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Abstract

A numerical model based on Radial Basis Function-generated Finite Differences (RBF-
FD) is developed for simulating the Global Electric Circuit (GEC) within the Earth’s at-
mosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-
shaped volume with the lower boundary being the Earth’s topography and the upper5

boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of
the GEC to combine the Earth’s topography with directly approximating the differential
operators in 3-D space, and related to this (2) the first RBF-FD method to use irregular
3-D stencils for discretization to handle the topography. It benefits from the mesh-free
nature of RBF-FD, which is especially suitable for modeling high-dimensional problems10

with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting
assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity
profile), the right hand side forcing term of the PDE (i.e. distribution of current sources)
or the geometry of the lower boundary.

1 Introduction15

The global electric circuit (GEC) is a system of currents within Earth’s atmosphere.
The system is defined by the volume between two highly conductive shells, one the
surface of the Earth and the other the lower ionosphere. These two highly conductive
shells can be thought of as a leaky capacitor. The currents in the system are driven
by electrified clouds that produce a source current, which then holds the ionosphere at20

a fixed potential relative to the Earth. Far away from storm clouds, into the so-called fair
weather region, this potential difference between the ionosphere and ground produces
an electric current that is ∼ 2 pAm−2 globally. This global return current can be mea-
sured by current probes and electric field mills on the ground to estimate its strength
as well as global distribution of thunderstorms.25
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The first modeling efforts focused on decomposing the domain into separate regions
and solving the problem analytically with a spherical harmonics decomposition (Hays
and Roble, 1979; Roble and Hays, 1979). However, in order to obtain solutions, these
models needed to impose constraints on the source and conductivity distributions. Fur-
ther advancements have focused on modeling the system with an electrical engineer-5

ing approach of resistors and capacitors aligned in series and parallel (Rycroft et al.,
2008; Odzimek et al., 2010). Other models have focused on how individual aspects of
the system change, such as how aerosols and clouds influence the resistivity within
the domain and what effect that has globally on the solution (Tinsley and Zhou, 2006).
All of these previous modeling efforts have had to either make assumptions on the so-10

lution or simplify the domain, omitting topography, to obtain a feasible solution. For an
excellent overview of the GEC and recent progress made we refer readers to (Williams
and Mareev, 2014).

The RBF-FD GEC model proposed here solves the full three dimensional problem
with the Earth’s real topography as the bottom boundary, without making any limiting15

assumptions on the conductivity (the coefficients of the PDE) or source distribution
(the right hand side forcing term of the PDE). The structure of the paper is as follows.
Section 2 introduces the PDE with its corresponding boundary conditions that will be
discretized and solved. Section 3 gives a brief introduction to RBF-FD discretization
of differential operators with references for more in-depth study. Section 4 is the core20

of the paper, describing the numerical implementation. Section 5 gives a test case
with a known solution for method validation, using an analytic conductivity profile (i.e.
coefficients of the PDE). Section 6 builds on Sect. 5, using the same conductivity profile
but changing the forcing term to actual observational data. Section 7 is the hardest
case in which discrete data is used for all inputs into the PDE, i.e. both coefficients and25

the right hand side forcing term. Lastly, Sect. 8 gives some timing results, followed by
conclusions.
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2 Global electric circuit model

2.1 Formulation

The 3-D electric potential for a given conductivity distribution and electrified cloud cur-
rent sources can be determined by the equation

−∇ · (σ(r ,θ,λ)∇u) = S(r ,θ,λ), (1)5

where σ is the conductivity, u is the electric potential and S is the source distribution.
This equation is derived by applying Ohm’s law to the steady-state current continuity
equation. The 3-D domain is defined as −90◦ ≤ θ ≤ 90◦,−180◦ ≤ λ < 180◦,k(θ,λ) ≤ r ≤
rb, where k(θ,λ) is the Earth’s surface (i.e. topography) and rb is the altitude from sea
level where the top boundary is enforced. In this paper, the mean radius of the Earth10

is set to rearth = 6400 km and rb = 60 km. As boundary conditions, zero electrostatic
potential is enforced along the Earth’s surface,

u(k(θ,λ),θ,λ) = 0, (2)

and zero net current at the upper boundary, which leads to the potential

u(rb,θ,λ) = RIs, (3)15

where R is the global resistance and Is is the upward current at the top boundary
generated by the electrified clouds.

Since Eq. (1) is linear, the electrostatic potential u can be split as u = uf +us, where
uf is the fair weather potential,

−∇ · (σ∇uf) = 0 (4)20

uf|r=k(θ,λ) = 0

uf|r=rb = RIs
3526
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and us the source potential,

−∇ · (σ∇us) = S(r ,θ,λ) (5)

us|r=k(θ,λ) = 0.

us|r=rb = 0

2.2 Integrated quantities5

In this paper, we are also interested in integrated quantities derived from the fair-
weather and source potential. Scaling the fair-weather potential in Eq. (4) as ûf =
uf/RIs, leads to solving it with the boundary condition ûf|r=rb = 1. Then, the atmospheric
resistance R is computed from ûf as

R =

∫
Σ

σ
∂ûf

∂r
dΣ

−1

. (6)10

The upward current Is is computed from the solution of Eq. (5) as

Is = −
∫
Σ

σ
∂us

∂r
dΣ. (7)

In both Eqs. (6) and (7), Σ is the surface of the sphere that encloses the domain at the
top boundary. As a result, the GEC solution is equal to u = RIs ûf +us, from which can
be computed the net current at the top boundary,15

Itop = −
∫
Σ

σ
∂u
∂r

dΣ, (8)

and the net charge within the domain,

Q = −
∫
V

∇ · (σ∇u)dV , (9)

3527
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where both quantities must be conserved.

3 RBF-FD method

Radial Basis Function-generated Finite Differences (RBF-FD) can be considered a nat-
ural generalization of classical Finite Differences (FD) (Shu et al., 2003; Tolstykh and
Shirobokov, 2003; Wright and Fornberg, 2006). As in FD, RBF-FD approximates a lin-5

ear differential operator Lu at the node xk ∈R
d as a linear combination of the values

of the function at the n closest nodes,

Lu|xk ≈
n∑
i=1

wiui . (10)

The main difference lies in how the differentiation weights wi are computed. While
FD enforces Eq. (10) to be exact for polynomials evaluated at the node xk , RBF-FD10

enforces it for RBF interpolants

s(x) =
n∑
i=1

λiφ(‖x−xi‖), (11)

where φ(r) is a radial basis function, ‖ · ‖ is the Euclidean distance, and λi are the RBF
coefficients. Some examples of smooth RBFs are listed in Table 1. Unlike FD, in which
the interpolation problem is not guaranteed to be non-singular for scattered nodes in15

n dimensions (n ≥ 2), RBF-FD is guaranteed to be non-singular no matter how the
n nodes (assumed distinct) are scattered in any number of dimensions (Fasshauer,
2007; Fornberg and Flyer, 2015b).

RBF interpolants can be augmented with polynomials to increase accuracy. In this
work, MQ-RBF interpolants augmented with a constant are used,20

s(x) =
n∑
i=1

λiφ(‖x−xi‖)+ λn+1, (12)

3528
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so that the constraint
∑n
i=1wi = 0 can be satisfied, allowing the solution to exactly re-

produce a constant which increases accuracy (Lehto, 2012; Flyer et al., 2012, 2015;
Fornberg and Flyer, 2015b, a). As a result, the system of equations that determines
the RBF-FD differentiation weight wi to approximate Lu is
φ(‖x1 −x1‖) . . . φ(‖x1 −xn‖) 1

...
. . .

...
...

φ(‖xn −x1‖) . . . φ(‖xn −xn‖) 1
1 . . . 1 0




w1
...
wn
wn+1

 =


Lφ(‖x−x1‖)|xk

...
Lφ(‖x−xn‖)|xk

L1|xk

 . (13)5

The weight wn+1 is discarded after the system is solved.
Some of the the main features of RBF-FD (Bayona et al., 2010; Bayona and Kinde-

lan, 2013; Stevens et al., 2009; Lehto, 2012; Flyer et al., 2012, 2015; Fornberg and
Flyer, 2015b, a) have proven to be very beneficial in modeling the GEC. For instance,
RBF-FD is a mesh-less local method that only depends on the Euclidean distance10

between neighboring nodes. This feature makes the method independent of the num-
ber of dimensions, and as a result, it is straightforward to program even for three-
dimensional domains such as the one considered in this work. In addition, RBF-FD ap-
proximations can achieve high-order accuracy, at the same time yielding highly sparse
differentiation matrices. This is specially important when applied to this kind of elliptic15

problem where there are millions of unknowns and a large linear system of equations
must be solved.

4 Numerical implementation

As described in Sect. 2, the solution of the GEC model (Eq. 1) is given by u = uf +us,
where uf = ûfRIs and us are the solutions of Eqs. (4) and (5), respectively. The differ-20

ential operator Lu = −∇ · (σ∇u) might be numerically ill-conditioned due to the highly
variable and exponential nature of the conductivity σ. To overcome this issue, it is pos-

3529
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sible to take advantage of the fact that σ > 0 and improve the conditioning by rewriting
the PDEs (Eqs. 4 and 5) as

∆u+ (∇ logσ) · ∇u = 0, (14)

and

∆u+ (∇ logσ) · ∇u = −
S(r ,θ,λ)

σ
, (15)5

respectively. In the following subsections, the numerical implementation is explained in
detail.

4.1 Change of variable

Figure 1 shows the Earth’s topography used in the numerical model. On the left side
of the figure, it is shown the height above sea level averaged for a 1.9◦ ×2.5◦ grid in10

latitude and longitude, with the actual scaling of the problem r ∼ rearth. Since the highest
averaged region is 5 km, as seen in Fig. 1a, compared to rearth ≈ 6400 km this scaling
misses all the topographical features with the Earth appearing flat. In order to increase
the topographical resolution of the model, a change of variable is considered

r(ξ) = Aeβ(ξ−ξ0) +B, (16)15

where A and B are constants determined by enforcing the conditions

r(ξ0) = r0 and r(ξb) = rb, (17)

and β is a parameter which controls the topography stretching. Under this change of
variable, the Earth is mapped over a sphere of radius ξ0 and the radial coordinate is
exponentially stretched, as shown in the right side of Fig. 1.20

In RBF-FD modeling, there is a well-known trade-off between accuracy and ill-
conditioning, unless what is known as a stable algorithm is used (Larsson et al., 2013;

3530
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Fornberg et al., 2013); however, these algorithms increase the computational cost by
a factor of about 10. The method itself suffers from numerical ill-conditioning for small
values of εh, where ε is the shape parameter and h the internodal distance. In order to
achieve the best accuracy and avoid ill-conditioning, the RBF shape parameter ε must
be selected for every resolution h.5

To make the method attainable to the scientific community and overcome the neces-
sity of selecting ε for varying h, we have used an alternative approach in this work.
We propose to take advantage of the change of variable and select the computational
domain for every resolution such that

ξ0 =
√
NH/4πhH and ξb = ξ0 +Nrhr, (18)10

where NH is the number of nodes in the latitude–longitude angular direction, Nr is the
number of nodes in the radial direction and hH and hr are the angular and radial in-
ternodal distances, respectively. As a result, the extent of the computational domain
changes for every NH and Nr, but εhr and εhH are fixed and independent of the reso-
lution. The condition number is also fixed and thus the problem of selecting the shape15

parameter is bypassed. It can be selected once and used for any resolution. Thereby,
the accuracy of the solver is also fixed, in this work at slightly greater than fourth-order
for the resolutions considered, assuming the variable coefficient σ of the PDE is ana-
lytic. However, in more realistic applications σ comes from discrete data that is never
more than C1 and thus the accuracy of the solver in such cases is a mute point.20

4.2 Spatial discretization

Spatial discretization is similar to a nested shell model (Wright et al., 2010; Flyer
and Fornberg, 2011). The majority of the domain is discretized horizontally by using
a spherical shell formed by NH icosahedral nodes and radially by repeating this spher-
ical shell from sea level to the top boundary every spacing of hr. This results in Nr25

radially aligned spherical shells of NH nodes. However, to incorporate topography, the
following alterations need to be incorporated

3531
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1. An algorithm has been developed to distribute nodes along the topography, with
approximately twice as many nodes on land as over the oceans to accommodate
the steeper gradients of the orography. See Fig. 2a.

2. When part of a spherical shell intersects land, the nodes that fall under the Earth’s
topography are discarded. For example, the first spherical shell above sea level is5

at an altitude of 500 m. In the top left panel of Fig. 4 corresponding to r = 500 m
in the test case, the white areas show the topography and thus where the nodes
have been discarded.

3. The last item to be done is to rearrange the nodes where a shell intersects land
in order to have quasi-uniformly distribution in that region. Thus, nodes on each10

shell lying above the surface are repelled in the latitude–longitude direction (us-
ing a charge-type repulsion algorithm) while holding the nodes on the boundary
fixed; this allows the nodes near the Earth’s surface to follow the topography more
closely, yet keeping the radial distance between nodes fixed, and preserving con-
ditioning of the matrix system to be solved.15

Consequently, there are two different regions in terms of the structure of the node lay-
outs and thus the shape of the stencils used to approximate the differential operator
on the left hand side of Eq. (15). A near surface region formed by the nodes close
to the topography (< 8 km), where the differential operator (Eq. 15) at any node is ap-
proximated by Eq. (13) using the closest 56 nodes in 3-D space (found via a k-D tree20

search) and forming a true 3-D stencil. In contrast, above all topography (i.e. > 8 km),
the nodes retain their nested shell formation, resulting in a 2-D+1-D stencil formation.
A hybrid FD/RBF-FD approach is implemented, where classical 5-node FD approxima-
tions in the radial direction (1-D) are combined with 21-node RBF-FD approximations
for the angular derivatives (2-D).25

To compute the RBF-FD differentiation weights for the 3-D Laplacian and gradient
that appear in the PDE, the system of Eq. (13) must be solved for at each node in the
domain. By using the chain rule and taking the derivatives with respect to the square

3532
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of the Euclidean distance (the argument of the RBF), it is possible to write the action of
the differential operator on the RBF in a very elegant way. If d = ‖x−xj‖

2 is the square
of the Euclidean distance between an RBF centered at the node xj = {rj ,θj ,λj} and
evaluated at x = {r ,θ,λ}, the three-dimensional Laplacian and gradient can be written
in the scattered-node region as5

∆φ(d ) = ∆d
∂φ
∂d

+ ‖∇d‖2∂
2φ

∂d2
(19)

and

∇φ(d ) = ∇d ∂φ
∂d

. (20)

In the structured nested-shell region above 8 km, the angular terms of the differential
operators can be written following the procedure described in (Wright et al., 2010),10

where the author noticed that the approximation is invariant under rotations. In this
case, the square of the Euclidean distance takes the form d = 2(1− sinθ) and the
surface Laplacian ∆s on a spherical shell can be written as

∆sφ(d ) = 2(2−d )
∂φ
∂d

+ (4−d )d
∂2φ

∂d2
. (21)

Since the same spherical node layout is repeated in the structured region, the angular15

derivatives are computed once on a unitary sphere and scaled by 1/r(ξ)2 for every
layer, where r(ξ) is the radius of each layer.

4.3 Handling topography: ghost nodes

The stencils that incorporate boundary nodes will be more one-sided and might have
skew shapes due to terrain. The weights that approximate the differential operators on20

those stencils might lose some properties, such as the positiveness in the case of the
3533
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Laplacian. As a consequence, the stability of the numerical solver may be affected. The
spectrum of the eigenvalues can behave oddly as the shape parameter decreases,
with some eigenvalues crossing the imaginary axis and the differentiation matrix be-
coming singular. Naturally, these eigenvalues do not have physical meaning and are
only a numerical artifact. In order to avoid this issue, the concept of “ghost nodes” is5

implemented. The name comes from the fact that these nodes are used in Eq. (13) to
approximate the differential operator on near boundary/boundary nodes, making the
stencils more symmetric, but no equations are ever enforced at these nodes as they
are outside the domain. For most boundary nodes, a ghost node is introduced directly
outside the domain, i.e. under the topography or directly above 60 km (the only caveat10

to this is when the terrain becomes to steep, as in the Andes or Himalayas, making the
ghost nodes close to overlapping; in these cases a smaller one-sided stencil is used
to maintain stability of the solver). To determine the value of the function at the ghost
nodes, the PDE is enforced on the boundary, in addition to the Dirichlet boundary con-
ditions. Hence, the resulting system of equations has as many unknowns as equations15

and preserves unisolvency. In addition, the interior stencils near the irregular boundary
recover a more symmetrical shape and the stability of the solver improves. This proce-
dure is also used at the top boundary to enable the use of 5-node stencils in the radial
direction.

4.4 The elliptic solver20

Once the differentiation weights are computed according to Eq. (13), they are as-
sembled into a matrix that approximates the left hand side of the PDE. Each row of
the matrix represents the discretized PDE at a single node. The left panel of Fig. 3
shows the sparsity pattern of the assembled matrix for a 4◦×1km resolution (a total of
≈ 154 000 nodes). One immediately notices that two different stencils have been used.25

The rows in the upper left corner where the pattern is much denser and unstructured
corresponds to the 3-D 56 node stencils below 8 km. The rest of the matrix, with its
pentadiagonal-type pattern, correspond to the 21+5 node stencil in the structured re-
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gion above 8 km. Drastic changes in the pattern of a matrix generally impede iterative
solvers, making for much poorer and slower convergence. The panel on the right of
Fig. 3 shows the same matrix, but after applying reverse Cuthill–McKee re-ordering,
giving a consistent sparsity pattern with a nicer bandwidth for the iterative solver. Even
though only 0.016% of the entries are nonzero, the bandwidth of the matrix is about5

5NH ≈ 12 000 nodes, much too large to use Gaussian elimination (i.e. \ operator in
MATLAB). However, due to the high sparsity of the resulting differentiation matrix, the
iterative method GMRES(20) proved ideal for solving the linear system of equations,
where the restarting parameter is set to 20. In order to greatly decrease the number of
iterations necessary for convergence, GMRES must be preconditioned with a solution10

that results from a simplified version of the PDE yet captures the main features. Since
the conductivity increases exponentially with altitude and varies by orders of magnitude

less in the angular directions, a simple exponential conductivity profile σ(r) = σ0e
r/c is

a good first approximation and leads to a spatial operator,

Lu = ∆u+
1
c
∂u
∂r

, (22)15

that can be solved extremely fast. As a result, Eq. (22) leads to a good preconditioner
which is: (1) repeatedly called as a function file by the GMRES solver for the original
problem and (2) itself solved with GMRES(20) using incomplete LU factorization as
preconditioner. Runtimes for solving the problem at different resolutions are listed in
Sect. 8.20

4.5 Conductivity

The spatially-varying conductivity σ appears as the variable coefficient in the PDE. It
can be an analytic function or a discrete data set output from a different numerical
model, such as the Whole Atmosphere Community Climate model (for further details
about how the conductivity is computed see Baumgaertner et al., 2013, 2014). In the25

latter case, the conductivity is interpolated to the node distribution used in this paper.
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4.6 Sources

The storm counts based on the 2-D TRMM satellite data (Liu et al., 2008) provide the
radial current density averaged over a 12 year period at 20 km altitude on a 1◦×1◦ grid
between −38 and 38◦ in latitude. To approximate the 3-D source term of the PDE from
2-D data, two approaches are proposed:5

4.6.1 Dipole approach

The first approach is to distribute 3-D dipoles over the Earth according to the spatial
distribution of the data, each one with charge centers at altitudes rpi and rni from the
surface,

Si (r ,θ,λ) =
1

ab2π3/2

[
I+e−

(r−rpi )2

a2 + I−e−
(r−rni )2

a2

]
e−

ρ(θ−θi ,λ−λi )
2

b2 , (23)10

where I± is the dipole’s current strength, ρ(θ−θi ,λ− λi ) is the orthodromic distance
from the charge center (θi ,λi ), and a and b determine the widths of the dipoles in the
radial and angular directions, respectively. The source term is then represented as the
sum of these dipoles

S =
∑
i

Si (r ,θ,λ). (24)15

The previous approach is commonly used in the literature to charge the ionosphere
(Tzur and Roble, 1985; Mallios and Pasko, 2012). However, questions concerning the
actual dipole’s width, the manner in which the dipoles are distributed with respect to the
TRMM satellite data, and how to assign to the current strength I± may arise. For the
purpose of assessing the model with inputs obtained directly from such 2-D satellite20

data, it might be more natural to use the following approach, where the sources are
enforced as a boundary condition which is always one dimension less than the PDE.
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4.6.2 TRMM-BC approach

In this alternative approach, problem (Eq. 5) is replaced by

−∇ · (σ∇us) = 0 (25)

−σ
∂us

∂r
|r=20 km = Jr(θ,λ)

us|r=rb = 05

where Jr(θ,λ) is the radial current density at 20 km provided by the TRMM satel-
lite data and the domain of the problem is defined as −90◦ ≤ θ ≤ 90◦, −180◦ ≤ λ <
180◦, 20km ≤ r ≤ rb. This approach is independent of dipole parameters within the
model.

In Sects. 6 and 7, both the dipole and TRMM-BC approaches are considered and10

compared in Tables 2 and 3. For the the fair weather potential, uf = RIs ûf, the two
approaches for source treatment yield fields that only differ by the scaling factor Is. Thus
to observe the relative spatial variations in the fair weather fields only one approach
needs to be considered.

5 A test case for method validation15

Before considering more realistic cases in terms of conductivity and source terms,
a simplified test case with a known analytic solution is proposed to validate the nu-
merical scheme. A simple exponential conductivity profile that varies only in the radial
direction (a good first approximation to real atmospheric conductivity) is considered,

σ(r) = σ0e
r/c (26)20
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where c = 6 km and σ0 = 5×10−14 Sm−1. In this case, Eq. (15) then reduces to the 3-D
problem{
∆u+ 1

c
∂u
∂r = f (r ,θ,λ), in Ω

u = g(r ,θ,λ), on ∂Ω
(27)

where the domain Ω= {(r ,θ,λ) : −π/2 ≤ θ ≤ π/2, −π ≤ λ < π, k(θ,λ) ≤ r ≤ rb} and the
function k(θ,λ) is the Earth’s topography shown in Fig. 2b under the change of vari-5

ables (Eq. 16) with β = 1. This is an extreme stretching of the topography; however,
it will allow for sharp gradients and more skewed stencils under 8 km that will test the
robustness of the solver. The functions f and g are computed by assuming the exact
solution

u(r ,θ,λ) =
[
0.8Y 0

7 (θ,λ)+0.5Y 4
5 (θ,λ)

]
sin
(
π
r −k(θ,λ)
rb −k(θ,λ)

)
. (28)10

Due to the exponential stretching direction, the resolution in the physical domain is
variable in the radial direction, from 500 m close to the topography to 2 km near the top
boundary, with Nr = 60. In the angular direction the resolution is approximately 4◦ with
NH = 2562 nodes per shell. The 3-D domain contains a total of 168 601 nodes (149 856
interior domain nodes, 6966 nodes on the bottom boundary (topography), 6655 ghost15

nodes under the topography, 2562 nodes for the top boundary and another 2562 nodes
above the top boundary).

The solution is given in the left column of Fig. 4 at 500 m, 5, and 20 kma.s.l. and
the error in the right column. At 500 m, the first layer of nodes above the boundary, all
RBF-FD stencils that approximate the differentiation operator on the right hand side20

of Eq. (27) involve boundary nodes and about 30% of those involve nodes that lie
directly on land surfaces. The importance of this is that the 3-D near boundary stencils
are more skewed and irregular, leading to a degradation of diagonal dominance in the
matrix in Fig. 3. This in turn would have the expectation decreasing accuracy. However,
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as can be seen in the error for 500 m the solution is accurate over most of the domain
to O(10−5). In fact, the error at 5 and 20 km, is almost identical (the latter being slightly
larger due to a coarser radial resolution from the exponential stretching), showing that
the numerical treatment of the boundary has not impacted the accuracy of the solver.
The highest errors are at the poles due to the solution having the steepest gradient as5

the poles are approached.

6 Forcing the PDE with observational data: analytic conductivity profile

Given the validation of the numerical scheme in the previous section, a natural pro-
gression for model performance would be to now force the PDE with observational
data sources for more realistic modeling, yet using the same exponential conductivity10

profile as in Sect. 5. The forcing or source term corresponds with TRMM satellite data
for the month of April at 12:00 UT. In the dipole approach, dipoles are spatially dis-
tributed according to the TRMM satellite data shown in Fig. 5; however, the strength of
the 3-D current sources can not be accurately represented since there is no information
in the radial direction from the TRMM data. In this case, rn = 8 km and rp = 15 km, with15

I± = ±4.2 A has been chosen. This gives a Wilson current of 1A at 20 km. The radial
and horizontal widths are 1.5 and 150 km, respectively. In order to resolve them nu-
merically, a numerical resolution smaller than the dipole’s width is required. As a result,
a resolution of 0.5km×0.75◦ is used, which results in 9 108 837 nodes (NH = 73 962
andNr = 120) is the resolution. In the second approach (TRMM-BC), the data is directly20

implemented as the lower boundary condition, previously discussed in Sect. 4.6.
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6.1 Integrated quantities

6.1.1 Dipole approach

When the dipole approach is used to spatially approximate the current density distri-
bution from the TRMM data, the integrated quantities obtained are listed in Table 2.
Notice that the global total resistance for the case without topography is R = 233Ω,5

which is 10Ω larger than the case with topography. This is expected as the column of
air above sea level is decreased when topography is included. The source current at
the top boundary is Is = 1325 A and is independent of the topography. It charges the
ionosphere and generates a potential difference equal to 308.7 and 295.7 kV for the
cases without and with topography, respectively. In both cases, the net current at the10

top boundary Itop and the net charge Q within the domain are numerically conserved,
as shown in Table 2.

6.1.2 TRMM-BC approach

For the purpose of assessing the model with inputs obtained directly from TRMM satel-
lite data, the alternative TRMM-BC approach proposed in Sect. 4.6 is used, where the15

TRMM satellite data is directly enforced as a boundary condition. The corresponding
integrated quantities are listed also in Table 2. The global resistance does not change
from that calculated with the dipole approach because it is independent of the source
term. However, the source current Is at the top boundary is 368 A larger than in the
case based on dipoles. To alleviate this discrepancy, one could use the TRMM-BC ap-20

proach to scale appropriately I± in the dipole approach. The TRMM-BC approach also
numerically conserves Itop. Since there is a lack of knowledge of the charge centers,
as explained in Sect. 4.6, Q cannot be computed when using the TRMM-BC approach.

Figure 6 displays the convergence rate when computing the integrated quantities R
and Is for both the analytic conductivity profile (Eq. 26) and the discrete model data25

profile that will be used in the next section. Since the conductivity of the atmosphere
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naturally varies by orders of magnitude more in the radial direction then in the angular
directions, convergence is considered with respect to Nr, where the reference solution
is set to Nr = 320. As can be seen, when the variable coefficient of the PDE is an
analytic function slightly greater than fourth-order convergence of the elliptic solver is
achieved, as expected (see Sect. 4.1).5

6.2 Fair weather fields

Figure 7 shows the fair weather potential distribution uf at 1.5 km (top figure) and at
6 km a.s.l. (bottom figure). The effect of the topography on the GEC modifies the column
resistance over the higher elevations, as noted earlier. Figure 8 shows the fair-weather
current density (Jr, Jθ, Jλ) at 20 kma.s.l. In the top figure, notice that the larger radial10

current density is localized over the higher elevations. Furthermore, the topography
also modifies the horizontal current density, especially at higher elevations, as it can
be appreciated in both the middle and bottom panels of Fig. 8. Notice that in the hori-
zontal components, (Jθ, Jλ), the positive flow of current is immediately neighbored by
a negative flow. However, the strength of the horizontal components are two to three15

orders of magnitude smaller than the radial one, with much of the Earth close to or at
sea-level having near zero current density in these directions.

7 Forcing the PDE with observational data: model data conductivity profile

The last step to illustrate the robustness of the RBF-FD model is to consider model
data with steep gradients as opposed to a smooth analytic function for the conductivity,20

using the two approaches for treating the TRMM source data. In lieu of an analyti-
cal exponential conductivity profile, we now consider a conductivity profile from model
data computed with the Whole Atmosphere Community Climate Model (WACCM,
https://www2.cesm.ucar.edu/working-groups/wawg), as described in (Baumgaertner
et al., 2014). This discrete conductivity profile includes aerosols and fair-weather clouds25
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as well as topography, varying not only in the radial direction but also in latitude and
longitude. An example of its radial profile at 0◦ latitude and 180◦ longitude vs. the expo-
nential profile can be seen in Fig. 9, noting how cloud layers centered at 2 and 13 km
cause steep gradients in the conductivity. As in the previous section, the results of the
RBF-FD solver will be evaluated by noting whether they are consistent with physical ex-5

pectations, both with regard to integrated quantities as well as the fair-weather fields.
In the final subsection, we will show a full solution of the GEC.

7.1 Integrated quantities

The resistance R is of course independent of the sources and thus will be the same
for the approaches of source treatment. Although clouds and aerosols are known to in-10

crease the atmospheric column resistance, as seen in Fig. 10, Table 3 shows that the
total integrated resistance is lower than what resulted when the exponential conductiv-
ity profile was used (see Table 2). However, it is important to note that the color bars in
Fig. 10 use the same color map, with shades of blue being a lower column resistance
than green. Thus, from the mid-latitudes to the polar regions, the column resistance15

is lower with the WACCM conductivity profile, with the lowest values at 16.4Ωm2 as
opposed to 16.8Ωm2 and thus resulting in a lower total integrated resistance.

In contrast, the source current Is at the top boundary differs dramatically between the
two approaches in Table 2 due to the fact that the TRMM-BC approach does not incor-
porate any of the conductivity profile below 20 km, the region in which the conductivity20

is severely altered by cloud layers as was seen in Fig. 9. In fact, using the exponential or
WACCM conductivity with the TRMM-BC approach makes little difference in Is (1693A
as opposed to 1712A). With regard to the discrepancy between the two approaches for
calculating the potential difference at the top boundary, the TRMM-BC approach can
be used to scale the dipole source approximation to achieve the same values for utop,25

as noted in Sect. 6.1. The net current at the top boundary Itop for both approaches and
the net charge Q within the domain for the dipole approach are numerically conserved,
as shown in Table 3.
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As noted earlier, Fig. 6 also displays the convergence rate when computing the in-
tegrated quantities R and Is for the discrete WACCM model data profile. Since the
conductivity data is only C0, one can not expect greater first-order convergence from
any numerical method. As can be seen in Fig. 6, this is achieved.

7.2 Fair weather fields5

With regard to the fair weather fields, the best way to examine the output of the RBF-
FD solver is to see if the results are consistent with our expectation of what the physics
should be. The two cloud layers at 2 and 13 km directly modify, at those altitudes, the
radial electric field and current density as shown in the top row of Fig. 11, causing
a jump in the fields which would be expected. In the angular directions, one would10

expect the fields to bend around the cloud layers, increasing the divergence of those
fields between the cloud layers (Baumgaertner et al., 2014). This can in fact be seen
by the increased bulge between the cloud layers in the plots of the latitudinal and
longitudinal components of the electric field and current density, shown by the middle
and bottom rows of Fig. 11.15

7.3 An example of the full solution for the GEC

Until now, we have only illustrated results calculated from 3-D fair weather potentials, uf,
or those calculated from the 3-D source potential us. To view a full solution (u = uf+us)
of the GEC model based on the 3-D RBF-FD solver, we plot in Fig. 12 3-D isosur-
faces of the radial current density Jr corresponding to ±3.5 pAm−2. This isosurface20

was chosen since it shows the clearest image of the structure of currents within the
GEC, specially with regard to topography. All panels in the figure are centered on the
north pole (NP). Figure 12a shows both the positive (red) currents flowing upward as
thin column currents from the Earth to the cloud layer as well as from the cloud layer
to the ionosphere. The empty “ring” region corresponds with negative currents inside25

the cloud layer as shown in Fig. 12b. This figure also shows the downward currents
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to the high elevations as the Rocky mountains, Greenland, and the Himalayas. Fig-
ure 12c shows the combined isosurfaces 3.5 pAm−2 (red) and −3.5 pAm−2 (blue) of
the previous two plots.

8 Timing results of the model

In order to give the reader a feel for how long it takes to solve the GEC model with the5

RBF-FD elliptic solver, Table 4 shows some run-times at different resolutions for the
WACMM conductivity with clouds, which is the computationally most intense. All test
cases were conducted on a MacBook Pro 2.7 GHz Intel Core i7. The code was written
in MATLAB and run under version 2013a and used a peak of 5GB of memory for the
calculations. The results under the GMRES(20) column show the number of iterations10

and computing time that takes to solve the resulting system of equations.

9 Conclusions

This paper advances the research front in two different fields. First, it presents a novel
numerical elliptic solver based on RBF-FD that can handle irregular boundaries, as the
Earth’s topography. This required novel developments, such as:15

1. an algorithm for node distribution on the Earth’s surface,

2. a repelling algorithm to maintain quasi-uniformity of nodes where stencils intersect
the boundary,

3. a novel spatial discretization scheme that consists of two types of stencils, one to
handle the irregular near topography regime below 8 km and the other the regular20

regime above 8 km,

4. strategies to combat loss of accuracy near boundaries and maintain stability of
the solver,
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5. a preconditioner especially designed to aid the elliptic solver due to the drastic
change in the sparsity pattern of the matrix from the use of two completely differ-
ent type of stencils.

On the atmospheric science front, the new solver is the first to make no limiting assump-
tions on the inputs to the PDE, including geometry. For instance, in previous numerical5

models, the surface of the Earth has been assumed spherical. By ignoring topography
within the domain, the total resistance was off by 10Ω. This modified resistance affects
where the currents in the domain flow. The higher elevation regions have a lower col-
umn resistance, and therefore more current was able to return in the fair weather GEC
at these locations. With complete flexibility of model inputs, two different approaches10

for the treatment of current sources, given 2-D satellite data at 20 km, was also devel-
oped to solve for currents and electric fields within the Earth’s atmosphere. The first
approach involved placing 3-D dipoles globally to represent individual thunderstorms,
where the satellite data provided only the spatial distribution, but not the strength of
the current charges. In contrast, the alternative method implemented the current den-15

sity strength from the 2-D satellite data as a boundary condition. It was shown that the
latter method, although giving better integrated quantities, as the upward current at the
top boundary (Is), might suffer from the lack of knowledge of the conductivity distribu-
tion near the sources which are below 20 km. Therefore, to determine the effect that
different conductivity distributions have on the GEC one should utilize dipole sources20

within the model, and then scale the current and potential at the upper boundary by the
approach that directly uses the satellite data.

To conclude, this novel solver allows for complete flexibility of model inputs and thus
will further investigations of the currents and electric fields arising through different
physical perturbations to the GEC. With higher fidelity data sets being produced by25

global climate models and even real data, one needs to utilize a solver that will couple
these parameters without any limitations or assumptions.
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Table 1. Some commonly used infinitely smooth radial basis functions φ(εr).

Infinitely smooth RBFs

GA Gaussian e−ε
2r2

MQ Multiquadric
√

1+ε2r2

IMQ Inverse Multiquadric 1√
1+ε2r2

IQ Inverse Quadratic 1
1+ε2r2
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Table 2. Integrated quantities for the exponential conductivity (Eq. 26) using both methods in
Sect. 4.6 with and without topography.

Topo. R [Ω] Is [A] utop [kV] Itop [A] Q [C]

Dipole Approach
No 233 1325 308.7 −2.1×10−8 −4.5×10−9

Yes 223 1325 295.7 −2.6×10−8 −4.4×10−9

TRMM-BC Approach
No 233 1693 392.8 6.2×10−8 –
Yes 223 1693 377.5 −6.9×10−9 –
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Table 3. Integrated quantities for WACCM conductivity with clouds, aerosols, and topography.

R [Ω] Is [A] utop [kV] Itop [A] Q [C]

Dipole Approach 193 972 187.6 3.3×10−10 −5.6×10−9

TRMM-BC Approach 193 1712 330.4 1.7×10−9 –
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Table 4. Runtime results for the WACCM conductivity with clouds on a MacBook Pro 2.7 GHz
Intel Core i7.

Resolution N GMRES(20)
Iterations Runtime

4◦ ×1 km 163 177 29 21 s
1.5◦ ×0.75 km 1 542 715 29 5 min 55 s
1◦ ×0.6 km 4 231 285 39 31 min 36 s
0.75◦ ×0.5 km 9 108 837 44 4 h 24 min
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(a) (b)

Figure 1. Earth’s topography: (a) actual scale of the problem (the colorbar is the grid-averaged
altitude above sea level in kilometers). (b) Result of the change of variable (Eq. 16) selecting
ξ0 and ξb as in Eq. (18), where NH = 18 566, Nr = 70, hH = hr = 0.05 and β = 0.05.
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(a) (b)

Figure 2. Example of the discretization of the Earth’s topography under the change of variable
(Eq. 16): (a) β = 0.05 and ∼ 150 km resolution at sea level. (b) β = 1 and ∼ 400 km resolution
at sea level.
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Figure 3. Sparsity pattern of the differentiation matrix that approximates Eq. (15) with 4◦ ×
1km resolution before ordering (left) and after applying sparse reverse Cuthill–McKee ordering
(right).
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Figure 4. Left: numerical solution at different distances from the origin. Right: corresponding
error.
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Figure 5. Radial current density [pAm−2] at 20 km from sea level obtained through TRMM
satellite data for month of April at 12:00 UT.
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Figure 6. Convergence rate when computing the integrated quantities R and Is using the an-
alytical conductivity (Eq. 26) and the conductivity computed from discrete model data used in
Sect. 7. The dash-dot lines represent the order of convergence.

3558

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/3523/2015/gmdd-8-3523-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/3523/2015/gmdd-8-3523-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 3523–3564, 2015

A 3-D RBF-FD elliptic
solver for irregular

boundaries

V. Bayona et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 7. Fair weather electric potential [kV] along the 1.5 km (top) and 6 km (bottom) constant
height surface above sea level. In the top figure, the regions in white are the intersection of the
1.5 km constant height surface with the Earth’s topography.
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27

Figure 8. From top to bottom, fair-weather current density (Jr, Jθ, Jλ) [pAm−2] at 20 kma.s.l.
The green areas in the middle and bottom panels correspond to (Jθ, Jλ) < 10−4 [pAm−2].
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Figure 9. Analytical-exponential conductivity used in Sect. 6 compared to an example of the
conductivity from WACCM model output with clouds and aerosols at 0◦ latitude and 180◦ longi-
tude.
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Figure 10. Logarithm of column resistance [Ωm2] for exponential conductivity (top) and
WACCM conductivity (bottom).
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Figure 11. From top to bottom, fair weather plot of |Er| (left) and |Jr| (right), |Eθ | (left) and |Jθ |
(right), |Eλ| (left) and |Jλ| (right); vs. altitude, at 180◦ longitude and 0◦ latitude.
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(a) (b) (c)

30

Figure 12. North pole view of the Earth showing the isosurfaces 3.5 pAm−2 (red) and
−3.5 pAm−2 (blue) for the global solution of the GEC model.
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