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Abstract

In this paper, we present Par@Graph, a software toolbox to reconstruct and analyze
complex climate networks having a large number of nodes (up to at least O (106)) and
of edges (up to at least O (1012)). The key innovation is an efficient set of parallel soft-
ware tools designed to leverage the inherited hybrid parallelism in distributed-memory5

clusters of multi-core machines. The performance of the toolbox is illustrated through
networks derived from sea surface height (SSH) data of a global high-resolution ocean
model. Less than 8 min are needed on 90 Intel Xeon E5-4650 processors to construct
a climate network including the preprocessing and the correlation of 3×105 SSH time
series, resulting in a weighted graph with the same number of vertices and about 3×106

10

edges. In less than 5 min on 30 processors, the resulted graph’s degree centrality,
strength, connected components, eigenvector centrality, entropy and clustering coeffi-
cient metrics were obtained. These results indicate that a complete cycle to construct
and analyze a large-scale climate network is available under 13 min. Par@Graph there-
fore facilitates the application of climate network analysis on high-resolution observa-15

tions and model results, by enabling fast network construction from the calculation of
statistical similarities between climate time series. It also enables network analysis at
unprecedented scales on a variety of different sizes of input data sets.

1 Introduction

Over the last decade, the techniques of complex network analysis have found applica-20

tion in climate research. Many studies were focused on correlation patterns in the atmo-
spheric surface temperature (Tsonis and Roebber, 2004; Tsonis et al., 2010; Donges
et al., 2009b, 2011, 2009a) and teleconnections (Tsonis et al., 2008). Up to now, the
behavior of El Niño (Gozolchiani et al., 2008, 2011; Tsonis and Swanson, 2008; Ya-
masaki et al., 2008), the synchronization between different spatiotemporal climate vari-25

ability patterns (Tsonis et al., 2007; Wyatt et al., 2011) and the connections between
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the sea surface temperature (SST) variability and the global mean temperature (Tan-
tet and Dijkstra, 2014) have been investigated. In addition, network tools have also
been used to detect the propagation of SST anomalies on multidecadal time scales
(Feng and Dijkstra, 2014) and to develop early warning indicators of climate transitions
(van der Mheen et al., 2013; Feng et al., 2014).5

In most studies above so-called interaction networks were used. Here the observa-
tion locations serve as vertices and edges (links) are based on statistical measures
of similarity, e.g. a correlation coefficient, between pairwise time series of climate vari-
ables at these different locations. Given time series of climate data, represented by
an N ×M matrix, where N is the number of locations and M is the length of data at-10

tributes (daily/monthly values), one then needs to calculate at least N2/2 correlation
values. Such computations become challenging for large N; for example, with a net-
work of 106 nodes, this would result in 5×1011 calculations. A further challenge is the
memory needed for such a computation. To only keep the calculated matrix in memory
for further processing, about 3.7×103 GB of memory is required (consider 8 bytes of15

memory for each of the 5×1011 matrix items), which is not available in the vast majority
of current computing platforms.

On the other hand, analyzing the resulting network (graph) is non-trivial and also
computationally challenging. Considering a graph G, with V vertices (network nodes)
and E edges (links between nodes), a typical step in an algorithm to analyze G involves20

visiting each v ∈ V and its neighbors V ⊂ V (the set of vertices connected to v by an
edge e ∈ E ), then their consecutive neighbors, and so on. Processing such steps is
normally done within a computational complexity of the order of V and/or E squared
or cubed. For example the computation of the clustering coefficient, which measures
the degree to which its vertices tend to cluster together, has a time complexity of O25

(|V |3). In practice, there are various available software tools for graph analysis, some
providing implementations of single-machine algorithms such as BGL (Mehlhorn and
Näher, 1995), LEDA (Siek et al., 2002), NetworkX (Hagberg et al., 2008), SNAP1 and

1Stanford Network Analysis Platform – see http://snap.stanford.edu.
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igraph (Csardi and Nepusz, 2006). However, the computation of a clustering coefficient
for a network with V = 106 would be very challenging, if at all possible, with existing
single-machine software.

The most popular approach to tackle such computational challenges is by exploiting
parallelism for both the construction and the analysis of those massive graphs through5

the design of efficient algorithms for parallel computing platforms. In this regard, some
contributions have been made to the development of algorithms that exploit parallel
computing machines such as in The Parallel BGL (Gregor and Lumsdaine, 2005) and
CGMgraph (Chan et al., 2005). However, due to structure irregularity and sparsity of
real-world graphs, including those built of climate data, there are few parallel imple-10

mentations that are efficient, scalable and can deliver high performance. Other factors
which contribute to this inefficiency include a manifested irregularity of data dependen-
cies in those graphs, as well as the poor locality of data, making graph exploration and
analysis highly dominated by memory latency rather than processing speed (Lums-
daine et al., 2007). A recent intent with NetworKit2 has shown a remarkable step to-15

wards providing parallel software tools capable of analyzing large-scale networks. Yet
the networks analyzed by this software had at most 4×107 edges, which is still lower
that what is intended to be studied in climate networks.

On top of that, most of the existing libraries do not address the processing and
memory challenges involved in the construction of graphs with large V from statisti-20

cal measures of time series. Indeed most researchers tend to develop their own tools
to build correlation matrices beforehand, and thereafter they transform these matrices
into appropriate graph data structures that can be handled by the existing libraries of
graph analysis. An exception is the software package Pyunicorn3, developed at Pots-
dam Institute for Climate Impact Research, that couples Python modules for numerical25

analysis with igraph. It can carry out both tasks; the construction of climate networks
and the analysis of the resulted graphs. However, this software is bounded by the

2Networkit – see http://networkit.iti.kit.edu.
3Pyunicorn – see https://www.pik-potsdam.de/members/donges/software-2.
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single-machine’s memory and speed, making it impossible to construct large-node cli-
mate networks and consequently, inappropriate to analyze them.

The networks which so far have been handled in climate research applications had
only a limited (at most O (103) number of nodes. As a consequence, coarse-resolution
observational and model data have been used with a focus only on large-scale prop-5

erties of the climate system. This system is, however, known for its multi-scale in-
teractions and hence one would like to explore the interaction of processes over the
different scales. Data are available through high-resolution ocean/atmosphere/climate
model simulations but they lead to networks with at leastO (105) nodes and hence they
cannot be reconstructed, neither efficiently analyzed using currently available software.10

In this paper, we introduce a complete toolbox Par@Graph designed for parallel
computing platforms, which is capable of the preprocessing of large number of cli-
mate time series and the calculation of pairwise statistical measures, leading to the
construction of large node climate networks. In addition, Par@Graph is provided with
a set of high-performance network analyzing algorithms for symmetric multiprocessing15

machines (SMPs). It is also coupled to a parallellized version of igraph (Csardi and Ne-
pusz, 2006) – a widely used graph-analysis library. The presented toolbox is provided
with an easy-to-use and flexible interface which enables it to be easily coupled to any
existing graph analysis software.

The rest of the paper is organized as follows. In Sect. 2, we give an overview of20

the computational challenges associated with the reconstruction of climate networks
and their analysis. In Sect. 3, we provide a description of the design of Par@Graph
and its parallel algorithms for the construction and analysis of climate networks from
climate time series. In Sect. 4, we describe the application of the toolbox to data from
a high-resolution ocean model including a performance and scaling analysis. Section 525

provides a summary and discussion of the results.
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2 Climate networks

A common data set of climate observations or model results consists of spatiotemporal
grid points i , i = 1, . . .,N at a given latitude and longitude, each having a time series of
a state variable, for example temperature, Ti (tk) of length L, with k = 1, . . .,L. In order
to reconstruct a climate network, some preprocessing tasks are required beforehand,5

including the selection of grid locations and calculation of anomalies (e.g., removal of
a trend and/or a seasonal cycle that might produce strong autocorrelations between
different locations). Having done this, each grid point is considered to be a node in the
resulting network.

2.1 Network reconstruction10

To define a link between two nodes, both linear and nonlinear dependencies can be
considered. To measure linear correlations between the time series Ti (tk) and Tj (tk),
the Pearson correlation coefficient Ri j given by

Ri j =

L∑
k=1

Ti (tk)Tj (tk)√( L∑
k=1

T 2
i (tk)

)( L∑
k=1

T 2
j (tk)

) (1)

is widely used (Tsonis and Roebber, 2004). Alternatively, measures of nonlinear corre-15

lation can be used, such as the mutual information Mi j , given by

Mi j =
∑
Ti ,Tj

Pi j (Ti ,Tj ) log
Pi j (Ti ,Tj )

Pi (Ti )Pj (Tj )
. (2)

Here Pi (Ti ) is the probability density function (PDF) of time series Ti , and Pi j (Ti ,Tj ) is
the joint PDF for (Ti ,Tj ). The issue whether Ri j or Mi j is better to quantify the statistical
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similarity between nodes i and j is discussed in Donges et al. (2009a). Whatever the
choice, however, a correlation matrix (C) ofN×N elements is produced, where Ci j = Ri j
or Ci j =Mi j , where N is again the number of grid points.

In many climate applications, one is interested in propagating features, such as the
propagation of ocean Rossby waves. Time delayed (time-lagged) relationships that5

exist between climate variables in different geographical locations have also been ad-
dressed by the climate networks approach (Gozolchiani et al., 2008; Berezin et al.,
2012; Tirabassi and Masoller, 2013; Feng and Dijkstra, 2014; Tupikina et al., 2014).
These are commonly measured by examining the correlation between the time series
of two locations relatively shifted in time with respect to one another. Technically this10

can be done by defining a time-lag interval and computing the correlation measures
between the shifted time series (Feng and Dijkstra, 2014). One can also define a time
interval, say [tmin,tmax], and then find the value of t in this interval where Ci ,j (t) is
maximal (Gozolchiani et al., 2008).

Having derived the correlation matrix C, a threshold τ is usually applied to define15

strong similarities between nodes as “links”. The adjacency matrix A for the network is
then found by

Ai j = Aj i =Θ(Ci j − τ)−δi j , (3)

where Θ is the Heaviside function and δ is Kronecker delta. If correlation values are to
be considered as weights for the resulted links, the elements of A after thresholding C20

with τ become

Ai j =

{
0 Ci j < τ,

Ci j Ci j ≥ τ.
(4)

Note that because C is symmetric, the resulting network is always undirected when
C is calculated at zero time-lag. However, when time-lagged correlations are studied,
directions are added to the links between nodes, reflecting the direction of the shifting25

of their corresponding time series. If only thresholding is applied, but the values of the
correlation matrix are kept, a weighted network will result.
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2.2 Network analysis

Many properties in climate networks have interesting physical interpretations and
hence are required to be computed efficiently. For reference in Sects. 3 and 4, we
list here the most important properties.

– Degree centrality. The degree centrality ki of a node i refers to the number of its5

incident vertices, that is, ki = |N(i )|, where N(i ) is the set of vertices adjacent to i .

– Strength centrality. For a weighted network, the strength centrality is given by the
sum of the weights of the edges between the node and its incident vertices.

– Clustering Coefficient. The Watts–Strogatz clustering coefficient Ci measures the
probability that two randomly chosen neighbors of a node are also neighbors10

(Watts and Strogatz, 1998). This metric is calculated for each i ∈ V by

Ci =
%i

ki (ki −1)
, (5)

where ki is the number of neighbors of i and %i is the number of connected pairs
between all its neighbors. When d indicates the average number of i ’s neighbors
in a graph, this metric can be obtained in O(|V |d ) time and in O(|V |) space.15

– Entropy. The Shannon entropy of the incident edges’ weights (Anand and Bian-
coni, 2009) which is given for node i ∈ V by

H(i ) = −
ki∑
j=1

pi j log pi j ; pi j =
wi j
ki∑
l=1
wi l

, (6)

where ki is the (total) degree of node i and wi j is the weight of edge(s) between
nodes i and j . The computation of the entropy for all nodes in a graph is obtained20

in O(|V |+ |E |) time and in O(|V |) space.
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– Eigenvector Centrality. This centrality metric is commonly used to evaluate the
influence of a vertex in a network qualitatively. Unlike degree centrality, which
weights every edge equally, the eigenvector centrality assigns relative scores to all
vertices in the network based on the concept that edges with high-scoring vertices
contribute more to the score of the vertex in question than equal edges with low-5

scoring nodes. As a result, one would find that a vertex having high degree does
not necessarily imply a high eigenvector centrality, since its connectivity might be
with less important vertices. Equally, a vertex with a high eigenvector centrality is
not necessarily highly linked (the vertex might have few but important links). As
defined in (Bonacich, 1972), let A = (Ai j ) be the adjacency matrix of the graph10

G(V ,E ), the centrality score (xi ) of node i ∈ V is then found by

xi =
1
λ

∑
j∈ki

xj =
1
λ

∑
j∈V
Ai jxj , (7)

where ki is the set of i ’s neighbors, and λ is a constant. Note that there could be
many eigenvalues λ for which an eigenvector exists, however, the centrality score
is determined by calculating the eigenvector corresponding to the largest positive15

eigenvalue of the adjacency matrix. This metric is obtained computationally in
O(|V |+ |E |) time and O(|V |) space.

– Betweenness Centrality. This measure, indicated here by BC(v) is based on
shortest-path enumeration. It is considered one of the more commonly used met-
rics to quantify the relative importance of nodes in a graph (Freeman, 1977). To20

obtain this metric given a graph G(V ,E ), let σst denote the number of shortest
paths between the vertices s and t. When the count of those which pass through
the node i is σst(i ), then the BC(i ) is obtained by

BC(i ) =
∑

s 6=i 6=t∈V

σst(i )
σst

(8)
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With the sequential algorithm which has been proposed in Brandes (2001), it can
be computed in O(|V |+ |E |) space and O(|V ||E |) time.

All these quantities can be obtained using the igraph library for relatively small node
networks.

3 Description of the toolbox5

In practice, the reconstruction and analyses of climate networks are carried out through
performing a set of separate tasks, progressively. First, the preprocessing of climate
time series occurs, then the correlation matrix is calculated, followed by network con-
struction from either the correlation matrix or another graph data structure like an adja-
cency matrix, and finally the network is analyzed using the selected graph algorithms10

library. Contrary to these sequence of computations, Par@Graph is designed to pro-
vide end-to-end support for the creation and analysis of climate networks by integrating
parallel computing tools to perform all the involved processing efficiently. With attention
at the same time to optimize required computing memory.

Par@Graph is composed of a set of coupled parallel tools designed to leverage15

the inherited hybrid parallelism in distributed-memory clusters of multi-core (SMPs)
machines, using MPI/OpenMP standards. The provided tools are classified into two
major software modules, which we refer to as the Network Constructor and the analysis
engine, together with additional interfacing tools and wrappers.

3.1 Network constructor20

This module carries out the calculation of the correlation matrix C from the given time
series. It also applies a user defined threshold τ to generate the corresponding network
adjacency matrix A. Then it proceeds to the transformation of the resulted matrix into
a network data structure which will later be analyzed by the analysis module.
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The design of the Constructer follows a master-worker parallel computing paradigm
for distributed-memory parallel clusters of SMPs. The calculation of the correlations be-
tween time series is distributed over the computing elements (workers), forming a ring
topology of processes, shown in Fig. 1, which communicate between each other using
MPI standards. As soon as a process finds Ci j ≥ τ, then the pairwise (i , j ) are copied5

to a local process’s buffer of a user-configurable size, and sends the iteratively filled
buffer to p0, where the network is to be analyzed. Note that if the network is weighted,
the value of Ci ,j itself is also copied and sent to the master side by side with its pair of
nodes i and j (and in like manner time-lag values).

A brief description of the processing associated to each ring process is described in10

Algorithm 1 below.

Fig. 1: Provided a parallel machine of p proces-

sors, p�1 processes are initialized and assigned

with equal blocks of time series, each block’s set

of time series are correlated, then these blocks

are exchanged (p�1)/2 times (half round of the

ring) between processes to complete the all-to-all

correlations between the whole set of time series.

Conversely, p0 is initialized as a master process to

gather the resulting calculations and perform the

analysis tasks on the resulted network.

other using MPI standards. As soon as a process finds Cij � ⌧ , then the pairwise (i,j) are copied to a local

process’s buffer of a user-configurable size, and sends the iteratively filled buffer to p0, where the network is to be

analyzed. Note that if the network is weighted, the value of Ci,j itself is also copied and sent to the master side by

side with its pair of nodes i and j (and in like manner time-lag values).185

A brief description of the processing associated to each ring process is described in Algorithm 1 below. Note

Algorithm 1 Network Constructor
1: procedure RING PROCESS(p)

2: Nlocal p’s block of time series

3: Nneighbor neighbor’s block of time series

4: neighbor(right) p+1

5: neighbor(left) p�1

6: preprocessing remove user specified time cycle

7: performance reorder time series of Nlocal . for better memory-access

8: local block cross correlate Nlocal . performed once

9: for i 0 to (p�1)/2 do . iterate half ring

10: function SEND(Nlocal,neighbor(right)) . send block to a neighbor

11: function RECEIVE(Nneighbor,neighbor(left)) . receive block from another

12: function C(i,j,8i,j 2Nlocal +Nneighbor)

13: if (Ci,j >= ⌧) then

14: if weighted then

15: function SEND!MASTER(i, j, Ci,j) . time-lag t is also sent to master if needed

16: else

17: function SEND!MASTER(i, j)

18: neighbor(right) neighbor(right)+1

19: neighbor(left) neighbor(left)-1

20: return Done

that only a subset C̄ of C, such that 8C̄i,j 2 C̄,C̄i,j � ⌧ , is sent progressively to the master computing element.

7
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Note that only a subset C of C, such that ∀Ci ,j ∈ C,Ci ,j ≥ τ, is sent progressively to
the master computing element. This indeed means that the under-threshold values of
C are discarded directly at each ring process. This reduces both the amount of data
sent to the master element and the memory required there for the construction of the
network.5

The process of constructing the network itself is performed progressively in
the events that the master (p0) receives edges’ coordinates (and attributes, e.g.
weights/lags) from any ring process. Initially p0, having the number of dataset grid
points, constructs a completely unconnected network, i.e. no edges between graph
vertices. As soon as ring processes start sending edge coordinates to p0, these edges10

are added to the network straightaway. In the long run, constructing the network follow-
ing this approach results in saving time, since the master is idle (except when receiving
data from workers) during the ring processing iterations. And more importantly, be-
cause the coming edges are added directly to the graph data structure, memory usage
is optimized at the master as data redundancy is markedly minimized.15

With attention to the overall performance, it is crucial not to overlook the I/O over-
head, especially because the toolbox is intended to be processing large climate
datasets. To that end, the Constructor is designed to perform multiple I/O collective
operations at the same time (MPI-IO). In like manner, simultaneously, each ring pro-
cess reads its chunk of time series from a parallel file system. Furthermore, owing to20

the fact that the elements of those time series are neither read nor stored contiguously,
another key point in order to improve performance is to optimize memory access at
each processor. This is provided at each process by performing preprocessing tasks
that include the reordering of each process’s chunk of time series, for the sake of re-
ducing cache misses during calculation.25
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3.2 Analysis engine

Once correlations and their coordinates are available at the master machine, it consec-
utively runs graph algorithms to analyze the resulted network. The developed parallel
algorithms for network analysis are based on those in igraph. The intent here is that this
design (coupled with the Network Constructor) will achieve three primary goals: (1) to5

construct the network rapidly, (2) to enable efficient and safe multithreading of the core
library algorithms and (3) to reduce memory usage for network representation.

With respect to the analyzing algorithms, a set of 20 of the core algorithms of igraph
have been parallelized using POSIX threads and OpenMP directives. Generally speak-
ing, the embedded routines of those algorithms (a sample pseudocode is shown below10

in (a)), could naively be parallelized by transforming their iterative instructions into par-
allel loops, see (b) pseudocode:

This indeed means that the under-threshold values of C are discarded directly at each ring process. This reduces

both the amount of data sent to the master element and the memory required there for the construction of the

network.190

The process of constructing the network itself is performed progressively in the events that the master (p0)

receives edges’ coordinates (and attributes, e.g. weights/lags) from any ring process. Initially p0, having the

number of dataset grid points, constructs a completely unconnected network, i.e. no edges between graph vertices.

As soon as ring processes start sending edge coordinates to p0, these edges are added to the network straightaway.

In the long run, constructing the network following this approach results in saving time, since the master is idle195

(except when receiving data from workers) during the ring processing iterations. And more importantly, because

the coming edges are added directly to the graph data structure, memory usage is optimized at the master as data

redundancy is markedly minimized.

With attention to the overall performance, it is crucial not to overlook the I/O overhead, specially because the

toolbox is intended to be processing large climate datasets. To that end, the Constructor is designed to perform200

multiple I/O collective operations at the same time (MPI-IO). In like manner, simultaneously, each ring process

reads its chunk of time series from a parallel file system. Furthermore, owing to the fact that the elements of

those time series are neither read nor stored contiguously, another key point in order to improve performance is

to optimize memory access at each processor. This is provided at each process by performing preprocessing tasks

that include the reordering of each process’s chunk of time series, for the sake of reducing cache misses during205

calculation.

3.2 Analysis Engine

Once correlations and their coordinates are available at the master machine, it consecutively runs graph algo-

rithms to analyze the resulted network. The developed parallel algorithms for network analysis are based on those

in igraph. The intent here is that this design (coupled with the Network Constructor) will achieve three pri-210

mary goals:- 1) to construct the network rapidly, 2) to enable efficient and safe multithreading of the core library

algorithms and 3) to reduce memory usage for network representation.

With respect to the analyzing algorithms, a set of 20 of the core algorithms of igraph have been parallelized

using POSIX threads and OpenMP directives. Generally speaking, the embedded routines of those algorithms (a

sample pseudocode is shown below in (a)), could naively be parallelized by transforming their iterative instruc-215

tions into parallel loops, see (b) pseudocode:

while i vertices

do

8
<

:
result(i) some processing

i i+1

(a)

#pragma omp parallel for private(i)

for i 0 to vertices,i i++

do
n

result(i) some processing

(b)

For instance, in a global transitivity routine, by which the network’s average clustering coefficient is obtained, the

value result is scalar (average value), so that parallelism appears straightforward and safe multithreading could be

achieved by applying reduction binary operators over its parallelizable loop. Although this may be approachable

8

For instance, in a global transitivity routine, by which the network’s average clustering
coefficient is obtained, the value result is scalar (average value), so that parallelism15

appears straightforward and safe multithreading could be achieved by applying reduc-
tion binary operators over its parallelizable loop. Although this may be approachable in
similar cases, unfortunately in most routines result’s value does not depend linearly on
the iteration variable i but in some arbitrary way (depending on the algorithm). This is
added to the synchronization overhead which could be imposed in algorithms where20

dependent iterative operations are found, which need careful consideration to prevent
conflicts commonly caused by the concurrent access to shared memory spaces.
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The parallelized algorithms of igraph are those mostly used to obtain important net-
work metrics needed to evaluate structural (local and global) properties of graphs.
Amongst them are the algorithms of shortest paths, centrality measures (e.g., between-
ness, closeness, eigenvector), transitivity and clustering coefficient, connected compo-
nents, degree and strength centralities, entropy and diameter. A complete list of the5

parallelized routines and algorithms as well as the particular approach of parallelism
for each would make this paper too technical and will be reported elsewhere. However,
our approach to achieve efficient fine-grained parallelism for the targeted algorithms
of igraph included major changes in their internal routines and the used data struc-
tures. For example, shared memory queues were added to achieve safe multithreading,10

loops’ iterations were optimized to minimize synchronization costs, and iterative work-
load was accordingly designed to be scheduled dynamically amongst threads in order
to improve load imbalance caused by the poor locality of data. Furthermore, the internal
data structure of the graph itself was modified from indexed edge lists (supported by
iterators and internal stacks) to graph adjacency lists which resulted in achieving sig-15

nificant reduction of memory requirements, especially in the case of sparse networks.
Additionally, special attention was given to the calculation of both the degree and

strength centralities. As such, both metrics’ algorithms were redesigned to be com-
puted progressively during the time while the network is being constructed. In other
words, each time the master receives edges from one of the ring processes, these are20

added to the accumulated count of the edges that corresponds to their relative ver-
tices. As soon as the last packet of edges is received by the master, these metrics are
instantly available. A notable benefit of this approach, of course apart from saving time,
is the significant reduction of memory requirements, as each time the master receives
a new set of edges, the previous ones are released. Such technique enables com-25

puting machines of rather few gigabytes of memory to process degree and strength
centrality metrics for large-scale networks.
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3.3 Interfaces and other features

In order to match a wider range of user requirements, Par@Graph is provided with
all the necessary tools to do the job, including parallel collective tools to write the
resulted correlation or mutual information matrices, where each ring process writes
its calculated portion to a common file in a parallel file system. This is added to other5

tools to read (in parallel) and also construct a graph directly from a matrix as well as
tools to read and write standard graph formats, including edge lists, adjacency lists and
the popular Pajek format which contains metadata added to an edge list.

Another key point is the flexible interface between the Constructor and the analy-
sis engine. That is, although the toolbox provides wrappers to the parallelized igraph,10

those are quite flexible to be used with any other analysis library instead of igraph,
or any other user developed routines. Additionally, users are provided with a configu-
ration input file where they can specify their experimental settings. These include the
selection of the data grid (location coordinates), preprocessing parameters, the thresh-
old, the type of the network (weighted, unweighted, directed, etc), time-lag intervals,15

whether to construct a network from time series, a matrix or another graph format.

4 Application and performance

In this section, we will apply Par@Graph to reconstruct and analyze networks obtained
from high-resolution ocean model data. The motivation for performing these computa-
tions is to understand coherence of the ocean circulation at different scales (Froyland20

et al., 2014).

4.1 The POP model data

The data used here are taken from simulations which were performed with the Parallel
Ocean Program (POP, Dukowicz and Smith, 1994), developed at Los Alamos National
Laboratory. This configuration has a nominal horizontal resolution of 0.1◦ and is the25
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same as that used by Maltrud et al. (2010). We note that this configuration has a tripo-
lar grid layout, with poles in Canada and Russia and the model has 42 non-equidistant
z-levels, increasing in thickness from 10 m just below the upper boundary to 250 m just
above the lower boundary at 6000 m depth. We use data from the control simulation
of this model as described in Weijer et al. (2012), where the POP is forced with a re-5

peat annual cycle from the (normal-year) Coordinated Ocean Reference Experiment
(CORE4) forcing dataset (Large and Yeager, 2004), with the 6 hourly forcing averaged
to monthly.

Correlation networks were built from one year (year 136 of the control run) of the
simulated global daily sea surface height (SSH) data. The seasonal cycle was removed10

by subtracting for each day of the year its 5 days running mean averaged over years
131 to 141. The mean and standard deviation of the SSH for this year are plotted in
Fig. 2a and b, respectively. Strong spatial and temporal variability can be observed in
the region of the western boundary currents (e.g. the Gulf Stream in the Atlantic, the
Kuroshio in the Pacific and the Agulhas Current in the Indian Ocean) and the Southern15

Ocean.
Two datasets have been used for network reconstruction, one with the actual 0.1◦

horizontal resolution of the model, resulting in 4.7×106 grid points, and an interpolated
one with a lower 0.4◦ horizontal resolution resulting in 3×105 grid points. The latter
data set has been used for the performance analysis in the next subsection.20

4.2 Performance analysis

The results were computed on a bullx supercomputer 5 composed of multiple “fat” com-
puting nodes of 4-socket bullx R428 E3 each, having 8-core 2.7 GHz Intel Xeon E5-
4650 (Sandy Bridge) CPUs, with a shared intel smart cache of 20 MB at each socket,
resulting in SMP nodes of 32 cores which share 256 GB of memory. The interconnec-25

4See http://data1.gfdl.noaa.gov/nomads/forms/core/COREv2.html.
5See https://surfsara.nl/systems/cartesius.
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tion between those “fat” nodes is built on InfiniBand technology providing 56 Gbitss−1

of inter-node bandwidth. The same technology is used to connect the nodes to a Lustre
parallel file system of 48 OSTs each with multiple disks.

First experiments were performed to construct weighted correlation networks from
the 0.4◦ POP grid, having 300 842 grid points. Different edge densities (see Table 1)5

were obtained as a result of applying different threshold values τ for the link definition.
The parallel speedup of the toolbox and the corresponding computational time are
plotted in Fig. 3a and b, respectively.

The execution time falls nearly super linearly with the number of processors up to
100. Moreover, the performance becomes strongly super linear for τ > 0.5 as the num-10

ber of processors increases. This super linearity is due to a reduction in cache misses
at each processor’s cache (note that 20 MB of cache are shared among each 8 cores)
as less time series are needed to fit in those shared caches when more cores are im-
plied. In a further analysis, we also observed that the reordering of input time series did
improve the performance of the toolbox, mainly when the number of processors was15

less than 100. In the case of τ = 0.5, performance drops with larger system sizes. First
thing to remember here is that regardless of the value of the applied τ, the all-to-all
correlations are calculated amongst the ring processes. However, the only difference
when different values of τ are applied is the amount of data (edges, weights/attributes)
which is sent to the master processor, as they will be more when lower values of τ20

are applied. That is to say that in such cases, communication overhead hinders the
overall performance. The timing for both the parallel reading and the reordering of time
series is comparatively constant and pointless compared to the overall execution time,
regardless of the number of processors, as shown in Fig. 4.

Similar performance results were obtained for tests using the much larger correlation25

networks from the 0.1◦ POP grid, resulting in networks of 4.7×106 nodes and edges
ranging from 1.5×1010 to 1.4×1012 for thresholds from 0.8 to 0.4, respectively. In
summary, it is possible to construct large-scale climate networks in quite reasonable
times on modest parallel computing platforms.
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Results of the performance tests to determine the six network properties as dis-
cussed in Sect. 2.2 are shown in Fig. 5. As can be seen although there are some dif-
ferences in the performance gain in each of the algorithms, a general improvement is
achieved by our fine-grained parallel implementation over sequential igraph algorithms.

In some algorithms, like the clustering coefficient, parallel performance seems more5

sensitive to the density of the network, whereas in others like the degree centrality, per-
formance remains intact. However, although an evident performance gain is observed
here, one has to remember that the performance of the vast majority of network ana-
lyzing algorithms is highly dependent on the topology of the network itself, and thus,
further study should be carried out to compare results for different types of networks.10

In view of memory requirements, we show in Table 2 a comparison of the needed
memory to represent an edge (for different types of networks) when using igraph’s
data structures with Par@Graph’s adjacency list. Indeed, the presented networks con-
structed by our toolbox, as a result of changing the internal data structure, are at least
60 % lighter in size compared to their size in memory when using the original data15

structures of igraph.

4.3 Coherence of global sea level

Being able to reconstruct and analyze the large complex networks arising from the POP
ocean model, we now shortly demonstrate the novel results one can obtain. One of the
important questions in physical oceanography deals with the coherence of the global20

ocean circulation. In low-resolution (non-eddying) ocean models, the flows appear quite
coherent with near steady currents filling the ocean basins. However, as soon as eddies
are represented when the spatial resolution is smaller than the internal Rossby radius
of deformation, a fast decorrelation is seen in the flow field.

The issue of coherence has for example been tackled by looking at the eigenvalues25

of the transfer matrix (Dellnitz et al., 2009; Froyland et al., 2014) but also complex net-
works are very suited to address this question (Tantet and Dijkstra, 2014). Preliminary
results on some of the important properties (degree, clustering and betweenness) of
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the complex network derived from the SSH data of the 0.4◦ POP simulation are shown
in Fig. 6a–c. In all cases, a weighted, undirected network was constructed by using the
Pearson correlation with zero lag and a threshold value τ = 0.5.

The precise physical interpretation of these metrics is outside the scope of this pa-
per as it requires a background in dynamical oceanography. However, one can ob-5

serve that the subtropical gyres (Dellnitz et al., 2009; Froyland et al., 2014) tend to
have a large degree while the regions of the western boundary currents, equator and
southern ocean tend to have smaller degree.

In Fig. 6d, the degree field for the network constructed with τ = 0.4 from the 0.1◦

POP SSH data is shown. The overall features of the degree field for the 0.1◦ POP data10

are already found in the degree field for the 0.4◦ POP data, but additional small-scale
correlations can be distinguished.

5 Summary and conclusions

Up to now, the data sets (both observational and model based) used to reconstruct
and analyze climate networks have been relatively small due to computational lim-15

itations. In this paper we presented the new parallel software toolbox Par@Graph to
construct and analyze large-scale complex networks. The software exposes parallelism
on distributed-memory computing platforms to enable the construction of massive net-
works from a large number of time series based on the calculation of common statisti-
cal similarity measures between them. Additionally, Par@Graph is provided with a set20

of parallel graph algorithms to enable fast calculation of important properties of the
generated networks on SMPs. These include those of the betweenness, closeness,
eigenvector and degree centralities. Besides the algorithms needed for the calcula-
tion of transitivity, connected components, entropy and diameter. Additionally, a parallel
implementation of a community detection algorithm based on modularity optimization25

(Blondel et al., 2008) is provided.
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The capabilities of Par@Graph were shown by using sea surface height data of
a strongly eddying ocean model (POP). The resulting networks had number of nodes
ranging from 3.0×105 to 4.7×106, with the number of edges ranging from 3.2×108

to 1.4×1012. The performance of Par@Graph showed excellent parallel speedup in
the construction of massive networks, especially when higher thresholds were applied.5

When lower values of τ were used, communication overhead was seen to decrease
the performance. On the other hand, we observed a significant speed gain in the cal-
culation of the discussed network characteristics which were obtained by our parallel
implementation of igraph.

With regards to the challenging issue of memory requirements in order to compute10

such big networks, we showed that the presented toolbox notably optimizes the usage
of memory during the reconstruction of large-scale networks by minimizing the accom-
panying data redundancy. Additionally, the resulted networks themselves are markedly
lighter in size compared to their equivalents in igraph as a result of changing the data
structures from indexed edge lists to adjacency lists.15

The availability of Par@Graph will allow to solve a new set of questions in climate
research one of which, the coherence of the ocean circulation at different scales, was
shortly discussed in this paper. Apart from higher resolution data sets of one observ-
able, it will now also be possible to deal with data sets of several variables and to more
efficiently reconstruct and analyze networks of networks (Berezin et al., 2012). How-20

ever, apart from climate research, Par@Graph will also be very useful for all fields of
science where complex and very large-scale networks are applied, and it is hoped that
the toolbox will find its way into the complexity science community.
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Table 1. Different threshold values τ used in the reconstruction of Pearson Correlation networks
from the 0.4 and 0.1◦ POP datasets and corresponding number of network vertices and edges.

Network POP τ Vertices Edges

1 0.4◦ 0.7 3.0×105 3.2×108

2 0.4◦ 0.6 3.0×105 1.5×109

3 0.4◦ 0.5 3.0×105 2.7×109

4 0.1◦ 0.4 4.7×106 1.4×1012
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Table 2. A single edge’s size in memory when using the indexed edge list used in igraph
compared to its corresponding size when applying Par@Graph. Additionally, a vertex in igraph
is represented by 16 bytes in memory, whereas it needs only 4 bytes in Par@Graph.

bytes/edge in igraph bytes/edge in Par@Graph

weighted unweighted weighted unweighted

directed 40 32 8 4
undirected 40 32 16 8
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Figure 1. Provided a parallel machine of p processors, p−1 processes are initialized and
assigned with equal blocks of time series, each block’s set of time series are correlated, then
these blocks are exchanged (p−1)/2 times (half round of the ring) between processes to
complete the all-to-all correlations between the whole set of time series. Conversely, p0 is
initialized as a master process to gather the resulting calculations and perform the analysis
tasks on the resulted network.
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Figure 2. Mean (a) and SD (b) of the daily SSH (units in m) for year 136 of the POP control run
as in Weijer et al. (2012).
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(a) Speedup (b) Execution time corresponding to (a)

Figure 3. Speedup ratio (a) for the parallel construction of SSH climate networks from the POP
model data having 0.4◦ spatial resolution. The shown speedup also includes the parallel reading
and reordering of the input time series. The corresponding execution times (in seconds) over
different sizes of computing processors starting from 5 processors upwards is given in (b).
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(a) (b)

Figure 4. In (a) the overall runtime of the experiment in Fig. 3b (for τ = 0.5) is shown in the
upper curve and compared to the time for parallel reading and reordering of time series (the
lower curve). The shaded area corresponds to real cpu time for the calculation of the corre-
lation matrix and the communication between processors. Both times for parallel reading and
reordering preprocessing tasks are shown respectively in (b).
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(a) clustering coefficient (b) entropy (c) degree centrality

(d) strength centrality (e) eigenvector centrality (f) betweenness

Figure 5. Performance of the parallel algorithms running on a single SMP bullx node of 30
compute cores. The speedup ratios correspond to the analysis of the networks 1–3 presented
in Table 1.
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Figure 6. (a) Degree, (b) clustering and (c) betweenness for the SSH POP data interpolated
on the 0.4◦ grid and a threshold of τ = 0.5. (d) Degree field for the 0.1◦ grid and a threshold
τ = 0.4; here the reconstructed network has 4.7×106 nodes and 1.4×1012 edges.
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