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Abstract

We present the lulcc software package; an object-oriented framework for land use change
modelling written in the R programming language. The contribution of the work is to
resolve the following limitations associated with the current land use change modelling
paradigm: (1) The source code for model implementations is frequently unavailable,
severely compromising the reproducibility of scientific results and making it impossible
for members of the community to improve or adapt models for their own purposes; (2)
Ensemble experiments to capture model structural uncertainty are difficult because of
fundamental differences between implementations of alternative models; (3) Additional
software is required because existing applications frequently perform only the spatial
allocation of change. The package includes a stochastic ordered allocation procedure as
well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by
simulating land use change at the Plum Island Ecosystems site, using a dataset included
with the package. It is envisaged that lulcc will enable future model development and
comparison within an open environment.

1 Introduction

Spatially explicit land use change models are used to understand and quantify key
processes that affect land use and land cover change and simulate past and future change
(Veldkamp and Lambin, [2001};|Mas et al., 2014). These models are commonly implemented
in compiled languages such as C/C++ and Fortran and distributed as software packages
or extensions to proprietary geographic information systems such as ArcGIS or IDRISI.
As Rosa et al.| (2014) points out, it is uncommon for the source code of land use change
modelling software to be made available (e.g. Verburg et al., 2002}, |Soares-Filho et al.,
2002; Verburg and Overmars, 2009; |Schaldach et al.l [2011). While it is true that the
concepts and algorithms implemented by the software are normally described in scientific
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journal articles, this fails to ensure the reproducibility of scientific results (Peng, 2011}
Morin et al., |2012), even in the hypothetical case of a perfectly described model (Ince
et al., 2012). In addition, running binary versions of software makes it difficult to detect
silent faults (faults that change the model output without obvious signals), whereas these
are more likely to be identified if the source code is open (Cai et al.l 2012). Moreover, it
forces duplication of work and makes it difficult for members of the scientific community to
improve the code or adapt it for their own purposes (Morin et al.l |2012; Pebesma et al.,
2012}, |Steiniger and Hunter, [2013). In this paper we describe the development of lulce,
a new R package designed to foster an open approach to land use change science.

Current software packages for land use change modelling usually exist as specialised
applications that implement one algorithm. Indeed, it is common for applications to perform
only one part of the modelling process. For example, the Change in Land Use and it Effects
at Small regional extent (CLUE-S) software only performs spatial allocation, requiring
the user to prepare model input and conduct the statistical analysis upon which the
allocation procedure depends elsewhere (Verburg et al., 2002). This is time consuming
and increases the likelihood of user errors because inputs to the various modelling stages
must be transferred manually between applications. Furthermore, very few programs
include methods to validate model output, which could be one reason for the lack of
proper validation of models in the literature, as noted by Rosa et al.| (2014). The lack of
a common interface amongst land use change models is problematic for the community
because there is widespread uncertainty about the appropriate model form and structure
for modelling applications (Verburg et al., 2013). Under these circumstances it is useful
to experiment with various models to identify the model that performs best in terms of
calibration and validation (Schmitz et al [2009). Alternatatively, ensemble modelling may
pe used to understand the impact of structural uncertainty on model outcomes (Knutti
and Sedlacek, 2012). However, while some land use change model comparison studies
have been carried out (e.g |Pérez-Vega et al., 2012; Mas et al., 2014} [Rosa et al., 2014),
fundamental differences between models in terms of scale, resolution and model inputs
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prevent the widespread use of ensemble land use change predictions (Rosa et al., [2014).
As a result, the uncertainty associated with model outcomes is rarely communicated in
a formal way, raising questions about the utility of such models (Pontius and Spencer,2005).

An alternative approach is to develop frameworks that allow several modelling ap-
proaches to be implemented within the same environment. One such application is
PCRaster, a free and open source GIS that includes additional capabilities for spatially
explicit dynamic modelling (Schmitz et al., 2009). The PCRcalc scripting language and
development environment allows users to build models with native PCRaster operations
such as map algebra and neighbourhood functions. Alternatively, the PCRaster application
programming interface (API) allows users to extend its functionality in various programming
languages using native and external data types (Schmitz et al., [2009). For example, the
current version of FALLOW (van Noordwijkl, 2002}; Mulia et al.l 2014), a deductive land
use change model, is built using the PCRaster framework. TerraME (Carneiro et al.,
2013) is a platform to develop models for simulating interactions between society and the
environment. It provides more flexibility than PCRaster because models can be composed
of coupled sub-models with various temporal and spatial resolutions (Moreira et al., 2009j
Carneiro et al.,|2013). The platform is built on the open source TerraLib geospatial library
(Camara et al., 2008), which handles several spatio-temporal data types, includes an
API for coupling the library with R (R Core Team, 2014) to perform spatial statistics, and
supports dynamic modelling with cellular automata. The LuccME extension to TerraME
includes implementations of CLUE-S and its predecessor, CLUE (Veldkamp and Fresco,
1996; Verburg et al., [1999), written in Lua.

The R environment is a free and open source implementation of the S programming
language, a language designed for programming with data (Chambers, 2008). Although
the development of R is strongly rooted in statistical software and data analysis, it is
increasingly used for dynamic simulation modelling in diverse fields (Petzoldt and Rinke,
2007). Additionally, in the last decade it has become widely used by the spatial analysis
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community, largely due to the sp package (Pebesma and Bivand, 2005; Bivand et al.,
2013) which unified many alternative approaches for dealing with spatial data in R and
allowed subsequent package developers to use a common framework for spatial analysis.
The raster package (Hijmans! [2014) provides many functions for raster data manipulation
commonly associated with GIS software. Building on these capabilities, several R packages
have been created for dynamic, spatially explicit ecological modelling (e.g. |Petzoldt and
Rinke}, |2007; [Fiske and Chandler, 2011). In addition, two recent land use change models
have been written for the R environment. StocModLCC (Rosa et al., [2013) is a stochastic
inductive land use change model for tropical deforestation while SIMLANDER (Hewitt et al.,
2013) is a stochastic cellular automata model to simulate urbanisation. Thus, R is well
suited for spatially explicit land use change modelling. To date, however, R has not been
used to develop a framework for land use change model development and comparison.
The remainder of this paper is divided into four sections. First, we discuss the principle
design goals of lulcc. We then describe the software and demonstrate its main functionality
with an example application to the Plum Island Ecosystems site, using data included with
the package. This is followed by a discussion of the strengths and main limitations of the
software and approach, as well as areas for future development. Finally we draw brief
conclusions from the project.

2 Design goals

The first design goal of lulcc is to provide a framework that allows users to perform various
stages of the modelling process illustrated by Figure [1| within the same environment. It
therefore includes methods to process and explore model input, fit and evaluate predictive
models, allocate land use change spatially, validate the model and visualise model outputs.
This provides many advantages over specialised software applications. Firstly, it improves
efficiency and reduces the likelihood of user errors because intermediate inputs and
outputs exist in the same environment (Fiske and Chandler, [2011};|Pebesma et al., [2012).
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Secondly, it encourages interactive model building because seperate aspects of the
procedure can easily be revisited. Thirdly, it is straightforward to experiment with different
model setups. Finally, and perhaps most importantly, it improves the reproducibility of
scientific results because the entire modelling process can be expressed programmatically
and be communicated as such with reasonable effort (Pebesma et al., 2012).

lulcc is intended as an alternative to current paradigm of closed source, specialised
software programs which, in our view, disrupt the scientific process. Thus, the second
design goal is to create an open and extensible framework allowing users to examine the
source code, modify it for their own purposes and freely distribute changes to the wider
community. The package exploits the openness of the R system, particularly with respect
to the package system, which allows developers to contribute code, documentation and
datasets in a standardised format to repositories such as the Comprehensive R Archive
Network (CRAN) (Pebesma et al., [2012]; |Claes et al., [2014). As a result of this philosophy
R users have access to a wide range of sophisticated tools for statistical modelling, data
management, spatial analysis and visualisation.

One of the consequences of providing a modelling framework in R is that users of the
software must become programmers (Chambers| [2000). We recognise that this repre-
sents a different approach to the current practice of providing land use change software
packages with graphical user interfaces (GUIs), and acknowledge that for users unfamiliar
with programming it could present a steep learning curve. Therefore, the third design goal
is to provide well documented software that is easy to use and accessible for a users
with varying levels of programming experience. The package includes complete working
examples to allow beginners to start using the package immediately from the R command
shell, while more advanced users should be able to develop modelling applications as
scripts. Furthermore, the package is designed to be extensible so that users can contribute
new or existing methods. Similarly, the source code of lulcc is accessible so that users can
locate the methods in use and understand algorithm implementations. Acknowledging that
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many scientists lack any formal training in programming (Joppa et al., 2013; |Wilson et al.,
2014), we hope this final goal will ensure the software is useful for educational purposes
as well as scientific research.

3 Software description

To achieve the design goals we adopted an object-oriented approach. This provides
a formal structure for the modelling framework which allows the various stages of land
use change modelling applications to be handled efficiently. Furthermore, it encourages
the reuse of code because objects can be used multiple times within the same application
or across several different applications. It is extensible because it is straightforward to
extend existing classes using the concept of inheritance, or create new methods for
existing classes. In lulcc we use the S4 class system (Chambers, (1998, [2008), which
requires classes and methods to be formally defined. This system is more rigorous than
the alternative S3 system because objects are validated against the class definition when
they are created, ensuring that objects behave consistently when they are passed to
functions and methods. Figure |2 shows the class structure of lulcc, while Table (1] shows
the functions included with the package. Here we describe the main components of lulcc
integrated with an example application for the Plum Island Ecosystems dataset. The script
used in this paper, including the code used to create the various figures, is supplied with
the package as a “demo"”. Instructions to obtain the package and run the demo script are
provided in the Code availability section.

3.1 Data

The failure to provide driving data for land use change modelling exercises alongside pub-

lished literature is identified by |Rosa et al.|(2014) as a major weakness of the discipline. The

lulcc package includes two datasets that have been widely used in the land use change
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community, allowing users to quickly start exploring the modelling framework. The first of
these contains data from the Plum Island Ecosystems Long Term Ecological Research site
in northeast Massachusetts (http://pie-lter.ecosystems.mbl.edu/), which in recent decades
has undergone extensive land use change from forest to residential use (Aldwaik and Pon-
tiusl [2012). The dataset included in lulcc was originally developed as part of the MassGIS
program (MassGIS, 2015) but has been processed by [Pontius and Parmentier|(2014). Land
use maps depicting forest, residential and other uses are available for 1985, 1991 and 1999
together with maps of three predictor variables: elevation, slope and distance to built land in
1985. The second dataset includes information from Sibuyan Island in the Phillipines, and
is a modified version of the dataset supplied with the CLUE-S model (Verburg et al., [2002).

3.2 Data processing

One of the most challenging aspects of land use change modelling is to obtain and process
the correct input data. Currently lulcc requires all spatially explicit input data to exist either
in the file system, in any of the formats supported by raster, or in the R workspace as
raster objects (RasterLayer, RasterStack or RasterBrick). The most fundamental input
required by land use change models is an initial map of observed land use, which is usually
obtained from classified remotely sensed data. This map represents the initial condition for
model simulations and, for inductive modelling, is used to fit predictive models. Sometimes
it is more useful to consider observed land use transitions: in this case an additional map for
an earlier time point is required, as shown by Figure([T] Ideally, two more observed land use
maps for subsequent time points should be obtained for calibrating and validating the land
use change model (Pontius et al.,2004a). The current version of the software only supports
categorical land use data, which means that each pixel must belong to exactly one category.

In lulcc observed land use data are represented by the ObsLulcRasterStack class. In
the following code snippet we load the package into the current session, create an ObsLul-
cRasterStack object for the Plum Island Ecosystems dataset and plot the result (Figure [3):

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]


http://pie-lter.ecosystems.mbl.edu/

20

25

> library (lulcc)
> data (pie)
> obs <- ObsLulcRasterStack (x=pie,
pattern="1u",
categories=c(1,2,3),
labels=c ("Forest", "Built", "Other"),
t=c(0,6,14))
> plot (obs)

The ObslLulcRasterStack object is important to land use change studies in lulcc because
it defines the spatial domain of subsequent operations. The t argument in the constructor
function specifies the time points associated with the observed land use maps. The first
time point must always be zero; if additional maps are present they should be associated
with time points greater than zero, even in backcast models. In most land use change
modelling applications the timestep between two time points represents one year but there
is no requirement for this to be the case.

A useful starting point in land use change modelling is to obtain a transition matrix for
observed land use maps from two time points to identify the main historical transitions in
the study region (Pontius et al., 2004b), which can be used as the basis for further research
into the processes driving change. In lulcc we use the crossTabulate function for this
purpose:

> crossTabulate (x=obs, times=c(0,14))
Forest Built Other

Forest 44107 4250 656

Built 11 36957 154

Other 1259 2248 23921
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The output of this command reveals that for the Plum Island Ecosystems site the dominant
change between 1985 and 1999 was the conversion of forest to built areas.

Inductive and deductive land use change models predict the allocation of change based
on spatially explicit biophysical and socioeconomic explanatory variables. These may be
static, such as elevation or geology, or dynamic, such as maps of population density or road
networks. In lulcc these two types of explanatory variable are separated by a simple naming
convention, which is explained in detail in the package documentation (see Supplementary
material). Collectively, they are represented by an object of class ExpVarRasterList, which
can be created as follows:

> ef <- ExpVarRasterList (x=pie, pattern="ef")

Apart from observed land use and explanatory variables other input maps may be required.
The two allocation routines currently included with lulcc accept a mask file, which is used to
prevent change within a certain geographic area such as a national park or other protected
area, and a land use history file, which is used as the basis for certain decision rules.
These are handled by lulcc as standard RasterLayer objects. All input maps should have
the same spatial resolution as the corresponding ObsLulcRasterStack object. This can be
achieved using the resamp1e function from the raster package, which has been extended
to receive lulcc objects. The ExpVarRasterList object created above can be resampled to
the parameters of an ObsLulcRasterStack object with the following command:

> ef <- resample(ef, obs)
3.3 Predictive modelling

Inductive land use change models relate the pattern of observed land use to spatially ex-

plicit explanatory variables. Logistic regression is a common type of predictive model used

for inductive land use change modelling (e.g. |Pontius and Schneider, 2001} |Verburg et al.,

2002). However, there is growing interest in the application of local and non-parametric

models (e.g. [Tayyebi et al.| [2014). One reason why R is attractive for land use change
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modelling is that it has become the de facto standard for statistical software development.
As a result, lulcc can easily support various predictive modelling techniques by utilising
code from existing R packages. Currently, lulcc supports binary logistic regression,
available in base R, recursive partitioning and regression trees, provided by the rpart
package (Therneau et al., 2014), and random forests, provided by the randomForest
package (Liaw and Wiener, [2002).

Parametric models such as logistic regression assume the data to be independent and
identically distributed (Overmars et al., |2003). In spatial analysis this assumption is often
violated because of spatial autocorrelation, which reduces the information content of an
observation because its value can to some extent be predicted by the value of its neigh-
bours (Beale et al., [2010). There is also some evidence that non-parametric models may
be affected by spatial autocorrelation Mascaro et al.| (2014), even though they do not as-
sume independence. A simple approach to reduce the impact of this phenomenon is to
fit predictive models to a random subset of the data (e.g. |Verburg et al., 2002; Wasse-
naar et al., 2007} Echeverria et al., [2008). In the following code snippet we create training
and testing partitions for the Plum Island Ecosystems dataset by performing a stratified
random sample. We do this using the map for 1985 to illustrate the procedure when only
one observed map is available. We then extract the data for the training partition with the
getPredictiveModelInputData function and pass the resulting data.frame to the
three model fitting functions:

> part <- partition(x=obs[[1l]], size=0.1, spatial=TRUE)
> train.data
<- getPredictiveModelInputData (obs=obs,
ef=ef,
cells=part[["train"]],
t=0)

> forms <- list (Built~ef_00l1+ef_002+ef_003,
11
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> glm.models <- glmModels (formula=forms,

> rpart.models <- rpartModels (formula=forms,

>

The model fitting functions each return an object of class PredictiveModelList containing
a predictive model for each land use type. With these objects it straightforward to map the
suitability of every pixel in the study region to the various land uses. To do this, we use the
generic predict function with some additional functionality from the raster package and
plot the resulting RasterStack object (Figure [4):

>
>

Forest~ef_001+ef_002,
Other~ef_001+ef_002)

family=binomial,
data=train.data,
obs=0bs)

IodeJ UOISSNOSI(]

data=train.data,
obs=0bs)
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rf.models <— randomForestModels (formula=forms,
data=train.data,
obs=0bs)
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all.data <- as.data.frame(x=ef, cells=part[["all"]])

probmaps <- predict (object=glm.models,
newdata=all.data,
data.frame=TRUE)

points <- rasterToPoints (obs[[1l]], spatial=TRUE)

probmaps <- SpatialPointsDataFrame (points, probmaps)

probmaps <- rasterize (x=probmaps, y=obs[[1]],

field=names (probmaps) )

IodeJ UOISSNOSI(]

levelplot (probmaps)

12



20

25

In some circumstances it may be appropriate to supply a model with no explanatory
variables to an allocation routine. For example, |Verburg and Overmars| (2009) used such
a model for natural and semi-natural vegetation because in their particular case study the
selection of pixels for conversion to these land uses was based on the suitability of pixels to
agricultural and urban land rather than the suitability of natural and semi-natural vegetation.
In lulce, this can most easily be achieved by fitting a binary logistic regression model with
no explanatory variables. To do this, a formula such as Forest~1 should be supplied to
the glmModels function.

Methods to evaluate statistical models are provided by the ROCR package (Sing et al.,
2005), allowing the user to assess model performance using various methods including
the receiver operator characteristic (ROC), which is used to measure the performance of
models predicting the presence or abscence of a phenomenon (Pontius and Parmentier,
2014). It is often summarised by the area under the curve (AUC), where one indicates
a perfect fit and 0.5 indicates a purely random fit.

In lulcc we extend the native ROCR classes to better suit our purposes. The prediction
and performance classes of ROCR are extended by PredictionList and PerformancelList,
respectively, to handle objects of class PredictiveModellList. In the folliwing example we
evaluate the logistic regression models using the testing partition from the 1985 observed
land use map. Since the Plum Island Ecosystems dataset contains three observed land use
maps we could also test the predictive models using data from a subsequent time point. The
procedure to evaluate several PredictiveModelList objects using these classes is as follows:

> test.data
<- getPredictiveModelInputData (obs=obs,
ef=ef,
cells=part[["test"]])
> glm.pred <- PredictionlList (models=glm.models,
newdata=test.data)

13
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> glm.perf <- Performancelist (pred=glm.pred,
measure="rch")

> rpart.pred <- PredictionList (models=rpart.models,
newdata=test.data)

> rpart.perf <- Performancelist (pred=rpart.pred,
measure="rch")

> rf.pref <— PredictionList (models=rf.models,
newdata=test.data)
> rf.perf <- Performancelist (pred=rf.pred,

measure="rch")
> plot (list (glm=glm.perf, rpart=rpart.perf, rf=rf.perf))

Figure |5/ shows the ROC curves for each land use type and for each type of predictive
model supported by lulcc. The plots show that binary logistic regression and random forest
models perform similarly for all land uses, while regression tree models perform least well.

Another use of ROC analysis is to assess how well the models predict the cells in which
gain occurs between two time points. This is only possible if a second observed land use
map is available for a subsequent time point. In the following code snippet we perform this
type of analysis for the gain of Built between 1985 and 1991. First, we create a data partition
in which cells not candidate for gain (cells belonging to Built in 1985) are eliminated. We
then assess the ability of the various predictive models to predict the gain of Built in this
partition:

> part <- rasterToPoints (obs[[1]],
fun=function(x) x != 2,
spatial=TRUE)
> test.data <- getPredictiveModelInputData (obs=0bs,
ef=ef,
cells=part,
£=6)
14
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> glm.pred <- Prediction (models=glm.models[[2]],
newdata=test.data)
> glm.perf <- Performance (pred=glm.pred,
measure="rch")
> plot (list (glm=glm.perf))

Figure [6] shows the resulting ROC curve.

3.4 Demand

Spatially explicit land use change models are normally driven by non-spatial estimates of
either the total number of cells occupied by each category at each time point or the number
of transitions among the various categories during each time interval. This means regional
drivers of land use change, such as population growth and technology, are considered
implicitly (Fuchs et al., |2013). While some models calculate demand at each time point
based on the spatial configuration of the landscape at the previous time point (e.g. |Rosa
et al.}2013), it is more common to specify the demand for every time point at the beginning
of the simulation (e.g. |Pontius and Schneider, 2001}, |Verburg et al., 2002} Sohl et al., [2007).
In lulcc the way in which demand is specified is unique to individual allocation models.
Currently, both allocation models currently included in the package require the total number
of cells belonging to each category at every time point to be supplied as a matrix or
data.frame before running the allocation routine.

Land use area may be estimated using non-spatial land use models or, in the case of
a backcast model, national and subnational land use statistics may be used (e.g. |Ray and
Pijanowski, 2010} Fuchs et al.,|2013). lulcc includes a function to interpolate or extrapolate
land use area based on two or more observed land use maps: this approach is often used
to predict the quantity of land use change in the near-term (Mas et al., 2014). For the
current example we obtain land use demand for each year between 1985 and 1999 by
linear interpolation, as follows:

15
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> dmd <- approxExtrapDemand (obs=obs, tout=0:14)

In reality we are not usually interested in simulating land use change between two time
points for which observed land use data is available. However, doing so is useful for model
pattern validation, allowing us to test the ability of models to predict the spatial allocation of
change given the exact quantity of change.

3.5 Allocation

The allocation algorithm in land use change models determines the pixels in which various
land use transitions should take place (Verburg et al.l 2002). Currently lulcc includes two
allocation routines: an implementation of the CLUE-S algorithm and a stochastic ordered
procedure based on the algorithm described by [Fuchs et al. (2013). Both routines allow
the user to optionally provide various decision rules. These are implemented before the
main allocation algorithm at each time point and allow the user to incorporate additional
knowledge about the study site.

3.5.1 Decision rules

The first decision rule included in lulcc is used to prohibit certain land use transitions. For
example, in most situations it is unlikely that urban areas will be converted to agricultural
land because the initial cost of urban development is high (Verburg et al., [2002). The
second rule specifies a minimum number of timesteps before a certain transition is allowed,
while the third rule specifies a maximum number of timesteps after which change is not
allowed. These rules are used to control land use transitions that are time-dependent, such
as the transition from shrubland to closed forest (Verburg and Overmars) 2009). The fourth
rule prohibits transitions to a certain land use in cells that are not within a user-defined
neighbourhood of cells already belonging to that land use. This rule is particularly relevant
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to cases of deforestation or urbanisation.

Within the allocate function the first three decision rules are applied by the allow
function and the fourth rule is applied by the al1lowNeighb function. For time dependent
decision rules the user should supply a land use history raster map, specifying the length
of time each pixel has belonged to the current land use. If this is not supplied each pixel is
assigned a value of one, representing one model timestep. To apply neighbourhood rules
it is necessary to supply corresponding neighbourhood maps to the allocation routine. In
lulcc these are represented by the NeighbRasterStack class. Objects of this class are
created with the following command:

> w <- matrix(data=1l, nrow=3, ncol=3)
> nb <- NeighbRasterStack (x=obs[[1]], weights=w,
categories=c(1,2,3))

Essentially, the allow and allowNeighb functions identify disallowed transitions
according to the decision rules and set the suitability of these cells to NA. These transitions
are ignored by the allocation routine. Care should be taken to ensure that after any decision
rules are taken into account there are sufficient cells eligible to change in order to meet the
specified demand at each time point.

3.5.2 CLUE-S allocation method

The CLUE-S model implements an iterative procedure to meet the specified demand at
each time point and handle competition between land uses. The model is summarised
briefly here: for a full description see|Verburg et al.| (2002) and (Castella and Verburg| (2007).
The algorithm in lulcc is based on the description of the model provided by [Verburg et al.
(2002) only. As a result, for the reasons discussed by |[Ince et al.| (2012), users should not
expect to exactly reproduce the output from the original model implementation.
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In the first instance each cell is allocated to the land use with the highest suitability as
determined by the predictive models. Whereas the original CLUE-S model is based on
binary logistic regression, lulcc allows any predictive model supported by PredictiveMod-
ellList to be used. For each land use the algorithm determines whether the allocated area
is less than, equal to or greater than the specified demand. If it is less than or greater
than demand the suitability of each pixel in the study region to the land use in question
is increased or decreased, respectively, by an amount depending on the difference
between the allocated area and specified demand. If the allocated area equals demand
the suitability is left unchanged. This procedure is repeated until the demand for all land
uses, within a user-defined tolerance, is met. At each iteration the original model perturbs
the suitability of each pixel to the various land uses in order to limit the influence of nominal
differences in land use suitability on the final model solution. This is replicated in lulcc
with the parameter jitter. £, which controls the upper and lower limits of the uniform
random distribution from which the perturbation applied to each pixel is drawn. The default
value of jitter.f is zero, resulting in a deterministic model. For a full description of
the various other parameters supplied to the CLUE-S routine please consult the package
documentation.

In lulcc allocation models are represented by unique classes. In the following code snip-
pet we first set the decision rules to allow all possible transitions and then define some
parameter values. Then, we create an object of class CluesModel and pass this to the
generic allocate function:

> clues.rules <- matrix(data=1l, nrow=3, ncol=3)

> clues.parms <- list (jitter.£f=0.0002,
scale.f=0.000001,
max.iter=1000,
max.diff=50,
ave.diff=50)

> clues.model <- CluesModel (obs=0bs,
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ef=ef,
models=glm.models,
time=0:14,
demand=dmd,
elas=c(0.2,0.2,0.2),
rules=clues.rules,
params=clues.parms)
> clues.model <- allocate(clues.model)

As an iterative procedure the CLUE-S algorithm employs for-loops, which are slow in R. To
overcome this limitation we have written the CLUE-S procedure as a C extension using the
.Call interface.

3.5.3 Ordered method

The ordered allocation method is based on the algorithm described by [Fuchs et al.| (2013).
The approach is less computationally expensive and more stable than the CLUE-S algo-
rithm because it doesn’t simulate competition between land uses. Instead, land allocation
is performed in a hierarchical way according to the perceived socioeconomic value of
each land use. For land uses with increasing demand only cells belonging to land uses
with lower socioeconomic value are considered for conversion. In this case, n cells with
the highest suitability to the current land use are selected for change, where n equals the
number of transitions required to meet the demand, as specified by the demand matrix
supplied as an input to the allocation routine. The converted cells, as well as the cells that
remain under the current land use, are masked from subsequent operations. For land uses
with decreasing demand only cells belonging to the current land use are allowed to change.
Here, n cells with the lowest allocation suitability are converted to a temporary class which
can be allocated to subsequent land uses. The land use with the lowest socioeconomic
value is a special case because it is considered last and, therefore, the number of cells that
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have not been assigned to other land uses must equal the demand for this land use.

We modify the algorithm described by (Fuchs et al., |2013) to allow stochastic transitions.
If this option is selected, the allocation suitability of each cell allowed to change is compared
to a random number between zero and one drawn from a uniform distribution. If demand
for the land use is increasing only cells where the allocation suitability is greater than the
random number are allowed to change, whereas for decreasing demand only cells where
it is less than the random number are allowed to change. To make the model deterministic
the user can set the stochastic argument to FALSE when the allocate function is
called.

In lulcc the ordered allocation model is represented by the OrderedModel class. In the
following code we create an OrderedModel object, supplying the order in which to allocate
change (built, forest, other), and pass this to the allocate function:

> ordered.model <- OrderedModel (obs=obs,
ef=ef,
models=glm.models,
time=0:14,
demand=dmd,
order=c(2,1,3))
> ordered.model <- allocate (ordered.model, stochastic=TRUE)

3.6 Pattern validation

Spatially explicit land use change models are validated by comparing the initial observed
map with an observed and simulated map for a subsequent time point (Pontius et al.,
2011). Previous studies have extracted useful information from the three possible two-map
comparisons (e.g. [Pontius et al., [2008), however, recently Pontius et al. (2011) devised
the concept of a three-dimensional contingency table to compare the three maps simu-
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lataneously. Not only is this approach more parsimonious, it also yields more information
about quantity and allocation performance (Pontius et al., 2011). For example, from the
table it is straightforward to identify sources of agreement and disagreement considering
all land use transitions, all transitions from one land use or a specific transition from one
land use to another. In addition, it is possible to separate agreement between maps due to
persistence from agreement due to correctly simulated change. This is important because
in most applications the quantity of change is small compared to the overall study area
(Pontius et al., 2004bj; van Vliet et al.l 2011), giving a high rate of total agreement which
can misrepresent the actual model performance. It is useful to perform pattern validation
at multiple resolutions because comparison at the native resolution of the three maps fails
to separate minor allocation disagreement, which refers to allocation disagreement at the
native resolution that is counted as agreement at a coarser resolution, and major allocation
disagreement, which refers to allocation disagreement at the native resolution and the
coarse resolution (Pontius et al., [2011).

In lulce, three-dimensional contingency tables at multiple resolutions are represented by
the ThreeMapComparison class. Two subclasses of ThreeMapComparison represent two
types of information that can be extracted from the tables: AgreementBudget represents
sources of agreement and disagreement between the three maps at several resolutions
while FigureOfMerit represents figure of merit scores. This measure, which is useful to
summarise model performance, is defined as the intersection of observed and simulated
change divided by the union of these (Pontius et al., |2011), such that a score of one in-
dicates perfect agreement and a score of zero indicates no agreement. Plotting functions
for ThreeMapComparison, AgreementBudget and FigureOfMerit objects allow the user to
visualise model performance. The ordered model output for Plum Island Ecosystems is
validated in the following way:

> ordered.tabs <- ThreeMapComparison (x=ordered.model,
factors=27(1:8),
timestep=14)
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ordered.agr <- AgreementBudget (x=ordered.tabs)
plot (ordered.agr, from=1l, to=2)

ordered.fom <- FigureOfMerit (x=ordered.tabs)
plot (ordered.fom, from=1l, to=2)

vV V. V V

This procedure was repeated for the CLUE-S model output. The agreement budgets for
the transition from Forest to Built for the two allocation procedures are shown by Figure
while Figure [8] shows the corresponding figure of merit scores.

4 Discussion

The example application for Plum Island Ecosystems demonstrates the key strengths of
the lulcc package. Firstly, it allows the entire modelling procedure to be carried out in
the same environment, reducing the likelihood of mistakes that commonly arise when
data and models are transferred between different software programs. A framework in
R specifically allows users to take advantage of a wide range of statistical and machine
learning techniques for predictive modelling. The framework allows users to experiment
with various model structures interactively and provides methods to quickly compare model
outputs. The example also highlights the advantages of an object-oriented approach: land
use change modelling involves several stages and without dedicated classes for the as-
sociated data it would be difficult to keep track of the intermediate model inputs and outputs.

lulcc is substantially different from alternative environmental modelling frameworks. Most
importantly, lulcc is designed for land use change modelling only, whereas frameworks
such as PCRaster and TerraME provide general tools that can be applied to various spatial
analysis problems such as land use change, hydrology and ecology. As a result, these
tools are targeted towards the model developer rather than the end user. In contrast, most
software programs for land use change modelling are designed with the user in mind,
with very few providing any way for users or developers to improve or even understand
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model implementations. With lulcc we have attempted to reduce the gap between user
and developer. The R system is well suited for this task, as |Pebesma et al.| (2012) notes
“the step from being a user to becoming a developer is small with R". The package
system ensures that lulcc will work across Windows, MacOS and Unix platforms, whereas
many existing applications are platform dependent. Comprehensive documentation of the
functions, classes and methods of lulcc, together with complete working examples, enable
the user to immediately start using the software, while the object-oriented design ensures
that developers can easily write extensions to the package.

Despite its manifest advantages, there remain some drawbacks to land use change
modelling in R. Firstly, the lack of a spatio-temporal database backend to support larger
datasets (Gebbert and Pebesmal, [2014) restricts the amount of data that can be used in
a given application because R loads all data into memory. The raster package overcomes
this limitation by storing raster files on disk and processing data in chunks (Hijmans, 2014).
lulcc has been designed to make use of this facility where possible, however, during
allocation it is necessary to load the values of several maps into the R workspace at once
because the allocation procedure must consider every cell eligible for change simultane-
ously. The generic predict function belonging to the raster package offers one possible
solution to this problem, allowing predictive models to be used in a memory-safe way. In
effect, this would mean spatially explicit input data including observed land use maps and
explanatory variables could be handled in chunks and only the resulting probability surface
would have to be loaded into the R workspace. However, this is not currently implemented
in lulcc because it is excessively time consuming compared to the current approach.
Despite this limitation, since most applications involve a relatively small geographic extent
or, in the case of regional studies (e.g. |Verburg and Overmars), 2009; [Fuchs et al., [2015),
use a coarser map resolution, memory should not normally cause lulcc applications to fail.
For example, the CluesModel and OrderedModel objects from the above example each
had a size of approximately 40Mb, which is easily handled by modern personal computers.
On a 64-bit machine with Intel Core i3 @ 1.4 GHz and 4Gb RAM, the allocation methods
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for the two Model objects took 50 seconds and 8 seconds, respectively.

The software presented here is still in its infancy and there are several areas for
improvement. The present allocation routines receive the quantity of land use change for
each time point before the allocation procedure begins. However, some recent models do
not impose the quantity of change but instead allow change to occur stochastically based
on land use suitability. For example, StocModLcc (Rosa et al., |2013) deforests a cell if the
probability of deforestation is less than a random number from a uniform distribution. The
quantity of change is simply the number of cells deforested after each cell in the study
region is considered for deforestation twice, with the probability of change, which depends
on the allocation of previous deforestation events, updated after the first round. One
advantage of this approach is that it accounts for uncertainty in the quantity and allocation
of change simultaneously, whereas the current routines in lulcc only consider the allocation
of change as a stochastic process. Other models such as LandSHIFT (Schaldach et al.,
2011) receive demand at the national or regional level from integrated assessment models
such as IMAGE (Stehfast et al.l 2014) or Nexus Land-Use (Souty et al., [2012). Coupling
lulcc with this class of model would be a valuable addition to the software because land
use change is increasingly recognised as an issue with drivers and implications at local,
regional, continental and global levels.

An important contribution of lulcc is to provide modules to assist with model pattern
validation, a crucial aspect of model development that is nevertheless frequently over-
looked within the land use change modelling community (Rosa et al) [2014). A further
improvement that could be made to the package is to incorporate more sophisticated ways
of fitting and testing the predictive models that estimate land use suitability. For example,
a routine to calculate the Total Operating Characteristic (TOC) (Pontius and Parmentier,
2014) would improve upon the ROC analysis currently supported. While ROC shows two
ratios, hits/(hits+misses) and false alarms/(false alarms+correct rejections), at multiple
resolutions, TOC reveals the quantities used to calculate these ratios, allowing greater
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interpretation of model diagnostic ability.

One of the main strengths of lulcc is that multiple model structures can be explored
within the same environment. Thus, the more allocation routines available in the package
the more useful it becomes. Two existing land use change models, StocModLCC and
SIMLANDER, are written in R and available as open source software. Future work could
integrate these routines with lulcc to broaden the available model structures and, therefore,
improve the ability of lulcc to capture model structural uncertainty. The methods in the
current version of lulcc only permit an inductive approach to land use change modelling.
Deductive models are fundamentally different because they attempt to model explicitly the
processes that drive land use change (Pérez-Vega et al., 2012). This means that, unlike
inductive models, they can be used to establish causality between land use change and
its driving factors (Overmars et al., 2007). Including this class of model in lulecc would
allow inductive and deductive land use change models with different spatial resolutions to
be dynamically coupled in order to better capture the complexity of the land use system
(Moreira et al., [2009).

Free and open source software improves the reproducibility of scientific results and
allows users to adapt and extend code for their own purposes. Thus, we encourage the
land use change community to participate in the future development of lulcc. Perhaps one
of the simplest ways to improve the package is to experiment with the example datasets to
identify bugs and areas for improvement. Those with more programming experience may
wish to extend the functionality of the package themselves and contribute these changes
upstream. In addition, existing land use change models can easily be included in the
package by wrapping the original source code in R; a relatively straightforward task for
commonly used compiled languages (C/C++, Fortran). Users may also develop their own
R packages that depend on lulcc for some functionality: this is one of the strengths of
the R package system. Finally, we invite land use change modellers to submit land use
change datasets (observed and, if possible, modelled land use maps and spatially explicit
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explanatory variables) for inclusion in the package.

5 Conclusions

In this paper we have presented lulcc, a free and open source software package providing
an object-oriented framework for land use change modelling in R. lulcc allows various
aspects of the modelling process to be performed within the same environment, supports
three types of predictive model and includes two allocation routines. The modelling
process can be expressed programmatically, facilitating reproducible science. Releasing
the software under an open source licence (GPL) means that users have access to the
algorithms they implement when they run a particular model. As a result, they can identify
improvements to the code and, under the terms of the licence, are free to redistribute
changes to the wider community. We view lulcc as an initial step towards an open paradigm
for land use change modelling and hope, therefore, that the community will participate in
its development.

Code availability

The R project for statistical computing is available for Windows, MacOS and several
Unix platforms. To download R, visit the project homepage: |https://www.r-project.org/.
Two popular and free integrated development environments (IDEs) are provided by
RStudio (https://www.rstudio.com/) and ESS (http://ess.r-project.org/). We suggest that
potential lulec users familiarise themselves with the raster package by reading the
“Introduction to the raster package" vignette, available on the package homepage:
https://cran.r-project.org/web/packages/raster/.

26

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]


https://www.r-project.org/
https://www.rstudio.com/
http://ess.r-project.org/
https://cran.r-project.org/web/packages/raster/

20

The lulcec source code currently resides on CRAN. This paper corresponds to version
1.0 of the package. It can be downloaded from the R command line as follows:

> install.packages ("lulcc")

The script for the Plum Island Ecosystems application is available as a demo within the
package. To load the package and run the demo, type the following commands:

> library (lulcc)
> demo (package = "lulcc")
> demo (topic = "gmd-paper")

The Supplement related to this article is available online at
doi:10.5194/gmdd-0-1-2015-supplement.
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Figure 1. Diagram showing the general methodology used for inductive land use change modelling
applications, adapted from Mas et al.| (2014). The input land use/land cover data can be a single
categorical map showing the pattern of land use/land cover at one time point (LULC (t1)) or a series
of maps showing historical land use/land cover transitions (LULCC (t1-t0)).
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Figure 2. Class diagram in the Unified Modeling Language (UML) for lulcc, showing the main
classes and methods included in the package.
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Table 1. Functions included in the lulcc package

Function name

Description

AgreementBudget

Calculate agreement budget (Pontius et al.,|2011)

getPredictiveModellnputDafaeate data.frame with variables required to fit predictive

allocate
approxExtrapDemand
compareAUC

crossTabulate
FigureOfMerit
glmModels
NeighbRasterStack
partition
PredictionList
PerformancelList
predict
randomForestModels
rpartModels
resample

ThreeMapComparison

total

models

Perform spatial allocation using various methods

Create a demand scenario by linear extrapolation
Compare the area under the curve (AUC) for various pre-
dictive models

Calculate the contingency table for two categorical raster
maps

Calculate the figure of merit (Pontius et al., [2011)

Fit multiple gim models

Calculate neighbourhood values

Partition Raster* map

Create a ROCR prediction object for each model in a Pre-
dictiveModellList object

Create a ROCR performance object for each prediction
object contained in a PredictionList object

Make predictions using a PredictiveModelList object

Fit multiple random forest models

Fit multiple recursive partitioning and regression tree mod-
els

Resample an ExpVarRasterList object to the parameters
of an ObsLulcRasterStack object

Calculate three-dimensional contingency tables (Pontius
et al.,|2011)

Sum the total number of cells belonging to each class of
a categorical raster map
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Figure 3. Observed land use maps for the Plum Island Ecosystems site in 1985, 1991 and 1999,

lu_pie_1985

lu_pie 1991

lu_pie_1999

220000

240000

260000

Forest
Built
Other

220000

240000

created by plotting the ObsLulcRasterStack object representing the data.
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Figure 4. Suitability of pixels in the Plum Island Ecosystems study site to belong to Forest, Built and
Other land use classes according to binary logistic regression models. Elevation and slope are used
as explanatory variables for all land uses while Built additionally includes distance to built pixels in

1985.
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Figure 5. ROC curves showing the ability of each type of predictive model to simulate the observed
pattern of land use in the Plum Island Ecosystems site in 1985 in the data partition left out of the
fitting procedure.
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Figure 6. ROC curve showing the ability of the binary logistic regression model fitted on observed
land use data from 1985 to predict the gain in Built land between 1985 and 1991.
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Figure 7. Agreement budget for the transition from Forest to Built for the two model outputs consid-
ering reference maps at 1985 and 1999 and simulated map for 1999. The plot shows the amount of
correctly allocated change increases as the map resolution coarsens.
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Figure 8. Figure of merit scores corresponding to the agreement budgets depicted in Figure
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