Kueppers et al., 2007; Lo and Famiglietti, 2013).  Irrigation 10 

demand has resulted in groundwater depletion across multiple regions of the world 11 

(Famiglietti, 2014), including the Western United States (Famiglietti et al., 2011; Scanlon et 12 

al., 2012), the Middle East (Voss et al., 2013), and India (Rodell et al., 2009).  Globally, this 13 

depletion has a net effect on continental runoff and sea level rise (Van Djik et al., 2014; Wada 14 

et al., 2010).  Given the impact of irrigation on hydrology, climate, and food production, it is 15 

crucial to be able to accurately model irrigation in current land surface models (e.g. Rodell et 16 

al., 2004; Xia et al., 2012a) in order to assess potential land-atmosphere feedback mechanisms 17 

that may impact future water availability for irrigation, municipal, and environmental uses. 18 

 Current land surface models (LSMs), such as the Community Land Model (CLM  – 19 

Oleson et al., 2008), that are run without an irrigation parameterization usually have 20 

unrealistically low evapotranspiration in agricultural regions (Lei et al., 2015; Lo et al., 2013; 21 

Lobell et al., 2009; Sorooshian et al., 2011; Ozdogan, 2010).  Given that irrigation is 22 
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predominantly used in semi-arid to arid regions and/or regions where precipitation and 1 

growing seasons are asynchronous, this lack of parameterization can be highly significant for 2 

modeling regional hydrology.  Some LSMs and their associated regional climate models 3 

(RCMs) or global climate models (GCMs) prescribe enhanced water availability in 4 

agricultural regions due to irrigation.  Representations vary considerably depending on the 5 

simulation; they include (1) prescribing a static soil moisture at field capacity for all irrigated 6 

crops (Kueppers et al., 2007), (2) prescribing a total flux based on a prescribed estimate across 7 

the entire agricultural domain (Lo and Famiglietti, 2013),  (3) assigning a fraction of land 8 

surface to be irrigated (Leng et al., 2013 and 2014; Lobell et al., 2009; Tang et al. 2007), and 9 

(4) assigning a seasonally-based soil moisture curve to represent irrigation only during the 10 

active irrigation season (Sooroshian et al., 2011).  Each of these approaches has significant 11 

disadvantages.  The approaches that assign irrigation based on soil moisture (approaches 1 12 

and 4 above) do not consider basin scale limitations on available irrigation water (particularly 13 

during dry years) and may overestimate the total amount of irrigation water as well as the 14 

differential impacts between dry and wet years. The prescribed/inventory based flux 15 

(approach 2) has the advantage of a mostly conserved water budget, but there are latency 16 

issues for much of the data which are based on potentially outdated or incomplete national 17 

and regional statistics.  Assigning a fraction of land area to be irrigated (approach 3) has the 18 

disadvantage of assuming a particular irrigation intensity, and this approach cannot easily 19 

distinguish between full and deficit irrigation.  Finally some prescribed flux approaches work 20 

primarily where groundwater is the sole source for applied irrigation and others based on 21 

irrigated area may not account for irrigation intensity.  While process differences in 22 

RCMs/GCMs and LSMs can account for variations in the sensitivity of irrigation-climate 23 
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feedbacks and teleconnections, it should be noted that studies with different irrigation 1 

parameterizations over the same region have had significantly different climatic feedbacks 2 

and downwind impacts (Kueppers et al., 2007; Lo and Famiglietti, 2013; Lo et al., 2013; 3 

Sooroshian et al., 2011). 4 

 Satellite remote sensing can be used to provide more robust, regional observations of 5 

irrigation water consumption.  Evapotranspiration (ET) is routinely monitored over irrigated 6 

agriculture using observations of surface temperature and vegetation greenness (Allen et al., 7 

2007; Anderson et al., 2007; Tang et al., 2009).  When combined with satellite gravimetry 8 

(Swenson and Wahr, 2003) and large scale meteorological products (Hart et al., 2009) the 9 

amount of irrigation water coming from surface water supplies (Anderson et al., 2012) and net 10 

groundwater depletion (Famiglietti et al., 2011) can be assessed.  Together, these satellite 11 

algorithms can provide a much more detailed and current input dataset for LSMs and 12 

RCMs/GCMs to assess irrigation-climate feedbacks. 13 

 In this study, we follow on the work of Lo and Famiglietti (2013) by using remote 14 

sensing observations of ET, surface water consumption, and total water storage anomalies to 15 

infer surface and ground water fluxes, instead of using a static surface and ground water 16 

irrigation inventory dataset for parameterization.  We use these fluxes to improve and test an 17 

irrigation parameterization in the Community Land Model (Lawrence et al., 2011; Oleson et 18 

al., 2008) in a well instrumented basin with a large amount of irrigated agriculture, the Central 19 

Valley of California.  We use ET from an ensemble of three satellite products, combined with 20 

gridded precipitation, to determine the seasonality and interannual variability of additional ET 21 

from irrigation.  We then use an iterative recharge parameterization, combined with satellite 22 
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gravimetry, to determine relative amounts of irrigation applied from groundwater and surface 1 

water.  The results show the ability and value of using diagnostic remote sensing observations 2 

and models for improving prognostic algorithms necessary to increase LSM skill in predicting 3 

hydrologic, biogeochemical, and climatic impacts and feedbacks under future greenhouse gas 4 

emission and land used change scenarios. 5 

 6 

2 Methods 7 

2.1 Study region 8 

 We evaluate our approach in the Central Valley of California, which is a large 9 

(~54,000 km
2
), low elevation (<200 m a.s.l) region (Fig. 1).  The Central Valley is a highly-10 

productive agricultural region, with over 200 cultivated crops and an annual crop value of 11 

more than $35 billion US Dollars in 2012 (California Department of Food and Agriculture, 12 

2014, USDA National Agricultural Statistics Service, 2014).  Relevant aspects of the Central 13 

Valley’s geology (Planert and Williams, 1995; Faunt et al., 2009), climatology (Zhong et al., 14 

2004), hydrology (Scanlon et al., 2012), and anthropogenic inter-basin water transfers (Chung 15 

and Helweg, 1985; Fischhendler and Zilberman, 2005) are extensively reviewed elsewhere.  16 

Average (2004-2009 water years) blue water (surface water plus ground water) consumption 17 

was 2.03±0.02 X10
10

 m
3
 as determined using an inventory method (Anderson et al., 2012).  18 

Agriculture in the Central Valley is heavily dependent upon irrigation from both surface and 19 

ground waters, with a large variation in the relative consumption of surface and ground water 20 

due to high inter-annual variation in precipitation and an almost complete lack of precipitation 21 
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during the peak summer growing season (Anderson et al., 2012; Scanlon et al. 2012).  In 1 

addition to its agricultural importance, the Central Valley has multiple attributes that are 2 

useful for developing and validating new model processes to better represent anthropogenic 3 

impacts on regional hydrology and climatology.  These include (a) well understood 4 

hydrogeology, surface water use, and extensive in-situ meteorological observations (Hart et 5 

al., 2009; Faunt et al., 2009; Planert and Williams, 1995); (b) well constrained groundwater 6 

systems with little to no subsurface outflow to the ocean (Faunt et al., 2009); (c) well gauged 7 

and modeled surface water flows into and out of the Valley (Anderson et al., 2012); and (d) 8 

anthropogenic hydrologic processes (irrigation, crop evapotranspiration, and drainage) that 9 

have a very distinct seasonality from the winter precipitation and spring runoff dominated 10 

natural processes that occurred prior to irrigation and agricultural development (Lo and 11 

Famiglietti, 2013). 12 

Previous remote-sensing based and mechanistic modeling studies have shown sustained 13 

and substantial depletion of groundwater in the Central Valley (Famiglietti et al., 2011; Faunt 14 

et al., 2009), which has accelerated in the most recent drought from 2012 to present (Borsa et 15 

al., 2014; Famiglietti, 2014).  Recent groundwater regulation legislation will likely restrict 16 

future groundwater pumping differentially across groundwater basins (Harter and Dahlke, 17 

2014), making alternative irrigation methods and strategies, such as drip and deficit irrigation, 18 

more common and potentially altering the amount and seasonality of irrigation.  The potential 19 

for rapid hydrologic changes in the Central Valley is one reason why a potentially dynamic, 20 

satellite-based irrigation parameterization would be useful for land surface modeling. 21 

 22 
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2.2 Evapotranspiration, precipitation and total water observations 1 

We calculated the monthly mean and standard deviation of evapotranspiration (ET) using an 2 

ensemble of three products.  One is a surface energy balance product (Anderson et al., 2012) 3 

based on the SEBAL algorithm (Bastiaanssen et al., 1998) that is applied to the Central Valley 4 

at 250 m resolution using a 250 m vegetation index and 1 km thermal data from the 5 

MODerate resolution Imaging Spectroradiometer (MODIS) in conjunction with gridded 6 

meteorology.  The second product (Tang et al., 2009) uses the scatter plot relationship 7 

between the vegetation index and surface temperature (VI-Ts) to estimate the Evaporative 8 

Fraction (EF) and ET at 0.05° resolution using MODIS vegetation and thermal data in 9 

conjunction with Geostationary Operational Environmental Satellite (GOES) surface radiation 10 

products.  The third product (Jin et al., 2011), uses the Priestley-Taylor equation (Priestley 11 

and Taylor, 1972) with the coefficient term (α) optimized using Ameriflux data and net 12 

radiation and ground heat flux parameterized from the MODIS and Clouds and the Earth’s 13 

Radiant Energy System (CERES) instruments to estimate ET at 1 km resolution.  All three 14 

products were clearly able to distinguish peak summertime ET in the Central Valley, which is 15 

asynchronous with largely winter precipitation and which is a characteristic sign of irrigation.  16 

Other ET products (e.g. Miralles et al., 2011; Mu et al., 2011; Jung et al., 2010) were not used 17 

as they were either too coarse in resolution (>0.25° X 0.25° cell size) or were unable to detect 18 

irrigation in the Central Valley. 19 

Monthly precipitation (approximately 4 km spatial resolution) was obtained using the 20 

Parameter-elevation Regressions on Independent Slopes Model (PRISM), which interpolates 21 

station precipitation data, accounting for orography (Daly, 1994; Daly et al., 2008).  22 
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Observations of total water changes were obtained from Gravity Recovery And Climate 1 

Experiment (GRACE) mission (Tapley et al., 2004) for the entire Sacramento and San 2 

Joaquin River Basins (including the usually endoheric Tulare Lake Bain).  Using the 3 

methodology of Famiglietti et al. (2011), groundwater changes were obtained by removing 4 

snow, soil moisture, and surface reservoir storage variations from the total water storage 5 

anomalies from GRACE.  Groundwater changes in the combined basins were assumed to 6 

have occurred entirely within the Central Valley where major agricultural and municipal wells 7 

exist rather than in the non-irrigated, sparsely–populated, mountainous regions surrounding 8 

the Valley. 9 

 10 

2.3 Land surface models  11 

For intercomparison with satellite observed fluxes and determination of additional water 12 

application in CLM, we use an ensemble (9 members) of three North American Land Data 13 

Assimilation System (NLDAS-2 - Mitchell et al., 2004; Xia et al., 2012b), four Global Land 14 

Data Assimilation System (GLDAS-1 - Rodell et al., 2004) outputs, and two CLM 15 

simulations.  For NLDAS-2 and GLDAS-1, we used the Noah, Mosaic, VIC, or CLM models 16 

from each system with the primary NLDAS-2 and GLDAS-1 forcings.  Along with the 17 

NLDAS/GLDAS outputs, we also include outputs from different versions of the CLM 18 

(including CLM3.5 and CLM4) with the GLDAS-1 atmospheric forcings. In addition, we 19 

evaluated the CMIP5 control outputs (Taylor et al., 2012) to assess the larger performance of 20 

climate models in assessing latent heat fluxes across agricultural regions.  Details about the 21 

CMIP5 models and simulations are provided in supplemental section S1.  For our study, CLM 22 
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is run at 0.125° by 0.125° grid cells with 30 minute temporal resolution. 1 

The water budget for the soil layer and groundwater in CLM can be written as: 2 

∆𝑆𝑀 = 𝑃 − 𝐸𝑇 − 𝑄𝑆 − 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒     (1) 

∆𝐺𝑊 = 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  −  𝑄𝑑  (2) 

where ∆𝑆𝑀 is soil moisture change, 𝑃 is precipitation, 𝐸𝑇 is evapotranspiration, 𝑄𝑆 is surface 3 

runoff, 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  is groundwater recharge, ∆𝐺𝑊 is groundwater storage changes, and 𝑄𝑑  is 4 

groundwater discharge. However, equations 1 and 2 only reflect the natural hydrology and 5 

neglect the substantial contribution of irrigation in major agricultural regions as previously 6 

discussed. A more reasonable equation should include the aforementioned irrigation water 7 

from surface (river) water (𝑆𝑊𝑊𝐷) and from groundwater withdrawal (𝐺𝑊𝑊𝐷) as shown in 8 

Figure 2 and equations 3 and 4.  We will incorporate the estimated irrigation water use into 9 

the CLM version 4 and the withdrawn water in the irrigation process will be treated as an 10 

extra water input (effective precipitation). 11 

∆𝑆𝑀 = 𝑃 − 𝐸𝑇 − 𝑄𝑆 − 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + 𝐺𝑊𝑊𝐷 + 𝑆𝑊𝑊𝐷    (3) 

∆𝐺𝑊 = 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒  −  𝑄𝑑 − 𝐺𝑊𝑊𝐷  (4) 

 12 

2.4  CLM groundwater and surface water application parameterization 13 

We use the difference (∆𝐸𝑇) between remote sensing observed ET (𝐸𝑇𝑜𝑏𝑠) and the original 14 

model parameterized ET (𝐸𝑇𝑜𝑚) to estimate total applied surface and groundwater as shown 15 

in equation 5. 16 

∆𝐸𝑇 = 𝐸𝑇𝑜𝑏𝑠  −  𝐸𝑇𝑜𝑚 = 𝑆𝑊𝑊𝐷 + 𝐺𝑊𝑊𝐷  (5) 
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∆𝐸𝑇  in equation 5 is determined as an inter-annual (2004-09) mean difference between 1 

satellite observed and modeled ET. Water is applied evenly in CLM4 throughout the primary 2 

growing and irrigation season (May-October).  We can partition the total withdrawn irrigation 3 

water into 𝑆𝑊𝑊𝐷 and 𝐺𝑊𝑊𝐷 by requiring that equations 3 and 4 are both satisfied by the 4 

CLM4 simulation. A systematic, trial-and-error procedure is used to determine the necessary 5 

partitioning using groundwater recharge since it is a common variable to both equations.  For 6 

each trial, a value of 𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 is guessed.   𝐺𝑊𝑊𝐷 is then determined from re-arranging 7 

equation 4, with ∆𝐺𝑊 and 𝑄𝑑 being set to average values derived from processed GRACE 8 

∆𝐺𝑊 and the baseline simulations for the study period (2004-2009), respectively.  𝑆𝑊𝑊𝐷 is 9 

then found as a residual from equation 5, and CLM4 is run.  The model run generates a 10 

simulated recharge (equation 3).  If the trial (or “parameterized”) recharge value and the 11 

simulated recharge value agree, then equations 3 and 4 are satisfied and the partitioning is 12 

accepted.  Equation 5 notes that all abstracted water eventually contributes to ET.  While this 13 

assumption may be violated at a field scale, it likely holds at a regional scale in the Central 14 

Valley where extensive conjunctive use and reuse of water occurs (Canessa et al., 2011). 15 

To find the correct recharge and withdrawal partitioning, we ran a series of trials in which the 16 

parameterized recharge was increased in 5 mm/year increments, from 20 mm/year (the first 17 

point in the left in Figure 5 and the minimum value of recharge necessary to generate the 18 

baseline 𝑄𝑑  of 20 mm/year) to 115 mm/year.  With the average ∆𝐺𝑊 and 𝑄𝑑 (section 3.1), 19 

this corresponds to a 𝐺𝑊𝑊𝐷 range of 60 to 155 mm/year.  The procedure assumes only 20 

minimal differences exist in 𝑄𝑑 computed for the baseline and trial simulations, an 21 

assumption that we verified by inspecting irrigation simulation outputs.  Since the Central 22 
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Valley aquifer system is a combination of unconfined and confined aquifers, we assume that 1 

groundwater withdrawals are equally distributed between both types of aquifers (Fig 2). 2 

Because the CLM lacks a confined aquifer component, confined withdrawal is taken from a 3 

hypothetical water store, which is constrained together with the unconfined aquifer using 4 

equation 4 and GRACE estimated groundwater. Unconfined withdrawals were taken from the 5 

saturated zone of the soil. 6 

 7 

3 Results and Discussion 8 

3.1 Existing model parameterizations and satellite observed hydrologic 9 

fluxes 10 

Monthly satellite observed and simulated evapotranspiration (ET) for the Central Valley 11 

showed strong and differing seasonality (Fig. 3a).  Satellite observed monthly ET ranged from 12 

13 mm (December 2009) to 106 mm (July 2005).  Seasonal maxima and minima of ET 13 

coincided with seasonal maxima and minima of regional solar radiation and temperatures that 14 

control potential ET (solar radiation and temperature data not shown).  Over the entire 2004-15 

2009 study period, mean (± one standard deviation) satellite observed ET was 54.6±12.8 16 

mm/month (655 mm/year).  GLDAS-1, NLDAS-2, and CLM simulated ET was substantially 17 

lower than satellite observed ET (Fig. 3a), with mean simulated ET of 23.3±5.0 mm/month 18 

(280 mm/year).  Simulated ET ranged from 19 mm/month (September 2008) to 69 mm/month 19 

(April 2006).  GLDAS-1/NLDAS-2/CLM simulated seasonal maxima and minima of ET 20 

coincided with maximal and minimal natural soil moisture availability following the end of 21 
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the winter rainy season and at the end of the dry summer season (Fig. 3c).  On an average 1 

seasonal basis, satellite observed ET showed the greatest difference from simulated ET in 2 

July, when satellite ET was 79 mm/month larger.  In winter (November-February), observed 3 

ET exceeded simulated ET by less than 10 mm/month (Fig. 3c). 4 

While the seasonality of satellite observed and simulated ET was different, the annual patterns 5 

of ET matched annual precipitation well, although satellite observed ET had considerably 6 

lower interannual variation than simulated ET (Fig. 3).  Annual precipitation ranged from 202 7 

mm/year (2007 calendar year) to 416 mm/year (2005 calendar year).  Mean (± one standard 8 

deviation) calendar year precipitation for 2004-2009 was 315.8±84.8 mm/year.  Annual 9 

changes in groundwater vary considerably from year to year, with a maximum increase of 120 10 

mm/year in 2006 and a maximum decrease of 220 mm/year in 2007 (Fig. 4).  Mean 11 

groundwater decrease across the entire study period is approximately 60 mm/year.  Annual 12 

precipitation and groundwater change are well correlated (r=0.78), with the largest 13 

groundwater decrease occurring in one of the driest years in California history (2007) and the 14 

largest increase in 2006 following a succession of wet years.  Mean annual satellite observed 15 

ET showed less variation than precipitation, ranging from 624 mm/year in 2009 to 690 16 

mm/year in 2005.  Since precipitation in the surface water source regions for the Central 17 

Valley (Sierra Nevada Mountains) is very well correlated with precipitation in the Valley 18 

(Daly, 1994; Daly et al., 2008), variations in precipitation are also assumed to be variations in 19 

surface water availability.  Together, this lower variation in ET in spite of higher variation in 20 

precipitation and surface water availability and the inverse relationship between groundwater 21 

level change and precipitation is consistent with the relatively steady water demand from 22 



14 
 

Californian agricultural crops, many of which are perennial crops with large, multi-year 1 

investments (Ayars, 2013; Blank, 2000), and the long-standing practice of increasing 2 

groundwater use to compensate for deficits in surface supplies and precipitation (Howitt, 3 

1991). 4 

  5 

3.2. Application of Groundwater and Surface Water in CLM and impact on CLM-6 

simulated ET 7 

The mean amount of additional water that is consumed or transpired under irrigation in the 8 

Central Valley is 376 mm/year (satellite observed ET minus mean GLDAS-1/NLDAS-2/CLM 9 

ensemble simulated ET).  The parameterized recharge estimates plotted against CLM 10 

simulated recharge are shown in Figure 5.  Simulated recharge (𝑞𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒) showed a more 11 

dampened response to a wide range of parameterized recharges, with simulated recharge 12 

ranging from 47 to 66 mm/year across the parameterized recharge space (20-115 mm/year).  13 

The parameterized and simulated recharge comes to convergence at approximately 55 14 

mm/year (Fig. 5), which is the value we used to partition applied surface water and 15 

groundwater.  Using equation 4, we calculated mean applied groundwater (𝐺𝑊𝑊𝐷) as 95 16 

mm/year over the 2004-2009 study period.    Mean applied surface water (𝑆𝑊𝑊𝐷) was 281 17 

mm/year. 18 

The model optimized 𝑆𝑊𝑊𝐷 compares well with previous remote sensing and high resolution 19 

inventory estimates of surface water consumption in the Central Valley.  For the 2004-08 20 

water years, Anderson et al. (2012) found a mean (± uncertainty) surface water consumption 21 
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of 291±32 mm/year using remote sensing and 308±7 mm/year using an inventory approach 1 

calculated from dam releases into the Central Valley, canal exports to coastal basins to the 2 

south, and outflow through the California Delta.  The close comparison of these values to 3 

𝑆𝑊𝑊𝐷 gives us further confidence in our optimization method and its underlying assumptions. 4 

Figure 6 shows the impact of the irrigation water parameterization on CLM simulated ET 5 

compared to observational data.  With the new parameterization, monthly CLM simulated ET 6 

ranged from a minimum of 10 mm (December 2008) to a maximum of 96 mm (June 2006), 7 

with a mean of 48.3 mm.  The differences between CLM simulated ET and satellite observed 8 

ET (CLM minus satellite) ranged from -30 mm/month to 11 mm/month with a mean 9 

difference of -6.3 mm/month.  There was low correlation between seasonality (month) and the 10 

discrepancy between satellite observed and non-irrigated simulated ET (r<0.5) as assessed 11 

with a geometric mean regression.  Conversely, the relationship between satellite observed 12 

monthly ET and CLM simulated ET was excellent (r=0.95, slope=0.94, intercept=-3.1 13 

mm/month). 14 

With respect to other hydrologic fluxes, simulated groundwater base flow (𝑄𝑑) changed little 15 

with irrigation over the 2004-09 study period (27 mm/year in experimental run versus 18 16 

mm/year in control – data not shown).  Surface runoff (𝑄𝑆) changed more considerably (68 17 

mm/year in experimental run versus 38 mm/year in control, which is an expected consequence 18 

due to the wet soil from irrigation leading to higher surface runoff.  The small change in 𝑄𝑑 19 

despite additional irrigation concurs with GRACE-derived groundwater changes, simulated 20 

reductions in groundwater in CLM, and previous hydrogeologic observations that many rivers 21 

and streams in the Central Valley are now losing streams due to long-term groundwater 22 
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depletion (Planert and Williams, 1995).  The larger increase in 𝑄𝑆 may reflect on the ground 1 

spatial differences in cropping patterns and water management within the Central Valley.  For 2 

example, the northern part of the Central Valley (Sacramento Valley) has extensive rice 3 

production that results in multiple flooding and drainage events in the course of a production 4 

season (Hill et al., 2006).  Much of this water is reused further downstream (south).  Other 5 

cropping systems, particularly those in parts of the southern Central Valley (San Joaquin 6 

Valley) affected by drainage issues, use tail water recovery systems as required by state and 7 

local regulations which minimize surface runoff from irrigation (Schwankl et al. 2007). 8 

 9 

3.3 Impact of parameterizations of irrigated agriculture in land surface 10 

modeling 11 

The significant underestimation of peak growing season ET in irrigated agricultural regions is not 12 

confined to the NLDAS/GLDAS and default CLM models.  Figure 7 shows the mean climatology 13 

of ET for the control runs of the CMIP5 models over the Central Valley compared to satellite 14 

observed ET.  The mean (± one standard deviation) ET is 45.9±15.8 mm/month.  While the peak 15 

ET of the mean of the CMIP5 ensemble is higher (68 vs. 48 mm/month) and later (May vs. April) 16 

than the NLDAS/GLDAS/CLM ensemble, the CMIP5 ET still is more than 100 mm/year lower 17 

than satellite observed ET (550 vs. 655 mm/year) and exhibits minima and maxima characteristic 18 

of the natural hydrologic cycle.  Furthermore, some of the improved closure between CMIP5 and 19 

satellite observed ET compared to NLDAS/GLDAS/CLM could be due to substantially higher 20 

CMIP5 modeled ET during the winter.  Despite the relatively large uncertainty of the CMIP5 21 
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models over the Central Valley, the satellite observed ET for over half of the year is significantly 1 

outside of the CMIP5 envelope. 2 

Compared with previous parameterizations of irrigation water in the Central Valley our remote-3 

sensing based approach resulted in a lower consumed amount of water than the soil moisture-4 

based parameterizations (Kueppers et al., 2007; Sorooshian et al., 2011) and a slightly higher 5 

amount of consumed water  than a global inventory (Siebert et al., 2010), based approach (Lo and 6 

Famiglietti, 2013).  For the summer months of May-August, a high soil moisture parameterization 7 

at field capacity (Kueppers et al., 2007) resulted in an annual summer irrigation water 8 

consumption of 612 mm/summer whereas a variable soil moisture parameterization (Sorooshian et 9 

al., 2011) resulted in a summer irrigation water consumption of 430 mm/summer.  These values 10 

do not include potential water consumption from the shoulder irrigation months of April, 11 

September, and October.  The inventory data of Siebert et al. (2010) used in the Lo and 12 

Famiglietti (2013) parameterization  was only about 25 mm lower (350 mm/year versus 376 13 

mm/year) than our remote sensing parameterization, but the amount of consumed water from 14 

groundwater (140 mm/year) was substantially higher than our applied groundwater (95 mm/year).  15 

Furthermore, our satellite-ET derived estimate is also likely to be a lower envelope estimate of 16 

applied water due to the slight increase in surface runoff observed in CLM.  The overestimation of 17 

ET and latent heat fluxes with the soil moisture parameterization suggests challenges in using this 18 

type of parameterization; however, soil moisture parameterization may become significantly more 19 

feasible with precise and accurate  regional and global soil moisture observations from upcoming 20 

missions such as the Soil Moisture Active Passive, whose outputs are specifically designed to 21 

improve inputs to numerical weather prediction and land surface models  (Entekhabi et al., 2010). 22 
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Currently, both inventory and remote sensing based approaches have sufficiently low spatial 1 

and temporal resolution so that irrigation water parameterization is typically done on inter-2 

annual time scales for large basins.  This temporal resolution for water parameterization 3 

works well for accurately modeling the hydrology of the Central Valley, likely due to the 4 

lower amount of inter-annual variation in ET and the use of groundwater to compensate for 5 

surface water deficits.  However, it is unclear how well this approach will work in irrigated 6 

regions where ET may be more variable due to a lack of supplemental reservoirs and thus a 7 

necessary fallowing of land during dry periods.  Current and future missions (GPM, SMAP, 8 

SWOT, GRACE-Follow On/GRACE II)  have the potential to sufficiently improve the 9 

resolution of satellite hydrologic products to enable annual quantification of surface and 10 

ground water application at higher spatial resolution (Biancamaria et al., 2010; Entekhabi et 11 

al., 2010, Smith et al., 2007; Zheng et al., 2015).  These higher resolution parameterizations 12 

may enable better quantification of hydrologic impacts of changing management and cropping 13 

patterns, including shifts in irrigation regimes and changes between annual and perennial 14 

crops.  Parameterizations from inventory methods may improve if public monitoring and 15 

reports requirements become more widespread (similar to those for Arizona’s Active 16 

Management Areas – see Jacobs and Holway, 2004). 17 

 18 

4 Summary and Conclusion 19 

We used satellite-based estimates of evapotranspiration (ET) and groundwater change 20 

combined with precipitation data to constrain and parameterize the additional water applied to 21 

a major irrigated agricultural region (Central Valley, California, USA) for simulation of land 22 
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surface fluxes using the Community Land Model (CLM) version 4.  We evaluated the baseline 1 

amount of consumed water using a suite of nine land surface models/forcing data sets and 2 

estimating the additional water consumed as a residual of current satellite observations.  We 3 

used an iterative solution of parameterizing and then simulating groundwater recharge to 4 

partition the total water withdrawals among ground and surface water.  The additional water 5 

parameterization resulted in CLM tracking the total amount and seasonality of ET closely.  6 

The remote sensing parameterization of irrigation water consumption results in a smaller total 7 

amount of water being consumed than in previous soil moisture-based parameterizations. 8 

The results emphasize the need for irrigation parameterization in land and climate models to 9 

accurately assess land-atmosphere energy and mass fluxes in regions with major 10 

anthropogenic modifications.  Given the potential for intense irrigation to modify regional 11 

climate (Kueppers et al., 2007) and to enhance convection precipitation in downwind regions 12 

(Lo and Famiglietti, 2013), it is important that the additional water consumption from 13 

irrigation is properly represented to better model the local and more distant impacts of 14 

anthropogenic land surface modification.  An improved parameterization will also be useful 15 

for assessing regional climatic impacts of possible future changes in irrigated agricultural 16 

regions due to increased logistical, political, and/or economic restrictions on groundwater 17 

pumping or changes in surface water use. 18 
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 1 

Figure 1: Map of Central Valley, California.  a)  Underlying Normalized Differential 2 

Vegetation Index (NDVI) from the MODerate resolution Imaging Spectroradiometer 3 

(MODIS) 250m, 16 day product (July 2006) illustrating irrigated regions of the Central Valley 4 

(black outline).  Darker green indicates higher NDVI and vegetation cover.  b) Map of the 5 

United States with the inset area of (a) outlined in red. 6 
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 1 

 2 

Figure 2: Conceptual schematic of land hydrological processes, modified from Oleson et al. 3 

(2008). Blue dash and green lines indicate the irrigation water fluxes applied in the CLM. In 4 

the Central Valley, the aquifer is variably confined with some regions having no confinement.    5 
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 1 

Figure 3:  (a) the comparison between the remote sensing estimated ET, and 9 GLDAS, 2 

NLDAS, and CLM models.  The lines indicate the ensemble mean while the shading indicates 3 

uncertainty around the ensemble mean, (b) annual precipitation for the Central Valley, and (c) 4 

monthly climatology for satellite observed and modeled ET  5 
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 1 

Figure 4: Annual groundwater change for the Central Valley derived from GRACE. 2 
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 1 

Figure 5: Parameterized (guessed) groundwater recharge versus recharge simulated in 2 

CLM 4 (see section 2.3).  The x-axis represents the trial recharge used in equation 4 to 3 

obtain GWWD and the y-axis represents the output recharge from equation 3.  The 4 

intersection of the parameterized values with simulated values (55 mm/year) represents 5 

where recharge comes to convergence, and is the value of recharge used to separate total 6 

water use into ground and surface water pumping components. 7 

 8 
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 10 
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 2 

Figure 6:  Monthly ET from CLM 4 with the improved irrigation parameterization when 3 

compared to observations.  Lines indicate model or ensemble mean while shading 4 

indicates uncertainty of the satellite observed ET. 5 

  6 



37 
 

 1 

Figure 7:  Mean seasonal cycle from the CMIP5 suite of models compared against satellite 2 

observed ET.  Solid line shows mean value of CMIP5 model members and shaded region 3 

shows uncertainty (two standard deviations around mean). 4 
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