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ABSTRACT 7 

A regional air-quality forecast system’s model of surface ozone variability based on cloud 8 
coverage is evaluated using satellite-observed cloud fraction (CF) information and a surface air-9 
quality monitoring system. We compared CF and daily maximum ozone from the National 10 
Oceanic and Atmospheric Administration’s National Air Quality Forecast Capability (NOAA 11 
NAQFC) with CFs from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the 12 
U.S. Environmental Protection Agency’s AirNow surface ozone measurements during May to 13 
October, 2014. We found that observed surface ozone shows a negative correlation with the 14 
MODIS CFs, showing around 1 ppb decrease for 10% MODIS CF change over the Contiguous 15 
United States, while the correlation of modeled surface ozone with the model CFs is much 16 
weaker, showing only -0.5 ppb per 10% NAQFC CF change. Further, daytime CF differences 17 
between MODIS and NAQFC are correlated with modeled surface-ozone biases between AirNow 18 
and NAQFC, showing -1.05 ppb per 10% CF change, implying that spatial- and temporal- 19 
misplacement of the modeled cloud field might have biased modeled surface ozone-level. 20 
Current NAQFC cloud fields seem to have less CFs compared to MODIS cloud fields (mean 21 
NAQFC CF = 0.38 and mean MODIS CF = 0.55), contributing up to 35% of surface-ozone bias in 22 
the current NAQFC system. 23 

1. INTRODUCTION 24 

Ground-level ozone is a secondary pollutant resulting from photochemical reactions between 25 
oxides of nitrogen (NOx) and volatile organic compounds (VOC) in the presence of solar 26 
radiation. While local ozone production is affected by numerous factors, including precursor 27 
emissions and meteorological conditions such as temperature and local circulation, ozone 28 
photochemistry is photon-limited, and net ozone production shows a direct relationship with 29 
changes in UV actinic flux resulting from clouds and aerosols (Dickerson et al., 1997; He and 30 
Carmichael, 1999; Jacobson, 1998; Monks et al., 2004). For instance, Lefer et al. (2003) showed 31 
that without sufficient UV radiation, ozone production in Houston is limited regardless of local 32 
circulation patterns or emission sources. Studies in the urban cities of Los Angeles, California 33 
(Jacobson, 1998) and Mexico City (Castro et al., 2001; Raga, Castro et al., 2001), also showed 34 
that surface ozone varies from 5% to 30% due to light-absorbing aerosols. Model studies have 35 
shown that surface ozone is affected by cloud fields (Voulgarakis et al., 2009; Wild et al., 2000) 36 
or strongly scattering aerosols (Dickerson et al., 1997; He and Carmichael, 1999). 37 

Since clouds play a critical role in the radiative balance of the Earth, their impact and models’ 38 
capabilities to simulate clouds have been repeatedly tested from global and climate 39 
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perspectives (Bergman and Salby, 1996; Eastman and Warren, 2013; Stephens, 2005). Clouds 40 
also play an important role in regional air quality, impacting both surface ozone and particulate 41 
matter by regulating photochemical reaction rates, heterogeneous chemistry, and the evolution 42 
and partitioning of particulate matter. These impacts, however, still have high measurement 43 
uncertainties and are not well quantified. While reliable estimates of photolysis rates are 44 
essential for reducing the uncertainty in air-quality modeling, most current models use highly 45 
parameterized methods to estimate photolysis rates. Pour-Biazar et al. (2007) argued that the 46 
uncertainties in estimation of cloud transmissivity and errors in the placement of clouds’ 47 
location and time could be an important source of uncertainties in simulations of surface ozone, 48 
demonstrating during the Texas Air Quality Study campaign that surface-ozone modeling can be 49 
improved by adjusting photolysis rates based on the Geostationary Operational Environmental 50 
Satellite cloud product. They also stated that the cloud-prediction problem is particularly 51 
frustrating when modeling air quality in State Implementation Plans if they are not able to 52 
reproduce satellite-observed cloud fields in a model. 53 

In order to reduce computational cost, most regional air-quality models, including the US 54 
Environmental Protection Agency (EPA) Community Multi-scale Air Quality model (CMAQ), use a 55 
two-step approach for calculating photolysis rates (Byun and Schere, 2006). In preprocessing, 56 
the clear-sky photolysis rates for a range of latitudes, altitudes, and solar zenith angles are first 57 
computed using a radiative transfer module (Madronich, 1987). Then, within the chemical-58 
transport model, the tabular photolysis rates are interpolated for each location and then 59 
adjusted using fractional cloud-coverage information. Since most early meteorological models 60 
did not generate the full suite of specific cloud and moisture fields required as input for the 61 
chemical-transport model, regional air-quality models were designed to diagnose some 62 
additional cloud-related fields from meteorological state variables for use in the chemical-63 
transport model. The Meteorology-Chemistry Interface Processor (MCIP), CMAQ’s preprocessor, 64 
diagnoses for each horizontal grid cell the cloud coverage, cloud base and top, and the average 65 
liquid water content in the cloud using a series of simple algorithms based on a relative-66 
humidity threshold (Otte and Pleim, 2010). For example, in CMAQ modules the photolysis rates 67 
below clouds are calculated as: 68 

𝐽𝑏𝑒𝑙𝑜𝑤 =  𝐽𝑐𝑙𝑒𝑎𝑟[1 + 𝑓𝑐(1.6 ∙ 𝑡𝑟𝑐 cos(𝜃) − 1)] (1) 

where trc is cloud transmissivity, fc is the cloud fraction for a grid cell, and Ө is the solar zenith 69 
angle. Cloud fraction is estimated using relative humidity (RH) and critical RH (Byun and Ching, 70 
1999). Cloud fraction (𝑓𝑐

𝑘) above the boundary layer is: 71 

𝑓𝑐
𝑘 = [

𝑅𝐻𝑘 − 𝑅𝐻𝑐

1 − 𝑅𝐻𝑐
]

2

 (2) 

where 𝑅𝐻𝑘 is the relative humidity at vertical model layer k and 𝑅𝐻𝑐 is the critical relative 72 
humidity defined as 𝑅𝐻𝑐 = 1 − 2𝜎𝑐(1 − 𝜎𝑐)[1 + 1.732(𝜎𝑐 − 0.5)] and 𝜎𝑐 = 𝑝𝑘/𝑝𝑘𝑃𝐵𝐿 (Geleyn 73 
et al., 1982).  74 

Within the convective boundary layer when 𝑅𝐻 > 𝑅𝐻𝑐,  75 



3 
 

𝑓𝑐
𝑘 = 0.34

𝑅𝐻𝑘 − 𝑅𝐻𝑐

1 − 𝑅𝐻𝑐
 (3) 

(Schumann, 1989; Wyngaard and Brost, 1984). See line 131-177 of bcldprc_ak.f90 for MCIP v3.6. 76 

Although fractional cloud coverage (i.e., cloud fraction) thus plays a crucial role in determining 77 
the final values for photolysis rate, it is not a well-defined physical state variable and is mostly 78 
threshold-specific for each retrieval algorithm. One may notice that there are two possible 79 
uncertainties in modeling cloud fraction: (1) the model’s capability to generate the proper 80 
amount of cloud fields, both in their displacement and timing; and (2) conceptual consistency in 81 
definitions of cloud fraction between model and observation (i.e., from satellite). In this study, 82 
we present efforts to evaluate the cloud-coverage information used in a regional air-quality 83 
model through satellite-based cloud fraction information and surface-monitored ozone 84 
observations. In the second section, we introduce the observational and modeling data used in 85 
this analysis, and results are discussed in Section 3. General performance of the Contiguous 86 
United States (CONUS)-scale air-quality forecast system and possible overestimation of surface-87 
ozone levels due to uncertainty in cloud fractions will be also discussed. 88 

2. DATA AND METHOD 89 

MODIS: The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud level 2 product 90 
(MOD06_L2 and MYD06_L2, http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html) is used 91 
for daily cloud-coverage information for each surface-monitoring site. We have retrieved 5-km 92 
cloud fraction data, which is based on MOD35_L2 cloud-mask information with 1km and 250m 93 
(nadir) spatial resolution. Brightness temperatures (BT) from multiple channels and their 94 
differences (BTD) are used in cloud-masking algorithms, as described in the MODIS cloud-mask 95 
product (MOD35_L2) user guide (http://modis-atmos.gsfc.nasa.gov/_docs/CMUSERSGUIDE.pdf). 96 
For example, daytime land-cloud maskings are determined using BTs and BTDs from 1.38-, 3.7-, 97 
3.9-, 6.7-, 8-, 11-, 12-, and 13.9- µm channels. Only data from local afternoon time (~1:30 pm), 98 
when ground-level data show high ozone-production efficiency, are used in the analysis. 99 

AirNow: Real-time ozone measurements across the CONUS are provided by the EPA through the 100 
AirNow network (http://www.epa.gov/airnow). From more than 1000 Air Quality System (AQS) 101 
sites throughout the CONUS, hourly surface ozone data is obtained, and a daily maximum eight-102 
hour moving averaged ozone (MDA8 ozone) value is calculated for each site. 103 

NAQFC: The U.S. National Air Quality Forecast Capability (NAQFC) provides daily, ground-level 104 
ozone predictions using the Weather Forecasting and Research non-hydrostatic mesoscale 105 
model (WRF-NMM) and CMAQ framework across the CONUS with 12-km resolution domain 106 
(Chai et al., 2013; Eder et al., 2009). In our analysis, we used the experimental version of NAQFC, 107 
which uses WRF-NMM with B-grid (NMMB) as a meteorological driver and the CB05 chemical 108 
mechanism. Meteorological data is processed using the PREMAQ, which is a special version of 109 
MCIP designed for the NAQFC system. While NAQFC has shown a tendency to overpredict MDA8 110 
ozone (Chai et al., 2013), recent updates to model processes and emission have reduced its bias. 111 
The “CFRAC” variable from METCRO2D output files are used for cloud fraction. 112 

METHOD: For each EPA monitoring site and the corresponding model cells, we have calculated a 113 
daily maximum of eight-hour, forward-moving, averaged concentrations. For the same 114 

http://modis-atmos.gsfc.nasa.gov/MOD06_L2/index.html
http://modis-atmos.gsfc.nasa.gov/_docs/CMUSERSGUIDE.pdf
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locations, we also calculated daytime (~1:30pm local time) cloud fractions from the model and 115 
from satellite data. MODIS cloud fractions are regridded into 12-km domain grid cells using a 116 
conservative regridding method (Kim et al., 2013). For consistent comparisons, only valid 117 
observational data are used, those with corresponding times and locations. We have 118 
investigated the six-month summer ozone season (May-October, 2014) and results are 119 
consistent for each month. 120 

3. RESULTS AND DISCUSSION 121 

General distributions of daily and monthly daytime cloud fractions from the model and from 122 
satellite are compared. Figure 1 shows the distribution of cloud fractions retrieved from NAQFC 123 
and MODIS cloud products (MOD06 level2) for one day (Aug. 2, 2014) in the upper panels; and 124 
the figure shows a one-month average (Aug. 2014) in the lower panels. The August 2 plot is 125 
overlaid with a NCEP surface-analysis chart to show its association with general features of the 126 
synoptic weather pattern. It is obvious that both model and satellite correctly display the 127 
general features of cloud coverage associated with the synoptic frontal activities. However, 128 
there is a serious discrepancy in their quantity; in most cases the amount of cloud fraction used 129 
in the model is smaller than the cloud fraction retrieved from the MODIS cloud product. For 130 
August 2014, monthly means of daytime cloud-fractions from NAQFC and MODIS are 0.38 and 131 
0.55, respectively. 132 

This discrepancy becomes even more evident from the histogram distribution. In Figure 2, we 133 
present histogram distributions of cloud fractions from NAQFC and from MODIS during August 134 
2014 for each 0.1 cloud-fraction bin. Occurrence frequency is shown on the y-axis, so the sum of 135 
total frequency makes 100%. In the NAQFC model, lower cloud-fraction numbers are more 136 
dominant, with the highest frequency between 0.2 and 0.3, showing very low frequency of high 137 
cloud fractions. On the other hand, the MODIS cloud fraction is quite different, showing more of 138 
a bimodal distribution. Frequencies for clear sky are similar between the model and satellite, 139 
around 12–13%, but the satellite cloud frequency is much lower in the 0.1–0.5 range and higher 140 
above 0.6.  141 

The reason for this discrepancy between the model and MODIS is not clear and requires future 142 
investigation. As mentioned previously, this might be a characteristic of the meteorological 143 
model or it could be a conceptual difference in cloud fraction between model and satellite. As 144 
cloud-fraction field is a diagnosed variable in PREMAQ, which uses a certain threshold of liquid-145 
water content or relative humidity to model the existence of clouds, it may differ from the 146 
satellite’s measurements of cloud, which uses emissivity-based cloud masking using BT and BTD 147 
from multiple channels. 148 

Figures 3a and 3b show scatter plots between MODIS cloud fractions and AirNow MDA8 ozone 149 
and between NAQFC cloud fractions and MDA8 ozone, respectively, during August 1024 across 150 
all reporting EPA AQS monitoring-sites. As the amount of UVA (ultraviolet radiation in 315-399 151 
nm) strongly affects the ozone production by NO2 photodissociation (e.g. j(NO2) in λ < 420 nm) 152 
at the surface, it is evident that cloud fraction, and the eventual flux of photons reaching the 153 
level of the surface, is a very dominant component determining ground-level ozone 154 
concentration (Monks et al., 2004; Seinfeld and Pandis, 2006). Scatter plots in Figure 3a draw 155 
data from more than 1000 sites across the CONUS under a variety of meteorological conditions 156 
and precursor sources. Even with the high uncertainties here, we can see a notable separation 157 
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of ground-level ozone for each cloud-fraction bin, implying that photon flux is one of the most 158 
dominant features determining tropospheric ozone photochemistry. Slope and offsets for line-159 
fitting MODIS CF versus AirNow MDA8 ozone are -11.33 and 49, respectively, implying that 10% 160 
of CF change can cause around 1.13 ppb decrease in surface ozone. On the other hand, the 161 
correlation between NAQFC CF and MDA8 ozone is slightly weaker (Figure 3b); slope and offsets 162 
between NAQFC CF and MDA 8 ozone are -5.0 and 50.5, respectively, showing half as much 163 
sensitivity in surface ozone according to the NAQFC CF compared to the MODIS CF.  164 

Figures 3c and 3d are scatter plots for CF differences (NAQFC-MODIS) and MDA8 surface ozone 165 
bias (NAQFC-AQS; left), and averaged O3 biases for each 0.1 cloud-fraction bin (right). Since the 166 
definition of cloud fraction in the model and the satellite are slightly different, we choose the 167 
term “cloud fraction difference” instead of “cloud fraction bias.” Slope of the linear regression is 168 
-10.5 ppb/100% CF. The right-side panel shows averages of ozone biases for each 0.1 bin. The 169 
vertical bars indicate 1 standard deviation. It is clear that where the model underestimates 170 
cloud fraction, it likely overestimates surface ozone, although there are many intricacies of 171 
tropospheric ozone chemistry involved. 172 

Since Figure 3 shows data from all AQS sites, it includes multiple uncertainties from each site’s 173 
local characteristics, such as local emissions.  We have conducted further investigation for 174 
individual AQS sites to confirm if we can find similar MDA8 ozone to CF correlation. Figure 4 175 
shows spatial distributions of each site’s ozone to CF sensitivity (e.g., regression slope of MDA8 176 
ozone and CF) and correlation coefficients during 5 months (May to September, 2014). MDA8 177 
ozone decreases rapidly by the increase of CF in the southern regions, especially near the 178 
coastal lines of Gulf of Mexico, such as Texas, Louisiana and Florida, up to -30 ppb/CF. In the 179 
middle latitude regression slopes are around -10 ppb/CF, and some northern location areas 180 
show positive correlation. Mean of total regression slope is -8.5 ppb/CF. Correlation coefficients 181 
(R) also show stronger (negative) correlation in southern states, especially  southeastern US up 182 
to R=-0.7 while northeastern US shows much weaker correlation, implying accurate CF 183 
information is important in southern US states.  184 

OZONE OVERPREDICTION : As already described, current NAQFC cloud fields seem to   have 185 
fewer clouds than MODIS  by 0.2. We have further estimated how this difference can affect the 186 
general performance of surface ozone forecast. Previous studies address O3 overpredictions of 187 
global and regional chemical-transport models during the summer daytime over the eastern 188 
United States (Chai et al., 2013; Eder et al., 2009; Fiore et al., 2009; Murazaki and Hess, 2006; 189 
Nolte et al., 2008; Rasmussen et al., 2012; Reidmiller et al., 2009). Studies have addressed that 190 
the vertical resolution (Murazaki and Hess, 2006), the coarse representation of emissions (Liang 191 
and Jacobson, 2000), along with uncertainty in the heterogeneous reactions of aerosols (Martin 192 
et al., 2003) contribute to the highly biased O3 of the global chemical-transport models MOZART 193 
or GEOS-Chem over the eastern United States.  NAQFC also has a tendency to overestimate 194 
surface ozone during ozone season. We may estimate the amount of possible overestimation of 195 
surface ozone due to the underestimation of the cloud fraction and eventual overestimation of 196 
photolysis rate. As the mean cloud fraction of model is 0.17 higher than the cloud-fraction 197 
estimated from MODIS, by applying the -10.5 ppb/CF estimate, we can deduce that 1.8 ppb of 198 
the surface-ozone overestimation is contributed from the underestimation of the cloud fraction. 199 
Considering current NAQFC surface-ozone overestimation is around 5 ppb for the month of 200 
August 2014, we can roughly suggest that almost 35% of this overestimation is due to faulty 201 
estimation of the cloud field. Though this estimate is still very rough, this is definitely something 202 
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to consider carefully in order to improve the simulation of regional air quality and especially the 203 
simulation of surface ozone. 204 

RESOLUTION ISSUE: In utilizing satellite-based cloud-fraction information, one concern is how to 205 
process data in terms of pixel resolution. As already mentioned, the cloud fraction is not a state 206 
variable; it is threshold- or retrieval-specific. For example, if we consider an area with 9 pixels 207 
with cloud fraction 0.6, fractional averaging of 9 cloud pixels should yield a 0.6 cloud fraction. 208 
However, if we first perform cloud masking for each pixel, we may have 9 cloud markings out of 209 
9 pixels, resulting in 100% cloud fraction. This might not be a critical error on a global scale, but 210 
it is a crucial difference for regional or local scales intended for investigating the spatial scale of 211 
local ozone production. Since cloud fields are very localized phenomena, this information should 212 
be processed as finely as data are available.  213 

To conclude, this study demonstrates that appropriate model of CF is crucial in the modeling of 214 
surface ozone chemistry. Further studies are needed in terms of the comparison of modeled- or 215 
satellite-based CF with actual surface level photon flux, as well as enhanced parameterization of 216 
CF in the air quality model. 217 

4. REFERENCES 218 

Bergman, J. W., and Salby, M. L. (1996). Diurnal variations of cloud cover and their relationship 219 
to climatological conditions. Journal of Climate, 9(11), 2802–2820. 220 

Byun, D., and Schere, K. L. (2006). Review of the Governing Equations, Computational 221 
Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality 222 
(CMAQ) Modeling System. Applied Mechanics Reviews, 59(2), 51. doi:10.1115/1.2128636 223 

Byun, D. W., and Ching, J. K. S. (1999). Science Algorithms of the EPA Models-3 Community 224 
Multiscale Air Quality (CMAQ) Modeling System. Washington, DC, USA: US Environmental 225 
Protection Agency, Office of Research and Development. 226 

Castro, T., Madronich, S., Rivale, S., Muhlia, A., & Mar, B. (2001). The influence of aerosols on 227 
photochemical smog in Mexico City. Atmospheric Environment, 35(10), 1765–1772. 228 
doi:10.1016/S1352-2310(00)00449-0 229 

Chai, T., Kim, H.-C., Lee, P., Tong, D., Pan, L., Tang, Y., Huang J., McQueen, J., Tsidulko, M., and  230 
Stajner, I. (2013). Evaluation of the United States National Air Quality Forecast Capability 231 
experimental real-time predictions in 2010 using Air Quality System ozone and NO2 232 
measurements. Geoscientific Model Development, 6(5), 1831–1850. doi:10.5194/gmd-6-233 
1831-2013 234 

Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G., and Holben, B. 235 
N. (1997). The Impact of Aerosols on Solar Ultraviolet Radiation and Photochemical Smog. 236 
Science, 278(5339), 827–830. doi:10.1126/science.278.5339.827 237 

Eastman, R., and Warren, S. G. (2013). A 39-yr survey of cloud changes from land stations 238 
worldwide 1971-2009: Long-term trends, relation to aerosols, and expansion of the 239 
tropical belt. Journal of Climate, 26(4), 1286–1303. 240 



7 
 

Eder, B., Kang, D., Mathur, R., Pleim, J., Yu, S., Otte, T., and Pouliot, G. (2009). A performance 241 
evaluation of the National Air Quality Forecast Capability for the summer of 2007☆. 242 
Atmospheric Environment, 43(14), 2312–2320. doi:10.1016/j.atmosenv.2009.01.033 243 

Fiore, a. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., … Zuber, a. (2009). 244 
Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. 245 
Journal of Geophysical Research, 114(D4), 10816. doi:10.1029/2008JD010816 246 

Geleyn, J. F., Hense, A., and Preuss, H. J. (1982). A comparison of model generated radiation 247 
fields with satellite measurements. Beitr. Phys. Atmos., 55, 253–286. 248 

He, S., and Carmichael, G. R. (1999). Sensitivity of photolysis rates and ozone production in the 249 
troposphere to aerosol properties. Journal of Geophysical Research, 104(D21), 26307. 250 
doi:10.1029/1999JD900789 251 

Jacobson, M. Z. (1998). Studying the effects of aerosols on vertical photolysis rate coefficient 252 
and temperature profiles over an urban airshed. J. of Geophys. Res., 103(D9), 10593. 253 
doi:10.1029/98JD00287 254 

Kim, H., Ngan, F., Lee, P., and Tong, D. (2013). Development of IDL-based geospatial data 255 
processing framework for meteorology and air quality modeling. Retrieved from 256 
http://aqrp.ceer.utexas.edu/projectinfoFY12_13%5C12-TN2%5C12-TN2 Final Report.pdf 257 

Lefer, B. L. (2003). Impact of clouds and aerosols on photolysis frequencies and photochemistry 258 
during TRACE-P: 1. Analysis using radiative transfer and photochemical box models. Journal 259 
of Geophysical Research, 108(D21), 8821. doi:10.1029/2002JD003171 260 

Liang, J., and Jacobson, M. Z. (2000). Effects of subgrid segregation on ozone production 261 
efficiency in a chemical model. Atmospheric Environment, 34(18), 2975–2982. 262 
doi:10.1016/S1352-2310(99)00520-8 263 

Madronich, S. (1987). Photodissociation in the atmosphere: 1. Actinic flux and the effects of 264 
ground reflections and clouds. Journal of Geophysical Research, 92(D8), 9740. 265 
doi:10.1029/JD092iD08p09740 266 

Martin, R. V., Jacob, D. J., and Yantosca, R. M. (2003). Global and regional decreases in 267 
tropospheric oxidants from photochemical effects of aerosols. Journal of Geophysical 268 
Research, 108(D3), 4097. doi:10.1029/2002JD002622 269 

Monks, P. S. (2004). Attenuation of spectral actinic flux and photolysis frequencies at the surface 270 
through homogenous cloud fields. Journal of Geophysical Research, 109(D17), D17206. 271 
doi:10.1029/2003JD004076 272 

Murazaki, K., and Hess, P. (2006). How does climate change contribute to surface ozone change 273 
over the United States? Journal of Geophysical Research, 111(D5), D05301. 274 
doi:10.1029/2005JD005873 275 



8 
 

Nolte, C. G., Gilliland, A. B., Hogrefe, C., and Mickley, L. J. (2008). Linking global to regional 276 
models to assess future climate impacts on surface ozone levels in the United States. 277 
Journal of Geophysical Research, 113(D14), D14307. doi:10.1029/2007JD008497 278 

Otte, T. L., and Pleim, J. E. (2010). The Meteorology-Chemistry Interface Processor (MCIP) for 279 
the CMAQ modeling system: updates through MCIPv3.4.1. Geoscientific Model 280 
Development, 3(1), 243–256. doi:10.5194/gmd-3-243-2010 281 

Pour-Biazar, A., McNider, R. T., Roselle, S. J., Suggs, R., Jedlovec, G., Byun, D. W., … Cameron, R. 282 
(2007). Correcting photolysis rates on the basis of satellite observed clouds. Journal of 283 
Geophysical Research, 112(D10), D10302. doi:10.1029/2006JD007422 284 

Raga, G., Castro, T., and Baumgardner, D. (2001). The impact of megacity pollution on local 285 
climate and implications for the regional environment: Mexico City. Atmospheric 286 
Environment, 35(10), 1805–1811. doi:10.1016/S1352-2310(00)00275-2 287 

Rasmussen, D., Fiore, A., Naik, V., Horowitz, L. W., McGinnis, S. J., and Schultz, M. G. (2012). 288 
Surface ozone-temperature relationships in the eastern US: A monthly climatology for 289 
evaluating chemistry-climate models. Atmospheric Environment, 47, 142–153. 290 
doi:10.1016/j.atmosenv.2011.11.021 291 

Reidmiller, D. R., Fiore, a. M., Jaffe, D. a., Bergmann, D., Cuvelier, C., Dentener, F. J., … Zuber, A. 292 
(2009). The influence of foreign vs. North American emissions on surface ozone in the US. 293 
Atmospheric Chemistry and Physics, 9(14), 5027–5042. doi:10.5194/acp-9-5027-2009 294 

Schumann, U. (1989). Large-eddy simulation of turbulent diffusion with chemical reactions in 295 
the convective boundary layer. Atmospheric Environment (1967), 23(8), 6981. Retrieved 296 
from http://www.sciencedirect.com/science/article/pii/0004698189900565 297 

Seinfeld, J. H., and Pandis, S. N. (2006). Atmospheric Chemistry and Physics (p. 1232). 298 

Stephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. Journal of 299 
Climate. 300 

Voulgarakis, A., Wild, O., Savage, N. H., Carver, G. D., and Pyle, J. A. (2009). Clouds, photolysis 301 
and regional tropospheric ozone budgets. Atmospheric Chemistry and Physics, 9(21), 8235–302 
8246. doi:10.5194/acp-9-8235-2009 303 

Wild, O., Zhu, X., and Prather, M. (2000). Fast-J: Accurate simulation of in-and below-cloud 304 
photolysis in tropospheric chemical models. Journal of Atmospheric Chemistry, 2000. 305 
doi:10.1023/A:1006415919030 306 

Wyngaard, J., and Brost, R. (1984). Top-down and bottom-up diffusion of a scalar in the 307 
convective boundary layer. Journal of the Atmospheric Sciences, 41, 102–112. 308 
doi:http://dx.doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2 309 

 310 



9 
 

  311 



10 
 

 312 

 313 
Figure 1. Spatial distributions of cloud fractions on Aug. 2, 2014 from NAQFC (a) and MODIS (b). 314 
NOAA NCEP surface weather chart at 18UTC is overlaid. Monthly averaged distributions are also 315 
shown for NAQFC (c) and MODIS (d). 316 
 317 
  318 
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 319 
Figure 2. Occurrence frequency histogram for NAQFC cloud fractions (red) and MODIS cloud 320 
fractions (blue). 321 
 322 
  323 
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 324 

 325 
 326 
Figure 3. Scattered plots between MODIS cloud fractions and AQS MDA8 ozone (a), between 327 
NAQFC cloud fractions and MDA8 ozone (b), and between cloud fraction differences (NAQFC - 328 
MODIS) and MDA8 surface ozone bias (NAQFC-AQS) (c) during Aug. 2014 across 1024 AQS 329 
monitoring site locations. Averaged O3 biases for each 0.1 cloud-fraction bin with 1 standard 330 
deviation (vertical bars) are also shown (d). 331 
  332 
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 333 
Figure 4. Spatial distributions of (a) slope and (b) correlation coefficient of linear regression 334 
between MODIS CF and MDA8 ozone. 335 


