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Abstract

We describe an implementation of the Ecosystem Demography (ED) concept in the Com-
munity Land Model. The structure of CLM(ED) and the physiological and structural mod-
ifications applied to the CLM are presented. A major motivation of this development is to
allow the prediction of biome boundaries directly from plant physiological traits via their5

competitive interactions. Here we investigate the performance of the model for an exam-
ple biome boundary in Eastern North America. We explore the sensitivity of the predicted
biome boundaries and ecosystem properties to the variation of leaf properties determined
by the parameter space defined by the GLOPNET global leaf trait database. Further, we in-
vestigate the impact of four sequential alterations to the structural assumptions in the model10

governing the relative carbon economy of deciduous and evergreen plants. The default as-
sumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms
of carbon assimilation and expenditure, can reproduce the geographical structure of biome
boundaries and ecosystem functioning. We find some support for this assumption, but only
under particular combinations of model traits and structural assumptions. Many questions15

remain regarding the preferred methods for deployment of plant trait information in land sur-
face models. In some cases, plant traits might best be closely linked with each other, but we
also find support for direct linkages to environmental conditions. We advocate for intensi-
fied study of the costs and benefits of plant life history strategies in different environments,
and for the increased use of parametric and structural ensembles in the development and20

analysis of complex vegetation models.

1 Introduction

The storage of carbon on the land surface, and how the land surface interacts with the at-
mosphere, are both determined to a large extent by the the distribution of plant types, or
ecosystem composition, across the globe. Ecosystem composition is, at large scales, de-25

termined by past and present climate conditions (Holdridge et al., 1967; Woodward, 1987).
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Given projected changes in climate, the composition of ecosystems may well be expected
to change in the coming decades and centuries (Cox et al., 2000; Sitch et al., 2003), and
thus the carbon stored on the land is potentially subject to large deviations from the current
state. Additionally, biome shifts such as woody encroachment in the Arctic with a warmer
climate (Levis et al., 2000; Swann et al., 2010) and greening of the Sahara with a wet-5

ter climate (Levis et al., 2004), significantly alter climate by changing surface albedo and
evapotranspiration (Rogers et al., 2013). Thus, the representation of biome distribution has
emerged as a key new feature of Earth System Models (ESMs) in recent years (Cox et al.,
2000; Levis et al., 2004; Krinner et al., 2005; Sato et al., 2007).

Models that simulate the redistribution of plant types in space and time are collectively10

referred to as dynamic vegetation models (in that vegetation cover is an emergent or dy-
namic outcome of the model). Most major climate models now include some functionality
to simulate dynamic vegetation (Cox et al., 2000; Levis et al., 2004; Krinner et al., 2005;
Friedlingstein et al.; Sato et al., 2007; Arora et al., 2013). Their inclusion in ESMs, however,
can give rise to large and uncertain feedbacks. For example, the land surface scheme of15

the Hadley Centre GCM (MOSES-TRIFFID, latterly known as JULES) originally predicted
the rapid collapse of the Amazon rainforest in the mid-21st century (Cox et al., 2000). Later
versions of the same model with altered vegetation physiology allowed the simulated forest
to persist in the face of increasing temperatures and reducing rainfall (Huntingford et al.,
2013), illustrating the strong sensitivity of vegetation distribution to underlying physiologi-20

cal assumptions, which are themselves the subject of debate (Lloyd and Farquhar, 2008;
Atkin et al., 2008). Further to this, Sitch et al. (2008) demonstrated that the underlying as-
sumptions of five alternative DGVMs (all driven with the same climate scenario) generated
extremely divergent outcomes. In particular, the five models exhibited a tendency to pre-
dict rapid and substantial collapse of forest biomass, but in markedly different places. For25

example, the LPJ (Lund-Potsdam-Jena) model (Sitch et al., 2003) projects reductions in
forest cover for over 50% of Eurasia, while the TRIFFID and to a lesser extent the HYLAND,
Sheffield DGVM, and ORCHIDEE models all project declines in forest carbon over Ama-
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zonia. These divergent outcomes may be interpreted as evidence that the processes that
control the extant of forest biomes are poorly understood by large-scale models.

Two main classes of dynamic vegetation scheme are in use in the Climate Model Inter-
comparison Project (CMIP) models at present (Friedlingstein et al., 2014). The first class,
derived from the BIOME and LPJ class of models (Prentice et al., 1992; Running and5

Hunt, 1993; Sitch et al., 2003) deploy the logic of ‘climate envelopes’, whereby recruitment
and survival are only permitted within the predefined climate tolerances for a given plant
functional type. These envelopes represent the physiological tolerances of the vegetation
types to cold, heat and drought, but are typically derived using the observed distributions
of present day vegetation and isolated experimental data (Woodward, 1987; Haxeltine and10

Prentice, 1996; Prentice et al., 2007). These climatic limits on recruitment and survival op-
erate in lieu of physiological understanding of the reasons why different types of plants
persist in some environments where others do not. Another class of model is derived from
the Lotka-Volterra representation of competitive ecological processes (Cox et al., 1998;
Arora and Boer, 2006). The TRIFFID model (Cox et al., 1998), specifies a ‘dominance hi-15

erarchy’ for each pairwise competitive interaction between plant types that represents the
expected outcome of competition between any two plant types with similar growth rates.
Thus, the distribution of plants is also not a direct function of their physiological perfor-
mance or dominance over resources but is to some extent determined by pre-defined rules
based on existing vegetation distributions. The CTEM model (Arora and Boer, 2006; Melton20

and Arora, 2015) uses a dominance hierarchy between trees and grasses, and climate en-
velope constraints to define the maximum range of it’s seven natural plant functional types.
Dominance hierarchies can be understood as a proxy for the outcome of light competition,
and therefore are appropriate where significant differences in vegetation stature mean that
the outcome of competition is relatively certain, such as competition for light between trees25

and grasses.
The science of quantitatively understanding plant biome boundaries is in its infancy

(Moorcroft et al., 2001; Givnish, 2002; Wullschleger et al.; Enquist et al., 2015) and the
use of climate envelopes or dominance hierarchies as a proxy for understanding plant
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biome dynamics is, arguably, a pragmatic approach to a problem of extraordinary com-
plexity. Although it remains a potentially valid means of understanding plant distributions
under altered climates, there is growing interest in moving towards models that rely on more
fundamental principles of plant physiology. At the same time, initiatives to collate informa-
tion on plant traits and physiological functioning (Wright et al., 2004; Kattge et al., 2011)5

along with increases in the sophistication of process representation in land surface models
(Blyth et al., 2010; Zaehle and Friend, 2010; Best et al., 2011; Goll et al., 2012; McDowell
et al., 2013; Oleson et al., 2013) have provided a basis for advancing plant biome boundary
modeling. Many groups have, therefore, proposed and developed vegetation models with
greater process fidelity (Hurtt et al., 1998; Moorcroft et al., 2001; Moorcroft, 2006; Medvigy10

et al., 2009; Scheiter et al., 2013; van Bodegom et al., 2014; Wullschleger et al.; Fyllas
et al., 2014; Weng et al., 2015), with an aim of mechanistically predicting plant distribution,
from considerations of climate, soil, and fundamental plant physiology and ecology.

One key argument for this approach is that the vegetation distribution is an emergent
property of the system, and thus can be considered independent from observations of the15

location of biome boundaries. This gives rise to the possibility of hypothesis testing and,
in theory, increasing confidence in predictions of future biosphere functionality. Further-
more, while climate envelopes may be diagnosed as the biome assemblages that emerge
in response to the long-term ecosystem dynamics of a given climate, they may not be well-
defined for emerging novel climates, especially given that some environmental drivers (or20

aspects of the “climate”, e.g., CO2 concentration and nitrogen deposition) are changing
simultaneously; and thus all current climates are in a sense novel. Lastly, bioclimatic re-
lationships are diagnosed from long-term quasi-steady state distributions, and so models
that impose these assemblages in response to dynamic changes may not have realistic
transient responses, which are likely to be characterized by lags between change in climate25

and responses of vegetation, given the persistence of trees which have lifespans that are
long relative to the timescale of forcing.

Hence, we here introduce and explore a modeling framework for testing hypotheses of
vegetation distribution, integrated into the structure of the Community Earth System Model
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(CESM) (Hurrell et al., 2013). The framework is built around the Ecosystem Demography
(ED) concept of Moorcroft et al. (2001). The Ecosystem Demography model is a method
for scaling the behaviour of forest ecosystems by aggregating individual trees into repre-
sentative ‘cohorts’ based on their size, plant type and successional status. Here we also
integrate into the model changes introduced by Fisher et al. (2010); in particular a modified5

implementation of the Perfect Plasticity Approximation, (Purves et al., 2008) as well as the
SPITFIRE fire model of Thonicke et al. (2010), the cold deciduous phenology model of Botta
et al. (2000) and the concept of optimal allocation of leaf biomass c.f.(Dewar et al., 2009;
Thomas and Williams, 2014). Many aspects of plant physiological representation remain
poorly constrained in land surface models in general. Thus, this framework is proposed as10

a template for future generations of the Community Land Model. We present the full techni-
cal description of the CLM4.5(ED) (Supplementary A). While we do not specifically examine
model runs coupled to the rest of the Earth System here, the capacity to do so is inherent in
the inclusion of the model within the CLM code that resides inside the software architecture
of the Community Earth System Model (Hurrell et al., 2013).15

For the purposes of this initial demonstration of the CLM4.5(ED), we concentrate on the
main property of the model which differs from most commonly used dynamic global vegeta-
tion models, which is the capacity to predict distributions of plants directly from their given
physiological traits. This property can be referred to as ‘trait filtering’, and has been em-
ployed in offline land models (Reu et al., 2010; Pavlick et al., 2013; Verheijen et al., 2012;20

Fyllas et al., 2014; Reichstein et al., 2014), and advocated heavily in the vegetation mod-
elling literature (McGill et al., 2006; Prentice et al., 2007; Purves and Pacala, 2008; Morin
and Thuiller, 2009; van Bodegom et al., 2012; Boulangeat et al., 2012; Scheiter et al., 2013;
Violle et al., 2014; van Bodegom et al., 2014). To enable trait-filtering, traits must affect plant
growth and survival. Growth must then affect the acquisition of limiting resources (in this25

case via competition for light within the vertical profile) which must feed back onto growth,
survival and reproduction. Differences in growth, survival and reproduction rates must then
directly control (in the absence of climate envelope constraints) the relative distributions
of vegetation types (and hence also the distribution of their traits). This model structure
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thus implies sensitivity to the specific, quantitative details of how physiological processes
are represented, and heightens the imperative to study the relative costs and benefits (or
economics) of alternative plant life history strategies (Reich, 2014).

The hypothesis we investigate here is that the distribution of evergreen and deciduous
trees can be predicted from the relative carbon economy of their leaf habits; meaning the5

costs and benefits, in terms of carbon assimilation and expenditure, of the alternative phe-
nological behaviours. This idea is intended as an illustration of how one might use this
class of model to test continent-scale hypotheses concerning vegetation distribution, and to
raise important discussion points related to the methods used for such studies. Other biome
boundaries, such as forest-tundra, forest-grassland and grassland-desert transitions, will be10

the subject of future investigations.

2 Model Structure and Concept

Descriptions of the ED concept exist in the vegetation modeling literature, (Moorcroft et al.,
2001; Medvigy et al., 2009; Fisher et al., 2010), but we reiterate the major developments
here for clarity. In reality, vegetation cover is heterogeneous in space for many reasons in-15

cluding soil composition, climate, microtopography, land use and disturbance history (Dahlin
et al., 2012, 2013). In land surface models, the variations in exogenous drivers are captured
by the representation of gridded soil, land use and climate forcing data. Within a gridcell,
some of this exogenous heterogeneity is by definition ignored (although, in the CLM4.5,
some exogenous variation is captured by the representation of lake, ice, wetland, urban,20

and managed vegetation tiles). In addition, much heterogeneity of vegetation composition
and structure, is endogenous, in that it is driven by the ongoing processes of recovery and
disturbance across a landscape, giving rise to a quasi-random spatial matrix of vegeta-
tion at different stages of recovery. The default CLM4.5 (Oleson et al., 2013), and the vast
majority of land surface models operating in ESMs, represent variability in natural vegeta-25

tion via a series of ‘tiles’, each of which is occupied by a single plant functional type (but
c.f. Watanabe et al. (2011)). The tiles have no physical location within a grid cell, and no
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concept of whether they are well-mixed or well-separated. This method of representing veg-
etation does not allow for competition for light between different plant types, and also does
not allow the representation of recovery from disturbance, a critical element of ecosystem
organization (Moorcroft et al., 2001; Purves and Pacala, 2008).

2.1 Disturbance partitioned landscapes5

The incorporation of the Ecosystem Demography concept significantly alters the represen-
tation of the land surface in the CLM. The purpose of the changes is to represent in a
discretized manner, the disturbance-driven biotic heterogeneity. In the CLM(ED), the new
tiling structure represents the disturbance history of the ecosystem. Thus, some fraction of
the land surface is characterized as ‘recently disturbed’, some fraction has not experienced10

disturbance for a long time, and other areas will have intermediate disturbances. Newly dis-
turbed areas are generated periodically and mechanistically by events such as fire or the
falling of large trees. The patchwork of different stages of succession within a given geo-
graphical area is discretized into a set of similar ‘disturbance history class’ units. Note that
within each of these disturbance history classes may exist a variety of plants of different15

types, each of which may have different ages themselves. This formulation is described
next (Moorcroft et al., 2001; Medvigy et al., 2009; Fisher et al., 2010).

2.2 Cohortized representation of tree populations

Representing the heterogeneity of plants is challenging in ecosystem models operating the
earth system scale, considering the variability and myriad physiological attributes, sizes,20

and spatial positions of real plant populations. One way of addressing this heterogeneity is
to simulate a forest of specific individuals, and to monitor their behavior through time. This
is the approach taken by ‘gap’ and individual-based models (IBMs) e.g. LPJ-GUESS (Smith
et al., 2001), SEIB (Sato et al., 2007) and SORTIE (Uriarte et al., 2009). Their increased
computational requirements mean that these models typically use a daily timestep for gas25

exchange calculations, while the Community Earth System Model, and most other ESMs,
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require gas exchange to be calculated at 30 or 60 minute resolution (Lawrence et al., 2011).
For the sake of computational efficiency within this framework, the ED model takes the ap-
proach of grouping this hypothetical population of plants into ‘cohorts’. Cohorts are discrete
groups of plants, which are essentially clones of each other, and are differentiated from
other cohorts primarily by their plant functional type and size. Each cohort is associated5

with a number of identical trees, ncoh (where coh denotes the identification or index number
for a given cohort).

In each disturbance history class, the hypothetical population of plants is divided first into
discrete plant types consistent with the standard approach to representing plant diversity in
large scale vegetation models. Further to this, the ED model also groups plants into numer-10

ous size classes, thus enabling vertical interactions. Cohorts of the same functional type
may co-exist and compete in the same shared space as different sizes. The exact nature
of the size classes emerges from the cohort fusion routines, discussed in Supplement A.
Importantly, for each plant type/size class combination, the properties of the cohort’s rep-
resentative individual plant are maintained and prognosed (numerically integrated through15

time). These properties can be thought of as an average for the group of plants repre-
sented by the cohort. Note that competition for below-ground resources, namely water,
remains affected only by vertical root distribution, and is unaffected by the introduction of
the ED concept into the CLM. All plants have access to the same water pool, as described
in Supplement A.20

Traditional DGVMs (Sitch et al., 2003; Woodward et al., 2004) prescribe only one sin-
gle average individual of each PFT without the use of the cohort concept, thus the ED
approach represents a compromise in representation of forest dynamics between these
two approaches. Other ‘cohortized’ forest models exist in the literature, notably, GAPPARD
(Scherstjanoi et al., 2013, 2014), TREEMIG (Lischke et al., 2006; Zurbriggen et al., 2014;25

Nabel et al., 2014), the PPA model (Purves et al., 2008; Lichstein and Pacala, 2011; Weng
et al., 2015) and later versions of the LPJ-GUESS model (e.g. (Hickler et al., 2008; Pappas
et al., 2015), but few studies (if any) have looked into the comparative merits and drawbacks
of these different approaches.
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3 Methods

3.1 The representation of trait diversity

We focus here on the problem of predicting the extent of evergreen and cold deciduous
strategies in temperate regions. Deciduous and evergreen trees vary most obviously in their
approach to leaf production. Typically, deciduous trees produce thinner leaves with lower5

leaf carbon mass per unit area (Ma, gC m-2), or the inverse of specific leaf area, that only
allow the plant to photosynthesize for the period of the year when these leaves are viable
(Niinemets, 2010), whereas evergreen leaves typically have more expensive construction
and persist year round. Leaf nitrogen content per unit area (Narea, g m-2) and productivity
also vary with leaf thickness (Reich et al., 2007), and are thus related to Ma and leaf lifes-10

pan (Ll, years). These three properties; Ma, Ll and Narea, are among the best-quantified
leaf traits in existing databases (Kattge et al., 2011), and together can plausibly define al-
ternative leaf construction strategies. Further, at a global scale, trade-offs exist between
these three properties, and it has been suggested that the existence of such constraints on
parameter space represents a key opportunity to simplify the representation of vegetation15

within DGVM models (Reich et al., 1997; Westoby et al., 2002; Wright et al., 2004; Reich,
2014). To investigate how parameter choice impacts the outcomes of the model, we use the
GLOPNET leaf trait database (Wright et al., 2004) to define Ma, Ll and Narea. Within plant
functional types, which are defined here as evergreen vs deciduous trees and needleleaf
vs broadleaf trees, there are large variations for all parameters within the database (Figs 120

and 2). Thus, there exists a problem of parameter choice for these three properties. One
approach is to simply use either the mean properties of the data for each plant type (Reich
et al., 2007), or a single linear fit of the relationship between the different variables. This
approach, while compellingly simple, presupposes that the database represents an appro-
priate sample, either of the mean of the existing plants, or the relationships between the25

variables. This is, on account of sampling biases (Wright et al., 2004), quite unlikely to be
the case; as such we take a different approach that retains the observed spread in the avail-
able data. In this study, we construct PFT-specific three-dimensional covariance matrices

10
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(Figs. 1 and 2) that represent our knowledge of the direction and fidelity of the trade-offs
between the three traits and thus define a set of plausible ‘proxy-species’ within each plant
functional type, defined in this case by phenological habit (i.e., evergreen or cold decidu-
ous). We consider all parts of the normally distributed covariance matrix to be equally likely
(since their likelihoods are derived from the observed data). We then re-sample, from this5

distribution, a set of 15 parameter combinations for deciduous broadleaf (DBT) and 15 for
evergreen needleleaf (ENT) trees, using a multivariate normal distribution sampling routine,
‘mvnrnd’ function in MatLab (MATLAB, 2012).
Narea values are substantially higher for ENT than for DBT. Kattge et al. (2009) report the

relationship between photosynthetic capacity Vc,max,25 (µmol m2 s−1) and Narea for DBT and10

ENT, and find that ENT have much lower instantaneous nitrogen use efficiency than DBT,
using their coefficients. We thus calculate Vc,max,25 as

Vc,max,25 = 33.79Narea (1)

for DBT, and,

Vc,max,25 = 20.72Narea (2)15

for ENT. Without this modification, a naïve approach to scaling from Narea to Vc,max,25 would
give ENT’s a photosynthetic capacity 50% higher than DBT’s .

This model parameterization approach only modifies a small fraction of the total number
of the parameters that are necessary within the CLM(ED) framework (Oleson et al., 2013)
(Supplement A). To increase the tractability of the simulations and to constrain the changes20

in parameters between plant functional types, we kept all of the remaining model parame-
ters constant. We acknowledge, and indeed emphasize, that the outcome of the simulations
could be altered by modification of other parts of the model parameter space. Our aim here
is not to derive the ‘best possible’ simulation of biome boundaries, but more to investigate
the consequences of parameter choice within a relatively small and well constrained frame-25

work. Few other model parameters have the same density of observations (Kattge et al.,
2011), thus, the scenario represented by Ma, Ll and Narea is one of the best test-cases for
deploying trait data to predict biome boundaries.
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3.2 Model setup

To explore the consequences of parameter choice on the fidelity of the predicted biome
boundaries, we ran a series of ensemble simulations, each using one of the 15 parameter
combinations resampled from the 3D covariance matrix, as described above and in Table
1. To allow for direct attribution of biome boundary position to our hypothesis (e.g., that5

the relative carbon economy of deciduous vs. evergreen plants can explain their distribu-
tions) we assume here that there are no other differences between the properties of the
ENT and DBT plant types. These ensemble simulations were run five times, using alterna-
tive structural assumptions (explained in Section 4.4), including four alternative structural
assumptions and a control.10

Regional model runs were conducted for the Eastern United States. We selected this
region on account of the continent-scale biome boundary shifts evident between phenolog-
ical habits along the North-South axis of this domain. In the Eastern United States, there
is a clear transition from evergreen vegetation in the North to heavily deciduous-dominated
ecosystems in the mid-latitudes, then back to evergreen in the southern and subtropical15

regions. The problem of parameterization of plant functional type attributes within the con-
text of structural variants is complex, therefore we intentionally focus on this limited-scope
regional problem, to allow a more thorough investigation of the properties of the model. We
acknowledge that complex land-use impacts affect this study area, but we both screen out
heavily impacted areas from our analysis, and only focus on forested ecosystems, reducing20

this impact substantially (see latter section on observational constraints). Other clear shifts
in phenological habit occur globally, most notably at the rainforest/savanna biome boundary
(?), but methodologies for simulating drought-deciduous phenology are not as well under-
stood as for cold-deciduous phenology (Baudena et al., 2015), and the issue is complicated
by interactions with modelled soil and plant hydrology (dah). Future studies will investigate25

other biome boundaries, and ultimately the properties of global simulations.
The model is forced with 6-hourly climate drivers derived from Qian et al. (2006), re-

gridded to a 0.9 x 1.25 degree resolution grid and run from 1972 to 2003 for the Eastern

12



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

USA (90-65W, 25-50N). Because of our prioritization of ensemble experiments to illustrate
dependence of modelled plant competition on parameter values and model structural vari-
ants, rather than to explore the consequences for the entire (soil, vegetation, atmosphere)
carbon cycle, we ran the models until the vegetation distribution appeared stable. Because
of the absence of a nitrogen cycle in our simulations, this period was relatively short (i.e.,5

approximately 30 years). The carbon budget of the represented ecosystems was not nec-
essarily in balance at this time, but there did not appear to be a trajectory affecting the
ecosystem composition, the output variable of interest. Our other outputs of interest, LAI
and GPP stabilize well before this time. Each ensemble member was initialized from bare
ground, seeded with equal numbers of saplings of each plant functional type (ENT and10

DBT).

3.3 Observational constraints

To evaluate the model predictions, we use the AVHRR vegetation continuous fields (VCF)
product (?), which assesses global vegetation patterns in terms of leaf type (i.e., needleleaf,
broadleaf) and phenological habit (i.e., evergreen, deciduous). The fraction of vegetation in15

each class is determined for each 5 km cell, and the data were re-gridded to the same
0.9x1.25 degree model grid. We generate a metric of average observed evergreen frac-
tion (Feg) for each grid cell. Further, we also use the MODIS leaf area index product (LAI)
product to evaluate model performance across the simulated domain. Leaf area index is
a property often used to benchmark plant physiology models because it is a critical de-20

terminant of both energy and carbon exchange processes, despite our imperfect ability to
generate LAI products from canopy greenness indices (Quaife et al., 2004; Pfeifer et al.,
2012; Loew et al., 2014). In this instance, our primary objective is to predict spatial variation
in LAI at a regional scale. Further studies will be expanded into the use of other metrics of
canopy greenness (e.g. Fraction of Absorbed PAR), using CLM4.5(ED)’s increased fidelity25

representation of the canopy structure (Supplement A). Areas with heavy (>50%) influence
of anthropogenic land use change, as determined by the CLM surface datasets (Lawrence
and Chase, 2010), are masked out in model-data comparisons, since the model is only
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relevant to the prediction of natural vegetation LAI. Since the VCF product only reports val-
ues relevant to forest vegetation cover, it is relevant to test the model predictions against
areas with land use change because the herbaceous/crop areas are already screened out.
Finally, we also compare model outputs to the Fluxnet GPP product (Jung et al., 2011;
Bonan et al., 2012), which scales fluxes observed at eddy covariance measurements sites5

to a globally gridded product using climate and vegetation drivers. The Fluxnet GPP has
previously been used to validate CLM GPP predictions (Bonan et al., 2012), and while it is
relies on data which are sparse for some regions, errors for this latitude band are relatively
low (Beer et al.).

3.4 Structural variants10

Numerous aspects of carbon cycle process representation are uncertain in land surface
models, and, using our mechanistic modelling framework, these uncertainties can propa-
gate into predictions of biome distribution. To address a subset of this uncertainty, we con-
ducted parametric ensembles across a variety of structural assumptions pertaining to the
allocation of carbon resources across evergreen and deciduous trees. We investigate the15

importance of assumptions related to model initialization, which is a notable determinant
of final ecosystem state in models with strong positive feedbacks. We also investigate the
depiction of leaf and fine root carbon economy, taking advantage of new studies that report
better constraints on these processes than exist in the default model. The new data pertain
to the correlation of leaf respiration with leaf nitrogen, the turnover of evergreen leaves, and20

the turnover rate of fine root matter. The default model setup, described in detail in Supple-
ment A, is denoted as the control (CONT) simulation. The other four structural variants are
described below.

3.4.1 Variant 1: Allocation

The first structural variant relates to carbon allocation (and is thus denoted as ALLOC). In25

this variant, we address limitations in the existing CLM(ED) assumptions for leaf carbon
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allocation. In the default version of the CLM4.5(ED), using assumption described in (Fisher
et al., 2010), leaf area index is expressed on a per-tree basis (and ultimately aggregated to
calculate average surface LAI). Individual tree leaf area index is the number of leaf layers
within the area occupied by the tree crown, (ltree m2 m-2). ltree is determined from leaf biomass,
(bleaf, g), leaf mass per unit area (Ma,ft, g m-2, (where ft denotes plant functional type) and the5

area occupied by the tree (Acrown,m2) as follows,

ltree =
bleaf

Acrown ·Ma,ft

(3)

Maximum target leaf mass is an empirical function of stem diameter (dbh), adjusted by
the wood density ρft (taken from Moorcroft et al. (2001)).

bleaf,max = 0.0419dbh1.56ρ0.55
ft (4)10

bleaf,max is a target maximum biomass that can be adjusted downwards by the leaf area op-
timization routines (Supplement A) that ensure that the net assimilation cost of the bottom
leaf layer (taking into account construction) does not fall below zero.

In this form, for a given tree diameter, there is always the same maximum leaf biomass,
irrespective of Ma. Therefore, initial ltree is inversely proportional to Ma. The ENT and DBT15

plants typically have markedly different Ma distributions (Figs 1 and 2) and therefore there
is a correspondingly large difference in their maximum potential (and initial) leaf area index.
While the leaf area optimization routines eventually act to ameliorate this initial difference
in LAI between plant types, the early advantage in productivity obtained by the deciduous
trees can cause them to grow faster to the extent that they close the canopy and out-20

compete the evergreen trees, reinforcing the difference in initial conditions. Asner et al.
(2003) report LAI values for temperate ENT’s as at least equivalent to (6.7± 6.0) if not
higher than temperate DBT’s (5.1± 1.8). These observations imply that absolute allocated
leaf biomass for ENT’s must, given their higher Ma, be higher than the leaf biomass of
DBT’s, which is not the case in the control model.25

To overcome this intrinsic model bias, we employ a modification to the target leaf biomass
such that the initial tree leaf area index remains the same for DBT and ENT regardless of
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the values of specific leaf area. Specifically, the target leaf biomass is scaled by the quantity
Slma as follows,

Slma =
Ma,max

Ma,ft

(5)

where Ma,max is a reference value, currently set at 300 g m-2.

3.4.2 Variant 2: Base rate of respiration5

Leaf respiration rates are a critical element of the competitive interaction between ENT
and BDT since a major cost of the evergreen habit is the maintenance of photosynthetic
apparatus throughout the unproductive winter season. The second variant (RESP) pertains
to the baseline rate of respiration. In the control version of the CLM4.5, respiration is a
function of the leaf nitrogen content per unit area Narea. Using this methodology, the leaf10

maintenance respiration rate at 25oC at the top of the canopy lmrtop,25 (gC s-1 m-2) is

lmrtop,25 =Narea · bresp, (6)

where bresp is the baseline rate of respiration per unit Narea, given by Ryan (1991) as 0.2577
gC gN-1 s-1.

A recent study by Atkin et al. provides greater constraints for the relationship between15

Narea and lmrtop,25. In their study, they report different relationships for ENT and BDT func-
tional types, as follows, for BDT

log10(lmrtop,25,BDT) = log10(Narea) · 1.134− 0.300 (7)

and for NET

log10(lmrtop,25,NET) = log10(Narea) · 1.005− 0.346 (8)20

The outcome of these log-log relationships, if expressed in the same base rate units used
by (Ryan, 1991), across the spread of Narea values used in our ensemble, is 0.452 gC gN-1
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s-1 for NET and 0.536 gC gN-1 s-1 for BDT. We replaced the linear dependence of lmrtop,25

on Narea with the log-linear functions described above. With this modification, the base rate
is approximately double that used in the default model, and the new base rate for ENT is
16% lower than that for BDT (when they were identical in the original model). We denote
this model variant as RESP.5

3.4.3 Variant 3: Leaf lifespan as a function of temperature

The third structural variant we consider concerns the rate of evergreen leaf turnover. In
the default version of the model, leaf lifespan is derived from the covariance matrix that
relates it to Ma and Narea. However, interrogation of the GLOPNET database reveals almost
no correlation between leaf lifespan and Ma for NET (R2=0.004). Instead, there is a much10

stronger correlation with mean annual temperature (R2=0.426, Fig. 3). This relationship was
also reported for a subset of boreal needleleaf evergreen trees by Reich et al. (2014). The
impact of using our default covariance matrix approach is that ‘expensive’ leaf strategies
can be proscribed in both hot and cold regions. In contrast, the observations suggest that,
irrespective of leaf cost, leaves last longer in colder environments, and that the short-lived,15

more expensive leaf habits are confined to hotter areas. In this modification, we directly
employ the relationship between (MAT) and Ll for evergreen trees. The relationship we
extract from the GLOPNET data for this purpose is:

Ll,ENT =−0.2885MAT +7.1069 (9)

As temperature appears to have no significant impact on Ma or Narea, (R2=0.046 and 0.0220

respectively) and as they are strongly related to each other (R2=0.580) we retain the co-
variance matrix approach to define those parameters, independent of temperature. We also
maintain the same maximum leaf lifespan prediction for the deciduous trees. We denote this
variant as LL_TEMP. We discuss the implications of direct prediction of leaf lifespan from
climatic drivers further in the discussion.25
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3.4.4 Variant 4: Root lifespan as a function of temperature

The definition of root turnover rates is subject to extreme uncertainty in vegetation models,
not least because root turnover rates are intrinsically hard to observe, but also because root
longevity appears to be complex, having been statistically related to many factors including
root order (Joslin et al., 2006; Guo et al., 2008; McCormack et al., 2012), depth, diameter,5

specific root length and wood density (McCormack et al., 2012), nitrogen content (Eissen-
stat et al., 2000) and temperature (Gill and Jackson, 2000). Arguably, models that predict
root traits from correlated plant physiological properties and environmental conditions are
needed to properly specify this trait, as described in detail by Warren et al. (2015). However,
to illustrate the sensitivity of the biome boundary predictions to basic variability in assump-10

tions of root turnover, we test both the default assumption (the turnover rate of the fine root
pool is 1.0yr-1) and a relationship derived from the analysis of Gill and Jackson (2000). The
Gill metaanalysis found a log-log relationship between MAT and root tissue turnover (Rl,
years), with different coefficients for NET and BDT (with a slightly steeper decline in Rl with
MAT for BDT than for NET). Thus, for NET15

log10(Rl,NET) =−0.053 log10(MAT )+ 3.088 (10)

and for BDT

log10(Rl,BDT) =−0.082 log10(MAT )+ 3.316 (11)

We denote this model variant as RL_TEMP.

3.5 Model Simulations20

Our four modifications give rise to a set of 24=16 potential structural combinations. Testing
all 16 structural combinations for the 15 member parameteric ensemble for the full East-
ern United States region is computationally prohibitive. Consequently, instead of testing all
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combinations, we add the structural modifications in one at a time to investigate the impact
of each change in isolation. We therefore compute five ensembles of alternative structural
variants, by adding the ALLOC, RESP, LL_TEMP and RL_TEMP changes sequentially.
For each of the five variants, we run the model for 15 times with parameter values sampled
from the space of Ma, Ll and Narea. The structural variants are labelled i,ii,iii,iv, and v, and5

are described in Table 2. We compare the model output to the observed data using five
comparison metrics, maximum and mean annual LAI, maximum and mean annual GPP,
and the single set of evergreen fraction data available.

We calculate the R2 and root mean square error (RMSE) of the spatial distribution of
each metric. We acknowledge that there exists a choice of metrics (maximum vs. minimum10

vs. range, and spatial vs temporal correspondence) but also note that subjectivity in the
definition of objective functions is generic to high-dimensional model output (Abramowitz
et al., 2008; Randerson et al., 2009; Blyth et al., 2011; Abramowitz, 2012; Kelley et al.,
2012; Luo et al., 2012; Schwalm et al., 2013; Anav et al., 2013).

Our analysis is concerned with the costs and benefits, or carbon economy, of the dif-15

ferent leaf strategies. The cost of leaves is easily calculated as the investment (in terms
of LMA), divided by the lifespan (in terms of LL), giving the cost in KgC per unit are per
year of leaf. The benefits (in terms of Carbon export), on the other hand, are more difficult
to calculate, since they are manifested not only though leaf Narea and hence photosynthetic
capacity, but also by the non-linear interactions of photosynthetic capacity with environmen-20

tal drivers (light, CO2, temperature etc.). Thus, the detailed physiological model is required
to generate estimates of benefit in terms of assimilation, and it is not possible to do these
calculations as a simple offline analysis. Further, the implementation inside the physiolog-
ical model includes the impact of self-shading of leaves lower in the canopy, and thus the
costs and benefits of these strategies are actually only properly assessed at the canopy25

scale. To address this point, we conducted additional model runs that use only one PFT at
a time, using structural variant v. Using these analyses, we can assess the differences in
productivity and leaf area index of the PFTs in isolation. This remove the direct effects of
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light competition and allows interrogation of how the competition and productivity elements
of the model combine to generate the resulting distribution.

4 Results

4.1 Overall model performance

Figs. 4, 5 and 6 illustrate the R2, relative RMSE and summary statistics for each structural5

variant and parameter combination. Figs. 7, 8, 9 and 10 show the simulated evergreen
fraction (Feg) as simulated by the different structural variants. Figs. 11 and 12 show the
mean annual LAI and GPP of the last structural variant (run v), once all of the modifications
have been made. GPP and LAI maps are shown for the other structural variants in the
Supplement B.10

Fig. 4 illustrates that, particularly for Feg and LAI, R2 varies primarily with structural vari-
ation, as illustrated by the horizontal striation. In contrast, variation in RMSE, particularly
for GPP, illustrates the dominance of parametric variation, shown by the vertical striation in
the GPP and LAI comparisons in Fig 5. We did not combine the R2 and RMSE values di-
rectly, since calculating their relative weights would serve to reduce the clarity of the output15

exposed by using them both independently.

4.2 Prediction of biome boundaries

In the control simulation (Fig. 7), every parameter combination produced a near complete
dominance by deciduous vegetation, irrespective of the variation in parameters that were
extracted from the leaf trait database. The meanR2 of the predicted vs. observed Feg across20

the ensemble (0.04) illustrates this lack of predictive skill. Addition of the ALLOC modifica-
tions to initial leaf biomass (Fig. 8), returns significant variation in predicted Feg. The model
still predicts complete dominance of BDT for some parameter combinations, but also suc-
cessful dominance of ENT at high and low latitudes for others. Nonetheless, only three of
the simulations have evergreen cover over 25% (where the mean for the observations is25
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49.2%). The mean(and max) R2 is 0.13(0.34), where ‘max’ is the highest R2 value for any
of the 15 parametric combinations.

The impact of altering the leaf respiration fluxes to match the observed relationship with
leaf nitrogen and plant functional type had only a slight impact on the overall RMSE and
R2 statistics for the evergreen fraction predictions (maps not shown on account of their5

similarity with Fig. 8). Making evergreen leaf lifespan a PFT-specific function of temperature
(LL_TEMP), has a more profound impact on the competitive ability of the NET plants at high
latitudes (Fig. 9). With this structural modification, seven of the simulations have evergreen
cover over 25%, and the mean(and max) R2 increases to 0.20(0.34).

The last modification, directly including the PFT-specific impacts of temperature on fine10

root turnover, further increases the dominance of evergreen trees in Northern latitudes,
again slightly increasing the correlation with the observations. Now nine of the simulations
have evergreen cover >25% and the mean(and max) R2 is 0.23(0.35) (Fig. 10). In general,
it is clear that all versions of the model considered here display something of a systematic
bias towards the prevalence of deciduous trees using this parameter space.15

The impact on RMSE of the sequence of structural modifications also showed a tendency
towards improvement as the average RMSE of the predicted vs observed fraction of ever-
green trees dropped from 0.48 (model run i), through 0.41(ii), 0.41(iii), 0.37(iv) and 0.35(v)
(Fig. 5).

4.3 Impacts on Leaf Area Index20

The alteration of both model structure and parameters also had a major impact on the
predicted LAI. This is expected, since all of the modifications and parameters are concerned
with carbon economy, and realized leaf area in the model is predicted from the vertical
location of the lowest leaf layer in positive annual carbon balance (Supplement A). The
increase in model-data spatial coherence (R2) through the structural ensemble (from runs i25

to v) for Feg (see Section 5.2) is not echoed by changes in the R2 of mean annual LAI, which
instead decreases through the ensemble from 0.45 (run i) through 0.31 (ii), 0.30 (iii), 0.14
(iv) and 0.05 (v). This trend was not apparent for the R2 of maximum annual LAI (which
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varies through 0.42 (i), 0.15 (ii), 0.32 (iii) 0.39 (iv) to 0.38 (v)) (Fig. 4). The model error
(RMSE) was also relatively insensitive to changes in the model structure, aside from the
change from run i to run ii, which improved the simulations (Fig. 5).

The direction of change of the R2 and RMSE statistics was not consistent due to spatial
complexities. Specifically, the control simulation (run i) systematically underestimated LAI5

across the entire domain (Supplement B: Fig. 1) and thus had a high RMSE. The lack of
much spatial structure in LAI prediction across the geographical domain, however, meant
that it had a relatively good spatial coherence with the LAI data product, which is also rel-
atively homogenous across the domain. Increasing allocation to leaf biomass in simulation
ii, and thus increasing LAI overall, intensified the spatial heterogeneity of the predictions10

(Supplement B: Fig. 2) and thus worsened the R2, but reduced the model error.
Changing the respiratory fluxes in run iii improved theR2 fit to maximum LAI (from 0.15 to

0.32, Fig. 4), potentially on account of the higher respiration rates at low latitudes acting to
even out the spatial distribution of LAI (Supplement B: Fig. 3), and in doing so compensated
for the decline caused by the previous modification (illustrating the possibilities of model15

equifinality).
Altering the leaf turnover time caused an increase in the mean LAI (from 2.66 to 3.06)

by reducing canopy replacement costs at high latitudes. The model predictions thus now
approach and in some cases overshoot the values observed for high latitude evergreen
forests (3.5-4.5 m2 m-2) in the data product (Supplement B: Fig. 4). In the simulations where20

evergreen trees are dominant, it is notable that their LAI values may be somewhat over-
predicted. The final simulation (v, with the RL_TEMP modification) intensifies the reduction
in tissue turnover demand at high latitudes, and thus the changes primarily amplify those
imposed on LAI by the LL_TEMP modification. The model now illustrates a very wide range
of potential LAI predictions, dependent on the parameters chosen to represent the ENT25

and DBT strategies (Fig. 11). The major systematic bias in the final LAI predictions is the
underestimation in the mid-latitudes of the domain. The fact that this feature is persistent
across the parameter space sampled (even though there is clearly room for more detailed
parameter optimization), indicates a persistent structural bias, particular in the performance
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of deciduous broadleaf trees in their higher ranges. This underestimate is not substantially
changed by any of the structural modifications we deploy here (all of the simulations indicate
the same issue) and does not appear to result from underestimates of productivity (Fig. 12),
potentially implying a deficiency in carbon allocation.

It is worth noting that the LAI values predicted by the CLM4.5(ED) algorithm (which as-5

sumes leaf area optimized for net canopy carbon gain) all appear to be in the range brack-
eted by the observations. Historically, the CLM4.0 and CLM4.5 models have suffered from
issues related to the chronic overestimation of LAI (Lawrence et al., 2011; dah). We suggest
that limiting the production of leaf layers in negative carbon might ameliorate this issue.

4.4 Impacts on GPP10

The correlation coefficients for GPP are consistently higher than those for LAI or for biome
boundary prediction, illustrating that simulations of GPP appear generally more robust than
either those for plant carbon allocation (Kauwe et al.) or for biome boundary prediction
(Supplement B: Fig. 5 and 6). The spatial correlations of maximum annual GPP flux are
relatively insensitive to the effects of structural variation (R2 values are 0.48(i), 0.49(ii),15

0.49(iii), 0.44(iv) and 0.44(v) (Fig. 4). The R2 values for mean annual GPP flux are more
sensitive to model structure (0.63(i), 0.58(ii), 0.58(iii), 0.44(iv) and 0.39(v)) and in common
with the LAI predictions, decline through the ensemble.

Notably, the overall mean and RMSE values for GPP are much more sensitive to varia-
tions in parameter values than to changes in model structure (Figs 5 and 6), reflecting the20

impact of the parametric variation on the overall productivity, both directly via the impact of
Narea on Vc,max, and indirectly via impacts of Ll and Ma on leaf area index.

GPP predictions using parameter setting #13 have a notably low R2 for mean and max-
imum GPP (which is actually negative for runs ii though v, resulting from the residual sum
of squares being large than the total). This simulation has the highest fractions of ever-25

green vegetation, generates very high LAI and thus high GPP values in the far north of the
domain (Supplement B: Figs 7 and 8). As a result, in the latter parts of the structural en-
semble, #13 has a notably poor spatial correspondence with the observations (which show
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a decline in GPP with latitude). Several of the other high evergreen cover ensemble mem-
bers (#5,12,15), all of which have unrealistically high LAI in the Northern areas, also show
a degraded correspondence with the GPP data product. Not all parameter combinations
show this, suggesting that some of the Ma and Narea combinations might be inappropriate
for use in the far North (see discussion).5

4.5 Relative performance of individual plant functional types

Fig. 13 illustrates the absolute difference between the productivity (annual NPP) of the EBT
and the ENT for the 3rd year of the simulation for structual variant v. Each PFT was run in
isolation to calculate these differences. Here it is clear that in the mid-latitudes, the EBT’s
have a significant productivity advantage, which broadly maps onto the eventual distribu-10

tion of these PFTs in the competitive simulations discussed above. At higher and lower lat-
itudes, the ENT and BDT have approximately equal productivity. Parameter choice affects
the distributions of the areas where EBT has an advantage, but the pattern is consistent
across the ensemble, excluding parameter combination #13. Looking at the performance
of larger trees, where the LAI is equilibrated with productivity, and effects of initialization15

have disappeared, (Fig. 14), there are either small differences, or considerable productivity
advantages of the ENT type (excluding ensemble member #14. This implies that the EBT’s
gain dominance early in the competitive interaction, presumably by amassing leaf area at a
greater rate than the ENTs. Thus, the representation of light competition is instrumental in
producing biome boundaries in this example.20

5 Discussion

We present here a demographic dynamic vegetation model (ED), coupled to the biophysical
scientific and software architecture of the Community Land Model v4.5 (Oleson et al., 2013).
The CLM4.5(ED) model represents a substantial modification to the representation of land
surface heterogeneity in the CLM, and is intended as a template for the investigation of25

vegetation dynamics and their properties within the context of climate simulations. Particular
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features of this model structure include; 1) the flexible representation of plant functional type
parameterization, 2) the representation of plant demography and succession derived from
the ED concept, 3) the representation of self-organization of plants into distinct canopy
layers derived from the PPA model, 4) the solution of canopy processes at relatively high
temporal (i.e., half-hourly) and vertical (i.e., multi-layer calculations at a resolution of 1.05

LAI units) resolutions, and 5) the ability to represent multiple different plant types within the
same vertical light profile. These features together enable the model to select vegetation
types based on their growth performance, and to thus predict vegetation dominance from
the plant traits that affect relative productivity of different vegetation types.

The prediction of plant distributions from plant traits allows the testing of mechanistic10

hypotheses of plant biogeography, and reduces the dependence of vegetation models on
climate envelopes. Successful prediction of vegetation patterns can act as an independent
test of our understanding of the link between plant physiology and geographical spread.
Therefore, this feature is often stated as an aspiration for future dynamic vegetation mod-
els (Purves and Pacala, 2008; Verheijen et al., 2012; Boulangeat et al., 2012; Scheiter15

et al., 2013; Fyllas et al., 2014; van Bodegom et al., 2014). Here we test the assump-
tion that biome boundaries can be predicted as the emergent properties of relative carbon
economies of evergreen and deciduous leaf habits. Removing empirically derived climatic
constraints introduces additional internal model feedbacks, as competitive interactions act
to amplify small differences in relative productivity. As we demonstrate here, relatively small20

structural and parametric changes can therefore, have large consequences for predicted
vegetation properties and biogeochemical cycling. In this study, we utilize the relationship
between three of the traits most commonly featured in trait databases. Our intention is to
highlight the sensitivity to how traits are utilized, an approach which demands some parsi-
mony in the number of model components that are allowed to vary simultaneously.25

We find that the default model structure universally over-predicted the dominance of
broadleaf deciduous trees across the entire domain. Some of this bias could be corrected
by increasing the maximum target leaf biomass quantity to be proportional to leaf mass
per area, highlighting the issue of initial condition dependence in competitive models. Im-
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portantly, some of these simulations capture the properties of biome boundaries in the real
world (evergreen trees being more prevalent in the North and South of the domain) and
therefore, indicate that the basic hypothesis -that the carbon economy of evergreen trees
is favourable in those environments- has some quantitative support. Where DBTs are dom-
inant, their dominance appears to stem from rapid small-stature growth rates, rather than5

from higher adult productivity.
Implementation of updated respiration functions had limited impact on the model output.

The further implementation of observed interactions between mean annual temperature
and leaf lifespan, and then root lifespan, had profound impacts on the success of evergreen
vegetation, particularly at higher latitudes. For all structural variants, the choice of param-10

eters for the leaf mass per area, leaf nitrogen and leaf lifespan (in cases where it covaries
with Ma and Narea) had significant impacts on the predicted biome boundaries. We find that
the GLOPNET data as used here do not represent a set of equally productive plant types
when the traits are used to drive modeled plant growth.

5.1 Potential avenues for structural model development15

At least two large biases were indicated by the structural ensemble that were not resolved
by any of the tested modifications. First, the under-performance of DBT’s at the Northern
extent of their range, and second, the over-performance of ENT’s in the far North in some
of the model simulations. To address the latter, Reich et al. (2014) find some correlation
between MAT and leaf Nitrogen allocation for their set of ENT species. We did not detect20

a relationship between MAT and Narea in the GLOPNET data, thus this might be a topic
of future investigation. It is worth noting, additionally, that the optimality criteria with which
CLM(ED) predicts leaf area index is based on the avoidance of leaves in negative carbon
balance. In cases of severe nutrient limitation, this might be only an upper bound on LAI,
and alternative metrics that take into account the cost of nitrogen acquisition might be more25

appropriate (Fisher et al., 2010; Brzostek et al., 2014; Thomas and Williams, 2014).
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5.2 Trait filtering models

The CLM4.5(ED) is designed as a trait-filtering model, in that it can predict successful veg-
etation types from their traits via the ‘filter’ of environmental conditions. One central premise
of trait filtering models (Scheiter et al., 2013; Weng et al., 2015) is that ‘trade-off’ surfaces
are necessary inputs, and, implicitly, that moving along the surface means that performance5

increases by some metrics, but gets worse in others. The use of proscribed trade-off sur-
face is illustrated in the Jena-Diversity (JeDi) model (Reu et al., 2010; Bohn et al., 2011;
Pavlick et al., 2013). Potential plants (proxy-species) are selected from a seven-dimensional
trade-off surface, and the environment acts as a filter on this (large) population, reducing
the realized population to those proxy-species that are able to reproduce under given en-10

vironmental conditions. Implicit in this methodology are the assumptions that all trade-off
surfaces are fixed, and that they are independent of climatic drivers.

Scheiter et al. (2013) discuss three classes of trade-offs that may be considered in veg-
etation models - allocation tradeoffs (investment decisions in different tissues), mechanical
tradeoffs (intrinsic structural properties) and empirical trade-offs that must be prescribed,15

in lieu of understanding of their mechanistic underpinning. In our study, the three-way trait
relationship between Narea, Ma and Ll is an empirical trade-off. Contrary to observations
across multiple plant functional types (Wright et al., 2004), the within-PFT trait relationships
appear weak. Specifically, large variations in leaf lifespan and in Narea are possible for the
same leaf carbon investment (Ma) (Figs 1 & 2). If, for example, a higher Ll value is chosen20

for the same Ma, the cost of canopy replacement will go down, increasing plant leaf area
index, productivity, and growth. There is no downside in this model framework to having
longer lived leaves. Therefore, in this case, the trait data fail to accurately define a trait
trade-off. It is possible to empirically define a surface fitted to the data, and to remove the
‘noise’ around the central tendency of the data. This approach would necessarily reduce25

the tendency to select plants with very high or low relative productivity, but also would, in
this case, be an inaccurate reflection of the genuine spread of the data, given the lack of
adherence to clear trade-off surfaces.
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Higher Narea increases both photosynthetic capacity and respiration rates, so should be
subject to some degree of trade-off, depending on the climatological conditions (warm
nights and long winters increase the costs of high leaf N). Nonetheless, the balance of
these processes appears to not produce equivalent performance across the space defined
in Fig. 1 and Fig. 2. This outcome highlights two potentially problematic issues with the5

trait filtering approach. The first is that costs and benefits of alternative strategies might
not be represented completely by simple and easily observable trade-off surfaces. The true
‘cost’ to plants of long lived leaves may not be a linear function of Ma. Long lived leaves
might well, for example, require investment resources in complex and energetically expen-
sive defensive compounds, and so an alternative axis of investment and return might be10

functionally more appropriate. The second issue is that tradeoff surfaces might not neces-
sarily be consistent across locations (Moncrieff et al., 2015). For example, differences in the
environment (e.g. temperature) might increase the potential lifespan of leaves by reducing
herbivory rates and damage from solar radiation.

5.2.1 Environmental drivers of plant traits15

Here we find, in common with Reich et al. (2014) and Kikuzawa et al. (2013), that, for
evergreen trees, there is a stronger relationship of temperature with leaf lifespan than there
is with carbon investment (Ma). In this example, the inclusion of a temperature-dependent
leaf lifespan allows for a greater fidelity representation of the real world, and results in an
improved prediction of the dominance of evergreen trees at higher latitude. Thus, one might20

argue for the inclusion of some climatic controls over trait distributions.
The direct prediction of plant traits from climate variables in dynamic vegetation models

was adopted by Verheijen et al. (2012) in their study using the JSBACH model, and has
been further advocated and augmented by van Bodegom et al. (2014). This approach - di-
rectly implementing the observed relationships between plant traits and their climate drivers25

- has the benefit that it uses the data available at the present time with greater fidelity. In
theory, and as we have demonstrated, this approach should improve our ability to allow
prediction of current vegetation patterns. We are, for example, telling the model that leaf

28



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

lifespan decreases with temperature, rather than expecting this property to emerge from a
more complex set of dynamics.

Direct prediction of traits from their environmental drivers approach suffers, however, from
at least three caveats. The first is that it predicts mean trait values for given environmental
conditions and thus does not represent heterogeneity of plant strategies in a single loca-5

tion. Further, it is subject to a similar circularity of logic as the original climate envelope
approach, in that the relationships of plant traits and climate may well not hold under fu-
ture circumstances where both atmospheric CO2, nitrogen deposition and other metrics of
climate, are heavily modified. Lastly, under a changing climate, the shift in the mean trait
values is considered as instantaneous, no genetic limits to plasticity are implied and there10

is no demographic inertia to the adoption of new better adapted plant types.
An ideal but data-intensive approach might involve the derivation of trade-off surfaces

specific to a given climate, e.g. for a given investment in leaf carbon there is a climate-
dependant relationship with lifespan. For most traits, except those potentially observable
from space (Serbin et al., 2014) the quantity of data required to populate such a matrix will15

likely remain prohibitive.

5.2.2 Alternative solutions; evolution and optimization

One alternative solution, exemplified by the ’aDGVM2’ model proposed by Scheiter et al.
(2013), allows plant traits to evolve in response to selection pressure. This approach would
likely ‘correct’ plant traits that performed poorly under given conditions, and let the optimum20

evergreen and deciduous strategies emerge from the competitive process. This approach is
compelling, because it removes many of the subjective elements of other existing strategies;
it does not require pre-selection of particular trait combinations (as with our parametric
ensemble), and allows the representation of diversity of traits in a single grid cell. One
important feature of the model, however, is the assumption of globally consistent trait trade-25

off surfaces (from which plant types are selected), and thus further modifications might
potentially be needed to allow it to function in conditions where these were variable in
space.
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Yet another alternative method for trait prediction is the use of optimal models of plant
function. Optimal models are based on the idea that in theory better performing plants
will be favoured by natural selection, and therefore plants that are in existence should not
display functionality which would be detrimental to their evolutionary fitness (Dewar et al.,
2009). Many such approaches are already operational within various types of vegetation5

model (Williams et al., 1996; Fisher et al., 2007; Dewar et al., 2009; Rastetter, 2011; Medlyn
et al., 2011; Franklin et al., 2012; McMurtrie and Dewar, 2013; Thomas and Williams, 2014).
In this framework, it is possible to propose explicit hypotheses for how plants avoid sub-
optimal performance, and make predictions that can be tested against observations. The
success of the approach depends on the fidelity of the proposed optimality criteria, how10

closely they align with real evolutionary fitness, and how close ecosystems really are to
optimal solutions (given genetic constraints and non-equilibrium processes).

From the perspective of land surface models, these approaches are interesting because
of their mechanistic approach, which reduces concerns regarding out-of-sample extrapo-
lation into future climates. For example, predictive models of within-leaf nitrogen allocation15

can explain environmentally-driven variations in Vc,max, Jmax and leaf respiration, thus reduc-
ing the dependence on empirical correlations between Nitrogen content and photosynthetic
capacity (Xu et al., 2012). In this case, trait databases might be used as validation data,
rather than as model inputs.

The idea behind optimality models is occasionally undermined by studies using a game20

theory perspective, which show that the optimal plant strategy in isolation differs somewhat
from the optimal strategy that can compete with other plants (Van Wijk and Bouten, 2001;
Van Wijk et al., 2003; Anten and During, 2011; McNickle and Dybzinski, 2013; Farrior et al.,
2013; Dybzinski et al., 2014; Weng et al., 2015), illustrating the difficulties in choosing an
appropriate fitness metric. In common with the direct prediction of traits from their envi-25

ronment, optimal models often assume only a single optimal strategy for a given set of
environmental conditions, unlimited genetic plasticity, and ignore demographic inertia that
may prevent ecosystems from adapting instantaneously to changing climate.

30



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

5.3 Ways forward for trait representation in dynamic vegetation models

At present, many land surface modelling efforts use a variety of approaches to predicting
plant traits, inclusive of trait-filtering (Medvigy et al., 2009; Weng et al., 2015), direct predic-
tion of plant traits from their environment (e.g. allocation from Friedlingstein et al. (1999))
and ideas from optimization theory (e.g. stomatal conductance, vertical N allocation). Many5

parallel concepts exist for how to define plant traits within advanced vegetation models (De-
war et al., 2009; Scheiter et al., 2013; van Bodegom et al., 2014; Fyllas et al., 2014) but the
circumstances under which it is most appropriate to use which methodology, is a topic that
has not been discussed widely. To move the science of vegetation modeling forward, we
argue that it will become necessary to understand under what conditions empirical ‘short-10

cuts’ to predict traits are acceptable and necessary, and under what circumstances detailed
mechanistic prediction is either possible or desirable. In the first instance, it is, of course,
imperative to both further advance the collection of data on plant traits and processes where
possible, and to continue investigations into plant trait databases that already exist, ideally
in a context that is linked to the requirements of predictive models e.g. Falster et al. (2011);15

Wang et al. (2012); Reich et al. (2014); van Bodegom et al. (2014); Fyllas et al. (2014)).
We consider that the analysis of plant trait data to determine how both environmental con-
ditions and plant strategies (such as the ‘fast-slow’ axis, proposed by Reich (2014)) can be
used to generate robust predictive models, is an extremely high priority. It is worth noting
also, that while our study does not consider the impact of changing climate on carbon cycle20

processes, the alternative structural variants imply both different lag times and feedbacks to
the impact of climate, via the use, or otherwise, of direct impacts of temperature on turnover
processes.

5.4 On the use of ensembles in land surface modelling

Another aspect of our study highlights the importance of ensembles for the investigation of25

model properties. It is the default practice, in land surface modelling and climate science
generally, to present results using the name of a particular model to depict an invariant set of
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default parameter and structural assumptions (e.g. CLM4.5, JULES1.0, ED2) and to assess
the merits of only one version of a model from the hyper-dimensional set of potentially
viable model predictions. Such ‘simple’ tests of model performance against observations,
however, explicitly convolute the structural, parametric and initial condition contributions
to model error, and therefore, interpretation of mismatches with data is difficult. We here5

argue that increased use of both structural and parameteric ensembles is beneficial for the
development of understanding of complex land surface modeling schemes.

In Earth System Modelling more widely, the use of initial condition ensembles is in-
creasingly considered to be critical for the evaluation of model behavior (Kay et al., 2014;
Wettstein and Deser, 2014; Falloon et al., 2014; Lombardozzi et al., 2014; Swart et al.,10

2015). Model inter-comparison projects, both for earth system models (Friedlingstein et al.,
2014; Arora et al., 2013) and their land surface model components (Sitch et al., 2008; Pow-
ell et al., 2013; Kauwe et al., 2013; Zaehle et al., 2014; Christoffersen et al.; Walker et al.,
2014) are used as a means of investigating the impact of alternative model structures, al-
though typically the high dimensionality of the inter-model differences renders it difficult to15

assess the causes of differences between models (but c.f. Zaehle et al. (2014)). In this study
we investigate a variety of model structures within the same framework. This approach, also
adopted by Williams et al. (2001); Bonan et al. (2012, 2014); Joetzjer et al. (2014); Reich
et al. (2014); Burakowski et al.; dah among others, enables the differences caused by in-
dividual modifications to be quantified and understood, and therefore potentially provides a20

more tractable approach to understanding the processes leading to prediction differences
than a standard model inter-comparison experiment. Perturbation of the parameters of land
surface models (referred to as ‘perturbed physics’ ensembles) is rarely undertaken at scales
large than one grid cell (but c.f. Fischer et al. (2011) and Booth et al. (2012)) on account
of the high time and energy costs of global model simulations. Perturbed physics ensem-25

bles of Earth System Models have been conducted but have typically focused on processes
unrelated to the land component (Sanderson et al., 2008). While some objective statistical
techniques have been used for single site (Fox et al., 2009; Hou et al., 2012; Medvigy et al.,
2009; Sargsyan et al., 2014), inverse model calibration of DGVMs over large regions is not
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yet considered a computationally tractable problem. More typical is the process of ad-hoc
parameterization, either using values of observable parameters from literature that may or
may not be representative of globally relevant values, or the use of ‘tunable’ parameters
that might be adjusted to bring the overall model behavior closer to observations, as also
discussed by Scheiter et al. (2013) and Reich et al. (2014). Thus, model parameters are typ-5

ically not optimized and therefore the comparison of model performance to benchmarking
data (Randerson et al., 2009; Luo et al., 2012) is not necessarily a good test of the structural
validity of the model components (Abramowitz et al., 2008). Model structural performance
is therefore much more commonly assessed at individual sites, where sensitivity to param-
eters can be investigated more comprehensively (Bonan et al., 2014). An alternative path10

forward might be to present models with no default parameter values, and instead with a
range of physiologically plausible parameters, thus reducing the correspondence between
named model structures and a single deterministic set of outputs.

6 Conclusions

We introduce a new methodology for the simulation of vegetation dynamics into the Com-15

munity Land Model (v4.5). The new module is based on the Ecosystem Demography frame-
work of Moorcroft et al. (2001) with numerous modifications. We present an investigation
into the properties of the model for the case study of evergreen-deciduous biome bound-
aries in Eastern North America. We find that the model is sensitive to the variation in pa-
rameters drawn from existing plant databases, and to variation in the representation of20

the carbon cycle, in particular, to the initial target leaf biomass, and to the implementation
of direct prediction of traits (leaf lifespan, and root lifespan) from environmental variables
(mean annual temperature). We also find that the model is capable of predicting leaf area
index and GPP within the range of the observations, and that for some trait combinations,
prediction of the positioning of biome boundaries is close to the observations. Our study25

particularly emphasizes three challenges; 1) uncertainty about when it is appropriate to
use environmental drivers to modify plant trait tradeoffs, 2) remaining structural uncertainty

33



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

within models, particularly with regard to carbon allocation processes and 3) uncertainty
resulting from ‘noise’ around trait trade-offs in existing databases. Nonetheless, echoing
Reich et al. (2014), the capacity to understand the prediction of biome boundaries from first
principles is both interesting and important. We hope that further study of the quantitative
nature of biome boundaries will be motivated by this analysis.5
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7 Code Availability

Code for this manuscript is available in the CESM svn repository (registration required) at10

the following address:
https://svn-ccsm-models.cgd.ucar.edu/clm2/branch_tags/
ed_v0.1.0_tags/ed_v010_21_clm4_5_1_r097
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Table 1. Parameter Combinations for the 15 ensemble members for leaf lifespan (Ll) in years, leaf
mass per area (Ma) in gC m−2 and area-based Nitrogen content (Narea) in g m-2

.

Run ID Ll Ma Narea

ENT BDT ENT BDT ENT BDT

1 2.0626 0.3258 516.4 98.7 4.07 2.02
2 2.3824 0.5357 249.2 132.2 2.13 2.19
3 0.7585 0.6427 168.0 70.6 1.66 1.24
4 4.1155 0.1498 362.6 58.4 2.38 1.38
5 1.3678 0.4241 329.8 103.1 3.43 2.05
6 3.1704 0.2994 181.1 47.5 2.26 1.82
7 1.9671 0.2019 609.3 59.8 5.21 1.44
8 2.2025 0.3035 335.8 159.4 3.12 2.87
9 5.3842 0.3222 334.1 47.8 4.88 1.72
10 1.6403 0.3952 264.0 104.0 2.28 2.34
11 3.9932 0.2666 165.3 41.8 0.80 1.13
12 2.7613 0.5384 342.2 95.3 4.19 2.34
13 3.8249 0.4586 444.2 78.2 3.85 0.94
14 1.4697 0.3214 232.5 55.7 0.03 1.25
15 0.6839 0.2761 483.6 62.8 4.96 1.28
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Table 2. Model Run Descriptions

Run ID Number Allocation model Respiration Model Leaf Lifespan Root Lifespan

i CONT CONT CONT CONT
ii ALLOC CONT CONT CONT
iii ALLOC ARESP CONT CONT
iv ALLOC ARESP LLTEMP CONT
v ALLOC ARESP LLTEMP RLTEMP

9 Figures
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Figure 1. Relationships between log leaf mass per unit area and log leaf lifespan (upper panel)
and Nitrogen per unit leaf area (lower panel) for evergreen needleleaf trees, from data reported by
(Wright et al., 2004). Large circles are from the database, and smaller circles are randomly chosen
points from the resampled normally distributed covariance matrix
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Figure 2. Relationships between log leaf mass per unit area and log leaf lifespan (upper panel) and
Nitrogen per unit leaf area (lower panel) for cold deciduous broadleaf trees, from data reported by
(Wright et al., 2004). Large circles are from the database, and smaller circles are randomly chosen
points from the resampled normally distributed covariance matrix

38



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 3. Relationship between Mean Annual Temperature (oC and leaf lifespan (years) derived
from the GLOPNET leaf trait database for evergreen broadleaf trees (yellow), evergreen needleaf
trees (blue), broadleaf deciduous trees (red), and deciduous needleleaf trees (green). Evergreen
broadleaf and deciduous needleleaf tree data are not used in this analysis, but are shown for com-
parison here.
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Figure 4. R2 coefficients of the spatial correlation between model output and five different data
product metrics. The X-axis pertains to variation in the parametric ensemble, and the Y axis pertains
to variation in the structural ensemble.
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Figure 5. Root Mean Square Error, relative to the mean of the variable, of the spatial correspon-
dance between model output and five different data product metrics. The X-axis pertains to variation
in the parametric ensemble, and the Y axis pertains to variation in the structural ensemble.

41



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 6. Mean values (over the spatial domain) of GPP, LAI and Feg output. The X-axis pertains to
variation in the parametric ensemble, and the Y axis pertains to variation in the structural ensemble.
Units are KgC m-2 year-1 for GPP, m2 m-2 for LAI and fraction cover for Feg.
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Figure 7. Fraction of evergreen trees projected with structural ensemble member i (the control sim-
ulation). Panel ‘a’: VCF product estimates of Feg. Panels b-p correspond to the 15 different combi-
nations used in the parameteric ensemble.

43



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 8. Fraction of evergreen trees projected with structural ensemble member ii (control + ALLOC
variant). VCF product data are shown in panel a. Panels b-p correspond to the 15 different combi-
nations used in the parameteric ensemble.
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Figure 9. Fraction of evergreen trees projected with structural ensemble member iv. (control +
ALLOC + RESP + LL_TEMP variants) VCF product data are shown in panel a. Panels b-p cor-
respond to the 15 different combinations used in the parameteric ensemble.
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Figure 10. Fraction of evergreen trees projected with structural ensemble member v. (control +
ALLOC + RESP + LL_TEMP + RL_TEMP variants) VCF product data are shown in panel a. Panels
b-p correspond to the 15 different combinations used in the parameteric ensemble.
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Figure 11. Mean Annual Leaf Area Index (m2 m-2) projected with structural ensemble member v.
(control + ALLOC + RESP + LL_TEMP + RL_TEMP variants) MODIS LAI product data are shown
in panel a. Panels b-p correspond to the 15 different combinations used in the parameteric ensemble.
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Figure 12. GPP in KgC m-2 year-1 projected with structural ensemble member v. (control + ALLOC
+ RESP + LL_TEMP + RL_TEMP variants) Flux-derived product data are shown in panel a. Panels
b-p correspond to the 15 different combinations used in the parameteric ensemble.

48



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 13. Absolute dIfference in NPP (KgC m-2 year-1) between ENT and DBT (higher ENT pro-
ductivity is positive) for year 3 of simulation. Panels b-p correspond to the 15 different combinations
used in the parameteric ensemble.
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Figure 14. Absolute dIfference in NPP (KgC m-2 year-1) between ENT and DBT (higher ENT produc-
tivity is positive) for year 14 of simulation. Panels b-p correspond to the 15 different combinations
used in the parameteric ensemble.
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