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1 Referee 1. (Ensheng Weng) Comments and responses

This paper describes a new version the CLM model that incorporates a set of individual-
based competition procedures according to the concept of the ED model, which allows the
model to predict forest distributions based on competitions among individual trees. So, the-
oretically, it doesn’t need the climatic envelopes imposed on plant functional types to define5

their geographical distributions. The authors tested the model’s performance of predicting
distributions of evergreen and deciduous forests in Eastern North America. The authors
also parameterized a set of key processes by the correlations of plant traits (e.g., leaf ni-
trogen, Vcmax, respiration, and leaf life span) to improve the performance of the coupled
model. Because of the complexity of individual based forest models and debates on the10

distributions of deciduous vs. evergreen trees regarding to their physiological and morpho-
logical traits, this study is a good try at coupling the processes ranging from leaf physiology
to individual behavior. The paper is well written and the model is clearly described in the
main text and supplemental materials. (But the tech note seems to be independent of this
paper since it has a different author list.)15

Reply: The tech note has a slightly different author list, since one of the authors of
the tech note did not respond to correspondence on the paper. We would appreciate
additional editorial guidance on the appropriate course of action in this case.

20

My major concerns are about the costs and benefits analysis that relate to the funda-
mental theories/principals about the relative advantages and competitiveness of deciduous
vs. evergreen trees. I think the most valuable part of this paper is its tests and discus-
sions about the parameter sensitivity and uncertainties of the relationships of plant traits
in affecting the predictions of the distributions of evergreen and deciduous trees. The tests25

presented in this paper may not show how perfect the model is, but they can tell us why the
model performs good or bad. This information can help in developing a better model. Here,
I’m not criticizing the analyses. Presenting more details that explain the model behavior may
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improve the value of this paper and help the readers to understand the simulated results.

1. Costs and benefits analysis of deciduous vs. evergreen leaves
The authors mentioned ‘carbon economy’ and ‘costs and benefits’ in introduction, but I don’t
find any such analysis in the methods and results. I’d like to see such analyses at different5

simulated biomes so that we can know why one outcompetes the other one and how the
parameterization schemes affect the fitness of deciduous and evergreen trees. The cost-
benefit analysis can explain the simulated distribution patterns. Basically, one plant can’t
distribute in some particular regions by two reasons: one is that it can’t survive the climatic
conditions of those regions. For the ensemble simulations in this study, there may be the10

third reason: the plant traits combinations may be carbon negative in some grids. The cost-
benefit analysis can explain this. Therefore, we can check if the simulated distributions are
resulted from correct reasons.

Reply: If we interpret this suggestion correctly, you are advocating a direct anal-15

ysis of the costs and benefits of the alternative leaf strategies. The cost of leaves
is easily calculated as the investment (in terms of LMA), divided by the lifespan (in
terms of LL), giving the cost in KgC per unit are per year of leaf. The benefits (in
terms of Carbon export), on the other hand, are more difficult to calculate, since they
are manifested not only though leaf narea and hence photosynthetic capacity, but20

also by the non-linear interactions of photosyn- thetic capacity with environmental
drivers (light, CO2, temperature etc.). Thus, the detailed physiological model is re-
quired to generate estimates of benefit in terms of assimilation, and it is not possible
to do these calculations as a simple offline analysis. Further, the implementation in-
side the physiological model includes the impact of self-shading of leaves lower in25

the canopy, and thus the costs and benefits of these strategie are actually only prop-
erly assessed at the canopy scale. Put another way, differences in top leaf carbon
export might be complicated by differences in shade tolerance of lower leaf layers.
To address this point, we conducted additional model runs that use only one PFT at
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a time. Using these analyses, we can assess the differences in productivity and leaf
area index of the PFTs in isolation. This remove the direct effects of light compe-
tition and allows interrogation of how the competition and productivity elements of
the model combine to generate the resulting distribution. We include this analysis in
the manuscript. Interestingly, it illustrates that the carbon economy of the younger5

plants is the feature that allows EBT’s to dominate in the mid-latitudes. Note that
none of the parameter combinations is carbon negative, from these analyses.

2. Distribution patterns and successive patterns of evergreen vs. deciduous forests
This model is a carbon-only model. But ecologists has found the needle-leaved evergreen10

trees usually distribute in nutrient poor soils while broadleaf deciduous trees with fertile soils
and theoretical explanations have been proposed to explain this pattern (e.g. Givnish 2002).
Can this model predict this pattern? What reasons made this pattern happen or not happen
in the model? are they the same or different with the theories proposed by those ecolo-
gists? Because there are so many empirical relationships in a model, it always happens15

that one can get correct results by wrong reasons. I want the authors to check the details of
why a particular PFT (evergreen or deciduous) wins or fails at some grids. Needle-leaved
evergreen trees are usually pioneer species and dominant at early succession stage in
temperate regions. Is this pattern observed in this model? And, how costs and benefits of
leaves explain these two patterns?20

Reply: The model is indeed a Carbon only model, and so does not have any specific
predictions about the impacts of soil fertility on PFT distribution. We agree, however,
that it is always possible to get the right result for the wrong reason. One result of
the model simulations is that, given the change in leaf and root turnover cost with25

temperature, it is not necessary to invoke additional nutrient-based hypotheses to
reconstruct the dominance of NLT at high latitudes.We do not discount, however, the
possibility of a compensating bias elsewhere in the model that might undermine this
conclusion, nor the idea that finer-scale variations in soils might affect local pattern-
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ing of evergreen and deciduous species. This is why we deliberately do not state that
we have found a definitive answer to the problem of why NET/DBT boundaries exist
in their current locations. The successional status of NET and DBT is not consistent
across these latitudes. In fact, in many systems, (e.g. those with aspen or birch as
early successional plants) the opposite is the case. However, in these simulations,5

the difference in fitness between the chosen PFTs was generally too large to allow
switching of dominance through the course of succession.

Specific questions:
10

1. Page 3303, line 18: ‘ENT have much lower nitrogen use efficiency than DBT’.
It depends on how to count it. Per unit time, ENT may have lower carbon gain per unit ni-
trogen. But as for ‘nitrogen use efficiency’, it should be counted as the carbon gain during
the lifetime of nitrogen in a leaf. Since evergreen leaves have much longer lifespan than de-
ciduous leaves, the carbon gain per unit nitrogen through the whole lifetime is higher than15

deciduous leaves.

Reply: We re-phrased this description to indicate that the NUE values are instanta-
neous, and not leaf-lifetime integrated. We appreciate that this terminology is poten-
tially confusing.20

2. Page 3305, lines 16-18: ‘we ran the models . . . . . . 30 years’ I was wondering if the
authors let the mode run the whole period of forest succession? (30 years is too short for
succession) So, how to determine who wins eventually at a grid? For some places, ever-
green trees may occupy the stand for 30- 50 year and then replaced by deciduous trees25

gradually.

Reply: Yes, we have run selected ensemble members through a longer succes-
sional integration (150 years). Our observations are that the models tend to drift
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slightly towards mono-dominance in some locations, and remain at the same pro-
portion in others. We do not see any examples where one PFT appears to demon-
strate ’late successional’ properties. Given that the PFT’s are identical except for
their leaf habits, and have the same mortality, turnover, etc. the only potential way
in which late successional properties would be observed would be if the species5

demonstrated opposing tolerances of shade, inversely correlated with growth rates
in the light. While this is possible solely from a leaf habit parameterization, the of-
ten large differences in productivity between PFTs mean that these subtle shifts in
growth rates are quite unlikely to be manifested in this case where the parameter
values are not calibrated in any way. Further to this, the existence of reproductive10

feedbacks as well as competitive interactions in the model means that the simula-
tions often tend towards mono-dominance. These issues were discussed in Fisher
et al. 2010 and here our intention was to focus on the impacts of parameter uncer-
tainty. Therefore we do not wish to complicate the arguments in the paper by also
including discussions of co-existence and succession. These will certainly be topics15

of forthcoming studies.

3. Page 3307, line 16: ‘the number of leaf layers over the footprint of the tree’, ‘number of
leaf layers’ and ‘footprint of the tree’ are not clear to me. According to the equation 3, they
are individual tree’s LAI and crown area, respectively.20

Reply: We re-phrased this to “Individual tree leaf area index is the number of leaf
layers within the area occupied by the tree crown”

4. Page 3308, line 12: ‘the net assimilation cost of the bottom leaf layer does not fall be-25

low zero’ Theoretically, it could ‘fall below zero’, only if they could worsen others. (I was just
thinking of this when reading it. It’s ok here to have ‘zero’ as the criterion.)
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Reply: To clarify, the net assimilation is calculated annually. Net assimilation may
fall below zero frequently for shorter periods (night, winter). It is also possible that
having leaves in net negative carbon balance may be sometimes advantageous from
a competitive perspective, to shade out competitors. Nonetheless, this model is
based on the stated hypothesis that trees construct leaves only if they are in net5

positive annual carbon balance. Other hypotheses are of course viable, and this is
a benefit of optimality theory, that it can be stated independent of empirical relation-
ships. Here the predictions of this hypothesis do not generate LAI predictions that
appear systematically wrong, and the variability in parameters means that is is not
possible to fundamentally reject this hypothesis with this analysis.10

5. Page 3308, lines 7: Here, it seems there are some foes in the base model in param-
eterizing LMA-leaf mass-LAI and the authors used another assumption (Eq 5) to correct
it. Ideally, evergreen trees should grow faster than deciduous trees during the early suc-
cession stage because of its high LAI. After forest closed, deciduous trees will gradually15

replace evergreen trees because of successful regeneration. A carbon-only model should
be capable of simulating this pattern. For me, it’s not necessary to specifically set the initial
LAI same for DBT and ENT. This would complicate the model. A delicate design of LMA
and leaf lifespan can solve this problem. For the same allocation of NPP to leaves, ENT
should have much higher LAI because of its long leaf lifespan, and the high LAI and long20

growing season of ENT leaves will make evergreen trees have a high productivity. So, the
authors don’t have to set a high LAI for ENT.

Reply: I don’t think is not always the case that ENT trees always grow fastest in
early succession, nor that they are necessarily out-competed by DBT, so testing25

whether this pattern was true would need a site-specific test. The assertion that ENT
should always be higher than DBT is not supported by the ground data for closed
canopy forests (see Asner et al. 2003), but I am not aware of large-scale databases
on this property for small-stature individuals. Further, in this case, we are actually
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increasing the ENT leaf area, whereas before it was lower than the DBT, so the mod-
ification means that the DBT start out with the same and not a greater LAI than ENT,
closer to the scenario suggested. That the model might be able to simulate a particu-
lar successional trajectory given a delicate design of LMA and leaf lifespan is likely.
Since CLM(ED) is a large-scale model, the focus of the study is on how such models5

can be parameterized directly from trait databases (and the difficulties therein), in the
absence of detailed site-specific parameter calibration. To do so would therefore go
rather against the method we are trying to illustrate. Lastly, it is often the case that in
most locations the difference in carbon economy between the ENT and DBT is very
large, precluding the successional shifts in question.10

Anyway, this is a new model and shouldn’t have too many such kind of compromising
design. It also brings me a question: In those grids that ENT wins, what makes them win?

Reply: The model is not strictly a new model, the feature in question was inherited15

from the Fisher et al. (2010) New Phytologist model implementation, which was the
initial implementation of the PPA into the ED structure, necessitating the design of
the representation of crown area. Admittedly, this could have been changed prior to
the implementation of the published model. Out intention was to make the process
of model development more transparent, and to illustrate the impacts of alternative20

representations of the carbon cycle and their impacts on biome boundary prediction.

6. Page 3317, Lines 18 22 and lines 4-6 in page 3321: Since the leaf lifespan is a function
of temperature, there are still some kinds of ‘empirically derived climatic constraints’ in this
model. The relationship between temperature and leaf lifespan is a result of competition25

and it will change with other factors, such as CO2.

Reply: We fully agree here. The discussion of the use of the environmentally driven
traits is covered in the discussion, as follows:

8



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

“Direct prediction of traits from their environmental drivers approach suffers, how-
ever, from at least three caveats. The first is that it predicts mean trait values for
given environmental conditions and thus does not represent heterogeneity of plant
strategies in a single location. Further, it is subject to a similar circularity of logic as
the original climate envelope approach, in that the relationships of plant traits and5

climate may well not hold under future circumstances where both atmospheric CO2,
nitrogen deposition and other metrics of climate, are heavily modified. Lastly, under
a changing climate, the shift in the mean trait values is considered as instantaneous,
no genetic limits to plasticity are implied and there is no demographic inertia to the
adoption of new better adapted plant types.”10

7. Table 1 : Some of the combinations are not realistic. For example, the ENT of the Run
ID 15 has a short leaf lifespan (0.6839 yrs), high LMA (483.6 gC/m2), and high Narea (4.95
g/m2). According to Osnas et al. (2013, Science) and many other studies, leaf lifespan has
a good linear relationship with LMA. And it will be great if I can see a table or figure in15

the results showing carbon economy of these combinations. It will be helpful for readers to
understand spatial distribution patterns of the traits combinations.

Reply: The trait combinations are determined from the covariance matrix derived
from the GLOPNET dataset, the same data used in the Osnas et al. study. The critical20

point is that, while those data are typically analysed across PFT, within PFT (here
defined by phenology and leaf habit) there is a much weaker correlation, as previ-
ously discussed by Reich et al. (2014). Figure 1 shows that for ENTs, these values
are within the statistical space defined by the dataset. In fact, many of the arguments
here concern the difficulty of using these data to parameterize plant function, given25

their poor correlation values.
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2 Referee #2. Comments and responses

Interactive comment on “Taking off the training wheels: the properties of a dynamic veg-
etation model without climate envelopes” by R. A. Fisher et al. Anonymous Referee #2
Received and published: 10 June 2015

5

I find this paper to be clearly written, well argued, and a welcome contribution to the liter-
ature. The authors have done an excellent job summarizing the past literature on the topic,
and have thus created a concise and consistent description of the field that is extremely
readable. Similarly the appendix (technical note) is very clear and readable. I am eager to
share their work with colleagues and students.10

Reply: We thank the referee for the kind comments, and are very pleased they plan
to share the work with colleagues.

I have only two minor comments, and a few very minor comments.15

Minor comments

pg 3310 ln 10 - This seems like a training wheel. You acknowledge this below (pg 3321
ln 16-17, “it is subject to a similar circularity of logic as the original climate envelope ap-20

proach”), but I think it is worth discussing here as well. Otherwise the reader is left wonder-
ing how this is different from a training wheel until much later in the paper.

Reply: We have added a pointer to our discussion of this issue in this paragraph.
“We discuss the implications of direct prediction of leaf lifespan from climatic drivers25

further in the discussion.”
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Figure4 4-12 - Please (please!) consider choosing a different colormap for your images.
The jet (or rainbow) colorbar is difficult to see for people who are colorblind and has some
changes in hue which draw attention to features unnecessarily. I would strongly prefer a
different set of colors.

5

Reply: Thank you for pointing out this issue, and apologies for our lack of fore-
sight into this problem. Matlab have, in later versions, changed the default color
scheme from ‘jet’ to ‘parula’ in order to address the same two criticisms that you men-
tion. (http://blogs.mathworks.com/steve/2014/10/20/a-new-colormap-for-matlab-part-
2-troubles-with-rainbows/) . We do not have et new version of matlab on our servers,10

so I attempted to recreate the parula scheme by hand, and this is now used in the
new figure set.

Very minor comments
15

pg 3304 ln 17 typo?: “proscribe”

Reply: We changed this to “we assume here that there are no other differences
between the properties of the ENT and DBT plant types.”

20

pg 3323 ln 6-10 I don’t understand this sentence.

Reply: We changed this to : “The idea behind optimality models is occasionally
undermined by studies using a game theory perspective, which show that the opti-
mal plant strategy in isolation differs somewhat from the optimal strategy that can25

compete with other plants”

11
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pg 3325 ln 16-23 Optimal parameter estimation has been done for limited regions for the
ED model - i.e. Medvigy et al. 2009 It seems worth mentioning this here

Reply: We have added the Medvigy reference to the discussion of parameter esti-
mation.5

Figure 3 - consider swapping the yellow and green colors. Yellow is generally harder to
see, and there are only very few green points on the plot.

Reply: We will swop these colors round in the newer figures.10

Tech note: The placement of the footnote markers at the beginning of the paragraph is a
bit odd. It took me a while to figure out what those were.

Reply: We have changed the footnotes so that the reference numbers now all oc-15

cur their own line.

3 Comment by Vivek Arora.

Fisher et al. attempt to simulate competition between needleleaf evergreen broadleaf cold
deciduous trees in Eastern North America on the basis of cost-benefit analysis from a car-20

bon perspective and reduce the dependence of the model on bioclimatic constraints. Their
effort is a step in the right direction.A recent paper by Zhu et al. (2015), in fact, tends to
do the opposite. Zhu et al. (2015) include additional bioclimatic constraints in the frame-
work of the ORCHIDEE dynamic global vegetation model (DGVM) to simulate the spatial
distribution of plant functional types (PFTs) in the northern hemisphere more realistically.25

One reviewer response to this was - if by including additional bioclimatic constrains we are
essentially turning DGVMs into biogeography models.However, the challenge of taking the

12
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“training wheels off” is difficult and a global sim- ulation that can reproduce the observed ge-
ographical distribution of PFTs without any bioclimatic constraints will likely be the ultimate
test of DGVMs.I would also like to comment on the following statement in this discussion
paper. The authors say ...Another class of model is derived from the Lotka-Volterra repre-
sentation of competitive ecological processes (Cox et al., 1998; Arora and Boer, 2006). In5

these models, for each pairwise competitive interaction between plant types, a “dominance
hierarchy” is pre-ordained that represents the expected outcome of competition between
any two plant types with similar growth rates. Thus, the distribution of plants is also not
a direct function of their physiological performance or dominance over resources but is
also controlled by pre-defined rules based on existing vegetation distributions.However, this10

statement is not entirely correct. The Arora and Boer (2006) imple- mentation of the mod-
ified version of the Lotka-Volterra equations does not include a pre-defined “dominance
hierarchy” for all PFTs. The only pre-defined “dominance hierarchy” used in the model is
for trees and grasses. Trees are considered superior to grasses because of their ability to
shade them and climate permitting trees are able to take over fraction of a grid cell that is15

covered by grasses. This dominance hierarchy is realistic. Within the tree and grass PFTs,
however, the dominance hierarchy in the model is based on the colonization rate of PFTs
which in turn depends primarily on their net primary productivity (NPP). The resulting distri-
bution of tree and grass PFTs is thus based on their physiological performance. The model
does, however, uses broad bioclimatic constraints to ensure PFTs do not venture outside20

their bioclimatic envelopes. For PFTs that can exist in a grid cell, the competition between
them de- termines what fraction of grid cell they occupy. The Canadian Terrestrial Ecosys-
tem Model (CTEM) used by Arora and Boer (2006) represents seven natural PFTs - 5 tree
PFTs and two grass PFTs. Out of these seven PFTs over about 95% of the land area the
number of PFTs that can exist in a grid cell varies from 3 to 5. The “bioclimatic whip” the25

model uses accounts for lack of physiological processes that are not included in the model.
The holy grail for the DGVM community is, of course, to wean off the bioclimatic constraints
as the Fisher et al. (2015) manuscript attempts to illustrate.
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Reply: Thank you for the comments and the clarification here. I note that these
comments pre-date the publication of an updated version of the CTEM DGVM also in
GMDD:

Melton J.R. and Arora V.K. Competition between plant functional types in the Cana-5

dian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. Discuss., 8 4851-
4948. doi:10.5194/gmdd-8-4851-2015.

The discussion therein on the extent to which plant functional types are used in
CTEM is of relevance to this paper. We will try and incorporate a reference to it in10

the new version of the manuscript. Accordingly, also, we will update the description
of the CTEM. We would be interested in whether this phrasing adequately and accu-
rately describes the model processes?

“Another class of model is derived from the Lotka-Volterra representation of com-15

petitive ecological processes (Cox et al. 1998, Arora & Boer 2006. The TRIFFID model
(Cox et al. 1998), specifies a ‘dominance hierarchy’ for each pairwise competitive
interaction between plant types that represents the expected outcome of competi-
tion between any two plant types with similar growth rates. Thus, the distribution
of plants is also not a direct function of their physiological performance or domi-20

nance over resources but is also controlled by pre-defined rules based on existing
vegetation distributions. The CTEM model (Arora & Boer 2006; Melton & Arora 2015)
imposes dominance hierarchies between trees and grass, and climate envelope con-
straints to define the maximum range of alternative tree plant functional types.”

25
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4 Comment by Astrid Kirkweg, Executive Editor

In particular, please note that for your paper, the following requirements have not been met
in the Discussions paper.“All papers must include a model name and version number (or
other unique identifier) in the title.”

5

Reply: Our apologies for missing this part of the author guidelines. We propose a
new title as: “Taking off the training wheels: the properties of a dynamic vegetation
model without climate envelopes, CLM4.5(ED).”

Abstract

We describe an implementation of the Ecosystem Demography (ED) concept in the Com-10

munity Land Model. The structure of CLM(ED) and the physiological and structural mod-
ifications applied to the CLM are presented. A major motivation of this development is to
allow the prediction of biome boundaries directly from plant physiological traits via their
competitive interactions. Here we investigate the performance of the model for an exam-
ple biome boundary in Eastern North America. We explore the sensitivity of the predicted15

biome boundaries and ecosystem properties to the variation of leaf properties determined
by the parameter space defined by the GLOPNET global leaf trait database. Further, we in-
vestigate the impact of four sequential alterations to the structural assumptions in the model
governing the relative carbon economy of deciduous and evergreen plants. The default as-
sumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms20

of carbon assimilation and expenditure, can reproduce the geographical structure of biome
boundaries and ecosystem functioning. We find some support for this assumption, but only
under particular combinations of model traits and structural assumptions. Many questions
remain regarding the preferred methods for deployment of plant trait information in land sur-
face models. In some cases, plant traits might best be closely linked with each other, but we25

also find support for direct linkages to environmental conditions. We advocate for intensi-
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fied study of the costs and benefits of plant life history strategies in different environments,
and for the increased use of parametric and structural ensembles in the development and
analysis of complex vegetation models.

5 Introduction

The storage of carbon on the land surface, and how the land surface interacts with the at-5

mosphere, are both determined to a large extent by the the distribution of plant types, or
ecosystem composition, across the globe. Ecosystem composition is, at large scales, de-
termined by past and present climate conditions (Holdridge et al., 1967; Woodward, 1987).
Given projected changes in climate, the composition of ecosystems may well be expected
to change in the coming decades and centuries (Cox et al., 2000; Sitch et al., 2003), and10

thus the carbon stored on the land is potentially subject to large deviations from the current
state. Additionally, biome shifts such as woody encroachment in the Arctic with a warmer
climate (Levis et al., 2000; Swann et al., 2010) and greening of the Sahara with a wet-
ter climate (Levis et al., 2004), significantly alter climate by changing surface albedo and
evapotranspiration (Rogers et al., 2013). Thus, the representation of biome distribution has15

emerged as a key new feature of Earth System Models (ESMs) in recent years (Cox et al.,
2000; Levis et al., 2004; Krinner et al., 2005; Sato et al., 2007).

Models that simulate the redistribution of plant types in space and time are collectively
referred to as dynamic vegetation models (in that vegetation cover is an emergent or dy-
namic outcome of the model). Most major climate models now include some functionality20

to simulate dynamic vegetation (Cox et al., 2000; Levis et al., 2004; Krinner et al., 2005;
Friedlingstein et al.; Sato et al., 2007; Arora et al., 2013). Their inclusion in ESMs, however,
can give rise to large and uncertain feedbacks. For example, the land surface scheme of
the Hadley Centre GCM (MOSES-TRIFFID, latterly known as JULES) originally predicted
the rapid collapse of the Amazon rainforest in the mid-21st century (Cox et al., 2000). Later25

versions of the same model with altered vegetation physiology allowed the simulated forest
to persist in the face of increasing temperatures and reducing rainfall (Huntingford et al.,
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2013), illustrating the strong sensitivity of vegetation distribution to underlying physiologi-
cal assumptions, which are themselves the subject of debate (Lloyd and Farquhar, 2008;
Atkin et al., 2008). Further to this, Sitch et al. (2008) demonstrated that the underlying as-
sumptions of five alternative DGVMs (all driven with the same climate scenario) generated
extremely divergent outcomes. In particular, the five models exhibited a tendency to pre-5

dict rapid and substantial collapse of forest biomass, but in markedly different places. For
example, the LPJ (Lund-Potsdam-Jena) model (Sitch et al., 2003) projects reductions in
forest cover for over 50% of Eurasia, while the TRIFFID and to a lesser extent the HYLAND,
Sheffield DGVM, and ORCHIDEE models all project declines in forest carbon over Ama-
zonia. These divergent outcomes may be interpreted as evidence that the processes that10

control the extant of forest biomes are poorly understood by large-scale models.
Two main classes of dynamic vegetation scheme are in use in the Climate Model Inter-

comparison Project (CMIP) models at present (Friedlingstein et al., 2014). The first class,
derived from the BIOME and LPJ class of models (Prentice et al., 1992; Running and
Hunt, 1993; Sitch et al., 2003) deploy the logic of ‘climate envelopes’, whereby recruitment15

and survival are only permitted within the predefined climate tolerances for a given plant
functional type. These envelopes represent the physiological tolerances of the vegetation
types to cold, heat and drought, but are typically derived using the observed distributions of
present day vegetation and isolated experimental data (Woodward, 1987; Prentice et al., 2007; Haxeltine and Prentice, 1996)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Woodward, 1987; Haxeltine and Prentice, 1996; Prentice et al., 2007) .

These climatic limits on recruitment and survival operate in lieu of physiological understand-20

ing of the reasons why different types of plants persist in some environments where others
do not. Another class of model is derived from the Lotka-Volterra representation of com-
petitive ecological processes (Cox et al., 1998; Arora and Boer, 2006). In these models,

::::
The

::::::::
TRIFFID

:::::::
model

::::::::::::::::::
(Cox et al., 1998) ,

:::::::::
specifies

::
a
::::::::::::
‘dominance

:::::::::
hierarchy’

:
for each pair-

wise competitive interaction between plant types , a ’dominance hierarchy’ is pre-ordained25

that represents the expected outcome of competition between any two plant types with
similar growth rates. Thus, the distribution of plants is also not a direct function of their
physiological performance or dominance over resources but is also controlled

::
to

::::::
some

::::::
extent

:::::::::::
determined

:
by pre-defined rules based on existing vegetation distributions.

::::
The
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::::::
CTEM

::::::
model

::::::::::::::::::::::::::::::::::::::::::::::::::
(Arora and Boer, 2006; Melton and Arora, 2015) uses

:
a
:::::::::::
dominance

:::::::::
hierarchy

::::::::
between

:::::
trees

::::
and

::::::::
grasses,

::::
and

:::::::
climate

:::::::::
envelope

:::::::::::
constraints

::
to

::::::
define

::::
the

:::::::::
maximum

::::::
range

::
of

:::
it’s

::::::
seven

:::::::
natural

:::::
plant

:::::::::
functional

:::::::
types.

:::::::::::
Dominance

:::::::::::
hierarchies

::::
can

::
be

:::::::::::
understood

:::
as

::
a

:::::
proxy

:::
for

::::
the

::::::::
outcome

:::
of

::::
light

::::::::::::
competition,

::::
and

:::::::::
therefore

::::
are

:::::::::::
appropriate

::::::
where

::::::::::
significant

::::::::::
differences

::
in

::::::::::
vegetation

:::::::
stature

::::::
mean

::::
that

::::
the

::::::::
outcome

:::
of

:::::::::::
competition

::
is

:::::::::
relatively

:::::::
certain,5

::::
such

:::
as

:::::::::::
competition

:::
for

:::::
light

::::::::
between

:::::
trees

::::
and

:::::::::
grasses.

The science of quantitatively understanding plant biome boundaries is in its infancy
(Moorcroft et al., 2001; Givnish, 2002; Wullschleger et al.; Enquist et al., 2015) and the use
of climate envelopes or dominance hierarchies as a proxy for understanding plant biome
dynamics is, arguably, a pragmatically-based

:::::::::
pragmatic

:
approach to a problem of extraor-10

dinary complexity. Although it remains a potentially valid means of understanding plant
distributions under altered climates, there is growing interest in moving towards models
that rely on more fundamental principles of plant physiology. At the same time, initiatives to
collate information on plant traits and physiological functioning (Wright et al., 2004; Kattge
et al., 2011) along with increases in the sophistication of process representation in land15

surface models (Blyth et al., 2010; Zaehle and Friend, 2010; Best et al., 2011; Goll et al.,
2012; McDowell et al., 2013; Oleson et al., 2013) have provided a basis for advancing plant
biome boundary modeling. Many groups have, therefore, proposed and developed vegeta-
tion models with greater process fidelity (Hurtt et al., 1998; Moorcroft et al., 2001; Moorcroft,
2006; Medvigy et al., 2009; Scheiter et al., 2013; van Bodegom et al., 2014; Wullschleger20

et al.; Fyllas et al., 2014; Weng et al., 2015), with an aim of mechanistically predicting plant
distribution, from considerations of climate, soil, and fundamental plant physiology and ecol-
ogy.

One key argument for this approach is that the vegetation distribution is an emergent
property of the system, and thus can be considered independent from observations of the25

location of biome boundaries. This gives rise to the possibility of hypothesis testing and,
in theory, increasing confidence in predictions of future biosphere functionality. Further-
more, while climate envelopes may be diagnosed as the biome assemblages that emerge
in response to the long-term ecosystem dynamics of a given climate, they may not be well-
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defined for emerging novel climates, especially given that some
:::::::::::::
environmental

:::::::
drivers

:::
(or

aspects of the “climate”(
:
, e.g., CO2 concentration and nitrogen deposition) are changing

everywhere
:::::::::::::
simultaneously; and thus all current climates are in a sense novel. Lastly, bio-

climatic relationships are diagnosed from long-term quasi-steady state distributions, and
so models that impose these assemblages in response to dynamic changes may not have5

realistic transient responses, which are likely to be characterized by lags between change
in climate and responses of vegetation, given the persistence of trees which have lifespans
that are long relative to the timescale of forcing.

Hence, we here introduce and explore a modeling framework for testing hypothesis

:::::::::::
hypotheses of vegetation distribution, integrated into the structure of the Community Earth10

System Model (CESM) (Hurrell et al., 2013). The framework is built around the Ecosystem
Demography (ED) concept of Moorcroft et al. (2001). The Ecosystem Demography model
is a method for scaling the behaviour of forest ecosystems by aggregating individual trees
into representative ‘cohorts’ based on their size, plant type and successional status. Here
we also integrate into the model changes introduced by Fisher et al. (2010); in particular15

a modified implementation of the Perfect Plasticity Approximation, (Purves et al., 2008) as
well as the SPITFIRE fire model of Thonicke et al. (2010), the cold deciduous phenology
model of Botta et al. (2000) and the concept of optimal allocation of leaf biomass c.f.(Dewar
et al., 2009; Thomas and Williams, 2014). Many aspects of plant physiological representa-
tion remain poorly constrained in land surface models in general. Thus, this framework is20

proposed as a template for future generations of the Community Land Model. We present
the full technical description of the CLM4.5(ED) as a supplement document (Supplementary
Information

:::::::::::::::
(Supplementary A). While we do not specifically examine model runs coupled

to the rest of the Earth System here, the capacity to do so is inherent in the inclusion of the
model within the CLM code that resides inside the software architecture of the Community25

Earth System Model (Hurrell et al., 2013).
For the purposes of this initial demonstration of the CLM4.5(ED), we concentrate on the

main property of the model which differs from most commonly used dynamic global vegeta-
tion models, which is the capacity to predict distributions of plants directly from their given
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physiological traits. This property can be referred to as ‘trait filtering’, and has been em-
ployed in offline land models (Reu et al., 2010; Pavlick et al., 2013; Verheijen et al., 2012;
Fyllas et al., 2014; Reichstein et al., 2014), and advocated heavily in the vegetation mod-
elling literature (McGill et al., 2006; Prentice et al., 2007; Purves and Pacala, 2008; Morin
and Thuiller, 2009; van Bodegom et al., 2012; Boulangeat et al., 2012; Scheiter et al., 2013;5

Violle et al., 2014; van Bodegom et al., 2014). To enable trait-filtering, traits must affect plant
growth and survival. Growth must then affect the acquisition of limiting resources (in this
case via competition for light within the vertical profile) which must feed back onto growth,
survival and reproduction. Differences in growth, survival and reproduction rates must then
directly control (in the absence of climate envelope constraints) the relative distributions10

of vegetation types (and hence also the distribution of their traits). This model structure
thus implies sensitivity to the specific, quantitative details of how physiological processes
are represented, and heightens the imperative to study the relative costs and benefits (or
economics) of alternative plant life history strategies (Reich et al., 2014)

::::::::::::::
(Reich, 2014) .

The hypothesis we investigate here is that the distribution of evergreen and deciduous15

trees can be predicted from the relative carbon economy of their leaf habits; meaning the
costs and benefits, in terms of carbon assimilation and expenditure, of the alternative phe-
nological behaviours. This idea is intended as an illustration of how one might use this
class of model to test continent-scale hypotheses concerning vegetation distribution, and to
raise important discussion points related to the methods used for such studies. Other biome20

boundaries, such as forest-tundra, forest-grassland and grassland-desert transitions, will be
the subject of future investigations.

6 Model Structure and Concept

Descriptions of the ED concept exist in the vegetation modeling literature, (Moorcroft et al.,
2001; Medvigy et al., 2009; Fisher et al., 2010), but we reiterate the major developments25

here for clarity. In reality, vegetation cover is heterogeneous in space for many reasons in-
cluding soil composition, climate, microtopography, land use and disturbance history (Dahlin

20



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

et al., 2012, 2013). In land surface models, the variations in exogenous drivers are captured
by the representation of gridded soil, land use and climate forcing data. Within a gridcell,
some of this exogenous heterogeneity is by definition ignored (although, in the CLM4.5,
some exogenous variation is captured by the representation of lake, ice, wetland, urban,
and managed vegetation tiles). In addition, much heterogeneity of vegetation composition5

and structure, is endogenous, in that it is driven by the ongoing processes of recovery and
disturbance across a landscape, giving rise to a quasi-random spatial matrix of vegeta-
tion at different stages of recovery. The

:::::::
default CLM4.5

::::::::::::::::::::
(Oleson et al., 2013) , and the vast

majority of land surface models operating in ESMs, represent variability in natural vegeta-
tion via a series of ‘tiles’, each of which is occupied by a single plant functional type (but10

c.f. Watanabe et al. (2011)). The tiles have no physical location within a grid cell, and no
concept of whether they are well-mixed or well-separated. This method of representing veg-
etation does not allow for competition for light between different plant types, and also does
not allow the representation of recovery from disturbance, a critical element of ecosystem
organization (Moorcroft et al., 2001; Purves and Pacala, 2008).15

6.1 Disturbance partitioned landscapes

The incorporation of the Ecosystem Demography concept significantly alters the represen-
tation of the land surface in the CLM. The purpose of the changes it

::
is

:
to represent in a

discretized manner, the disturbance-driven biotic heterogeneity. In the CLM(ED), the new
tiling structure represents the disturbance history of the ecosystem. Thus, some fraction of20

the land surface is characterized as ‘recently disturbed’, some fraction has not experienced
disturbance for a long time, and other areas will have intermediate disturbances. Newly dis-
turbed areas are generated periodically and mechanistically by events such as fire or the
falling of large trees. The patchwork of different stages of succession within a given geo-
graphical area is discretized into a set of similar ‘disturbance history class’ units. Note that25

within each of these disturbance history classes may exist a variety of plants of different
types, each of which may have different ages themselves. This formulation is described
next (Moorcroft et al., 2001; Medvigy et al., 2009; Fisher et al., 2010).

21



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

6.2 Cohortized representation of tree populations

Representing the heterogeneity of plants is challenging in ecosystem models operating the
earth system scale, considering the variability and myriad physiological attributes, sizes,
and spatial positions of real plant populations. One way of addressing this heterogeneity is
to simulate a forest of specific individuals, and to monitor their behavior through time. This is5

the approach taken by ‘gap’ and individual-based models (IBMs) (e.g. LPJ-GUESS (Smith
et al., 2001), SEIB Sato et al. (2007) , SORTIE Uriarte et al. (2009) )

:::::::::::::::::::::
(Sato et al., 2007) and

::::::::
SORTIE

:::::::::::::::::::
(Uriarte et al., 2009) . Their increased computational requirements mean that these

models typically use a daily or timestep for gas exchange calculations, while the Community
Earth System Model, and most other ESMs, require gas exchange to be calculated at 30 or10

60 minute resolution (Lawrence et al., 2011). For the sake of computational efficiency within
this framework, the ED model takes the approach of grouping this hypothetical population
of plants into ‘cohorts’. Cohorts are discrete groups of plants, which are essentially clones
of each other, and are differentiated from other cohorts primarily by their plant functional
type and size. Each cohort is associated with a number of identical trees, ncoh (where coh15

denotes the identification or index number for a given cohort).
In each disturbance history class, the hypothetical population of plants is divided first

into discrete plant types . The idea that cohorts each belong to one functional type (and
not species, sub-species, etc.) is consistent with the standard approach to representing
plant diversity in large scale vegetation models. Further to this, however, the ED model also20

groups plants into numerous size classes, thus enabling vertical interactions. Note also
that cohorts

:::::::
Cohorts

:
of the same functional type may co-exist and compete in the same

shared space as different sizes. The exact nature of the size classes emerges from the
cohort fusion routines, discussed in Supplementary Information

:::::::::::
Supplement

:
A. Importantly,

for each plant type/size class combination, the properties of the cohort’s representative25

individual plant are maintained and prognosed (numerically integrated through time). These
properties can be thought of as an average for the group of plants represented by the
cohort. Note that competition for below-ground resources, namely water, remains affected
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only by vertical root distribution, and is unaffected by the introduction of the ED concept into
the CLM. All plants have access to the same water pool, as described in Supplementary
Information

:::::::::::
Supplement

:
A.

Traditional DGVMs (Sitch et al., 2003; Woodward et al., 2004) prescribe only one sin-
gle average individual of each PFT without the use of the cohort concept, thus the ED5

approach represents a compromise in representation of forest dynamics between these
two approaches. Other ‘cohortized’ forest models exist in the literature, notably, GAPPARD
(Scherstjanoi et al., 2013, 2014), TREEMIG (Lischke et al., 2006; Zurbriggen et al., 2014;
Nabel et al., 2014), the PPA model (Purves et al., 2008; Lichstein and Pacala, 2011; Weng
et al., 2015) and later versions of the LPJ-GUESS model (e.g. (Hickler et al., 2008; Pappas10

et al., 2015), but few studies (if any) have looked into the copmarative
::::::::::::
comparative merits

and drawbacks of these different approaches.

7 Methods

7.1 The representation of trait diversity

We focus here on the problem of predicting the extent of evergreen and cold deciduous15

strategies in temperate regions. Deciduous and evergreen trees vary most obviously in
their approach to leaf production. Typically, deciduous trees produce thinner leaves with
lower leaf carbon mass per unit area (Ma, gC m-2), or the inverse of specific leaf area), that
only allow the plant to photosynthesize for the period of the year when these leaves are
viable (Niinemets, 2010). Whereas evergreen leaves

:
,
::::::::
whereas

::::::::::
evergreen

:::::::
leaves

::::::::
typically20

have more expensive construction that enables them to
::::
and persist year round. Leaf ni-

trogen content per unit area (Narea, g m-2) and productivity also vary with leaf thickness
(Reich et al., 2007), and are thus related to Ma and leaf lifespan (Ll, years). These three
properties; Ma, Ll and Narea, are among the best-quantified leaf traits in existing databases
(Kattge et al., 2011), and together can plausibly define alternative leaf construction strate-25

gies. Further, at a global scale, trade-offs exist between these three properties, and it has
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been suggested that the existence of such constraints on parameter space represents a key
opportunity to simplify the representation of vegetation within DGVM models (Reich et al.,
1997; Westoby et al., 2002; Wright et al., 2004; Reich, 2014). To investigate how param-
eter choice impacts the outcomes of the model, we use the GLOPNET leaf trait database
(Wright et al., 2004) to define Ma, Ll and Narea. Within plant functional types, which are5

defined here as evergreen vs deciduous trees and needleleaf vs broadleaf trees, there are
large variations for all parameters within the database (Figures

:::::
(Figs

:
1 and 2). Thus, there

exists a problem of parameter choice for these three properties. One approach is to sim-
ply use either the mean properties of the data for each plant type (Reich et al., 2007), or
a single linear fit of the relationship between the different variables. This approach, while10

compellingly simple, presupposes that the database represents an appropriate sample, ei-
ther of the mean of the existing plants, or the relationships between the variables. This is,
on account of sampling biases (Wright et al., 2004), quite unlikely to be the case; as such
we take a different approach that retains the observed spread in the available data. In this
case

:::::
study, we construct PFT-specific three-dimensional covariance matrices (Figs. 1 and15

2) . These covariance matrices
:::
that

:
represent our knowledge of the direction and fidelity

of the trade-offs between the three traits and thus define a set of plausible ’
:
‘proxy-species’

within each plant functional type, as defined in this case by phenological habit (i.e., ev-
ergreen or cold deciduous). We consider all parts of the normally distributed covariance
matrix to be equally likely (since their likelihoods are derived from the observed data). We20

then re-sample, from this normal distribution, a set of 15 parameter combinations for de-
ciduous broadleaf (DBT) and 15 for evergreen needleleaf (ENT) trees, using a multivariate
normal distribution sampling routine(,

:
‘mvnrnd’ function in MatLab (MATLAB, 2012)).

Narea values are substantially higher for ENT than for DBT. Kattge et al. (2009) report the
relationship between photosynthetic capacity Vc,max,25 :::::

(µmol
::::
m2

::::
s−1)

:
and Narea for DBT and25

ENT, and find that ENT have much lower
:::::::::::::
instantaneous nitrogen use efficiency than DBT,

:::::
using

:::::
their

:::::::::::
coefficients. We thus calculate Vc,max,25 as

Vc,max,25 = 33.79Narea (1)
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for DBT, and,

Vc,max,25 = 20.72Narea (2)

for ENT. Without this modification, a naïve approach to scaling from Narea to Vc,max,25 would
make

::::
give

:
ENT’s almost

:
a
::::::::::::::
photosynthetic

:::::::::
capacity

:
50% more productive than the more

highly constrained model
::::::
higher

::::
than

:::::::
DBT’s .5

This model parameterization approach only modifies a small fraction of the total number
of the parameters that are necessary within the CLM(ED) framework (Oleson et al., 2013)
(Supplementary Information

:::::::::::
Supplement A). To increase the tractability of the simulations

and to constrain the changes in parameters between plant functional types, we kept all
of the remaining model parameters constant. We acknowledge, and indeed emphasize,10

that the outcome of the simulations could be altered by modification of other parts of the
model parameter space. Our aim here is not to derive the ‘best possible’ simulation of
biome boundaries, but more to investigate the consequences of parameter choice within
a relatively small and well constrained framework. Few other model parameters have the
same density of observations (Kattge et al., 2011), thus, the scenario represented byMa, Ll15

and Narea is one of the best test-cases for deploying trait data to predict biome boundaries.

7.2 Model setup

To explore the consequences of parameter choice on the fidelity of the predicted biome
boundaries, we ran a series of ensemble simulations, each using one of the 15 parameter
combinations resampled from the 3D covariance matrix, as described above and in Table20

1. To allow for direct attribution of biome boundary position to our hypothesis (e.g., that the
relative carbon economy of deciduous vs. evergreen plants can explain their distributions)
we proscribe

::::::::
assume

::::
here

::::
that

::::::
there

:::
are

:
no other differences between the properties of the

ENT and DBT plant types. These ensemble simulations were run five times, using alterna-
tive structural assumptions (explained in Section 4.4), including four alternative structural25

assumptions and a control.
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Regional model runs were conducted for the Eastern United States. We selected this
region on account of the continent-scale biome boundary shifts evident between phenolog-
ical habits along the North-South axis of this domain. In the Eastern United States, there
is a clear transition from evergreen vegetation in the North to heavily deciduous-dominated
ecosystems in the mid-latitudes, then back to evergreen in the southern and subtropical5

regions. The problem of parameterization of plant functional type attributes within the con-
text of structural variants is complex, therefore we intentionally focus on this limited-scope
regional problem, to allow a more thorough investigation of the properties of the model. We
acknowledge that complex land-use impacts affect this study area, but we both screen out
heavily impacted areas from our analysis, and only focus on forested ecosystems, reducing10

this impact substantially (see latter section on observational constraints). Other clear shifts
in phenological habit occur globally, most notably at the rainforest/savanna biome boundary
(?), but methodologies for simulating drought-deciduous phenology are not as well under-
stood as for cold-deciduous phenology (Baudena et al., 2015), and the issue is complicated
by interactions with modelled soil and plant hydrology (dah). Future studies will investigate15

other biome boundaries, and ultimately the properties of global simulations.
The model is forced with 6-hourly climate drivers derived from Qian et al. (2006), re-

gridded to a 0.9 x 1.25 degree resolution grid and run from 1972 to 2003 for the Eastern
USA (90-65W, 25-50N). Because of our prioritization of ensemble experiments to illustrate
dependence of modelled plant competition on parameter values and model structural vari-20

ants, rather than to explore the consequences for the entire (soil, vegetation, atmosphere)
carbon cycle, we ran the models until the vegetation distribution appeared stable. Because
of the absence of a nitrogen cycle in our simulations, this period was relatively short (i.e.,
approximately 30 years). The carbon budget of the represented ecosystems was not nec-
essarily in balance at this time, but there did not appear to be a trajectory affecting the25

ecosystem composition, which is our
:::
the

:
output variable of interest. Our other outputs of

interest, LAI and GPP stabilize well before this time, .
:
Each ensemble member was initial-

ized for each run from 100%
::::
from

:
bare ground, which was seeded with equal numbers of

saplings of each plant functional type (ENT and DBT).
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7.3 Observational constraints

To evaluate the model predictions, we use the AVHRR vegetation continuous fields (VCF)
product (?), which assesses global vegetation patterns in terms of leaf type (i.e., needleleaf,
broadleaf) and phenological habit (i.e., evergreen, deciduous). The fraction of vegetation in
each class is determined for each 5 km cell, and the data were re-gridded to the same5

0.9x1.25 degree model grid. We generate a metric of average observed evergreen fraction
(Feg) for each grid cell. Further, we also use the MODIS leaf area index product (LAI) product
to evaluate model performance across the simulated domain. Leaf area index is a property
often used to benchmark plant physiology models because it is a critical determinant of
both energy and carbon exchange processes, despite our imperfect ability to generate LAI10

products from canopy greenness indices (Quaife et al., 2004; Pfeifer et al., 2012; Loew
et al., 2014). In this instance, our primary objective is to predict spatial variation in LAI at
a regional scale. Further studies will be expanded into the use of other metrics of canopy
greenness (e.g. Fraction of Absorbed PAR), using CLM

:::::::
CLM4.5(ED)’s increased fidelity rep-

resentation of the canopy structure (see Supplementary Information
:::::::::::
Supplement A). Areas15

with heavy (>50%) influence of anthropogenic land use change, as determined by the CLM
surface datasets , (Lawrence and Chase, 2010), are masked out in model-data compar-
isons, since the model is only relevant to the prediction of natural vegetation LAI. Since the
VCF product only reports values relevant to forest vegetation cover, it is relevant to test the
model predictions against areas with land use change because the herbaceous/crop areas20

are already screened out. Finally, we also compare model outputs to the Fluxnet GPP prod-
uct (Jung et al., 2011; Bonan et al., 2012), which scales fluxes observed at eddy covariance
measurements sites to a globally gridded product using climate and vegetation drivers. The
fluxnet

:::::::
Fluxnet

:
GPP has previously been used to validate CLM GPP predictions (Bonan

et al., 2012), and while it is relies on data which are sparse for some regions, errors for this25

latitude band are relatively low (Beer et al.).
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7.4 Structural variants

Numerous aspects of carbon cycle process representation are uncertain in land surface
models, and, using our mechanistic modelling framework, these uncertainties can propa-
gate into predictions of biome distribution, deepening the imperative to understand plant
physiology at a more fundamental level. To address a subset of this uncertainty, we con-5

ducted parametric ensembles across a variety of structural assumptions pertaining to the
allocation of carbon resources across evergreen and deciduous trees. We investigate the
important

:::::::::::
importance

:
of assumptions related to model initialization, which is an important

:
a
::::::::
notable

:
determinant of final ecosystem state in models with strong positive feedbacks.

We also investigate the depiction of leaf and fine root carbon economy, taking advantage10

of new studies that report better constraints on these processes than exist in the default
model. The new data pertain to the correlation of leaf respiration with leaf nitrogen, the
turnover of evergreen leaves, and the turnover rate of fine root matter. The default model
setup, described in detail in Supplementary Information

:::::::::::
Supplement

:
A, is denoted as the

control (CONT) simulation. The other four structural variants are described below.15

7.4.1 Variant 1: Allocation

The first structural variant relates to carbon allocation (and is thus denoted as ALLOC). In
this variant, we address limitations in the existing CLM(ED) assumptions for leaf carbon
allocation. In the default version of the CLM

::::::::
CLM4.5(ED),

:::::
using

::::::::::::
assumption

::::::::::
described

::
in

:::::::::::::::::::
(Fisher et al., 2010) ,

:
leaf area index is expressed on a per-tree basis (and ultimately ag-20

gregated to calculate average surface LAI). Individual tree leaf area index ,
::
is the number

of leaf layers over the footprint of the tree
:::::
within

::::
the

:::::
area

:::::::::
occupied

::
by

::::
the

::::
tree

::::::
crown, (ltree

, m2 m-2)
:
.
:::
ltree:is determined from leaf biomass, (bleaf, g), leaf mass per unit area (Ma,ft, g

m-2, (where ft denotes plant functional type) and the area occupied by the tree (Acrown,m2) as
follows,25

ltree =
bleaf

Acrown ·Ma,ft

(3)
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Maximum target leaf mass is an empirical function of stem diameter (dbh), adjusted by
the wood density ρft (taken from Moorcroft et al. (2001)).

bleaf,max = 0.0419dbh1.56ρ0.55
ft (4)

In the CLM(ED) this
:::::
bleaf,max:is a target maximum biomass that can be adjusted downwards

by the leaf area optimization routines (described in the technical note, Supplementary5

Information
:::::::::::
Supplement

:
A) that ensure that the net assimilation cost of the bottom leaf

layer (taking into account construction) does not fall below zero.
In this form, for a given tree diameter, there is always the same maximum leaf biomass,

irrespective of the Ma. Therefore, initial ltree is inversely proportional to Ma. The ENT and
DBT plants typically have markedly different Ma distributions (Figures

::::
Figs

:
1 and 2) and10

therefore there is a correspondingly large difference in their maximum potential (and initial)
leaf area index. While the leaf area optimization routines eventually act to ameliorate this
initial difference in LAI between plant types, the early advantage in productivity obtained by
the deciduous trees can cause them to grow faster to the extent that they close the canopy
and out-compete the evergreen trees, reinforcing the difference in initial conditions. Asner15

et al. (2003) report LAI values for temperate ENT’s as at least equivalent to (6.7± 6.0) if not
higher than temperate DBT’s (5.1± 1.8). These observations imply that absolute allocated
leaf biomass for ENT’s must, given their higher Ma, be higher than the leaf biomass of
DBT’s, which is not the case in the control model.

To overcome this intrinsic model bias, we employ a modification to the target leaf biomass20

such that the initial tree leaf area index remains the same for DBT and ENT regardless of
the values of specific leaf area. Specifically, the target leaf biomass is scaled by the quantity
Slma as follows,

Slma =
Ma,max

Ma,ft

(5)

where Ma,max is a reference value, currently set at 300 g m-2.25

29



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

7.4.2 Variant 2: Base rate of respiration

Leaf respiration rates are a critical element of the competitive interaction between ENT
and BDT since a major cost of the evergreen habit is the maintenance of photosynthetic
apparatus throughout the unproductive winter season. The second variant (RESP) pertains
to the baseline rate of respiration. In the control version of both the CLM4.5and CLM(ED)5

models, respiration is a function of the leaf nitrogen content per unit area Narea. Using this
methodology, the leaf maintenance respiration rate at 25oC at the top of the canopy lmrtop,25

(gC s-1 m-2) is

lmrtop,25 =Narea · bresp, (6)

where bresp is the baseline rate of respiration per unit Narea, given by Ryan (1991) as 0.257710

gC gN-1 s-1.
A recent study by Atkin et al. provides greater constraints for the relationship between

Narea and lmrtop,25. In their study, they report different relationships for ENT and BDT func-
tional types, as follows, for BDT

log10(lmrtop,25,BDT) = log10(Narea) · 1.134− 0.300 (7)15

and for NET

log10(lmrtop,25,NET) = log10(Narea) · 1.005− 0.346 (8)

The outcome of these log-log relationships, if expressed as a baseline rate in gC gN-1 s-1

implies that
:
in

::::
the

::::::
same

:::::
base

::::
rate

:::::
units

::::::
used

::
by

::::::::::::::
(Ryan, 1991) , across the spread of Narea

values used in our ensemble, the average effective respiration per unit N is 0.452
:::
gC

::::
gN-1

20

::
s-1

:
for NET and 0.536

:::
gC

::::
gN-1

:::
s-1 for BDT. We replaced the linear dependence of lmrtop,25 on

Narea with the log-linear functions described above. With this modification, the baseline
::::
base

rate is approximately double the rate (0.2577 gC gN-1 s-1)
::::
that used in the CLM4.5

::::::
default

::::::
model, and the new baseline

::::
base

:
rate for ENT is 16% lower than that for BDT (when they

were identical in the original model). We denote this model variant as RESP.25
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7.4.3 Variant 3: Leaf lifespan as a function of temperature

The third structural variant we consider concerns the rate of evergreen leaf turnover. In the
default version of the model, leaf lifespan is derived from the covariance matrix that relates
it to Ma , leaf mass per area and Narea. However, interrogation of the GLOPNET database
reveals almost no correlation between leaf lifespan and Ma for NET (R2=0.004). Instead,5

there is a much stronger correlation with mean annual temperature (R2=0.426, or 0.311
if the single outlying datapoint with Ll=240 months is removed, Fig. 3). This correlation

:::::::::::
relationship was also reported for a subset of boreal needleleaf evergreen trees by Reich
et al. (2014), who investigated it’s impact on a biogeochemical model. The impact of using
our default covariance matrix approach is that the existence of short lifespan observations10

can lead the model to generate ‘expensive’ leaf strategies
::::
can

:::
be

::::::::::
proscribed

:
in both hot

and cold regions. In contrast, the observations suggest that, irrespective of leaf cost, leaves
last longer in colder environments, and

::::
that

:::
the

:
short-lived, more expensive leaf habits are

confined to hotter areas. In this modification, we directly employ the relationship between
mean annual temperature (MAT, oC) and Ll for evergreen trees. The relationship we extract15

from the GLOPNET data for this purpose is:

Ll,ENT =−0.2885MAT +7.1069 (9)

As temperature appears to have no significant impact on Ma or Narea, (R2=0.046 and 0.02
respectively) and as they are strongly related to each other (R2=0.580) we retain the co-
variance matrix approach to define those parameters, independent of temperature. We also20

maintain the same maximum leaf lifespan prediction for the deciduous trees. We denote this
variant as LL_TEMP.

:::
We

:::::::
discuss

::::
the

:::::::::::
implications

:::
of

:::::
direct

::::::::::
prediction

:::
of

::::
leaf

:::::::
lifespan

:::::
from

:::::::
climatic

:::::::
drivers

::::::
further

:::
in

:::
the

:::::::::::
discussion.

:
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7.4.4 Variant 4: Root lifespan as a function of temperature

The definition of root turnover rates is subject to extreme uncertainty in vegetation models,
not least because root turnover rates are intrinsically hard to observe, but also because root
longevity appears to be complex, having been statistically related to many factors including
root order (Joslin et al., 2006; Guo et al., 2008; McCormack et al., 2012), depth, diameter,5

specific root length and wood density (McCormack et al., 2012), nitrogen content (Eissen-
stat et al., 2000) and temperature (Gill and Jackson, 2000). Arguably, models that predict
root traits from correlated plant physiological properties and environmental conditions are
needed to properly specify this trait, as described in detail by Warren et al. (2015). However,
to illustrate the sensitivity of the biome boundary predictions to basic variability in assump-10

tions of root turnover, we test both the default assumption (the turnover rate of the fine root
pool is 1.0yr-1) and a relationship derived from the analysis of Gill and Jackson (2000). The
Gill metaanalysis found a log-log relationship between MAT and root tissue turnover (Rl,
years), with different coefficients for NET and BDT (with a slightly steeper decline in Rl with
MAT for BDT than for NET). Thus, for NET15

log10(Rl,NET) =−0.053 log10(MAT )+ 3.088 (10)

and for BDT

log10(Rl,BDT) =−0.082 log10(MAT )+ 3.316 (11)

We denote this model variant as RL_TEMP.

7.5 Model Simulations20

Our four modifications give rise to a set of 24=16 potential structural combinations. Testing
all 16 structural combinations for the 15 member parameteric ensemble for the full East-
ern United States region is computationally prohibitive. Consequently, instead of testing all
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combinations, we add the structural modifications in one at a time to investigate the impact
of each change in isolation. We therefore compute five ensembles of alternative structural
variants, by adding the ALLOC, RESP, LL_TEMP and RL_TEMP changes sequentially. For
each of the five variants, we run the model for 15 times with parameter values sampled from
the space of Ma, Ll and Narea. The model runs

:::::::::
structural

::::::::
variants are labelled i,ii,iii,iv, and v,5

and are described in Table 2. We compare the model output to the observed data using five
comparison metrics, maximum and mean annual LAI, maximum and mean annual GPP,
and the single set of evergreen fraction data available.

We calculate the R2 and root mean square error (RMSE) of the spatial distribution of
each metric. We acknowledge that there exists a choice of metrics (maximum vs. minimum10

vs. range, and spatial vs temporal correspondence) but also note that subjectivity in the
definition of objective functions is generic to high-dimensional model output (Abramowitz
et al., 2008; Randerson et al., 2009; Blyth et al., 2011; Abramowitz, 2012; Kelley et al.,
2012; Luo et al., 2012; Schwalm et al., 2013; Anav et al., 2013).

::::
Our

::::::::
analysis

::
is

::::::::::
concerned

::::
with

:::
the

::::::
costs

::::
and

::::::::
benefits,

::
or

:::::::
carbon

::::::::::
economy,

::
of

:::
the

::::::::
different15

:::
leaf

:::::::::::
strategies.

::::
The

::::
cost

::
of

:::::::
leaves

::
is

::::::
easily

::::::::::
calculated

:::
as

:::
the

:::::::::::
investment

:::
(in

::::::
terms

::
of

::::::
LMA),

:::::::
divided

::
by

::::
the

::::::::
lifespan

:::
(in

:::::
terms

:::
of

::::
LL),

::::::
giving

:::
the

:::::
cost

::
in

:::::
KgC

:::
per

::::
unit

::::
are

::::
per

::::
year

:::
of

::::
leaf.

::::
The

:::::::
benefits

:::
(in

::::::
terms

:::
of

:::::::
Carbon

::::::::
export),

:::
on

:::
the

::::::
other

:::::
hand,

::::
are

:::::
more

:::::::
difficult

:::
to

:::::::::
calculate,

:::::
since

:::::
they

:::
are

:::::::::::
manifested

::::
not

:::::
only

:::::::
though

::::
leaf

:::::
Narea::::

and
:::::::

hence
::::::::::::::
photosynthetic

:::::::::
capacity,

:::
but

::::
also

:::
by

:::
the

::::::::::
non-linear

:::::::::::
interactions

::
of

::::::::::::::
photosynthetic

:::::::::
capacity

::::
with

:::::::::::::
environmental

:::::::
drivers20

:::::
(light,

:::::
CO2,

::::::::::::
temperature

:::::
etc.).

::::::
Thus,

:::
the

::::::::
detailed

::::::::::::
physiological

::::::
model

::
is

::::::::
required

::
to

:::::::::
generate

:::::::::
estimates

::
of

:::::::
benefit

::
in
::::::
terms

:::
of

::::::::::::
assimilation,

::::
and

::
it

::
is

:::
not

:::::::::
possible

::
to

:::
do

::::::
these

:::::::::::
calculations

::
as

::
a
:::::::

simple
:::::::
offline

:::::::::
analysis.

::::::::
Further,

::::
the

:::::::::::::::
implementation

::::::
inside

::::
the

:::::::::::::
physiological

::::::
model

::::::::
includes

:::
the

:::::::
impact

:::
of

:::::::::::
self-shading

:::
of

:::::::
leaves

:::::
lower

:::
in

:::
the

::::::::
canopy,

::::
and

:::::
thus

:::
the

::::::
costs

::::
and

:::::::
benefits

:::
of

::::::
these

::::::::::
strategies

:::
are

::::::::
actually

:::::
only

::::::::
properly

::::::::::
assessed

:::
at

:::
the

::::::::
canopy

::::::
scale.

:::
To25

:::::::
address

::::
this

::::::
point,

::::
we

::::::::::
conducted

::::::::::
additional

::::::
model

:::::
runs

::::
that

::::
use

:::::
only

::::
one

:::::
PFT

::
at

::
a

:::::
time,

:::::
using

:::::::::
structural

:::::::
variant

::
v.

:::::
Using

::::::
these

:::::::::
analyses,

:::
we

::::
can

:::::::
assess

:::
the

:::::::::::
differences

::
in

:::::::::::
productivity

:::
and

::::
leaf

:::::
area

:::::
index

::
of

::::
the

:::::
PFTs

::
in

:::::::::
isolation.

::::
This

::::::::
remove

:::
the

:::::
direct

:::::::
effects

::
of

::::
light

:::::::::::
competition
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:::
and

:::::::
allows

:::::::::::::
interrogation

::
of

:::::
how

::::
the

:::::::::::
competition

::::
and

::::::::::::
productivity

:::::::::
elements

:::
of

::::
the

::::::
model

::::::::
combine

::
to

:::::::::
generate

:::
the

:::::::::
resulting

:::::::::::
distribution.

:

8 Results

8.1 Overall model performance

Figs. 4, 5 and 6 illustrate the R2, relative RMSE and summary statistics for each structural5

variant and parameter combination. Figs. 7, 8, 9 and 10 show the simulated evergreen
fraction (Feg) as simulated by the different model structural variants. Figs. 11 and 12 show
the mean annual LAI and GPP of the last structural ensemble member

::::::
variant

:
(run v),

once all of the modifications have been made. GPP and LAI maps are shown for the other
experiments in the Supplementary Information

:::::::::
structural

::::::::
variants

::
in

:::
the

::::::::::::
Supplement B.10

Fig. 4 illustrates that, particularly for Feg and LAI, R2 varies primarily with model structural
variation, as illustrated by the horizontal striation. In contrast, variation in RMSE, particularly
for GPP, illustrates the dominance of parametric variation, shown by the vertical striation in
the GPP and LAI comparisons in figure

:::
Fig 5. We did not combine the R2 and RMSE values

directly, since calculating their relative weights would serve to reduce the clarity of the output15

exposed by using them both independently.

8.2 Prediction of biome boundaries

In the control simulation (Fig. 7), every parameter combination produced a near complete
dominance by deciduous vegetation, irrespective of the variation in parameters that were
extracted from the leaf trait database. The meanR2 of the predicted vs. observed Feg across20

the ensemble (0.04) illustrates this lack of predictive skill. In contrast, addition
:::::::
Addition

of the ALLOC modifications to initial leaf biomass (Fig. 8), returns significant variation in
predicted Feg. The model still predicts complete dominance of BDT for some parameter
combinations, but also successful dominance of ENT at high and low latitudes for others.
Still

::::::::::::
Nonetheless, only three of the simulations have evergreen cover over 25% (where the25
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mean for the observations is 49.2%). The mean(and max) R2 is 0.13(0.34), where ‘max’ is
the highest R2 value for any of the 15 parametric combinations.

The impact of altering the leaf respiration fluxes to match the observed relationship with
leaf nitrogen and plant functional type had only a slight impact on the overall RMSE and
R2 statistics for the evergreen fraction predictions (maps not shown on account of their5

similarity with Fig. 8). Making evergreen leaf lifespan a PFT-specific function of temperature
(LL_TEMP), has a more profound impact on the competitive ability of the NET plants at high
latitudes (Fig. 9). With this structural modification, seven of the simulations have evergreen
cover over 25%, and the mean(and max) R2 increases to 0.20(0.34).

The last modification, directly including the PFT-specific impacts of temperature on fine10

root turnover, further increases the dominance of evergreen trees in Northern latitudes,
again slightly increasing the correlation with the observations. Now nine of the simulations
have evergreen cover >25% and the mean(and max) R2 is 0.23(0.35) (Fig. 10). In general,
it is clear that all versions of the model considered here display something of a systematic
bias towards the prevalence of deciduous trees using this parameter space.15

The impact on RMSE of the sequence of model
::::::::
structural

:
modifications also showed a

tendency towards improvement as the average RMSE of the predicted vs observed fraction
of evergreen trees dropped from 0.48 (model run i), through 0.41(ii), 0.41(iii), 0.37(iv) and
0.35(v) (Fig. 5).

8.3 Impacts on Leaf Area Index20

The alteration of both model assumptions
:::::::::
structure and parameters also had a major im-

pact on the predicted model LAI. This is expected, since all of the modifications and param-
eters are concerned with carbon economy, and realized leaf area in the model is predicted
from the vertical location of the lowest leaf layer in positive annual carbon balance (see
Supplementary Information

:::::::::::
Supplement A). The increase in model-data spatial coherence25

(R2) through the structural ensemble (from runs i to v) for Feg (see Section 5.2) is not echoed
by changes in the R2 of mean annual LAI, which instead decreases through the ensemble
from 0.45 (run i) through 0.31 (ii), 0.30 (iii), 0.14 (iv) and 0.05 (v). This trend was not ap-
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parent for the R2 of maximum annual LAI (which varies through 0.42 (i), 0.15 (ii), 0.32 (iii)
0.39 (iv) to 0.38 (v)) (Fig. 4). The model error (RMSE) was also relatively insensitive to
changes in the model structure, aside from the change from run i to run ii, which improved
the simulations (Fig. 5).

The direction of change of the R2 and RMSE statistics was not consistent due to spatial5

complexities. Specifically, the control simulation (run i) systematically underestimated LAI
across the entire domain (Supplementary Information

:::::::::::
Supplement

:
B: Fig. 1) and thus had

a high RMSE. The lack of much spatial structure in LAI prediction across the geograph-
ical domain, however, meant that it had a relatively good spatial coherence with the LAI
data product, which also is

::
is

::::
also

:
relatively homogenous across the domain. Increasing10

allocation to leaf biomass in simulation ii, and thus increasing LAI overall, intensified the
spatial heterogeneity of the predictions (Supplementary Information

:::::::::::
Supplement

:
B: Fig. 2)

and thus worsened the R2, but reduced the model error.
Changing the respiratory fluxes in run iii improved the R2 fit to maximum LAI (from 0.15

to 0.32, Fig. 4), potentially on account of the higher respiration rates at low latitudes acting15

to slightly even out the spatial distribution of LAI (Supplementary Information
:::::::::::
Supplement

B: Fig. 3), and in doing so compensated for the decline caused by the previous modification
(illustrating the possibilities of model equifinality).

Altering the leaf turnover time caused an increase in the mean LAI (from 2.66 to 3.06)
by reducing canopy replacement costs at high latitudes, and increasing realized LAI in20

these areas. The model predictions thus now approach and in some cases overshoot the
values observed for high latitude evergreen forests (3.5-4.5 m2 m-2) in the data product
(Supplementary Information

:::::::::::
Supplement

:
B: Fig. 4). In the simulations where evergreen

trees are dominant, it is notable that their LAI values may be somewhat over-predicted.
The final simulation (v, with the RL_TEMP modification) intensifies the reduction in tissue25

turnover demand at high latitudes, and thus the changes mirror
::::::::
primarily

:::::::
amplify

:
those

imposed on LAI by the LL_TEMP modification. The model now illustrates a very wide range
of potential LAI Fig predictions, dependent on the parameters chosen to represent the ENT
and DBT strategies (Figure

::::
Fig. 11). The major systematic bias in the final LAI predictions is
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the underestimation of LAI in the mid-latitudes of this
:::
the

:
domain. The fact that this feature

is persistent across the parameter space sampled (even though there is clearly room for
more detailed parameter optimization), indicates a structural bias in the model predictions
of LAI

:::::::::
persistent

:::::::::
structural

:::::
bias, particular in the performance of deciduous broadleaf trees in

their higher ranges. This underestimate is not substantially changed by any of the structural5

modifications we deploy here (all of the simulations indicate the same issue) and does
not appear to result from underestimates of productivity (Fig. 12), potentially implying a
deficiency in carbon allocation.

It is worth noting that the LAI values predicted by the CLM
:::::::
CLM4.5(ED) algorithm (which

assumes leaf area optimized for net canopy carbon gain) all appear to be in the range10

bracketed by the observations. Historically, the CLM4.0 and CLM4.5 models have suffered
from issues related to the chronic overestimation of LAI (Lawrence et al., 2011) potentially
on account of a lack of limits on

:::::::::::::::::::::::::::
(Lawrence et al., 2011; dah) .

::::
We

:::::::
suggest

::::
that

::::::::
limiting the

production of leaves when the plant is
::::
leaf

::::::
layers in negative carbon balance, a limit that is

deployed in the CLM(ED)
:::::
might

:::::::::::
ameliorate

:::
this

::::::
issue.15

8.4 Impacts on GPP

The correlation coefficients for GPP are consistently higher than
:::::
those for LAI or for biome

boundary prediction, illustrating that models for
::::::::::
simulations

:::
of GPP appear generally more

robust than either those for plant carbon allocation (Kauwe et al.) or for biome boundary
prediction (Supplementary Information

:::::::::::
Supplement B: Fig. 5 and 6). The spatial correlations20

of maximum annual GPP flux are relatively insensitive to the effects of structural variation
(R2 values are 0.48(i), 0.49(ii), 0.49(iii), 0.44(iv) and 0.44(v) (Fig. 4). TheR2 values for mean
annual GPP flux are more sensitive to model structure (0.63(i), 0.58(ii), 0.58(iii), 0.44(iv) and
0.39(v)) and in common with the LAI predictions, decline through the ensemble.

Notably, the overall mean and RMSE values for GPP are much more sensitive to varia-25

tions in parameter values than to changes in model structure (Fig.s
:::
Figs

:
5 and 6), reflecting

the impact of the parametric variation on the overall productivity, both directly via the impact
of Narea on Vc,max, and indirectly via impacts of Ll and Ma on leaf area index.
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GPP predictions using parameter setting #13 have a notably low R2 for mean and max-
imum GPP (which is actually negative for runs ii though v, a situation resulting from the
residual sum of squares being large than the total). This simulation has the highest frac-
tions of evergreen vegetation, generates very high LAI and thus high GPP values in the
far north of the domain (Supplementary Information B: Fig.

:::::::::::
Supplement

::
B:

:::::
Figs

:
7 and 8).5

As a result, in the latter parts of the structural ensemble, #13 has a notably poor spatial
correspondence with the observations (which show a decline in GPP with latitude). Several
of the other high evergreen cover ensemble members (#5,12,15), all of which have unre-
alistically high LAI in the Northern areas, also show a degraded correspondence with the
GPP data product. Not all parameter combinations show this, suggesting that some of the10

Ma and Narea combinations might be inappropriate for use in the far North (see discussion).

8.5
::::::::
Relative

:::::::::::::
performance

:::
of

::::::::::
individual

:::::
plant

:::::::::::
functional

::::::
types

:::
Fig.

:::
13

::::::::::
illustrates

:::
the

::::::::
absolute

::::::::::
difference

::::::::
between

::::
the

:::::::::::
productivity

:::::::
(annual

::::::
NPP)

::
of

::::
the

::::
EBT

:::
and

::::
the

:::::
ENT

:::
for

::::
the

::::
3rd

::::
year

:::
of

::::
the

::::::::::
simulation

:::
for

::::::::
structual

:::::::
variant

:::
v.

:::::
Each

:::::
PFT

::::
was

::::
run

::
in

::::::::
isolation

:::
to

:::::::::
calculate

::::::
these

::::::::::::
differences.

:::::
Here

::
it
:::
is

:::::
clear

:::::
that

::
in

::::
the

:::::::::::::
mid-latitudes,

::::
the15

:::::
EBT’s

::::::
have

::
a

::::::::::
significant

:::::::::::
productivity

::::::::::::
advantage,

::::::
which

::::::::
broadly

::::::
maps

:::::
onto

:::
the

:::::::::
eventual

::::::::::
distribution

:::
of

:::::
these

::::::
PFTs

:::
in

:::
the

:::::::::::
competitive

::::::::::::
simulations

::::::::::
discussed

:::::::
above.

::
At

:::::::
higher

::::
and

:::::
lower

:::::::::
latitudes,

:::
the

:::::
ENT

::::
and

:::::
BDT

:::::
have

:::::::::::::
approximately

::::::
equal

:::::::::::
productivity.

::::::::::
Parameter

:::::::
choice

::::::
affects

::::
the

::::::::::::
distributions

:::
of

::::
the

::::::
areas

::::::
where

::::::
EBT

::::
has

:::
an

:::::::::::
advantage,

::::
but

::::
the

::::::::
pattern

::
is

:::::::::
consistent

:::::::
across

::::
the

:::::::::::
ensemble,

::::::::::
excluding

::::::::::
parameter

::::::::::::
combination

:
#
:::
13.

::::::::
Looking

:::
at

::::
the20

::::::::::::
performance

::
of

::::::
larger

::::::
trees,

::::::
where

::::
the

::::
LAI

::
is

::::::::::::
equilibrated

::::
with

::::::::::::
productivity,

::::
and

:::::::
effects

::
of

:::::::::::
initialization

:::::
have

::::::::::::
disappeared,

:::::
(Fig.

::::
14),

:::::
there

::::
are

::::::
either

:::::
small

:::::::::::
differences,

:::
or

::::::::::::
considerable

:::::::::::
productivity

:::::::::::
advantages

:::
of

:::
the

:::::
ENT

:::::
type

::::::::::
(excluding

::::::::::
ensemble

::::::::
member

:
#
:::
14.

:::::
This

:::::::
implies

:::
that

::::
the

::::::
EBT’s

::::
gain

:::::::::::
dominance

:::::
early

::
in

:::
the

:::::::::::
competitive

:::::::::::
interaction,

:::::::::::
presumably

:::
by

:::::::::
amassing

:::
leaf

:::::
area

:::
at

::
a

:::::::
greater

::::
rate

:::::
than

::::
the

::::::
ENTs.

::::::
Thus,

:::
the

:::::::::::::::
representation

::
of

:::::
light

:::::::::::
competition

::
is25

:::::::::::
instrumental

:::
in

:::::::::
producing

:::::::
biome

::::::::::
boundaries

:::
in

:::
this

:::::::::
example.

:
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9 Discussion

We present here a demographic dynamic vegetation model (ED), coupled to the biophysical
scientific and software architecture of the Community Land Model

::::
v4.5 (Oleson et al., 2013).

The CLM
:::::::
CLM4.5(ED) model represents a substantial modification to the representation of

land surface heterogeneity in the CLM, and is intended as a template for the investigation of5

vegetation dynamics and their properties within the context of climate simulations. Particular
features of this model structure include; 1) the flexible representation of plant functional
type parameterization, 2) the representation of plant demography and succession derived
from the ED model

::::::::
concept, 3) the representation of self-organization of plants into distinct

canopy layers derived from the PPA model, 4) the solution of canopy processes at relatively10

high temporal (i.e., half-hourly) and vertical (i.e., multi-layer calculations at a resolution of
1.0 LAI units) resolutions, and 5) the ability to represent multiple different plant types within
the same vertical light profile. These features together enable the model to select vegetation
types based on their growth performance, and to thus predict vegetation dominance from
the plant traits that affect relative productivity of different vegetation types.15

The prediction of plant distributions from plant traits allows the testing of mechanistic
hypotheses of plant biogeography, and reduces the dependence of vegetation models on
climate envelopes. Successful prediction of vegetation patterns can act as an independent
test of our understanding of the link between plant physiology and geographical spread.
Therefore, this feature is often stated as an aspiration for future dynamic vegetation mod-20

els (Purves and Pacala, 2008; Verheijen et al., 2012; Boulangeat et al., 2012; Scheiter
et al., 2013; Fyllas et al., 2014; van Bodegom et al., 2014). Here we test the assump-
tion that biome boundaries can be predicted as the emergent properties of relative carbon
economies of evergreen and deciduous leaf habits. Removing empirically derived climatic
constraints introduces additional internal model feedbacks, as competitive interactions act25

to amplify small differences in relative productivity. As we demonstrate here, relatively small
structural and parametric changes can therefore, have large consequences for predicted
vegetation properties and biogeochemical cycling.

39



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

In this studywe attempt to predict, over a limited geographical domain, the distributions
of evergreen and cold-deciduous plants from their phenological habits - the most profound
physiological difference between the two biomes dominating temperate regions. We test the
idea that plant traits can and should be predicted from plant trait databases. We

:
,
:::
we

:
utilize

the relationship between three of the traits most commonly featured in trait databases.5

Our intention is to highlight the sensitivity to how traits are utilized, an approach which
demands some parsimony in the number of model components that are allowed to vary
simultaneously.

We find that the default model structure universally over-predicted the dominance of
broadleaf deciduous trees across the entire domain. Some of this bias could be corrected10

by increasing the maximum target leaf biomass quantity to be proportional to leaf mass
per area, highlighting the issue of initial condition dependence in competitive models. Im-
portantly, some of these simulations capture the properties of biome boundaries in the
real world (evergreen trees being more prevalent in the North and South of the domain)
and therefore, indicate that the basic hypothesis -that the carbon economy of evergreen15

trees is favourable in those environments- has some quantitative support.
::::::
Where

::::::
DBTs

:::
are

:::::::::
dominant,

:::::
their

:::::::::::
dominance

::::::::
appears

:::
to

:::::
stem

:::::
from

:::::
rapid

:::::::::::::
small-stature

:::::::
growth

::::::
rates,

::::::
rather

::::
than

:::::
from

::::::
higher

:::::
adult

::::::::::::
productivity.

Implementation of updated respiration functions had limited impact on the model output.
The further implementation of observed interactions between mean annual temperature20

and leaf lifespan, and then root lifespan, had profound impacts on the success of evergreen
vegetation, particularly at higher latitudes. For all structural variants, the choice of param-
eters for the leaf mass per area, leaf nitrogen and leaf lifespan (in cases where it covaries
with Ma and Narea) had significant impacts on the predicted biome boundaries. We find that
the GLOPNET data as used here do not represent a set of equally productive plant types25

when the traits are used to drive modeled plant growth.
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9.1 Potential avenues for structural model development

At least two large biases were indicated by the model structural ensemble that were not
resolved by any of the tested structural modifications. First, the under-performance of DBT’s
at the Northern extent of their range, and second, the over-performance of ENT’s in the far
North in some of the model simulations. To address the latter, Reich et al. (2014) find some5

correlation between MAT and leaf Nitrogen allocation for their set of ENT species. We did
not detect a relationship between MAT and Narea in the GLOPNET data, thus this might be
a topic of future investigation. It is worth noting, additionally, that the optimality criteria with
which CLM(ED) predicts leaf area index is based on the avoidance of leaves in negative
carbon balance. In cases of severe nutrient limitation, this might be only an upper bound on10

LAI, and alternative metrics that take into account the cost of nitrogen acquisition might be
more appropriate (Fisher et al., 2010; Brzostek et al., 2014; Thomas and Williams, 2014).

9.2 Trait filtering models

CLM
::::
The

::::::::
CLM4.5(ED) is designed as a trait-filtering model, in that it can predict successful

vegetation types from their traits via the ‘filter’ of environmental conditions. One central15

premise of trait filtering models (Scheiter et al., 2013; Weng et al., 2015) is that ‘trade-off’
surfaces are necessary inputs, and, implicitly, that moving along the surface means that
performance increases by some metrics, but gets worse in others. The use of proscribed
trade-off surface is illustrated in the Jena-Diversity (JeDi) model (Reu et al., 2010; Bohn
et al., 2011; Pavlick et al., 2013). Potential plants (proxy-species) are selected from a seven-20

dimensional trade-off surface, and the environment acts as a filter on this (large) population,
reducing the realized population to those proxy-species that are able to reproduce under
given environmental conditions. Implicit in this methodology are the assumptions that all
trade-off surfaces are fixed, and that they are independent of climatic drivers.

Scheiter et al. (2013) discuss three classes of trade-offs that may be considered in veg-25

etation models - allocation tradeoffs (investment decisions in different tissues), mechanical
tradeoffs (intrinsic structural properties) and empirical trade-offs that must be proscribed

::::::::::
prescribed,
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in lieu of understanding of their mechanistic underpinning. In our study, the three-way trait
relationship between Narea, Ma and leaf lifespan

::
Ll is an empirical trade-off. Contrary to ob-

servations across multiple plant functional types (Wright et al., 2004), the within-PFT trait
relationships appear weak. Specifically, it appears that large variations in leaf lifespan and
in Narea are possible for the same leaf carbon investment (Ma) (Figs 1 & 2). If, for example, a5

higher Ll value is chosen for the same Ma, the cost of canopy replacement will go down, in-
creasing plant leaf area index, productivity, and growth. There is no downside in this model
framework to having longer lived leaves. Therefore, in this case, the trait data fail to accu-
rately define a trait trade-off. It is possible to empirically define a surface fitted to the data,
and to remove the ‘noise’ around the central tendency of the data. This approach would10

necessarily reduce the tendency to select plants with very high or low relative productivity,
but also would, in this case, be an inaccurate reflection of the genuine spread of the data,
given the lack of adherence to clear trade-off surfaces.

Higher Narea increases both photosynthetic capacity and respiration rates, so should be
subject to some degree of trade-off, depending on the climatological conditions (warm15

nights and long winters increase the costs of high leaf N). Nonetheless, the balance of
these processes appears to not produce equivalent performance across the space defined
in Fig. 1 and Fig. 2. This outcome highlights two potentially problematic issues with the
trait filtering approach. The first is that costs and benefits of alternative strategies might
not be represented completely by simple and easily observable trade-off surfaces. The true20

‘cost’ to plants of long lived leaves may not be a linear function of Ma. Long lived leaves
might well, for example, require investment resources in complex and energetically expen-
sive defensive compounds, and so an alternative axis of investment and return might be
functionally more appropriate. The second issue is that tradeoff surfaces might not neces-
sarily be consistent across locations (Moncrieff et al., 2015). For example, differences in the25

environment (e.g. temperature) might increase the potential lifespan of leaves by reducing
herbivory rates and damage from solar radiation(we do not actually know the physiological
causes of leaf lifespan differences).
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9.2.1 Environmental drivers of plant traits

Here we find, in common with Reich et al. (2014) and Kikuzawa et al. (2013), that, for
evergreen trees, there is a stronger relationship of temperature with leaf lifespan than there
is with carbon investment (Ma), undermining the idea that for all traits, trade-off surfaces are
general and globally applicable. In this example, the inclusion of a temperature-dependent5

leaf lifespan allows for a greater fidelity representation of the real world, and results in an
improved prediction of the dominance of evergreen trees at higher latitude. Thus, one might
argue for the inclusion of some climatic controls over trait distributions.

The direct prediction of plant traits from climate variables in dynamic vegetation models
was adopted by Verheijen et al. (2012) in their study using the JSBACH model, and has10

been further advocated and augmented by van Bodegom et al. (2014). This approach - di-
rectly implementing the observed relationships between plant traits and their climate drivers
- has the benefit that it uses the data available at the present time with greater fidelity. In
theory, and as we have demonstrated, this approach should improve our ability to allow
prediction of current vegetation patterns. We are, for example, telling the model that leaf15

lifespan decreases with temperature, rather than expecting this property to emerge from a
more complex set of dynamics.

Direct prediction of traits from their environmental drivers approach suffers, however, from
at least three caveats. The first is that it predicts mean trait values for given environmental
conditions and thus does not represent heterogeneity of plant strategies in a single loca-20

tion. Further, it is subject to a similar circularity of logic as the original climate envelope
approach, in that the relationships of plant traits and climate may well not hold under future
circumstances where both atmospheric CO2

::::
CO2, nitrogen deposition and other metrics of

climate, are heavily modified. Lastly, under a changing climate, the shift in the mean trait
values is considered as instantaneous, no genetic limits to plasticity are implied and there25

is no demographic inertia to the adoption of new better adapted plant types.
An ideal but data-intensive approach might involve the derivation of trade-off surfaces

specific to a given climate, e.g. for a given investment in leaf carbon there is a climate-
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dependant relationship with lifespan. For most traits, except those potentially observable
from space (Serbin et al., 2014) the quantity of data required to populate such a matrix will
likely remain prohibitive.

9.2.2 Alternative solutions; evolution and optimization

One alternative solution, exemplified by the ’aDGVM2’ model proposed by Scheiter et al.5

(2013), allows plant traits to evolve in response to selection pressure. This approach would
likely ’‘correct’ plant traits that performed poorly under given conditions, and let the optimum
evergreen and deciduous strategies emerge from the competitive process. This approach is
compelling, because it removes many of the subjective elements of other existing strategies;
it does not require pre-determination

:::::::::::
pre-selection

:
of particular trait combinations (as with10

our parametric ensemble), nor the assignation of rates of adaptation through time, and
allows the representation of diversity of traits in a single grid cell. One important feature of
the model, however, is the assumption of globally consistent trait trade-off surfaces (from
which plant types are selected), and thus further modifications might potentially be needed
to allow it to function in conditions where these were variable in space.15

Yet another alternative method for trait prediction is the use of optimal models of plant
function. Optimal models are based on the idea that in theory better performing plants
will be favoured by natural selection, and therefore plants that are in existence should not
display functionality which would be detrimental to their evolutionary fitness (Dewar et al.,
2009). Many such approaches are already operational within various types of vegetation20

model (Williams et al., 1996; Fisher et al., 2007; Dewar et al., 2009; Rastetter, 2011; Medlyn
et al., 2011; Franklin et al., 2012; McMurtrie and Dewar, 2013; Thomas and Williams, 2014).
In this framework, it is possible to propose explicit hypotheses for how plants avoid sub-
optimal performance, and make predictions that can be tested against observations. The
success of the approach depends on the fidelity of the proposed optimality criteria, how25

closely they align with real evolutionary fitness, and how close ecosystems really are to
optimal solutions (given genetic constraints and non-equilibrium processes).
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From the perspective of land surface models, these approaches are interesting because
of their mechanistic approach, which reduces concerns regarding out-of-sample extrapo-
lation into future climates. For example, predictive models of within-leaf nitrogen allocation
can explain environmentally-driven variations in Vc,max, Jmax and leaf respiration, thus reduc-
ing the dependence on empirical correlations between Nitrogen content and photosynthetic5

capacity (Xu et al., 2012). In this case, trait databases might be used as validation data,
rather than as model inputs.

Issues with the concept of optimality are raised by the study of game theory , where
studies of vegetation frequently illustrates

::::
The

::::
idea

:::::::
behind

:::::::::
optimality

:::::::
models

::
is

::::::::::::
occasionally

:::::::::::
undermined

:::
by

:::::::
studies

:::::
using

::
a
::::::
game

::::::
theory

::::::::::::
perspective,

::::::
which

:::::
show

:
that the optimal

::::
plant10

strategy in isolation differs somewhat from the optimal strategy in competition
::::
that

::::
can

::::::::
compete

:
with other plants (Van Wijk and Bouten, 2001; Van Wijk et al., 2003; Anten and

During, 2011; McNickle and Dybzinski, 2013; Farrior et al., 2013; Dybzinski et al., 2014;
Weng et al., 2015)

:
,
::::::::::
illustrating

::::
the

:::::::::
difficulties

:::
in

:::::::::
choosing

:::
an

:::::::::::
appropriate

:::::::
fitness

::::::
metric. In

common with the direct prediction of traits from their environment, optimal models often15

assume only a single optimal strategy for a given set of environmental conditions, unlim-
ited genetic plasticity, and ignore demographic inertia that may prevent ecosystems from
adapting instantaneously to changing climate.

9.3 Ways forward for trait representation in dynamic vegetation models

At present, many land surface modelling efforts use a variety of approaches to predicting20

plant traits, inclusive of trait-filtering (Medvigy et al., 2009; Weng et al., 2015), direct predic-
tion of plant traits from their environment (e.g. allocation from Friedlingstein et al. (1999))
and ideas from optimization theory (e.g. stomatal conductance, vertical N allocation). Many
parallel concepts exist for how to define plant traits within advanced vegetation models (De-
war et al., 2009; Scheiter et al., 2013; van Bodegom et al., 2014; Fyllas et al., 2014) but the25

circumstances under which it is most appropriate to use which methodology, is a topic that
has not been discussed widely. To move the science of vegetation modeling forward, we
argue that it will become necessary to understand under what conditions empirical ‘short-
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cuts’ to predict traits are acceptable and necessary, and under what circumstances detailed
mechanistic prediction is either possible or desirable. In the first instance, it is, of course,
imperative to both further advance the collection of data on plant traits and processes where
possible, and to continue investigations into plant trait databases that already exist, ideally
in a context that is linked to the requirements of predictive models e.g. Falster et al. (2011);5

Wang et al. (2012); Reich et al. (2014); van Bodegom et al. (2014); Fyllas et al. (2014)). We
consider that the analysis of plant trait data to determine how both environmental conditions
and plant strategies (such as the ’‘fast-slow’ axis, proposed by Reich (2014)) can be used
to generate robust predictive models, is an extremely high priority. It is worth noting also,
that while our study does not consider the impact of changing climate on carbon cycle pro-10

cesses, the alternative structural variants imply both different lag times and feedbacks to the
impact of climate, via the useor, otherwise ,

:::
or

::::::::::
otherwise,

:
of direct impacts of temperature

on turnover processes.

9.4 On the use of ensembles in land surface modelling

Another aspect of our study highlights the importance of ensembles for the investigation of15

model properties. It is the default practice, in land surface modelling and climate science
generally, to present results using the name of a particular model to depict an invariant set of
default parameter and structural assumptions (e.g. CLM4.5, JULES1.0, ED2) and to assess
the merits of only one version of a model from the hyper-dimensional set of potentially
viable model predictions. Such ‘simple’ tests of model performance against observations,20

however, explicitly convolute the structural, parametric and initial condition contributions
to model error, and therefore, interpretation of mismatches with data is difficult. We here
argue that increased use of both structural and parameteric ensembles is beneficial for the
development of understanding of complex land surface modeling schemes.

In Earth System Modelling more widely, the use of initial condition ensembles is in-25

creasingly considered to be critical for the evaluation of model behavior (Kay et al., 2014;
Wettstein and Deser, 2014; Falloon et al., 2014; Lombardozzi et al., 2014; Swart et al.,
2015). Model inter-comparison projects, both for earth system models (Friedlingstein et al.,
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2014; Arora et al., 2013) and their land surface model components (Sitch et al., 2008; Powell
et al., 2013; Kauwe et al., 2013; Zaehle et al., 2014; Christoffersen et al.; Walker et al., 2014)
are typically used as a means of comparison between

::::::::::::
investigating

:::
the

:::::::
impact

::
of alternative

model structures, although typically the high dimensionality of the inter-model differences
renders it difficult to assess the causes of differences between models (but c.f. Zaehle et al.5

(2014)). In this study we investigate a variety of model structures within the same frame-
work. This approach, also adopted by (Williams et al., 2001; Bonan et al., 2012, 2014; Joetzjer et al., 2014; Reich et al., 2014; Burakowski et al.; dah)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Williams et al. (2001); Bonan et al. (2012, 2014); Joetzjer et al. (2014); Reich et al. (2014); Burakowski et al.; dah among

others, enables the differences caused by individual modifications to be quantified and un-
derstood, and therefore potentially provides a more tractable approach to understanding the
processes leading to prediction differences than a standard model-inter-comparison

::::::
model10

::::::::::::::::
inter-comparison experiment. Perturbation of the parameters of land surface models (re-
ferred to as ‘perturbed physics’ ensembles) is rarely undertaken at scales large than one
grid cell (but c.f. Fischer et al. (2011) and Booth et al. (2012)) on account of the high time
and energy costs of global model simulations. Perturbed physics ensembles of Earth Sys-
tem Models have been conducted but have typically focused on processes unrelated to the15

land component (Sanderson et al., 2008). While some objective statistical techniques have
been used for single site analysis (Fox et al., 2009; Hou et al., 2012; Sargsyan et al., 2014)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fox et al., 2009; Hou et al., 2012; Medvigy et al., 2009; Sargsyan et al., 2014) ,

inverse model calibration of DGVMs over large regions is not yet considered a computa-
tionally tractable problem. More typical is the process of ad-hoc parameterization, either
using values of observable parameters from literature that may or may not be representa-20

tive of globally relevant values, or the use of ‘tunable’ parameters that might be adjusted
to bring the overall model behavior closer to observations, as also discussed by Scheiter
et al. (2013) and Reich et al. (2014). Thus, model parameters are typically not optimized
and therefore the comparison of model performance to benchmarking data (Randerson
et al., 2009; Luo et al., 2012) is not necessarily a good test of the structural validity of the25

model components (Abramowitz et al., 2008). Model structural performance is therefore
much more commonly assessed at individual sites, where sensitivity to parameters can be
investigated more comprehensively (Bonan et al., 2014). An alternative path forward might
be to present models with no default parameter values, and instead with a range of physi-
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ologically plausible parameters, thus reducing the correspondence between named model
structures and a single deterministic set of outputs.

10 Conclusions

We introduced
::::::::
introduce

:
a new methodology for the simulation of vegetation dynamics into

the Community Land Model (v4.5). The new module is based on the Ecosystem Demogra-5

phy framework of Moorcroft et al. (2001) with numerous modifications. We present an inves-
tigation into the properties of the model for the case study of evergreen-deciduous biome
boundaries in Eastern North America. We find that the model is sensitive to the variation in
parameters drawn from existing plant databases, and to variation in the representation of
the carbon cycle, in particular, to the initial target leaf biomass, and to the implementation10

of direct prediction of traits (leaf lifespan, and root lifespan) from environmental variables
(mean annual temperature). We also find that the model is capable of predicting leaf area
index and GPP within the range of the observations, and that for some trait combinations,
prediction of the positioning of biome boundaries is close to the observations. Our study
particularly emphasizes three challenges; 1) uncertainty about when it is appropriate to15

use environmental drivers to modify plant trait tradeoffs, 2) remaining structural uncertainty
within models, particularly with regard to carbon allocation processes and 3) uncertainty
resulting from ‘noise’ around trait trade-offs in existing databases. Nonetheless, echoing
Reich et al. (2014), the capacity to understand the prediction of biome boundaries from first
principles is both interesting and important. We hope that further study of the quantitative20

nature of biome boundaries will be motivated by this analysis.
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11 Code Availability

Code for this manuscript is available in the CESM svn repository (registration required) at
the following address:
https://svn-ccsm-models.cgd.ucar.edu/clm2/branch_tags/
ed_v0.1.0_tags/ed_v010_21_clm4_5_1_r0975

12 Tables
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Table 1. Parameter Combinations for the 15 ensemble members for leaf lifespan (Ll) in years, leaf
mass per area (Ma) in gC m−2 and area-based Nitrogen content (Narea) in g m-2

.

Run ID Ll Ma Narea

ENT BDT ENT BDT ENT BDT

1 2.0626 0.3258 516.4 98.7 4.07 2.02
2 2.3824 0.5357 249.2 132.2 2.13 2.19
3 0.7585 0.6427 168.0 70.6 1.66 1.24
4 4.1155 0.1498 362.6 58.4 2.38 1.38
5 1.3678 0.4241 329.8 103.1 3.43 2.05
6 3.1704 0.2994 181.1 47.5 2.26 1.82
7 1.9671 0.2019 609.3 59.8 5.21 1.44
8 2.2025 0.3035 335.8 159.4 3.12 2.87
9 5.3842 0.3222 334.1 47.8 4.88 1.72
10 1.6403 0.3952 264.0 104.0 2.28 2.34
11 3.9932 0.2666 165.3 41.8 0.80 1.13
12 2.7613 0.5384 342.2 95.3 4.19 2.34
13 3.8249 0.4586 444.2 78.2 3.85 0.94
14 1.4697 0.3214 232.5 55.7 0.03 1.25
15 0.6839 0.2761 483.6 62.8 4.96 1.28
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Table 2. Model Run Descriptions

Run ID Number Allocation model Respiration Model Leaf Lifespan Root Lifespan

i CONT CONT CONT CONT
ii ALLOC CONT CONT CONT
iii ALLOC ARESP CONT CONT
iv ALLOC ARESP LLTEMP CONT
v ALLOC ARESP LLTEMP RLTEMP

13 Figures
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Figure 1. Relationships between log leaf mass per unit area and log leaf lifespan (upper panel)
and Nitrogen per unit leaf area (lower panel) for evergreen needleleaf trees, from data reported by
(Wright et al., 2004). Large circles are from the database, and smaller circles are randomly chosen
points from the resampled normally distributed covariance matrix
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Figure 2. Relationships between log leaf mass per unit area and log leaf lifespan (upper panel) and
Nitrogen per unit leaf area (lower panel) for cold deciduous broadleaf trees, from data reported by
(Wright et al., 2004). Large circles are from the database, and smaller circles are randomly chosen
points from the resampled normally distributed covariance matrix
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Figure 3. Relationship between Mean Annual Temperature (oC and leaf lifespan (years) derived
from the GLOPNET leaf trait database for evergreen broadleaf trees (yellow), evergreen needleaf
trees (blue), broadleaf deciduous trees (red), and deciduous needleleaf trees (green). Evergreen
broadleaf and deciduous needleleaf tree data are not used in this analysis, but are shown for com-
parison here.
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Figure 4. R2 coefficients of the spatial correlation between model output and five different data
product metrics. The X-axis pertains to variation in the parametric ensemble, and the Y axis pertains
to variation in the structural ensemble.
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Figure 5. Root Mean Square Error, relative to the mean of the variable, of the spatial correspon-
dance between model output and five different data product metrics. The X-axis pertains to variation
in the parametric ensemble, and the Y axis pertains to variation in the structural ensemble.
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Figure 6. Mean values (over the spatial domain) of GPP, LAI and Feg output. The X-axis pertains to
variation in the parametric ensemble, and the Y axis pertains to variation in the structural ensemble.
Units are KgC m-2 year-1 for GPP, m2 m-2 for LAI and fraction cover for Feg.
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Figure 7. Fraction of evergreen trees projected with structural ensemble member i (the control sim-
ulation). Panel ‘a’: VCF product estimates of Feg. Panels b-p correspond to the 15 different combi-
nations used in the parameteric ensemble.
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Figure 8. Fraction of evergreen trees projected with structural ensemble member ii (control + ALLOC
variant). VCF product data are shown in panel a. Panels b-p correspond to the 15 different combi-
nations used in the parameteric ensemble.
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Figure 9. Fraction of evergreen trees projected with structural ensemble member iv. (control +
ALLOC + RESP + LL_TEMP variants) VCF product data are shown in panel a. Panels b-p cor-
respond to the 15 different combinations used in the parameteric ensemble.
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Figure 10. Fraction of evergreen trees projected with structural ensemble member v. (control +
ALLOC + RESP + LL_TEMP + RL_TEMP variants) VCF product data are shown in panel a. Panels
b-p correspond to the 15 different combinations used in the parameteric ensemble.
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Figure 11. Mean Annual Leaf Area Index (m2 m-2) projected with structural ensemble member v.
(control + ALLOC + RESP + LL_TEMP + RL_TEMP variants) MODIS LAI product data are shown
in panel a. Panels b-p correspond to the 15 different combinations used in the parameteric ensemble.
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Figure 12. GPP in KgC m-2 year-1 projected with structural ensemble member v. (control + ALLOC
+ RESP + LL_TEMP + RL_TEMP variants) Flux-derived product data are shown in panel a. Panels
b-p correspond to the 15 different combinations used in the parameteric ensemble.
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