
ModEx Reviewer #1 
This study presents application of the Arctic Terrestrial Simulator (ATS) to simulate 
ice wedge dynamics near Barrow, Alaska. The subject matter is timely as the ability 
to model the complex interactions between water and heat in arctic grounds is 
currently lacking. As such, the study presents a nice step forward in advancing the 
science and our ability to model permafrost dynamics. Further, the study does well to 
combine observational data with modeling simulation. The study is well presented 
and well written. With that, I have only some minor comments for the authors to 
consider. 

We are grateful for the reviewer’s recognition in the quality and timeliness 
of this work and thank the reviewer for the insightful comments and 
recommendations. 

 
In general, I appreciate the use of the ModEx cycle approach. An a priori assumption 
of a modeling structure is ubiquitous and often clouds the potential for process 
insight across the current generation of hydrological (let alone permafrost) models. It 
would be good to see a bit more reference in discussion to other approaches (e.g., 
FUSE modeling from Clark or FLEX from Fenicia) that allow for model structure 
flexibility.  This will make for a richer consideration of the current field of modeling 
and increase connection to existing research beyond arctic regions. 

We have now included a discussion of the FUSE and FLEX modeling 
approach at Lines 176-179, in the new manuscript.  We furthermore 
thank the reviewer from bringing this literature to our attention as it 
provides a good tie to literature dealing with t calibration and module 
structure reduction. 

 
It is interesting to settle on a root mean square error response function. Were any 
other functions considered? There is marked bias in the RMSE toward high-end 
errors in estimates that cold impact the calibration procedure. It warrants 
consideration of various response functions or optimization approaches here. For 
example, limits of likelihood or Pareto front approaches could be interesting in a 
multi-objective sense. That said, such full optimization procedure consideration is 
outside the scope of this study. However, the potential impacts or limitations of 
selecting RMSE could be presented and discussed. 

The ability of the RMSE approach to target high end errors was, we 
believe, beneficial to the overall calibration process, specifically for the 
errors that occurred during the summer months when ALT is evolving.  
As shown in Figure 7, using the RMSE for a gradient based calibration 
resulted in a substantial decrease in error and eliminated much of the 
summer time temperature differences.  A Pareto front would be 
interesting for a multi-objective approach, however, during the 
subsurface calibration when a calibration response surface was used, 
only subsurface temperatures were considered for calibration targets.  
Calibration parameters such as porosity or thermal conductivity could 
have been used to limit objective functions by creating Pareto optimality, 
which would have prevented over calibration.  However, allowing the 
parameters a large possible range enabled the calibration procedure to 
identify structural error in the model.  For example, consistently 



calibrating to unrealistic parameters for porosity and thermal conductivity 
of the coupled calibration is section 3.3 diagnosed the need to include 
unsaturated conditions for the centers.  This is why, as is discussed in 
lines 13-16 on page 3241, calibration parameters were allowed a large 
possible range.   

 
It is somewhat interesting that there is no consideration of the impact of uncertainty 
in the parameter definitions on the modeling performance. Clearly, this is a complex 
model with various interactions (hence the ModEx approach adopted). With that, it 
would be interesting to understand better the role of uncertainty in defining a given 
parameter on the subsequent model performance. Specifically, this is the case with 
regards to taking field observations into the modeling environment. A simple 
sensitivity analysis would be helpful in this regard. As it is currently presented, the 
modeling comes across as extremely site specific. Of course, there is some 
consideration of a mixed-scale approach to couple this detailed modeling into a 
larger scale system.  However, without understanding the uncertainty impacts 
associated with defining the parameterization in ATS (let alone how it can shift 
across scale) there may be difficulty in generalization of the findings. Since the 
manuscript is rather dense and should not be overly extended, I recommend the 
authors take up some more discussion on these aspects (in particular surrounding 
parameter identifiability and observational un-certainty). 

We agree that uncertainty is important and that it should be thoroughly 
addressed.   So much so in fact that our original aim was identify how to 
best identify parameter uncertainty and specifically what parameters 
contribute to model uncertainty.   However, we soon discovered that 
properly calibrating and creating a process rich model of thermal 
hydrology systems which includes site-specific field data was a difficult 
but rewarding task that deserved its own place in literature.  We therefore 
decided to write a manuscript devoted to the model creation and 
calibration process.  The subsequent parameter uncertainty and 
sensitivity analysis has recently been submitted to ‘Cryosphere.’  Never-
the-less, we’ve decided to add a small discussion about the importance 
of a parameter uncertainty analysis and now point to how future 
uncertainty analysis will provide a greater breadth of information by 
adding, “Further modeling efforts that focus on uncertainty analysis and 
environmental parameters sensitivity to provide information which 
parameters govern model outcome will inform observational efforts.” to 
lines 718-720 in the new manuscript.    

 
 

Specific Comments 
Page 3243: It is not completely clear to me why a constant temperature of -6C is 
set for the bottom boundary at 50m depth. Is this based on some observation, was it 
somehow calibrated, and how could this affect the results? 

The -6C bottom boundary condition was chosen because it represents a 
far field constant low temperature gradient.  However, simulations with 
colder bottom boundary conditions were performed and had little to no 
affect of ALT formation or shallow soil temperatures.   



   This figure shows soil temperature time series for the observed soil 
temperature at 2cm and 40cm depth, and simulations with a -6 and -9 
bottom boundary condition.  Only small temperature differences are 
found at either depth. 
 
We now clarify in the new manuscript at Lines 273-275 that, “A far field 

bottom boundary condition was held constant at -6C to represent the 
average deep permafrost temperature in the North Slope of Alaska 
(Romanovsky, et al., 2010).” 

 
Pages 3245-3246: The two models for thermal conductivity were calibrated for fully 
saturated conditions and the BPC model resulted in unrealistic parameter values and 
was discarded. However, the next section tells that unsaturated conditions are likely 
for two of three boreholes and that this would affect the resulting simulated 
temperatures.  It is not clear from the text why it is enough to evaluate the two 
thermal conductivity models against each other for only fully saturated conditions, if 
unsaturated/surface energy balance processes do indeed affect these results. 

This is a very intuitive observation from the reviewer and one that the 
authors considered as well, and as such deserves some additional 
discussion here and in the Manuscript.  Because the goal is to arrive 
at a realistic and calibrated model, rather then to exhaustively explore 
all modeling options it would be better to move forward and not 
posthumously retesting prior model structural decisions.  We also felt 
that because the MC thermal model was more physical as described 
in section 2.3, where each component; soil material, ice, liquid, and 
gas contributes to the thermal conductivity of the subsurface, the affect 
of unsaturated conditions especially transient saturation would provide 
a better system representation and therefore calibration parameters.   
However, it is also important to admit that not all decisions were 
straightforward and completely quantitative as stated at Line 17-19, 
page 3239.  For this reason and for better clarity in the final 
manuscript we have added, “Here we only tested unsaturated 



conditions using the MC thermal model rather then to posthumously 
retesting prior model structural decisions, as the MC model was 
thought to be more physically accurate.” to the text at Line 416-417, to 
inform the reader why we made our decision, as well as admit, that the 
BCP approach may be adequate.  

 
Page 3248, line 17: “…a single layered of snowpack…”, should read “…a single 
layer of snowpack…”? 

Sentence now reads, “…Appendix B are applied on a single layer 
snowpack.” 

 
Page 3251, line 7: “…consistently lower then…” should read “…consistently lower 
than…”? 

Made change in new manuscript. 
 

 
 
Reviewer #2: 
This paper describes an excessively detailed assessment of how to model a set of 
temperature measurements done at different depths in an Arctic landscape. 
 
The topic area of this study and model development is important. However, this 
paper seems to overshoot the goal of providing a straightforward and useable 
modeling approach for these systems. 

We thank the reviewer for their time and effort on this review and 
specifically agree that this is a timely topic that deserves much attention.   
 
Our primary goal for this manuscript, as stated in the title, is to 
demonstrate how field observations can be incorporated into the 
development of process-rich models, both in terms of building confidence 
in the process representations and in systematically inferring model 
parameters that are not directly measurable.  As noted by Kurylyk and 
Watanabe (2013) a need for better representations of permafrost 
environments in a warming climate has motivated the development of fine-
scale thermal models. These emerging models are complements to the 
reduced complexity models used at regional and pan-Arctic scales and 
consider the wide range of coupled processes that are needed to model 
the permafrost environment at the level of detailed required for comparing 
to observations at their native spatial and temporal scales.  Our manuscript 
fills a gap between these new process models that have been evaluated 
against laboratory data and regional models with coarse spatial resolution, 
which are poorly constrained by direct observation.  By iterative calibration 
in what is termed the ‘ModEx’ cycle we are able to evaluate competing 
representations for processes governing ALT, calibrate the most 
successful representations, and then incorporate those process 
representations in the model development.  This paper is an important step 
in the longer-term goal of refining and building confidence in land-surface 
models of permafrost affected regions and indeed far surpasses the 



objective, ‘to model a set of temperature measurements’.  Moreover, the 
iterative calibration and model refinement process documented in our 
manuscript has broader applicability to the development of environmental 
systems models in that a detailed guide for developing process rich models 
with available field data is presented and is of interest to readers of 
Geoscientific Model Development.  
 
Given that the reviewer had missed the primary goals of this work, we have 
revised the manuscript to be more specific in the abstract, introduction and 
conclusions so that readers can clearly identify the purpose of the paper.  
First in the abstract we now state the goals of the this work and have 
added the reworded to now say, “A recently developed surface/subsurface 
model for permafrost thermal hydrology, the Advanced Terrestrial 
Simulator (ATS), is used in combination with field measurements to 
achieve the goals of constructing a process rich model based on plausible 
parameters and to identify fine scale controls of ALT in ice wedge polygon 
tundra in Barrow, Alaska.”  Then in the introduction we now say, “We use 
repeated calibration of model parameters against site-specific field 
measurements and iterative model adjustments of the model structure to 
reduce mismatch between model predictions and measurements in order 
to attain a viable model of thermal hydrological conditions.”  And we 
conclude the introduction section with a summary of our approach and 
have reworded part of it to say, “In this paper we summarize our ModEx 
experience involving the detailed use of subsurface temperature and snow 
cover field data to develop and test process-rich simulations of ALT 
dynamics, such that observational data and necessary physical dynamics 
are incorporated into the model.”  Finally in the conclusion section we now 
restate how our ModEx approach achieved this works objectives with, “The 
particular variant of the ModEx approach combined calibration with 
iterative refinement of the model structure; parameter feasibility and model-
observation mismatch were used as metrics to achieve the objective of 
model development and identification of viable representations of key 
thermal hydrological process.”  We also end the paper with a discussion 
regarding our approach to merging observations and model development, 
and how similar approaches may be useful in other applications.  

 
 
It is unclear how this kind of model simulations could be used to inform models at a 
regional scale. 

There is significant interest in using fine-scale models to challenge and 
improve the coarse parameterizations used in regional and global land 
surface models. In particular, fine-scale models can represent processes and 
heterogeneities in greater detail and at the native spatial scales of field 
observations, and can thus bridge spatial scales and generally build 
confidence in coarse-scale models. This work is not focused on regional 
scale models, but by combining fine-scale models and observations to 
identify appropriate representations of key processes and appropriate 
parameterizations of those processes, the work indirectly informs regional 
scale models. Based on our results, we did suggest on page 3256 Lines 11-



16 in the conclusion section that multiscale models that use overland flow to 
establish ponded depth in conjunction with subsurface thermal process 
models are a good approximation for simulating ALT at scale.  
Furthermore, our work describes in detail what processes our model found to 
be important for representing ALT.  By employing the iterative ModEx 
calibration process we found that 1) representing thermal conductivity as 
dependent on material properties and saturation states are necessary to 
propagate thermal changes in the subsurface (Section 3.2). 2) The dominant 
and transient saturation states are also necessary, especially considering 
how thermal conduction depends on both the phase and saturation state of 
the subsurface (Sections 3.4 and 4.3) 3) The representation of snow 
distribution, snow deformation, i.e ageing and depth hoar formation (Section 
4.4).  These are physical representations that may be important for large 
scale or multiscale models to consider, and in the case of subsurface thermal 
conductivity, may require extensive calibration that can be achieved using 
fine scale models.  For greater clarity regarding how our work can be used to 
inform larger scale models, we also now describe in the introduction a 
general manor of how fine scale models such as the one presented here can 
be used to inform larger scale models, “Improved fine-scale simulation 
capabilities can inform the representation of soil thermal processes in 
regional to global scale models by identifying appropriate representations of 
key processes governing ALT, and by providing calibrated model 
parameterization.”  

 
 
Why spend so much effort on the detailed parameterisation of thermal properties if 
lateral heat flow might be important, which is then not included.  

We acknowledge that lateral heat and water flow might have an influence on 
the system (Page 3251 Line 25) and future 3-D modeling and fieldwork is 
necessary to quantify what the influence of lateral heat flow might be (Page 
3256 Lines 17-26).   
However, 1D calibration and parameterization is beneficial in that the 
computational time to simulate a 1D problem allows for the many simulations 
necessary to sufficiently explore parameters space in order to identify what 
thermal properties are necessary to simulate ALT.   Our work also shows that 
without a representation of lateral heat flow, we are able to match subsurface 
temperatures consistently for rims and centers, and with the exception of 
early snow melt and fall freeze, the simulated trough temperatures match the 
observed temperature with plausible subsurface properties.    

 
It seems awkward to fix the lower temperature boundary, it is unclear what this is 
based upon. 

The lower boundary temperature is a far field boundary condition that is within 
the average permafrost temperature for the North Slope Alaska 
(Romanovsky, et al., 2010).  A fixed boundary condition is a reasonable 
approximation as seasonal temperature variations generally to not penetrate 
deeper the 10 to 16 meters and deep permafrost will see only negligible 
temperature increases over the course of a calibration that spans only a few 
years.   



 
 
The paper is written very densely, but still does not contain enough information to 
fully appreciate what it is that has been carried out, and how. On the other hand this 
contains to much information without detailed description resulting in a difficult to 
read. 

We believe that the additions to the manuscript, which now clearly state the 
objective of the work provide a bases for the level of detail in the manuscript. 
(See response to the reviewer number 2’s first comment).  

 
One is left with a feeling that the authors invested a lot of effort to develop a 
unusually 
detailed model but then fail to carry out a sensitivity or uncertainty study to evaluate 
the need for the complex model construction presented here. Could the same fit be 
obtained with a much simpler model too? In other words what is the sensitivity of the 
model fit to model complexity? 

We acknowledge that a lot of effort was indeed invested to develop this 
model as is necessary for such complex and dynamic process representation.  
We further appreciate the question of needed complexity as distinguishing the 
governing processes from those that can be neglected is a central component 
to scaling the representation of thermal hydrology up to a larger scale model.  
Our manuscript documents how added process representation, i.e transient 
saturation, phase change, and the tightly coupled surface thermal conduction 
is needed to capture the subsurface thermal regime.  In other words, our work 
started with a simple model, and as a result of incorporating observational 
data into the iterative calibration procedure, we were able improve model 
performance and identified the level of processes representation needed.  For 
example, the addition of transient saturation in section 3.4 and 4.3, and 
refinement of the snow representation is section 4.4, demonstrate that without 
the additional process representation model fit and the plausibility the 
parameters used in the model would not be possible.  Nevertheless, 
appropriate model complexity needs to be addressed, especially when 
attempting to find the appropriate level of process representation in larger 
scale models.  We therefore added a comment about complexity in the 
conclusion section, “Further evaluations of the 1-D representations against 3-
D model representations are needed to identify addition process 
representation and the appropriate level of model complexity to capture scale 
dependencies of thermal dynamics.”          

 
 
 
 
Other comments are provided in the attached annotated PDF. 
 
Location in Original Text Page 3237, Line 16-17: “These local-to-intermediate 
scale processes are under-resolved or completely missing in ESMs. Therefore, 
improved fine-scale simulation capabilities can inform the representation of soil 
thermal processes in regional to global scale models.”   



Reviewer #2 Comment: This makes it sound like the upscaling of what you find at 
the small scale to the ESM scale is obvious. I am sure it isn't. The term 'inform' is 
somewhat ambiguous. How are the ESM's informed exactly? 

We agree that this sentence is somewhat ambiguous and have therefore re-
worded that sentence to be more specific and describe a general way in 
which fine-scale modeling efforts can inform larger-scale simulations.  The 
sentence now states: “Improved fine-scale simulation capabilities can inform 
the representation of soil thermal processes in regional to global scale 
models by identifying the appropriate representations of key processes 
governing ALT, and by providing calibrated model parameterization.” 

 
Location in Original Text Page 3239, Line 1-2: “Additionally, correct model 
structure representation is typically not known a priori.”  
Reviewer #2 Comment: how is this defined? what is correct? 

We now define what is meant by correct model structural representation, and 
have changed the sentence to, “Additionally, correct model structure 
representation, capable of representing the system based on known physical 
relationships while using plausible model parameters, is typically not known a 
priori.”   

 
Location in Original Text Page 3239, Line 5-7: Therefore, when dealing with a 
coupled system of complex processes, it is imperative that the conceptual model is 
refined during the calibration process to increase model structure adequacy (Gupta 
et al., 2012).” 
Reviewer #2 Comment: Does this not all depend on the objective of the modeling 
study? Is the objective here to correctly estimate, forecast ALT? 

The objective of this study is two fold, first to incorporate observational data 
into a process rich model representation of ALT dynamics, second is to 
identify the appropriate representations of governing processes that control 
the thermal hydrological dynamics that form ALT.  Meeting these goals then 
creates a model that is capable of estimating and forecasting ALT.    
Many models may be capable of simulating ALT, however, without rigorous 
testing and comparison to observed variables (in this case, the plausibility of 
calibrated parameters) models may simulate the correct ALT for the wrong 
reasons.  A model that is calibrated using the wrong structure, i.e., conceptual 
model, can result in erroneous forecasts, especially if conditions change such 
as the case for climate change.  The problem of over-fitting and relying on 
models that are ‘calibrated’, but do not use plausible parameters is discussed 
in the previous sentence.  If however, the model is tested and refined to 
produce both an accurate ALT and plausible calibrated parameters, some of 
the structural error can be reduced and confidence in ALT projections is 
increased.           

 
Location in Original Text Page 3240, Line 14-16: “Here the ModEx procedure 
moves beyond the standard calibration by assuming the model itself is unknown, but 
can be refined through successive comparison to observation (outer loop in Fig. 2).” 
Reviewer #2 Comment: how can something unknown be refined? 

We now clarify the intent of this sentence by, “Here the ModEx procedure 
moves beyond the standard calibration by assuming the model itself is 



uncertain, but can be further constrained through successive comparison to 
observation (outer loop in Figure 2).” 

 
Location in Original Text Page 3240, Line 18: “These improved model runs then 
inform the observation process by specifying the data needs, either through informal 
numerical experimentation or through more formal data worth exercises.”  
Reviewer #2 Comment: What are these? 

Changed sentence to be more specific, “These improved model runs then 
inform the observation process by specifying the data needs, either through 
further calibration or through informal numerical experimentation.” 

 
 
Location in Original Text Page 3240, Line 20-22: “We implement ModEx model 
refinement by focusing on the plausibility of calibrated parameters in addition to the 
mismatch between field measurements and simulated responses.” 
Reviewer #2 Comment: Is this a manual process? 

Calibration is automatic as described in the manuscript. The model 
refinement was done manually.  We evaluate the set of calibrated parameters 
against the range of appropriate parameter values compiled from literature 
(See Appendix C) or field measurements.  In doing so, insight about model 
behavior is gained which can them be used to improve the model and 
reshape the calibration response surface.  For better clarity we have replaced 
the work ‘focusing’ with ‘evaluating’. 

 
Location in Original Text Page 3241, Line 12: “However, in the case of a complex 
model with high dimensionality, multiple local minima may exist, which results in 
gradient-based calibrations finding many solutions to the problem (Beven, 2006).” 
Reviewer #2 Comment: non-uniqueness this is often called. 

Yes.  For clarification we now say, “However, in the case of a complex model 
with high dimensionality, multiple local minima may exist, which causes 
gradient-based calibrations to find non-unique solutions.” 

 
Page 3241, Line 16-17: “It is important to extend calibration boundaries beyond the 
acceptable parameter range in order to both diagnose model inadequacy and avoid 
boundary effects caused by automated calibration algorithms.” 
Reviewer #2 Comment: It is unclear what this exactly means, at least to me. 

We now re-worded the sentence for clarity, to say, “Model structure error can 
also cause the response surface to slope to a parameter boundary indicating 
that over-fitting is necessary to calibrate to observed data (Beven, 2005).  
Therefore, it is important to extend calibration boundaries beyond the 
acceptable parameter range to allow the optimization algorithm to travel into 
the infeasible range when the response surface dictates an implausible 
combination of parameter values, indicating an inadequate model.” 

 
 
Location in Original Text Page 3242, Line 23: “The focus of the model 
development chronicled here is NGEE-Arctic site “Area C” (Fig. 1), which is 
characterized by ~ 50 cm deep troughs, rims and shallow low centers.” 
Reviewer #2 Comment: I have a sense that Fig 1 is first mentioned after Fig 2, but I 



did not check in depth. 
Figure 1 is introduced first on page 3239 line 15, while Figure 2 is introduced 
on line 17, after figure 1.    

 
Location in Original Text Page 3243, Line 9-10: “The bottom boundary condition 

was held constant at a temper1ature of -6 C.” 
Reviewer #2 Comment: Why was a constant temperature boundary chosen? Surely 
the temperature at this depth cannot be considered constant over a 20 year period 
during which long term GST changes occur. 

The bottom boundary condition is set as a far field boundary condition at 
depth of 50 meters.  The boundary condition temperature is within the range 
of permafrost temperatures of the North Slope, which has seen between 0 to 
2 degrees warming between the years of 1975 and 2010 (Romanovsky et al., 
2010) for the entire permafrost zone.  Furthermore, seasonal temperature 
changes do not penetrate to deep permafrost (See figure 4 in Romanovsky et 
al., 2010).  Therefore, a calibration exercise over the course of a few years, 
such as this one will see negligible deep (greater than 15 meters) permafrost 
warming.      
   
We now clarify that this is based on an average far field boundary condition 
and have changed the manuscript to now say, “The underlying mineral soil 
was a silty loam to a total depth of 50 m.  A far field bottom boundary 

condition was held constant at -6C to represent the average deep permafrost 
temperature in the North Slope of Alaska (Romanovsky, et al., 2010).”       

 
Location in Original Text Page 3243, Line 23: “In this model liquid water can 
coexist with ice below 0 C, as observed (Watanabe and Wake, 2009), which is an 
important process to represent in soils with rapid freeze thaw cycles in order to 
prevent unrealistic rapid cooling of the subsurface (Romanovsky and Osterkamp, 
2000; Nicolsky et al., 2007).” 
Reviewer #2 Comment: what process? the coexisting of liquid water and ice below 
0 C is not a process, that is a phenomenon as a result of a process. But the process 
remains unnamed here. Liquid and ice partitioning is the process? I am not sure that 
is a process either. What is causing this? 

We agree that ‘process’ is a poor word choice here.  None-the-less, some 

water in pore space remains as liquid below 0C due to surface forces and 
pore geometry (Dash et al., 1995).  In a thermal model it is also important to 
accurately represent the phases of water, which have different thermal 
conductivities.  We therefore have re-worded the sentence to be more 
specific and now state, “In this model liquid water can coexist with ice below 
0

o
C, as is well known (e.g. MILLER, 1980; Williams and Smith 1991), which 

occurs due to soil surface forces and pore geometry.”   
 
Location in Original Text Page 3251, Line 25-28: “A possible reason for the 
underestimated soil moisture is that the 1-D surrogate model neglected lateral 
surface- and subsurface flow that could be flowing on to the column, especially for 
troughs that are connected to an extensive trough-network.” 
Reviewer #2 Comment: Indeed, so what is the point of all this detailed calibration 



for thermal properties?  
The point of the detailed calibration of thermal properties is to identify 
dominant controls of ALT and to best represent those processes in models.  If 
adjustment to the conceptual model is warranted in order to attain both good 
fit to calibration targets and plausible parameters we changed the model 
accordingly to build a process rich model and noted why and how we think 
the model improvement is necessary.  If we thought that additional process 
consideration may only slightly improve model performance, we noted what 
that process might be and how it could improve the model.  Documenting the 
model development process in this way is important to 1) demonstrate the 
thought necessary for process rich model development and 2) add to 
literature the reasons why some processes are included and others are not 
necessary. 

  Here our model representation of the system was found to be good with plausible 
parameters for most times and depths with the exception of spring and fall periods in 
the trough.  Lateral flow could contribute to the mismatch between observations and 
simulation in the troughs.  However, if representing lateral flow were to improve the 
simulation, it would only improve the trough representation and for a small 
percentages of time (Figure 9). 
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Abstract 17 

Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, 18 

potentially moving it from a carbon sink to a carbon source by increasing the 19 

thickness of soil that thaws on a seasonal basis.  However, the modeling capability 20 

and precise parameterizations of the physical characteristics needed to estimate 21 

projected active layer thickness (ALT) are limited in Earth System Models 22 

(ESMs).  In particular, discrepancies in spatial scale between field measurements 23 



 

 

and Earth System Models challenge validation and parameterization of 24 

hydrothermal models. A recently developed surface/subsurface model for 25 

permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in 26 

combination with field measurements to achieve the goals calibrateof constructing a 27 

process rich model based on plausible parameters and to identify fine scale controls 28 

of ALT in ice wedge polygon tundra in Barrow, Alaska.  An iterative model 29 

refinement procedure that cycles between borehole temperature and snow cover 30 

measurements and simulations functions to evaluate and parameterize different 31 

model processes necessary to simulate freeze/thaw processes and ALT formation.  32 

After model refinement and calibration, reasonable matches between simulated and 33 

measured soil temperatures are obtained, with the largest errors occurring during 34 

early summer above ice wedges (e.g. troughs). The results suggest that properly 35 

constructed and calibrated one-dimensional thermal hydrology models have the 36 

potential to provide reasonable representation of the subsurface thermal response 37 

and can be used to infer model input parameters and process representations. The 38 

models for soil thermal conductivity and snow distribution were found to be the 39 

most sensitive process representations.  However, information on lateral flow and 40 

snowpack evolution might be needed to constrain model representations of surface 41 

hydrology and snow depth.  42 

  43 

 44 

I.  Introduction 45 



 

 

In Arctic tundra, the thickness of the soil layer that reaches above 0°C temperatures, 46 

defined as the active layer thickness (ALT), largely determines the volume of carbon 47 

stores available for decomposition.  Predicting ALT is therefore critical when 48 

characterizing potential climate feedbacks due to greenhouse gas release into the 49 

atmosphere from decomposition of organic soil carbon (McGuire et al, 2009; Koven 50 

et al., 2011; Schneider von Deimling et al., 2012).  Current long-term predictions of 51 

ALT generally use large-scale Earth System Models (ESMs) with simplified 52 

representations of the hydrothermal processes, and are thus producing results with 53 

significant uncertainty (Schaefer et al., 2009; Slater & Lawrence, 2013; Koven et al., 54 

2014).   The freeze-thaw dynamics that determine the ALT function on a vertical 55 

scale of centimeters and vary horizontally on a scale of meters across the 56 

characteristic microtopography of polygonal tundra (Painter et al., 2013).  Freeze-57 

thaw dynamics are also strongly controlled by local inundation state (Muster et al., 58 

2012), which can vary over a horizontal extent of meters to hundreds of meters.   59 

These local-to-intermediate scale processes are under-resolved or completely 60 

missing in ESMs.  Therefore, improved fine-scale simulation capabilities can inform 61 

the representation of soil thermal processes in regional to global scale models. 62 

Improved fine-scale simulation capabilities can inform the representation of soil 63 

thermal processes in regional to global scale models by identifying appropriate 64 

representations of key processes governing ALT, and by providing calibrated model 65 

parameterization.     66 

 67 



 

 

 Previous efforts have been made to characterize ALT using field, lab, and numerical 68 

experiments (e.g. Osterkamp and Romanovsky, 1996; Romanovsky and Osterkamp, 69 

1997).  Site-specific properties of Arctic soils, such as porosity, bulk thermal 70 

conductivity, and water retention characteristics have been measured in lab settings 71 

from samples taken in the field (Hinzman et al., 1991; Letts et al., 20102000).  Those 72 

field and lab measured properties were then used in ESMs in order to predict future 73 

ALT and permafrost conditions (Beringer et al., 2001; Lawrence and Slater, 2008; 74 

Subin et al., 2013).  However, such regional and global scale projections are difficult 75 

to constrain by measurements of soil properties made at vastly smaller scales of 76 

observation.  This scale-gap between the governing fine-scale physical processes 77 

and large-scale simulations impedes direct model validation against measurements, 78 

which has motivated development of fine to intermediate- scale hydrothermal 79 

models (e.g. Hinzman et al., 1998; Hansson et al., 2004; Daanen et al., 2007; 80 

Mckenzie et al., 2007; Painter 2011; Karra et al. 2014; Endrizzi et al., 2014; Yi et al., 81 

2014) for a review see Kurylyk and Watanabe (2013).  Numerical experiments using 82 

high-resolution coupled hydrothermal models, which are calibrated against fine-83 

scale measurements, can play a fundamental role in understanding the governing 84 

physical processes of ALT formation. 85 

 86 

Simulating thermal hydrology in polygonal tundra systems is a challenging 87 

endeavor that requires simultaneous representation of multiple physical processes 88 

including phase change and highly nonlinear constitutive relationships (e.g. Painter, 89 

2011).  Soil thermal conductivity alone depends on volumetric water content, 90 



 

 

mineral composition, porosity, density, and temperature (Farouki, 1981). In soils 91 

experiencing freeze-thaw cycles, the phase of water also affects bulk thermal 92 

conduction (e.g. Johansen, 1977; Peters-Lidard et al., 1997).  Latent heat of fusion 93 

and evaporation impart further control on the propagation of the freezing front and 94 

therefore thermal conduction.  Thermally driven vapor transport can slowly change 95 

ice content and thus thermal conduction in partially and fully frozen soils (Grimm 96 

and Painter, 2009; Karra et al., 2014).  Characterizing subsurface properties for 97 

modeling is further complicated due to variability in microtopography and 98 

cryoturbated soil that create a heterogeneous surface and subsurface in polygonal 99 

tundra systems.  In addition, coupling of the soil to the atmosphere involves a 100 

balance among multiple energy transfer processes, which occur across interfaces of 101 

snow, water, ice and exposed ground.  All of the above attributes describing soil 102 

structure, surface energy balances, and processes of phase change result in a tightly 103 

coupled hydrothermal system.  Therefore, numerical experiments using high-104 

fidelity representations of fine-scale processes require calibrated parameters that 105 

are able to effectively link dependent processes. 106 

 107 

Despite the model gains of calibrating thermal properties (Romanovsky and 108 

Osterkamp, 1997; Nicolsky et al., 2009), relatively few hydrothermal modeling 109 

studies of Arctic systems have documented calibration procedures, with the noted 110 

exception of Tang and Zhuang, (2011) and Jiang et al., (2012).  Additionally, correct 111 

model structure representation, capable of representing the system based on known 112 

physical relationships while using plausible model parameters, is typically not 113 



 

 

known a priori.  Calibration of a model with an inadequate model structure may 114 

result in over-fitting and unreliable forward simulations that incorrectly predict 115 

system behavior based on faulty processes representation (e.g. Beven, 2005; Gupta 116 

et al., 2012).  Therefore, when dealing with a coupled system of complex processes, 117 

it is imperative that the conceptual model is refined during the calibration process 118 

to increase model structure adequacy (Gupta et al., 2012).  119 

 120 

Iterative modeling approaches that use repeated model runs with different 121 

combinations of parameters, governing mechanisms, or process representation can 122 

help fundamental system understanding (Clark et al., 2008; Kavetski and Fenicia, 123 

2011; Fenicia et al., 2011; Larsen et al., 2014).  Here we use an iterative procedure 124 

that integrates finely resolved models with field observations and measurements to 125 

develop a process-rich model with physical mechanisms and parameters consistent 126 

with measurements from the DOE Office of Science Next Generation Ecosystem 127 

Experiment (NGEE-Arctic) site Barrow Environmental Observatory (BEO), Barrow, 128 

Alaska (Figure 1).  The iterative process of using field observations to inform model 129 

development and subsequent simulations to inform new data needs is referred to 130 

here as the model-observation/experiment or ModEx cycle (Figure 2).  Clearly, 131 

there is no unique way to approach iterative modeling procedures (Larsen et al. 132 

2014), which is intrinsically subjective and highly dependent on expert knowledge. 133 

Well-documented examples of successful applications of model refinement are thus 134 

invaluable for building the required experience base.  We use repeated calibration of 135 

model parameters against site-specific field measurements and iterative model 136 



 

 

adjustments of the model structure to reduce mismatch between model predictions 137 

and measurements in order to attain a viable model of thermal hydrological 138 

conditions. 139 

 140 

In this paper we summarize our ModEx experience involving the detailed use of 141 

subsurface temperature and snow cover field data to calibrate develop and test 142 

process-rich simulations of ALT dynamics, such that observational data and 143 

necessary physical dynamics are incorporated into the model.  In order to calibrate 144 

and refine model structure in a tractable fashion, the model development first 145 

focuses on a series of subsurface-only calibrations in section 3 before moving onto a 146 

series of coupled surface energy balance and subsurface calibrations in section 4.  147 

The end result is a set of calibrated thermal and hydrological parameters for moss, 148 

peat, and mineral soil layers, along with a consistent model structure, employed for 149 

various microtopographic positions characteristic of polygonal tundra. We 150 

demonstrate how the detailed calibration and model development effort informs 151 

understanding of the key processes that define the ALT in polygonal ground.  We 152 

further complete the ModEx cycle by discussing how future data needs can reduce 153 

system uncertainty and refine our understanding of process behavior.  154 

 155 

II.  Methods  156 

2.1  ModEx Process Applied to Thermal Hydrology Processes in Permafrost 157 

Our variant of the ModEx approach is shown schematically in Figure 2.  Starting 158 

with site identification and characterization, field observations and measurements 159 



 

 

begin to form the modeling activity by providing model parameter inputs and 160 

targets for the model calibration process.  Standard model calibration – denoted by 161 

the inner loop– aims to match simulations to field measurements by varying 162 

parameters while keeping the model structure fixed.  Here the ModEx procedure 163 

moves beyond the standard calibration by assuming the model itself is uncertain, 164 

but can be further constrained through successive comparison to observation (outer 165 

loop in Figure 2unknown, but can be refined through successive comparison to 166 

observation (outer loop in Figure 2).  These improved model runs then inform the 167 

observation process by specifying the data needs, either through further calibration 168 

or through informal numerical experimentation or through more formal data worth 169 

exercises.   Such model refinement is not a unique process, and can be achieved 170 

through multiple avenues.  For example, flexible modeling approaches have been 171 

used in understand structural errors by combining functional aspects of several 172 

models (Clark et al., 2008; Kavetski and Fenicia, 2011; Fenicia et al., 2011).  We 173 

implement ModEx model refinement by focusing evaluatingon the plausibility of 174 

calibrated parameters in addition to the mismatch between field measurements and 175 

simulated responses.   176 

 177 

The calibration process uses a multi-dimensional response surface to evaluate the 178 

plausibility of parameters and the degree of mismatch between simulated results 179 

and observed data.  Sets of parameters values are mapped to the response surface 180 

with the respective mismatch between simulated results and field 181 



 

 

observations/measurements, quantified by the root-mean-squared error (RMSE), 182 

which determines the shape of the responses surface.  RMSE is given by: 183 

RMSE =
1

N
T̂i q( ) -Ti( )

2

i=l

N

å
                                                                                                         (1)  

 184 

where θ is a vector comprised of a combination of parameter values,  ̂i(θ) is the ith 185 

simulated temperature given θ, and Ti is the ith calibration measured temperature 186 

target, and N is the number of calibration targets.  Simulations with a poor fit to data 187 

have high RMSE and a corresponding high value on the response surface.  188 

Conversely simulations with a good fit to data have a low RMSE and therefore a low 189 

value on the response surface and may constitute a minimum in the response 190 

surface.  A minimum in the response surface indicates that a possible calibration has 191 

been achieved.  However, in the case of a complex model with high dimensionality, 192 

multiple local minima may exist, which results causes in gradient-based calibrations 193 

to finding many solutions to the problemnon-unique solutions (Beven, 2006).  194 

Model structure error can also cause the response surface to slope to a parameter 195 

boundary indicating that over-fitting is necessary to calibrate to observed data 196 

(Beven, 2005).  Therefore, it is important to extend calibration boundaries beyond 197 

the acceptable parameter range to allow the optimization algorithm to travel into 198 

the infeasible range when the response surface dictates an implausible combination 199 

of parameter values, indicating an inadequate model.  It is important to extend 200 

calibration boundaries beyond the acceptable parameter range in order to both 201 

diagnose model inadequacy and avoid boundary effects caused by automated 202 

calibration algorithms.  By altering the model itself, and not just model parameters 203 
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the ModEx process can work to reduce model structure error and reshape the 204 

response surface such that the simulated system matches the observed data and 205 

calibrated parameters are realistic.  206 

 207 

The ModEx process is facilitated by two software components.  First, for calibrating 208 

a given model to determine an optimal match to the measurements we use PEST 209 

(Doherty, 2004), which implements the Levenberg-Marquardt algorithm 210 

(Marquardt, 1963).  This method uses gradient descent to determine (from a high-211 

dimensional space of calibration parameters) a set of parameters that (in a local 212 

sense) minimize the forward model’s error in predicting observed data.  Second, the 213 

ModEx process requires iterative exchange, comparison, and addition of process 214 

models, which is greatly facilitated by a dynamically configured model with many 215 

process options.  Therefore a framework that manages complexity and allows for 216 

rapid development of new physical representations is critical.  To this end, we have 217 

implemented the Advanced Terrestrial Simulator (ATS), version 0.83, as a collection 218 

of physics modules managed by the Arcos multiphysics framework (Coon et al. 219 

2015b). At run-time, Arcos dynamically forms a dependency graph where each 220 

variable identifies its data requirements, allowing the automation of model 221 

evaluation.  Process kernels (i.e. a single PDE, such as mass balance) are coupled to 222 

form complex systems of equations in which each term or component can easily be 223 

replaced.  The ease of swapping and adding processes makes model verification and 224 

evaluation more tractable, and facilitates the ModEx process by allowing the model 225 

structure to be easily changed and extended. 226 
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 227 

2.2  Site Description and Initial Conceptual Model Set-up  228 

The lowland, cold continuous permafrost tundra at BEO was established as the end-229 

member of the NGEE-Arctic sites, which follow a bioclimatic gradient that extends to 230 

the warm discontinuous permafrost, shrub tundra environment of the Seward 231 

Peninsula. The site supports the NGEE-Arctic goal to improve climate model 232 

predictions through advanced understanding of coupled processes in Arctic 233 

terrestrial ecosystems. NGEE-Arctic scientists are collecting multiscale in-situ field 234 

measurements and remote sensing observations of polygonal tundra.  A range of 235 

polygon types including low center polygons, which are surrounded by rims and, in 236 

some areas shallow troughs, and high center polygons with deep troughs as a result 237 

of ice wedge degradation.  The focus of the model development chronicled here is 238 

NGEE-Arctic site “Area C” (Figure 1), which is characterized by~50 cm deep troughs, 239 

rims and shallow low centers.  The site was chosen because it serves as a 240 

representative state that polygonal tundra may develop into as permafrost 241 

degrades.  Three one-dimensional (1D) model domains represent the main ice-242 

wedge polygon sub-features: center, rim, and trough. Each domain includes a unique 243 

model structure and parameterization (Figure 1 & 3).  Nine soil temperature 244 

sensors (0.1 to 1.5m depth) from three soil profiles representing center, rim, and 245 

trough, respectively, were used to compare simulated to measured soil 246 

temperatures 247 

(http://lapland.gi.alaska.edu/vdv/vdv_historical.php?station_id=20&page_id=-248 

1&direct=1).  The shallowest soil temperature sensor (2cm depth), located just 249 

http://lapland.gi.alaska.edu/vdv/vdv_historical.php?station_id=20&page_id=-1&direct=1
http://lapland.gi.alaska.edu/vdv/vdv_historical.php?station_id=20&page_id=-1&direct=1


 

 

under a layer of green moss, provided the subsurface model with an upper 250 

boundary condition. Each column had unique near-surface soil temperature forcing, 251 

measurements for calibration and assigned peat layer thicknesses typical of the 252 

micro-topographical features.  The center-, rim- and trough- columns had an organic 253 

peat layer of 10, 6 and 14 cm respectively. The underlying mineral soil was a silty 254 

loam to a total depth of 50 m.  A far field bottom boundary condition was held 255 

constant at -6C to represent the average deep permafrost temperature in the North 256 

Slope of Alaska (Romanovsky, et al., 2010)The bottom boundary condition was held 257 

constant at a temperature of -6 Co.  All columns were initialized by first freezing the 258 

entire column from the bottom with a no flux upper boundary condition and then 259 

spun-up to a cyclical steady state using a “decadal average” year of daily values 260 

looped for 20 simulation years.  The decadal average year was made by averaging 261 

the daily mean temperature from 10/1/1998 to 9/30/2009 at Barrow, AK for each 262 

day of the year to produce forcing data that represented seasonal trends. Each 263 

calibration parameter combination was then simulated for an additional year using 264 

the same decadal average year before the in-situ soil temperature forcing data at 265 

2cm depth was applied.   266 

 267 

2.3 Model Description  268 

The ATS solves water and energy flow in variably saturated soils at temperatures 269 

above and below freezing using the conservation equations described by Karra et al. 270 

(2014) (see also Painter, 2011; Coon et al., 2015a).  Liquid and ice partitioning is 271 

represented by the model of Painter and Karra (2014). In this model liquid water 272 



 

 

can coexist with ice below 0oC, as is well knownobserved (e.g. Miller, 1980; Williams 273 

and Smith, 1991){Williams, 1991 #121}{Williams, 1991 #121}(Watanabe and 274 

Wake, 2009), which occurs due to soil surface forces and pore geometry.  is an 275 

important process to represent in soils with rapid freeze thaw cycles in order to 276 

prevent unrealistic rapid cooling of the subsurface (Romanovsky and Osterkamp, 277 

2000; Nicolsky et al., 2007). Ice/water partitioning is related to the soil water 278 

characteristic curve under unfrozen conditions. Thus, soil moisture characteristic 279 

curve parameters directly contribute to thermal conduction regimes when the soil is 280 

saturated and frozen.  Two variations of a three-phase thermal conductivity model 281 

(Painter 2011), both an extension of Johansen (1977), were used to relate bulk 282 

thermal conductivity to ice and liquid contents. The three-phase thermal 283 

conductivity model is described in detail in Appendix A. The first thermal 284 

conductivity model variant is a simplification of the Johansen method and is 285 

referred to as the Bulk Phase Component model (BPC). The BPC model has porosity 286 

and the bulk-phase unfrozen saturated thermal conductivity (Ksat,uf) and bulk-phase 287 

dry thermal conductivity (Kdry) as input parameters to be calibrated (equation A-3 in 288 

Appendix A).  The third bulk-phase component, saturated frozen thermal 289 

conductivity (Ksat,f) (equation A-3) is then calculated based off an empirical 290 

relationship with Ksat,uf  shown by equation A-8 in Appendix A.  The second option 291 

for thermal conductivity is denoted the Material Component (MC) model. The MC 292 

model has porosity and the solid material thermal conductivity Ksoil as input 293 

parameters; Ksat,uf  and Kdry are then calculated using functional relationships shown 294 

in equation A-6 and A-11, respectively.  Material components ice, water, and gas are 295 
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fixed material thermal conductivities in the MC model.  Switching from the BPC 296 

model to the MC model reduces the dimensionality of parameter space by one.  297 

Perhaps more importantly, the MC model calculates all bulk-phase components as a 298 

function of soil porosity; thus, porosity is more correlated to thermal conductivity in 299 

the MC model as compared to the BPC model.  300 

 301 

2.4  Parameter starting values and ranges from literature 302 

Parameter value ranges for moss, peat, and mineral soils of Arctic tundra systems 303 

were drawn from literature and field observations at the NGEE-Arctic site (NGEE-304 

Arctic data portal, http://ngee-arctic.ornl.gov, see references in appendix C).  305 

Estimates of reasonable calibration ranges are listed in Table 1.  Depending on the 306 

thermal model being calibrated, seven to eight parameters for both peat and 307 

mineral soil were calibrated creating a 14-16 dimensional parameter space.  Based 308 

on the literature and assigning greater weight to study sites with characteristics and 309 

proximity to Barrow, AK, a probable parameter guess was selected as one starting 310 

point of the calibration process, along with seven additional starting calibration 311 

parameter sets located near the boundary of parameter space.  Together the eight 312 

starting calibration parameter sets determined the dependence of calibration 313 

results on starting location (i.e. the degree of non-uniqueness in the calibration 314 

results). 315 

   316 

III.  Subsurface ModEx Results 317 

3.1  ModEx Applied to the Subsurface System  318 

http://ngee-arctic.ornl.gov/


 

 

Our experience with the ModEx cycle applied to the coupled subsurface 319 

hydrothermal system at the BEO is shown in process flow form in Figure 4.  In this 320 

cycle the ATS model only included subsurface processes, and the shallowest 321 

measurement of temperature (2cm depth) was used as a time-dependent upper 322 

boundary condition to force the model. Measurements at deeper locations (from 0.1 323 

to 1.5m) (Figure 3) represented the calibration targets. In the initial iteration, 324 

calibration was performed using the BPC model for thermal conductivity and 325 

assumed full saturation of the soil column. That calibration resulted in parameters 326 

being out of range. In the second iteration, the thermal conductivity model was 327 

changed to an alternative model (the MC model), which resulted in improved 328 

parameter values but inferior match to measured soil temperatures. In the final 329 

iteration, surface pressure was calibrated at the borehole locations, which 330 

determines liquid saturation that affects near surface thermal conductivity.  The 331 

iteration to calibrate surface pressure resulted in a calibration that was judged to be 332 

adequate for continuation of a coupled surface energy balance-subsurface 333 

calibration and model development (see section 4). Details of the subsurface 334 

calibration and model development are discussed in the remainder of this section.  335 

 336 

3.2 Subsurface BPC vs. MC Thermal model 337 

The first subsurface calibration attempt used the BPC model (Figure 4) and resulted 338 

in unrealistic parameters sets.  The response surface of the center and rim columns 339 

resulted in calibrated peat porosities to move to the lower parameter boundary 340 

(Figure 5).  With a few exceptions, the thermal conductivities for peat in the center, 341 



 

 

rim, and trough calibrated outside the acceptable parameter range to the lower 342 

boundary for peat.  The first calibration iteration produced unrealistic parameter 343 

values and indicated that the BPC model is not an adequate calibration tool for 344 

subsurface hydrothermal modeling. 345 

 346 

In the second iteration of our model/data integration cycle, subsurface thermal 347 

conductivity was simulated using the MC model instead of the BPC model, which 348 

reshaped the calibration response surface such that calibrated porosities spread out 349 

across parameter space and away from the parameter boundary.  Calibrating with 350 

the MC model generally kept the porosity parameters within the acceptable range 351 

and improved the thermal conductivity parameters, however, RMSE increased for 352 

all columns (Table 2). Yet, the MC model was selected for the remainder of the paper 353 

because calibrated parameters were reasonable. 354 

 355 

 356 

3.3  Simultaneous Calibration of Center, Rim, and Trough. 357 

Up scaled parameters for larger scale models were calibrated by coupling all three 358 

columns to find a single set of peat and mineral soil hydrothermal parameters.  The 359 

calibration was coupled by combining objective function results from each 360 

microtopographical feature in the PEST Levenberg-Marquardt algorithm to inform 361 

the next parameter update that is then applied to all 1D columns.  The initial 362 

application of the coupled calibration resulted in unrealistic parameter values and 363 

motivated a reformulation of the conceptual model to include near-surface 364 
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unsaturated conditions necessary for center and trough simulations.  The saturated 365 

condition response surface decreased the Ke for the peat layer, and maintained or 366 

increased heat conduction for mineral soil.  Peat porosity and peat Ksat,uf calibrated 367 

to the lower calibration boundary of 0.59 and 0.33 [W/m K] respectively and 368 

mineral porosity calibrated to a higher value (0.65) than the peat porosity, while the 369 

mineral Ksat,uf calibrated to 1.04 [W/m K].  An unsaturated near surface could 370 

conversely result in a reduced thermal conductivity for the peat layer while 371 

maintaining thermal conduction for the mineral soil layer. 372 

 373 

3.4 Variably Saturated versus Unsaturated Soils. 374 

The fourth iteration of the ModEx cycle allowed the surface pressure to be a 375 

calibration parameter for the center and trough columns, which were previously 376 

assumed fully saturated for the duration of the year.  A surface pressure less than 377 

atmospheric results in an unsaturated condition at the top of the soil column, and 378 

introduces air with low thermal conduction, creating a gradient of increasing Ke 379 

with depth.  The surface pressure in the rim, which did not manifest the issues 380 

described above, was still fixed at 25% gas saturation. It is important to note that 381 

calibrating a top pressure for this set of subsurface calibrations does not allow the 382 

near surface saturation to vary throughout the year and therefore, the saturation 383 

state is only a function of pressure and ice content.  Figure 6 illustrates how Ke of 384 

peat decreases with lower surface pressure.  Decreasing surface pressure results in 385 

decreased Ke, but the effect is especially large during the winter.  Ice has a large 386 



 

 

thermal conductivity compared to either water or gas; any variation in the amount 387 

of ice in the domain will cause a large change in Ke.  388 

 389 

The eight calibration starting locations for the uncoupled column calibration were 390 

then re-tested for the center and trough by calibrating surface pressures (Figure 4).  391 

Here we only tested unsaturated conditions using the MC thermal model rather then 392 

to posthumously retesting prior model structural decisions, as the MC model was 393 

thought to be more physically accurate.  The new conceptual model with 394 

unsaturated conditions at the soil surface became the second model refinement, 395 

which resulted in a reshaped parameter response surface.  More calibrated center 396 

porosity values were within the acceptable parameter range when surface 397 

pressures were calibrated, but more trough peat porosities calibrated to the upper 398 

peat boundary.  Both the center and trough had more calibrated Kdry, material within 399 

the realistic range.  The increase in calibrations resulting in porosities outside their 400 

acceptable range for the trough may be indicative of the trough being more 401 

saturated than the center, or being fully saturated.  However, unsaturated 402 

conditions reduced the RMSE for both the center and trough indicating a better 403 

model fit (Table 2).  The increased model fit with more realistic parameters suggests 404 

that it is necessary to capture characteristic saturation states of the dominant 405 

topographical features (center, rim, and trough) to constrain model calibration.  406 

Furthermore, the single coupled center-rim-trough calibration, where surface 407 

pressures were calibrated, also resulted in realistic parameters with surface 408 

pressures at 95440.9 and 97638.2 Pa for the center and trough respectively (Table 409 



 

 

5).  Moreover, the revised coupled calibration found a low RMSE of 0.554 C and the 410 

temperature time-series results fit measured data near the point of the active layer 411 

depth (Figure 7).   412 

 413 

IV. Coupled Surface/Subsurface Model 414 

4.1  Surface Methods 415 

After the calibration of subsurface thermal properties, a 2 cm moss layer was added 416 

to each of the three columns and a surface energy balance model was used to 417 

calibrate both the thermal properties of the moss layer and parameter values for the 418 

surface energy balance in a second set of ModEx iterations (Figure 8).  Parameters 419 

from the subsurface calibration were used in the coupled snow-surface energy 420 

balance-subsurface simulation.  The ranges of hydrothermal parameters for moss 421 

are listed in Table 1.  The surface energy balance, described in detail in appendix B, 422 

is implicitly coupled with subsurface thermal hydrology and is based on the work of 423 

Hinzman et al., (1998) and Ling and Zhang (2004).  Simulated snow deformation 424 

and snow density changes described by equation B-6 and B-7 in Appendix B are 425 

applied on a single layered of snowpack.  The center, rim, trough columns had 426 

unique maximum head boundary conditions of 8, 0.7, and 15cm respectively, were 427 

water spills off each column at or above the specified head heights.  The maximum 428 

head boundary conditions were selected according to relative elevation differences 429 

observed in polygonal tundra.  430 

 431 



 

 

For the surface energy balance calibration each column was spun-up over a 10-year 432 

loop using decadally averaged air temperature along with shortwave radiation, 433 

relative humidity, and windspeed data from 10/1/1998 to 9/30/2009 at Barrow, 434 

AK, where meteorological data from each day in the ten years was averaged 435 

together.  After spin-up, daily meteorological data from 2010-2013 were used to 436 

drive the model.  This forcing data was compiled from several sources; the incoming 437 

solar radiation is from the Atmospheric Radiation Measurement (ARM) Climate 438 

Research Facility (ARM, 1993; 1996); rainfall and snowfall is from Barrow Airport 439 

(Station GHND:USW00027502 National Weather Service, National Atmospheric and 440 

Oceanic Administration); air temperature, relative humidity and wind speed are 441 

from individual research projects at the BEO (Liljedahl et al. 2011, Zona et al. 2014); 442 

and landscape-averaged end-of-winter snow depth from the Circumpolar Active 443 

Layer Monitoring (CLAM) Program (Shiklomanov et al., 2012).  Daily rain and 444 

snowfall were adjusted for undercatch according to Yang et al. (1998).  A second 445 

adjustment was applied to the snowfall where the average ratio between the 1997-446 

2006 CALM observations and the undercatch-adjusted NWS snow accumulation was 447 

applied to respective daily precipitation events. The simulation results from 2013 448 

were then compared with measured subsurface temperature data, at a 2cm depth 449 

below the moss layer.  The runtime increased when including the surface energy 450 

balance component model such that automated calibration algorithms could no 451 

longer be employed.  Manual calibration was used with 2 cm soil temperature 452 

borehole measurements and observed ALT, as calibration targets.  453 

 454 



 

 

4.2 ModEx Applied to the Coupled Surface Energy Balance System 455 

The second set of ModEx cycle iterations is presented in Figure 8 in process flow 456 

form.  The focus of the second set of ModEx cycles is process identification and 457 

calibration of the moss layer and surface energy balance parameters.  The first 458 

iteration of the cycle coupled the surface energy balance model and 2cm moss layer 459 

to the previously calibrated and refined subsurface model.  The initial iteration 460 

matched surface temperatures well in all three columns, however soil temperatures 461 

were generally under simulated for center and trough columns, especially during 462 

winter (Figure 9).  The second iteration added a microtopography-informed snow 463 

depth from measurements between utm coordinates: Northing 7910330-7910350, 464 

Easting 585900-585930, which encompasses the borehole temperature locations.  465 

Center and trough near-surface winter temperatures substantially improved, which 466 

also resulted in late summer ALT to be in or near the observed ALT range.  However, 467 

near-surface winter rim temperatures were colder than measured because 468 

microtopography-informed snow distribution produces less snow on rims and 469 

results in less snow cover insulation.  The third iteration of the ModEx cycle added a 470 

depth hoar representation in the snowpack, which resulted in a better 471 

representation of winter rim soil temperatures and caused the rim ALT to be within 472 

the range of observed ALT. In the final ModEx iteration hydrothermal properties of 473 

moss and surface energy balance parameters were hand calibrated within the 474 

plausible range of parameters space, which resulted in only slight improvements of 475 

near surface temperature simulations. Details of how each iteration of the ModEx 476 



 

 

cycle (for the coupled surface energy balance  – subsurface model) informed both 477 

model development and future data needs are presented below. 478 

  479 

4.3 Importance of Surface energy balance governing saturation time series  480 

Forcing the subsurface thermal propagation through a surface energy balance in the 481 

second set of ModEx cycles attempts to capture variable surface thermal 482 

conductivities due to changing surface saturation states as pulses of precipitation 483 

enter the subsurface and subsequently dry from evaporation. Modeling studies that 484 

do not explicitly model surface energy balance processes may not adequately 485 

capture near-surface saturation states and have reported the greatest error during 486 

the summer when highly variable soil moisture states occur (Romanovsky and 487 

Osterkamp, 1997; Jiang et al., 2012).  It is known that soil moisture influences soil 488 

temperature in addition to meteorological controls, by governing the amount of 489 

latent heat of fusion necessary to freeze/thaw and evaporate water from soils 490 

(Johansen, 1977; Farouki, 1981; Peters-Lidard et al., 1998; Subin et al., 2013).  491 

Consequently, the timing of the precipitation pulses and subsequent drying may 492 

have a significant impact on ALT because the highly variable saturation states 493 

coincide with summer soil warming.   Therefore, the second set of ModEx cycles 494 

starts with a more detailed representation of transient soil moisture conditions, 495 

which is the third major model refinement.  Simulation results showed that it is 496 

important to capture the freeze-up timing with the highly variable fall saturation 497 

state in order to set up near surface ice content and thermal conductivity during 498 

winter (Figure 10, plot A).  Properly representing the freeze-up with transient soil 499 



 

 

moisture is especially important giving that winter has the largest range of possible 500 

thermal conductivity values (Figure 6) and therefore is highly variable from year to 501 

year.  502 

 503 

Simulating the surface energy balance for each column resulted in varied model fits 504 

to the measured 2cm soil temperature time series. For example, the simulated 505 

center and trough 2cm soil temperature during the summer is consistently lower 506 

then than the measured 2cm temperature (Figure 9, center and trough plots), 507 

especially for the early summer, which in turn lowers the simulated soil 508 

temperature at depth.  However, simulated 2cm deep soil temperatures for the rim 509 

matched measured soil temperatures.  The ability for the model to match measured 510 

summer surface temperatures for the rim versus the center and trough is most 511 

likely attributed to either the spatial differences and local microtopography of the 512 

three columns and/or the surface saturation state.  The rim is higher and therefore 513 

drier than the center and trough columns (Figure 3).  To mimic microtopographical 514 

differences in the three columns, unique maximum ponded water depths were 515 

assigned to each column, the rim had a negligible max ponded depth with effectively 516 

no standing water from snow melt compared to the center and trough columns.  517 

Unfortunately, limitations to our surrogate 1-D model exist and inherently 518 

contribute to model structural error.  For example, the largest deviation of surface 519 

temperature for the trough occurred during the fall as the temperature dropped 520 

below freezing.  The measured surface temperature at 2cm depth had a longer 521 

duration of the zero curtain, where soil temperatures are at 0C as water freezes, 522 



 

 

compared to the simulated surface temperature (Figure 9).  One possible 523 

explanation for this difference is that there is greater soil moisture in the trough 524 

than was simulated, as added soil moisture will extend the time to freeze a block of 525 

soil.  A possible reason for the underestimated soil moisture is that the 1-D 526 

surrogate model neglected lateral surface- and subsurface flow that could be 527 

flowing on to the column, especially for troughs that are connected to an extensive 528 

trough-network.  Monitoring of lateral flow in polygonal tundra systems could help 529 

to constrain the conceptual model needed to understand soil moisture dynamics.  530 

 531 

4.4 Snow Model Refinement  532 

The largest gains from calibrating the surface energy balance portion of the model 533 

came from the fourth model refinement, which resulted from two additional ModEx 534 

iterations 1) updating the conceptual and numerical model to add snow depth 535 

variation informed by microtopography and 2) include a depth hoar representation 536 

in the snowpack model.  The snowpack at Barrow, AK is scoured relatively flat due 537 

to strong winds (Benson and Sturm, 1993; Zhang et al., 1996) resulting in deeper 538 

snow in depressions such as troughs and low-centers. To match measured snow 539 

depths of the three topographical features (Table 3), snowfall was increased for the 540 

center and trough columns by 30% (3.6cm) and 82.5% (9.9 cm), respectively, and 541 

reduced for the rim to 87% (10.4cm) of the total adjusted snowfall (12cm) for the 542 

snow year of 2012-2013.  Although manually distributing snow does not fully 543 

capture snowpack dynamics, especially year-to-year snowpack variation, simulated 544 

near surface (2 cm) winter temperature more accurately matched the measured 545 



 

 

temperatures (Figure 9, center and trough plots).  Summer ALT increased for both 546 

the center and trough, which improved the model prediction to be within the 547 

observed ALT range for the trough and closer to the observed ALT range for the 548 

center column (Table 4).  Conversely, the decreased snow depth over the rim cooled 549 

the winter surface soil temperature below the measured soil temperatures. 550 

Including a depth hoar layer in the model counteracted the reduced insulation of a 551 

shallower snowpack on the rim.  The combination of reduced snow depth and depth 552 

hoar representation on the rim translated to a slightly shallower ALT, resulting in 553 

the rim ALT to be within the observed ALT range.   554 

 555 

 Without snow re-distribution or depth hoar representation the snowpack evolved 556 

to a density of 410 to 440 kg/m3 by mid May and early June as determined from 557 

equation B-26.  At first, this seemed reasonable because the surface of tundra snow 558 

forms a wind slab layer due to the wind scouring affect with densities between 400 559 

– 500 kg/m3 (Benson and Sturm, 1993; Dominé et al., 2002).  Having a snowpack 560 

surface with high densities is required to accurately capture snow surface albedo.  561 

However, underneath the wind slab layer, a hoar layer forms during the winter with 562 

a density between 100-250 kg/m3, (Benson and Sturm, 1993; Zhang et al., 1996; 563 

Zhang, 2005), which reduces the thermal conductivity of the snowpack.  The single 564 

layer snow model did not include the formation of a depth hoar layer and would 565 

overestimate the thermal conduction of the snowpack and therefore, increase 566 

winter cooling of the ground surface.  The iterative ModEx process however, 567 

encouraged us to formulate a way of both representing snowpack top densities in 568 



 

 

order to properly simulate surface albedo, and capture a depth hoar layer to account 569 

for lower snowpack thermal conduction.  The new formulation, similar to the snow 570 

classes used by Schaefer et al., (2009) and Sturm et al., (1995), employed in the 571 

model runs plotted in Figure 9, calculates a new thermal conduction by assuming a 572 

depth hoar layer forms for 15% of the snowpack with a calibrated density. Then a 573 

harmonic mean snow density is taken between the depth hoar layer and rest of the 574 

snowpack in order to calculate an adjusted thermal conductivity of the snowpack.  575 

Because this process applies only to calculating the snowpack thermal conduction, 576 

the simulation of snow albedo is unaffected. Center and Rim depth hoar densities 577 

calibrated to 110 kg/m3 and the trough depth hoar density calibrated to 190 kg/m3.  578 

The addition of the depth hoar also reduced end of winter (May 2nd) snowpack 579 

densities from above 400 kg/m3 to between 320 to 370 kg/m3 (Table 3), which is 580 

closer to the measured end-of-winter average snowpack density of 326 kg/m3. 581 

 582 

Adjusting the snow accumulation due to topographically informed snow 583 

distribution and including a depth hoar representation increased the insulative 584 

effect of the snowpack and had a clear impact on winter near surface temperatures 585 

(Figure 9).  In addition snow distribution and depth hoar representation improved 586 

summertime ALT predictions (Table 4).  Summertime changes in ALT due to winter 587 

conditions highlights a memory trait of the system and the necessity to capture 588 

dominant winter processes in order to simulate transient thermal conditions in 589 

physically based models.  Research by Hinkel and Hurd (2006) showed that large 590 

snow drifts cause long term deepening of the ALT, due in part from the additional 591 



 

 

insulation for the snow and the loss of cold thermal propagation into the subsurface.  592 

Timing of snowpack accumulation and thickness has also been shown to govern 593 

permafrost formation (Zhang, 2005).   However at the scale of microtopographical 594 

relief, where trough to rim vertical relief changes by 40cm within a horizontal 595 

distance of a meter, questions regarding how snow thickness and associated melt 596 

water inputs affect ALT formation remain.  Results for this work show that 597 

topographically informed snow distribution will change the spring and early 598 

summer surface saturation state (Figure 10, plot D) due to distributed snow water 599 

equivalence amounts (Table 3).  The change in early summer surface saturation 600 

state then affects the thermal conduction for early summer as well as adding greater 601 

water mass that then requires a greater amount of energy to heat up (Hinkel and 602 

Hurd, 2006).  Moreover, studies have found that the depth hoar layer can be as thick 603 

as 50% of the snowpack height in artic conditions (Sturm et al., 1995; Schaefer et al., 604 

2009).  However, due to continuous wind slab and depth hoar formation significant 605 

snowpack heterogeneities develop within and across topographical features (Sturm 606 

and Benson, 2004; Sturm et al., 2004).  Therefore, spatially distributed snow depth 607 

measurements and snowpack density profiles that characterize local snowpack 608 

variability and over microtopographical features can help constrain both modeled 609 

snowpack thermal conduction representation, and surface water inputs.    610 

 611 

4.5 Surface Energy Balance Calibration  612 

In the final ModEx iteration and model refinement, attempts to increase the 613 

simulated summer surface (2 cm) temperature were made (Figure 8).  Special 614 



 

 

attention was paid to the early summer wet conditions found in the center and 615 

trough for the Julian dates between 150 and 200 (Figure 10, plots B and D), where 616 

the biggest error in surface temperatures is found (Figure 9 center and rim plots).  It 617 

was thought that by calibrating parameters which control the amount of energy 618 

entering the subsurface under wet conditions, such as the albedo of standing water 619 

(see Appendix B for details), the surface temperature of the center and trough, 620 

which are wet, will increase without affecting the relatively dry rim surface 621 

temperature.  However, variables specific to the surface energy balance and moss 622 

properties had little effect of simulated soil temperature during the snow free 623 

summer.  The range of accepted albedo values for tundra varied from 0.12 to 0.17 624 

based on wet or dry conditions (Grenfell and Perovich, 2004), and the albedo range 625 

for standing water values ranged from 0.11-0.20 for the months of May through 626 

September for latitude of 70o near Barrow, AK (Cogley, 1979).  Only slight gains in 627 

simulated surface temperature were observed by decreasing albedo of standing 628 

water from 0.14 to 0.11 and tundra from 0.15 to 0.12.  This iteration of the ModEx 629 

cycle shows that adjusted standing water albedo and roughness length within the 630 

perceived parameter range did not substantially improve model fit, which suggest 631 

that the model is lacking either a necessary process representation or the 632 

calibration parameter range is not correct.  One possible improvement would be a 633 

distributed surface albedo representation that provides a unique albedo for centers, 634 

rims, and troughs.   Local-scale tundra albedo measurements can inform models of 635 

spatially distributed albedo conditions.  Another possible explanation is how 636 

atmospheric mixing coefficients such as roughness length (noted as z0 in equation B-637 



 

 

12 in appendix B) could change over microtopographical features.  Specific 638 

exchange coefficients for each microtopographical feature would then produce 639 

unique sensible and latent heat fluxes.   For example, rim surface temperatures were 640 

well matched under current roughness lengths.  But topographically protected 641 

troughs and centers could have a different roughness length, which may result in 642 

changes to latent and sensible heat exchanges and higher surface temperatures.  643 

Observations of how microtopography affect near surface wind and associated 644 

atmospheric mixing could support an improved conceptualization of sensible and 645 

latent heat exchanges.  646 

 647 

V.  Summary & Conclusions 648 

1-D thermal hydrology models of transient saturation and frozen states combined 649 

with a surface energy balance model were used to represent active layer dynamics 650 

in polygonal tundra at the Barrow Environmental Observatory. In the coupled 651 

model, surface water was allowed to pond to a specified maximum height but any 652 

additional water was removed (spill over condition). The surface model also 653 

includes a surface energy balance model for bare, snow-, ice- or water-covered 654 

ground. The model was used in combination with borehole temperature and 655 

snowpack field measurements in an iterative model-data integration (ModEx) 656 

framework to produce calibrated model parameters and refine constitutive models 657 

and process representations. The particular variant of the ModEx approach 658 

combined calibration with iterative refinement of the model structure; parameter 659 

feasibility and model-observation mismatch were used as metrics to achieve the 660 



 

 

objective of model development and identification of viable representations of key 661 

thermal hydrological process.in the model refinement process.  662 

 663 

The results demonstrate the effectiveness of using borehole temperature 664 

measurements to effectively develop and refine the model structure for 665 

hydrothermal models of permafrost-affected landscapes. Results also suggest that 666 

properly constructed and calibrated 1-D models coupled to a surface energy balance 667 

may be adequate for representing thermal response at a given location provided the 668 

maximum ponded depth (spill point) is known for that location. This suggests a 669 

multiscale modeling strategy that uses overland flow models to establish the spill 670 

point (maximum ponded depth) at each surface location in conjunction with a set of 671 

thermal hydrology simulations. Further evaluations of the 1-D representations 672 

against 3-D model representations are needed, however to identify addition process 673 

representation and the appropriate level of model complexity to capture scale 674 

dependencies of thermal dynamics.. In addition, it is important to note that the 675 

largest discrepancy between model and field measurements occurred during early 676 

summer in the troughs and that mismatch is likely indicating model structural error 677 

with inflow of water from upstream locations and/or unique surface energy balance 678 

conditions.  Observations of water fluxes such as evapotranspiration, lateral flow, 679 

and snowmelt at the sub-polygon scale would help model representation, and in 680 

particular, role of advective lateral heat transport. However, the temperature 681 

mismatch was brief and confined to the trough location, and is thus not expected to 682 

have large consequences for integrated results such as thaw depth.  683 
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 684 

The model refinement process identified the representation of thermal conductivity 685 

– specifically the dependence of bulk thermal conductivity on porosity, water 686 

content, and ice content – as a constitutive model that affects model performance. 687 

Thus, field and laboratory work to better constrain hydrothermal representation 688 

and the governing model parameters would help reduce uncertainty in model 689 

projections. Further modeling efforts that focus on uncertainty analysis and 690 

environmental parameters sensitivity to provide information which parameters govern 691 

model outcome will inform observational efforts.  Similarly, snowpack properties and 692 

snow distribution were found to be important. Investigations similar to Benson and 693 

Sturm (1993), Zhang et al., (1996) and Tape et al., (2010) that better define the 694 

relationship between depth hoar, microtopography and wind slab formation would 695 

help reduce uncertainty in projections.  For example, snowpack dynamics and 696 

density profile observations at the NGEE-Arctic site will inform models of how the 697 

snowpack develops and how snow will distribute across microtopography. 698 

 699 

More generally, these results demonstrated the utility of one particular approach to 700 

merging observations and models in environmental applications. In this particular 701 

iterative approach, formal parameter estimation methods are used iteratively. Each 702 

calibration run – the inner loop in Figure 2 – minimizes mismatch between data and 703 

model with fixed model structure. The “reasonableness” or feasibility of the 704 

calibrated parameters and the RMSE are performance metrics for the calibrated 705 

model. Model structural adjustment, the outer loop in Figure 2, is initiated when 706 



 

 

calibrated parameters fall outside reasonable bounds. Although structural model 707 

adjustments were done in an ad-hoc manner guided by experience and knowledge 708 

of the system being modeled, the resulting refinements have produced robust 709 

representation of system response. Such an approach combining structural model 710 

adjustments drawing from literature, field observations and formal calibration 711 

exercises is likely to be useful in other environmental applications.  712 

 713 

VI.  Code Availability  714 

The Advance Terrestrial Simulator (version 0.83) is a suite of physics modules 715 

managed within the Arcos metaphysics framework that couples multiple model 716 

components at run-time.  ATS, Arcos, and the host software AMANZI is developed by 717 

Los Alamos National Labs and the source code is available upon request 718 

(ecoon@lanl.gov), interested parties should see http://software.lanl.gov/ats for 719 

more information.  The input data and calibration results presented here can be 720 

obtained by contacting the lead author via e-mail, or accessed at the NGEE-Arctic 721 

data portal: http://dx.doi.org/10.5440/1167674 722 

   723 

 724 

Appendix A. Thermal conductivity model  725 

Farouki [1981] reviewed methods for calculating the thermal conductivity of soils 726 

and concluded that a modification to a method by Johansen [1977] was superior to 727 

other models in most conditions. Peters-Lidard et al. [1998] provide a clear 728 

summary of the modified Johansen approach. Following Painter [2011], we further 729 
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modify the approach to a form convenient for a three-phase model and to more 730 

accurately represent thermal conductivity of peat and organic-rich soils.  731 

 732 

Thermal conductivity in unfrozen soils is often written as (Johansen [1977]; Farouki 733 

[1981]; Peters-Lidard [1998]) 734 

ke =kdry + ksat,l -kdry( )Keu                                                                  (A-1) 735 

where Keu sl( )  is the Kersten number (Kersten, 1949) for unfrozen conditions, sl is 736 

the liquid saturation index, ksat,l  is the liquid-saturated thermal conductivity and 737 

kdryis the dry conductivity.  738 

 739 

For soils that are frozen and with no liquid water content, the corresponding 740 

equation is  741 

ke =kdry + ksat,i -kdry( )Ke f                                                                (A-2) 742 

where Ke f si( )   is the Kersten number for frozen conditions, si is the ice saturation, 743 

ksat,i  is the thermal conductivity under ice-saturated conditions.  744 

 745 

For a general-purpose three-phase code, thermal conductivity is needed as a 746 

function of both sl and si. To this end, bilinear interpolation in the Kersten numbers 747 

may be used [Painter, 2011] 748 

ke =Ke fksat, f -Keuksat,u + 1-Ke f -Keu( )kdry                                         
(A-3) 749 

The Kersten numbers in Eqs. A-1 and A-2 are simply ratios of partially saturated 750 

thermal conductivity to fully saturated thermal conductivity. Both range from 0 for 751 



 

 

dry conditions to 1 for saturated conditions and are, in general, nonlinear functions 752 

of the respective saturation indices.  753 

 754 

A variety of empirical fits have been used to relate the Kersten numbers to 755 

saturation indices for ice and liquid (see, e.g. Farouki [1981] for a summary).  A 756 

simple power-law function is assumed here as a convenient model [Painter, 2011]  757 

Keu = sl +e( )
au                                                                                                                    (A-4) 758 

Ke f = sl +e( )
a f                                                                                                                  (A-5) 759 

where u   and f  are empirical exponents and  << 1 is a regularization parameter 760 

that prevents, for numerical reasons, the derivative with respect to sl or si  from 761 

becoming unbounded at 0 when u and f are less than 1.  762 

 763 

For saturated conductivity, geometric means are often used [Johansen, 1977]  764 

ksat,u =ks
1-fkw

f                                                                                                                        (A-6) 765 

and  766 

ksat, f =ks
1-fki

f                                                                                                         (A-7) 767 

where i, w, s are thermal conductivities for water ice, liquid water, and soil solids, 768 

respectively. We take sat,u  as a property of the medium which can be measured or 769 

calibrated, then assume  770 

k sat, f = k sat.uf
k i
kw
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                                                                                                                 (A-8) 
771 

consistent with eqs A-6 and A-7.  
772 



 

 

 773 

We denote the model specified by equations A-3, A-4, A-5 and A-8 with input 774 

parameters, sat,uf , dry,    , and    as the BPC model.  775 

 776 

An alternative model, which we denote the MC model, is obtained by relating dry
 

777 

and sat,uf to the thermal conductivities of the material components (ice, liquid, gas, 778 

and soil solids). For dry
 
the following empirical fit has been suggested [Johansen, 779 

1977]  780 

kdry =
0.135rb + 64.7

rs - 0.947rb
                                                                                        (A-9) 781 

where b and s are the dry bulk and solid densities, respectively, in kg m-3 and dry 782 

is in W m-1 K-1. Using b = s(1-), this equation can be placed in the form 783 

kdry =
0.135rs 1-f( ) +64.7

rs - 1- d( )rs 1-f( )
=

0.135 1-f( ) +64.7 / rs

f +d 1-f( )
                                      (A-10) 784 

where d is 0.053 (unitless). Equation 9 is problematic as a general model for two 785 

reasons. First, the thermal conductivity of air should be recovered as porosity 786 

approaches unity, which is not the case in Eq. 9. Second, the thermal conductivity of 787 

the soil solids should be recovered when the porosity is zero, which is also not the 788 

case for Eq. 9. Setting porosity to 0 results in a thermal conductivity of ~3 W/m-K 789 

for soil minerals with grain density of 2700 kg/m3, which is consistent with a 790 

“typical” value [van Wijk, 1963] of 2.9 W/m-K at s 
= 2700 kg/m3. However, setting 791 

s to the value of a typical organic material (1.3 kg/m3) results in ~3.5 W/m-K, 792 



 

 

which is more than an order of magnitude greater than a typical value for peat (0.25 793 

W/m-K).  794 

 795 

To better represent dry for organic-rich soils, we thus modify equation 9 to be 796 

kdry =
d 1-f( )ks +kaf

d 1-f( ) +f
                                                                            (A-11) 797 

 798 

where a is the thermal conductivity of  air and s is the thermal conductivity of soil 799 

solids. When porosity is 0, dry = s is recovered from equation A-11. When porosity 800 

is 1, dry = a . A comparison between equation A-11 and the Johansen equivalent (eq 801 

A-9) for a mineral soil (
 
= 2700 kg/m3 in Eq. A-9 and  2.9 W/m-K in Eq. A-802 

11). The Johansen fit and our modification, Eq. A-11, have only very minor 803 

differences in this case. However, for peat material (s 
= 1300 kg/m3 in Eq. A-9 and 804 

s  = 0.25 W/m-K in Eq. A-10), the two models diverge. The alternative 805 

parameterization of using s instead of s  in Eq. A-11 provides enough flexibility to 806 

produce reasonable values for dry thermal conductivity for both mineral soil and 807 

peat.  808 

 809 

In summary, two thermal conductivity models are available. The BPC model uses the 810 

following parameters: thermal conductivity of dry soil, saturated thermal 811 

conductivity in unfrozen conditions, the exponents u 
and uf, and porosity. The MC 812 

model uses the following parameters: thermal conductivity of soil solid, the 813 

exponents u 
and uf 

, and porosity. Although each of these may be determined by 814 

rs ks =



 

 

laboratory measurements on core samples, the use of such small-scale 815 

measurements at the field scale is often confounded by multiscale heterogeneity. We 816 

thus use field-scale temperature measurements to estimate the parameters.  817 

 
818 

Appendix B Snow-surface-energy-balance model 819 

The surface energy balance model is a coupled mass and energy balance simulator 820 

used to deliver energy fluxes and any water associated with snowmelt or 821 

precipitation to the ground surface simulated by the Advanced Terrestrial Simulator 822 

(ATS).  The surface energy simulator is split into two parts depending on if a 823 

snowpack is present or absent.  If a snowpack is present, the surface energy balance 824 

solves for the snow surface temperature (Ts) following the methods by Hinzman et 825 

al., (1998) and Ling and Zhang (2004).  Energy fluxes are then delivered through a 826 

mass conservative evolving snowpack deformation model to the surface of the 827 

ground.  In addition to energy, water mass is also delivered to ground surface.  The 828 

surface energy balance equation for snow is: 829 

0 = 1-a( )Qsw,met

In +Qlw
In +Qlw

Out Ts( )+Qh Ts( )+Qe Ts( )+Qc Ts( )                                      (B-1) 830 

Qlw
In  and Qsw,met

In are incoming long and shortwave radiation respectively, Qlw
Out  is out 831 

going long-wave radiation.  Qh is sensible heat, Qe is latent heat, and Qc is the 832 

conduction of heat from the snow surface through the snowpack to the ground 833 

surface.  All energy balance components are in [W/m2].  This method assumes the 834 

snowpack is in equilibrium with all energy fluxes going into and out of the 835 

snowpack.  If no snow is present, the energy balance is calculated on the top of the 836 

surface water, bare tundra, or a gradation between the two, and the water and 837 



 

 

energy fluxes are delivered to the subsurface portion of ATS.  The ground surface 838 

energy balance equation without snow is: 839 

Qgf = 1-a( )Qsw
In +Qlw

In +Qlw
Out Tgs( )+Qh Tgs( )+Qe Tgs( )                                                            (B-2) 840 

Tgs is the ground surface temperature and Qgf is the flux of energy into the 841 

subsurface and because no snow is present, Qc is no longer computed.  842 

 843 

Components of the energy balance model that do not depend on the surface 844 

temperature are computed initially, Qlw
In  and Qsw,met

In .   Qlw
In  can be either read in from 845 

a data file or modeled based on an empirical equation for calculating the emissivity 846 

of air from Satterlund, (1979); and Fleagle & Businger, (1980): 847 

Qlw
In =easTa

4                                                                                                                                   (B-3)                    848 

Where  is the Stephan-Boltzmann Constant, 5.670676 x 10-8[W/m2 K4], and Ta is 849 

the air temperature [K].  The emissivity of air (a) is calculated by: 850 

ea =1.08 1- exp
- 0.01ea( )

Ta

2016
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Where ea is the vapor pressure of air. 852 

 853 

Qsw
In  in the surface energy balance model is the shortwave radiation absorbed by the 854 

surface, after a percentage of the total shortwave radiation from the meteorological 855 

data (Qsw,met

In ) has been reflected by the albedo () of the surface.   856 

Qsw
In = 1-a( )Qsw,met

In                                                                                                                       (B-5)                    857 



 

 

The albedo  in Barrow, Alaska can change spatially due to heterogeneous surface 858 

conditions and temporally due to the changing physical conditions of the surface 859 

(Grenfell and Perovich, 2004).   The changing surface conditions between snow, ice, 860 

and water strongly influence incoming shortwave radiation by altering ; therefore 861 

its representation in the model plays a critical role in accurately simulating the 862 

arctic energy budget (Curry et al., 1995; Hansen and Nazarenko, 2004).  Currently, 863 

there are four possible surfaces with unique  values 1) snow, 2) ice, 3) ponded 864 

water, and 4) tundra vegetation.  865 

 866 

The  of snow is based on snow density (s) following the methods of Anderson, 867 

1976; Ling and Zhang, 2004; and Peter ReVelle’s thesis (2012) and reflects the aging 868 

process of snow deformation. 869 

            if s <= 450 kg/m3 870 

              

a =1- 0.247 0.16 +110
rs
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                                                                               (B-6)

 871 

            if s > 450 kg/m3 872 

                              
a = 0.6 -

rs
4600                                                                                                      (B-7)

 873 

The snow deformation model is outlined in Martinec (1977). 874 

The albedo of the four possible surfaces are listed in Table B-1. 875 

Surface Albedo Range 

ice  ŧ 0.44 0.27 - 0.49 

water  æ 0.141 0.112 - 0.202 

tundra  ŧ 0.135 0.12 - 0.17 

ŧ From Grenfell & Perovich 2004 



 

 

æ From Cogley 1979 
 Table B-1 876 

The  of ponded water is the average  of standing water at a latitude of 70o from 877 

May through September.   During freezing and thawing of the ground surface any 878 

ponded water is subdivided into an unfrozen water fraction and a frozen water 879 

fraction in ATS.  The  values for this surface is then an average of water and ice  880 

values and are found to transition linearly between the two states (Grenfell and 881 

Perovich, 2004) based on unfrozen water fraction.  Transitional  values between 882 

each type of surface can occur and are triggered when the snowpack height is less 883 

then 2 cm, or the standing water height is less then 10 cm.  The transition height for 884 

ponded water is based on the penetration depth of shortwave radiation in ice 885 

(10cm).   Transitional  weighting values are calculated by: 886 

Transnow =
Zs

Pens
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Tranwater =
Zw

Penw
1-Transnow[ ]

Trantundra = 1-Transnow[ ] -Tranwater                                                                                          (B-8)

 887 

 Where Z is the height of water or snow and Pen is the penetration depth of 888 

shortwave radiation.  The transitional  value is then calculated by: 889 

atrans =asnowTransnow +awaterTranwater +atundraTrantundra                                                           

(B-9)

 890 

In this model, if snow is present it is always the top surface, and ponded water or 891 

surface ice will always be below snow and above the tundra surface.  Therefore, the 892 



 

 

 value is set first by snow, if present, then by standing water and/or ice if present, 893 

and finally by the tundra surface.  894 

 895 

Once the incoming radiation components of the energy balance model are 896 

computed, evaporative resistance (Er) is then calculated by:  897 

Er =
1

Rair +Rsoil
                                                                                                                          (B-10) 898 

where the air resistance term (Rair) is the inverse of the turbulent exchange of latent 899 

and sensible heat (Deh) and the stability function():  900 

Rair =
1

Dehz
                                                                                                                                 (B-11) 901 

Deh =
k 2Us

ln
zr
z0( )æ

è
ç

ö

ø
÷

                                                                                                                     (B-12) 902 

 is the von Karman Constant 0.41  [-], Us is the wind speed at the reference height 903 

(zr) of the meteorological measurement location.  z0 is the roughness length.  Due to 904 

the changing conditions of the landscape at barrow, z0 changes from 0.005 [m] for 905 

wind swept snow (Wieringa and Rudel, 2002), to 0.04 [m] for polygonal tundra 906 

(Weller and Holmgren, 1974; Hansen, 1993).  907 

 908 

 The stability function () accounts for both stable (stable) and unstable (unstable) 909 

atmospheric conditions (Price and Dunne, 1976) 910 

     zstable =
1

1+10Ri
        or     zunstable =1-10Ri .                                                                          (B-13) 911 



 

 

 unstable  conditions occur when the ground surface (Ts) is warmer than the air 912 

temperature (Ta) causing more air to mix vertically.  Ri defines atmospheric stability; 913 

where Ri is positive in the stable condition and Ri is negative in an unstable condition.   914 

Ri =
gzr Ta -Ts( )
TaUs

2
                                                                                                                         (B-14) 915 

g is the acceleration due to gravity.  Rsoil [m/s] is calculated following the methods 916 

used by Sakaguchi and Zeng (2009) and is only implemented during ground surface 917 

evaporation when the saturation state of the upper most subsurface cell adjacent to 918 

the domain surface is less than 1. 919 

Rsoil =
L

D
                                                                                                                                       (B-15) 920 

Where D is vapor diffusion [m2/s] calculated empirically (Moldrup et al., 2004; 921 

Sakaguchi and Zeng, 2009) from the residual saturation (r), saturation (sat), and 922 

the molecular diffusion coefficient of water vapor in the air (Do), assumed to be 923 

constant 2.2 X 10-5 [m2/s]  (Moldrup et al., 1999; Sakaguchi and Zeng, 2009). 924 

D =Doqsat
2 1-

qr
qsat

æ

è
ç

ö

ø
÷

2+3b

   

                                                                                                          (B-16) 925 

The exponent b in equation B-16 is a Clapp and Hornberger, (1978) fitting parameter 926 

for the soil water characteristic curve, assumed to be 1 for moss (Beringer et al., 927 

2001), which covers the tundra surface and is simulated as the top subsurface layer 928 

for the tundra. 929 

L is dry layer thickness or the length vapor must travel from the point of evaporation. 930 



 

 

L = d1

exp 1-
ql

qsat( )
wé

ë
ê

ù

û
ú-1

e-1
                                                                                                       (B-17) 931 

Once all necessary components of the energy balance are calculated, either the snow 932 

energy balance or surface energy balance is computed. The snow energy balance, 933 

eq. B-1, is calculated if snow height (Zs) is more than 2cm. The ground surface 934 

energy balance, eq. B-2, is used if no snow is present.  Between Zs of 0 and 2cm, a 935 

transition between the snow energy balance and the ground surface energy balance 936 

is used where both surface conditions are solved.  When calculating the energy 937 

balance for the transitional regime, the snow energy balance assumes a Zs of 2cm for 938 

all components that depend on Zs and an area-weighted average is used between the 939 

ground surface and snow energy balance based on the actual Zs that is equal to or 940 

less than 2cm.  Assuming a 2cm Zs within the snow energy balance calculation 941 

prevents unreasonable heat conduction through the snowpack (Qc), calculated by: 942 

Qc = -
ks Ts -Tg( )

Zs
                                                                                                                      (B-18) 943 

where ks is the effective thermal conductivity of snow [W/m K] and is calculated 944 

from an empirical function of s used by Ling and Zhang, (2004), described by 945 

Goodrich (1982) 946 

ks = 2.9´10-6 rs
2 .                                                                                                                      (B-19) 947 

 The snow and surface energy balance use the same formulation for Qh and Qlw
Out .  Qh 948 

is:  949 

Qh = aCpDeh(Ta – Ts)                                                                                                           (B-20) 950 



 

 

where a is the density of air 1.275 [kg/m3], and Cp is the specific heat of air (1004 951 

J/K kg).  Qlw
Out  is: 952 

Qlw
Out = -essTs

4                                                                                                                             (B-21) 953 

s is the emissivity of the surface. The s for snow and ice 0.98 [-], is taken from 954 

Liston and Hall, (1995), and the s for tundra is 0.92 (Ling and Zhang, 2004) and for 955 

standing water is 0.979 (Robinson and Davis, 1972). 956 

 957 

 Qe is slightly different between the snow and ground surface energy balance where 958 

the porosity (s) of the top cell in the ground surface is included for the surface 959 

energy balance calculation.  960 

Qe,snow = raLsEr 0.622
ea - es

Apa

æ

è
çç

ö

ø
÷÷

Qe,ground _ surface = fsraLeEr 0.622
ea - es

Apa

æ

è
çç

ö

ø
÷÷

                                                                               (B-22) 961 

where Er, the evaporation resistance as defined by eq. B-8 and Rsoil is 0 in the case of 962 

snow, or condensation on the surface.   Ls is the latent heat of sublimation for snow 963 

(2834000 J/kg) and Le is the latent heat of evaporation for the ground surface 964 

(2497848 J/kg).  es is the vapor pressure of the snow or surface, and Apa is the 965 

atmospheric pressure (101.325 kPa). 966 

 967 

Once the energy balance is calculated, then the water fluxes to the ground surface 968 

are calculated.  In the case of snow, if the snow surface temperature (Ts) is greater 969 

than freezing, Ts is set to freezing and the snow surface energy balance is 970 



 

 

recalculated with all excess energy assigned to the melting energy (Qm), and a 971 

melting rate (Mr) [m/s] is calculated from: 972 

Mr =
Qm

rw *H f

,                                                                                                                           (B-23) 973 

where w is the density of water and Hf is the heat of fusion for melting snow 974 

333500 [J/kg]).  Condensation or sublimation of the snow surface is also calculated 975 

from Qe, where the sublimation/condensation rate (Sr) is added to the total water 976 

flux.  If Ta and Zs > 0 and Sr is positive, then 977 

Qwater = Sr +Pr

Sr =
Qe

rwLs

                                                                                                                            (B-24) 978 

Sublimation is removed from the snowpack when Sr is positive.  If only the ground 979 

surface energy balance is used then water is delivered to the ground surface as 980 

precipitation and condensation when Sr is negative.  Water is evaporated from the 981 

surface/sub-surface when Sr is positive.    982 

 983 

Snow water equivalence (SWE), Zs, and s are tracked through the simulation of 984 

snowpack evolution and related by: 985 

SWE =
Zs

rs
                                                                                                                                   (B-25) 986 

Both Zs and s are important in the snow energy balance equation for calculated Qc 987 

and snow , and both variables evolve as the snowpack ages through snowpack 988 

deformation simulated by (Martinec, 1977): 989 

rsettled = r freshsnow SPage( )
0.3

                                                                                                        (B-26) 990 



 

 

where freshsnow is assigned a density of 100 kg/m3, SPage is the age of the snowpack.  991 

The total snowpack density and Zs are then calculated by a weighted average of 3 992 

components: old settled snow, new snow accumulation, and any ice from 993 

condensation.  The density of condensation is assigned 200 kg/m3.   994 

 995 

Appendix C. Parameter Literature Sources  996 

Values for hydrothermal properties of moss were gathered from Hinzman et al., 997 

(1991); Letts et al., (2000); Quinton et al., (2000); Price et al., (2008); O’Donnell et 998 

al., (2009); and Zhang et al., (2010). Large-scale simulations including a moss layer 999 

were also considered and informed valid parameters ranges (Beringer et al., 2001).  1000 

Peat properties were found in Hinzman et al., (1991); Hinzman et al., (1998); Letts 1001 

et al., (2000); Quinton et al., (2000); Quintion et al., (2008); Nicolsky et al., 2009); 1002 

Zhang et al., (2010) and the accompanying larger scale simulations (Beringer et al., 1003 

2001; Lawrence and Slater, 2008).  Mineral soil properties were gathered from 1004 

Hinzman et al., (1991); Hinzman et al., (1998); Beringer et al., (2001); Overduin et 1005 

al., (2006); Lawrence and Slater, (2008); Nicolsky et al., (2009).  van Genuchten 1006 

parameters were fitted to the published soil water characteristics curves (Hinzman 1007 

et al., 1991). 1008 
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Table 1. Valid parameter range for calibration sets  1380 
 1381 

Notation/Units Moss-Range Peat-Range Mineral-Range 
Porosity [-] 0.88 -- 0.95 0.7 -- 0.93 0.2 -- 0.75 

VG  Alpha [1/Pa] 1 x 10-5
 -- 2.35 x 10-3 3.1 x 10-7

 -- 1.2 x 10-3 2.9 x 10-4
 -- 1 x 10-3 

VG   n [-] 1.3 -- 2.82 1.3 -- 1.9 0.1 -- 0.33 

Residual VWC [-] 0.02 -- 0.18 0.04 -- 0.22 0.05 -- 0.18 

Kdry, Bulk [W/m K] 0.007 -- 0.3 0.05 -- 0.38 0.2 -- 1.6 

Kunfrozen, Bulk  Sat  [W/m K] 0.5 -- 0.59 0.43 -- 2.9 0.96 -- 3.1 

Kfrozen, Bulk Sat  [W/m K] 0.81 -- 2.8 0.81 -- 2.3 1.31 -- 2.8 

Kdry, material  [W/m K] 0.022 -- 0.20 0.05 -- 0.38 0.2 -- 4.0 

αT,uf [-] -- -- -- 

αT,f [-] -- -- -- 

** Kdry, material  [W/m K] is back calculated from Kdry, Bulk 1382 
 1383 
 1384 
Table 2.  The calibration error from the measured values reported as the RMSE C 1385 
(phi) increased between the 1) BPC model to the 2) MC saturated model.  Thus there 1386 
was greater error in the model results, but the calibrated parameters were more 1387 
realistic.  Phi then decreased between the 2) MC saturated model and 3) the MC 1388 
unsaturated model. 1389 
 1390 

  BPC   MC  
MC - Freed 

Pressure 

Calibration 
Start 

Center Trough Rim Center Trough Rim Center Trough 

1 0.461 0.616 0.642 0.646 0.834 0.831 0.503 0.781 
2 0.444 0.586 0.649 0.898 1.347 0.796 0.880 1.186 
3 0.433 0.654 0.653 0.523 0.764 0.775 0.372 0.586 
4 0.410 0.671 0.689 0.625 0.879 0.658 0.633 0.619 
5 0.414 0.771 0.707 0.566 0.900 0.665 0.399 0.612 
6 0.455 0.588 0.674 1.275 1.212 1.666 0.544 0.770 



 

 

7 0.414 0.609 0.682 0.751 1.247 0.754 0.465 1.162 
8 1.406 0.531 0.678 0.846 0.927 0.919 0.472 0.787 

Average 0.555 0.628 0.672 0.766 1.014 0.883 0.533 0.813 
 1391 
 1392 
 1393 
 1394 
 1395 
 1396 
 1397 
 1398 
Table 3. Measured snow depth ranges where gathered from a compilation of 258 1399 
snow depth measurements taken May 2nd 2013 in the area encompassing all three 1400 
borehole temperature measurements.  Utm coordinates: Northing 7910330-1401 
7910350, Easting 585900-585930.   Measured snow water equivalence (SWE) 1402 
ranges were calculated from measured snow depth and the measured average 1403 
snowpack density of 326 [kg/m3].  All simulated values were taken on simulation 1404 
day May 2nd, 2013. 1405 
 1406 
 1407 

 Snow Depth [cm] Snow Density [kg/m3 Snow Water Eqv. [cm] 

 
Measured 

Range 
Simulated 

Measured 
Ave. 

Simulated 
Measured 

Range 
Simulated 

Center 20 - 40 24.6 
326 

349.3 6.5 – 13 9.5 
Rim 10 – 20 14.6 320.2 3.25 – 6.5 5.2 

Trough 40 - 60 40.3 370.4 13 – 19.5 16.25 
 1408 
 1409 
 1410 
Table 4.  The ALT for all three columns are listed for each iteration of the calibration 1411 
process, also with the range of possible ALT from the observed data.  The observed 1412 
ALT range was made by finding the deepest borehole measurement for center rim 1413 
and trough with a temperature above 0 Co for at least a day and the shallowest 1414 
borehole measurement with all temperatures below 0 Co.  1415 
 1416 

 Center Rim Trough 

Calibrated 
Subsurface 

48.2 44.2 48.1 

Surface 
Energy 
Balance 

37.7 41.0 33.7 

Snow 
Distribution 

40.5 41.3 38.4 

Observed 
ALT 

50 - 60 40 - 50 35 - 40 



 

 

 1417 
 1418 
 1419 
 1420 
 1421 
 1422 
 1423 
 1424 
 1425 
 1426 
 1427 
Table 5. Final Calibrated Parameter Table (referred to throughout the text) 1428 
 1429 

Notation/Units Calibrated Moss Calibrated Peat 
Calibrated Mineral 

(Silty Loam) 

Porosity [-] 
0.9 0.876 0.596 

VG  Alpha [1/Pa] 
2.3 x 10-3 

9.5 x 10-4 3.3 x 10-4 

VG   n [-] 1.38 1.44 1.33 

Residual VWC [-] 0.05 0.34 0.199 

Kdry, Bulk [W/m K] 0.024 0.025 0.104 

Kunfrozen, Bulk  Sat  [W/m K] 0.446 0.427 0.788 

Kfrozen, Bulk Sat  [W/m K] 1.81 1.73 3.2 

Kdry, material  [W/m K] 0.1 0.11 2.23 

αT,uf [-] 0.5 0.4 0.8 

αT,f [-] 1 2 0.73 

** Kdry, Bulk, Kfrozen, Bulk, and Kunfrozen, Bulk  [W/m K] are back calculated from Kmaterial, Bulk 1430 
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 1432 

 1433 



 

 

 1434 

 1435 

 1436 

 1437 

 1438 

 1439 

Figures: 1440 

 1441 

Figure 1.  LIDAR of site-C with the three observation locations mapped and greater 1442 
Barrow, AK area. (Credit Garrett Altmann). 1443 
 1444 
 1445 
 1446 
 1447 



 

 

 1448 

 1449 

Figure 2. Schematic representation of a Model Observation/Experiment (ModEx) 1450 
process involving traditional parameter estimation/calibration (inner loop) and 1451 
model structural/conceptual refinement (outer loop). Observations inform 1452 
simulation input and provide a starting point for a conceptual model.  Both the 1453 
conceptual and numerical model is then tested against observations.  In successive 1454 
ModEx iterations the model is then refined and at times re-drawn in order to elicit 1455 
governing processes that shape model outcome to match observed and measured 1456 
phenomena.  Finally model experiments and the identification of governing 1457 
processes inform future observations as to which measurements are needed to 1458 
assess the state of the system. 1459 
 1460 

 1461 



 

 

Figure 3.  Diagram of the three 1-D columns and the associated measured soil 1462 
temperature depths.  1463 
 1464 

 1465 

Figure 4 The ModEx cycle as applied here to subsurface thermal hydrologic system 1466 
in freezing/thawing soils.    1467 
 1468 

 1469 
 1470 
Figure 5.   Plots A, B, and C show Center, trough and rim respective calibrated peat 1471 
and mineral porosities from 8 calibrations starts.  Plots D, E, and F show calibrated 1472 
saturated unfrozen thermal conductivities (Ksat,uf) for peat and mineral soil layers 1473 
from the same 8 calibrations starts. Ksat,uf values from the MC calibration are 1474 



 

 

calculated from equation 3.  Blue diamonds used the BPC model for soil thermal 1475 
conductivity, red squares used the MC model for soil thermal conductivity, and 1476 
green triangles added surface pressures as a free calibration parameter to the MC 1477 
model for soil thermal conductivity.  Color-coded asterisks represent the average 1478 
calibrated parameter for each model tested for the 8 calibration starts, but are not 1479 
actual calibrated results.  Accepted parameter space delineated from literature and 1480 
site observations in all cases are mapped as clear areas.  Shaded areas are the 1481 
calibration space outside of the acceptable parameter space.    This figure shows 1482 
how the calibration response surface changes as the model changed from 1) BPC to 1483 
2) MC to 3) unsaturated.    1484 

 1485 
 1486 

 1487 
 1488 

Figure 6.  Thermal conductivity of peat throughout a year with different surface 1489 
pressures.  Percent liquid saturation is based off of summer time water liquid 1490 
saturation, which changes during winter due to an increase in ice saturation.  The 1491 
change in thermal conductivity coincides with spring thaw, approximately Julian 1492 
Day 160 or early-June, and fall freeze-up near Julian Day 265 or late September.  1493 
 1494 

 1495 



 

 

 1496 
 1497 
Figure 7.  The subsurface un-calibrated and calibrated temperature time-series is 1498 
compared to measured soil temperature time-series to showcase the improvement 1499 
from the calibration process at 40cm depth for the center, trough, and rim.  The 1500 
initial un-calibrated parameters were selected from the literature search described 1501 
in section 2.4 and Appendix C.  Calibration fit to observation varies from the three 1502 
columns, but shows marked improvement from initial un-calibrated time-series and 1503 
are most accurate for all three during the summer at depth where active layer 1504 
thickness is delineated.  1505 
 1506 



 

 

 1507 
Figure 8.  The ModEx cycle applied to the surface energy balance and moss 1508 
parameters. 1509 
 1510 

 1511 
 1512 
Figure 9.  Temperature profiles for a 2cm depth are shown for the Center (plot A), 1513 
Rim (plot B), and trough (plot C), using the initial surface energy balance 1514 
parameters (blue), calibrated surface energy balance (red), and measured soil 1515 
temperature profile (black).  The biggest difference between initial temperature 1516 
profiles and the calibrated profiles is the wintertime temperature for each column 1517 
and is a result if distributing snow on the center, rim, and trough and depth hoar 1518 
representation.  Snow distribution also had the greatest control in the ALT (Table 1519 
4). 1520 



 

 

 1521 

 1522 
 1523 
Figure 10.  Ice and liquid saturation are shown in plot A for the simulated years of 1524 
2010-2013 at 2cm depth along with bulk thermal conductivity for a center column.  1525 
Notice that ice saturation and thermal conductivity during the winters are unique 1526 
for each simulation year.  Plot B is a zoomed in view to year 2013 of ice and liquid 1527 
saturation and the bulk thermal conductivity for the center.  Plot C and D show the 1528 
corresponding ice and liquid saturations for the trough and rim, along with the 1529 
respective thermal conductivities for the 2 cm soil depth for the year 2013.  Plots B-1530 
D have unique ice and liquid saturation and therefore bulk thermal conductivity for 1531 
each column, which is a result of both the maximum ponded depth for each column 1532 
and the snow distribution that mimics wind scouring of the snow surface at Barrow, 1533 
AK.   1534 
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