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Abstract.

In this paper, we present Par@Graph, a software toolbox to reconstruct and analyze complex climate networks

having a large number of nodes (up to at least 106) and of edges (up to at least 1012). The key innovation is an

efficient set of parallel software tools designed to leverage the inherited hybrid parallelism in distributed-memory

clusters of multi-core machines. The performance of the toolbox is illustrated through networks derived from sea5

surface height (SSH) data of a global high-resolution ocean model. Less than 8 minutes are needed on 90 Intel

Xeon E5-4650 processors to construct a climate network including the preprocessing and the correlation of 3×105

SSH time series, resulting in a weighted graph with the same number of vertices and about 3.2×108 edges. In

less than 14 minutes on 30 processors, the resulted graph’s degree centrality, strength, connected components,

eigenvector centrality, entropy and clustering coefficient metrics were obtained. These results indicate that a10

complete cycle to construct and analyze a large-scale climate network is available under 22 minutes. Par@Graph

therefore facilitates the application of climate network analysis on high-resolution observations and model results,

by enabling fast network construction from the calculation of statistical similarities between climate time series.

It also enables network analysis at unprecedented scales on a variety of different sizes of input data sets.

1 Introduction15

Over the last decade, the techniques of complex network analysis have found application in climate research.

Many studies were focused on correlation patterns in the atmospheric surface temperature (Tsonis and Roebber,

2004; Tsonis et al., 2010; Donges et al., 2009b,a, 2011) and teleconnections (Tsonis et al., 2008). Up to now,

the behavior of El Niño (Gozolchiani et al., 2008, 2011; Tso, 2008; Yamasaki et al., 2008), the synchronization

between different spatiotemporal climate variability patterns (Tsonis et al., 2007; Wyatt et al., 2011) and the20

connections between the sea surface temperature (SST) variability and the global mean temperature (Tantet and
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Dijkstra, 2014) have been investigated. In addition, network tools have also been used to detect the propagation

of SST anomalies on multidecadal time scales (Feng and Dijkstra, 2014) and to develop early warning indicators

of climate transitions (van der Mheen et al., 2013; Feng et al., 2014).

In most studies above so-called interaction networks were used. Here the observation locations serve as nodes25

and edges (links) are based on statistical measures of similarity, e.g. a correlation coefficient, between pairwise

time series of climate variables at these different locations. Given time series of climate data, represented by an

N×M matrix, whereN is the number of locations andM is the length of data attributes (daily or monthly values),

one then needs to calculate at least N2/2 correlation values. Such computations become challenging for large N ;

for example, with a network of 106 nodes, this would result in 5×1011 calculations. A further challenge is the30

memory needed for such a computation. To only keep the calculated correlation matrix in memory for further

processing, about 3.7× 103 GB of memory is required (consider 8 bytes of memory for each of the 5× 1011

matrix items), which is not available in the vast majority of current computing platforms.

On the other hand, analyzing the resulting network (graph) is non-trivial and also computationally challenging.

Considering a graph G, with V vertices and E edges, a typical step in an algorithm to analyze G involves visiting35

each v ∈V and its neighbors V̄ ⊂V (the set of vertices connected to v by an edge e∈E), then their consecutive

neighbors, and so on. Processing such steps is normally done within a computational complexity of the order of

| V | and/or |E | squared or cubed. For example the computation of the clustering coefficient, which measures

the degree to which its vertices tend to cluster together, has a time complexity of O(|V |3). In practice, there are

various available software tools for graph analysis, some providing implementations of single-machine algorithms40

such as BGL (Mehlhorn and Näher, 1995), LEDA (Siek et al., 2002), NetworkX (Hagberg et al., 2008), SNAP1 and

igraph (Csardi and Nepusz). However, the computation of a clustering coefficient for a network with | V |= 106

would be very challenging, if at all possible, with existing single-machine software.

The most popular approach to tackle such computational challenges is by exploiting parallelism for both the

construction and the analysis of those massive graphs through the design of efficient algorithms for parallel com-45

puting platforms. In this regard, some contributions have been made to the development of algorithms that exploit

parallel computing machines such as in The Parallel BGL (Gregor and Lumsdaine, 2005) and CGMgraph (Chan

et al., 2005). However, due to structure irregularity and sparsity of real-world graphs, including those built of

climate data, there are few parallel implementations that are efficient, scalable and can deliver high performance.

Other factors which contribute to this inefficiency include a manifested irregularity of data dependencies in those50

graphs, as well as the poor locality of data, making graph exploration and analysis highly dominated by memory

latency rather than processing speed (Lumsdaine et al., 2007). A recent intent with NetworKit2 has shown a re-

markable step towards providing parallel software tools capable of analyzing large-scale networks. Yet as in most

of the existing libraries, the processing and memory challenges involved in the construction of graphs with large

V from statistical measures of time series, has not been addressed.55

Indeed most researchers tend to develop their own tools to build correlation matrices beforehand, and thereafter

they transform these matrices into appropriate graph data structures that can be handled by the existing libraries of

1Stanford Network Analysis Platform — see http://snap.stanford.edu
2Networkit — see http://networkit.iti.kit.edu
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graph analysis. An exception is the software package Pyunicorn3 (Donges et al., 2013), developed at the Potsdam

Institute for Climate Impact Research, that couples Python modules for numerical analysis with igraph. It can

carry out both tasks; the construction of climate networks and the analysis of the resulted graphs. However, this60

software is bounded by the single-machine’s memory and speed, making it impossible to construct large-node

climate networks and consequently, inappropriate to analyze them.

The networks which so far have been handled in climate research applications had only a limited (at most

104) number of nodes. As a consequence, coarse-resolution observational and model data have been used with

a focus only on large-scale properties of the climate system. This system is, however, known for its multi-scale65

interactions and hence one would like to explore the interaction of processes over the different scales. Data are

available through high-resolution ocean/atmosphere/climate model simulations but they lead to networks with at

least 105 nodes and hence they cannot be reconstructed, neither efficiently analyzed using currently available

software.

In this paper, we introduce a complete toolbox Par@Graph designed for parallel computing platforms, which70

is capable of the preprocessing of large number of climate time series and the calculation of pairwise statistical

measures, leading to the construction of large node climate networks. In addition, Par@Graph is provided with a

set of high-performance network analyzing algorithms for symmetric multiprocessing machines (SMPs). It is also

coupled to a parallellized version of igraph (Csardi and Nepusz) — a widely used graph-analysis library. The

presented toolbox is provided with an easy-to-use and flexible interface which enables it to be easily coupled to75

any existing graph analysis software.

The rest of the paper is organized as follows. In section 2, we give an overview of the computational challenges

associated with the reconstruction of climate networks and their analysis. In section 3, we provide a description

of the design of Par@Graph and its parallel algorithms for the construction and analysis of climate networks from

climate time series. In Section 4, we describe the application of the toolbox to data from a high-resolution ocean80

model including a performance and scaling analysis. Section 5 provides a summary and discussion of the results.

2 Climate networks

A common data set of climate observations or model results consists of spatiotemporal grid points i, i= 1,...,N

at a given latitude and longitude, each having a time series of a state variable, for example temperature, Ti(tk)

of length L, with k= 1,...,L. In order to reconstruct a climate network, some preprocessing tasks are required85

beforehand, including the selection of grid locations and calculation of anomalies (e.g., removal of a trend and/or

a seasonal cycle that might produce strong autocorrelations between different locations). Having done this, each

grid point is considered to be a node in the resulting network.

3Pyunicorn — see http://tocsy.pik-potsdam.de/pyunicorn.php
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2.1 Network reconstruction

To define a link between two nodes, both linear and nonlinear dependencies can be considered. To measure linear90

correlations between the time series Ti(tk) and Tj(tk), the Pearson correlation coefficient Rij given by

Rij =

L∑
k=1

Ti(tk)Tj(tk)√
(

L∑
k=1

T 2
i (tk))(

L∑
k=1

T 2
j (tk))

(1)

is widely used (Tsonis and Roebber, 2004). Alternatively, measures of nonlinear correlation can be used, such as

the mutual information Mij , given by

Mij =
∑
Ti,Tj

Pij(Ti,Tj) log
Pij(Ti,Tj)

Pi(Ti)Pj(Tj)
. (2)95

Here Pi(Ti) is the probability density function (PDF) of time series Ti, and Pij(Ti,Tj) is the joint PDF for (Ti,Tj).

The issue whether Rij or Mij is better to quantify the statistical similarity between nodes i and j is discussed in

Donges et al. (2009a). Whatever the choice, however, a correlation matrix (C) of N ×N elements is produced,

where Cij =Rij or Cij =Mij , and N is again the number of grid points.

In many climate applications, one is interested in propagating features, such as that of ocean Rossby waves.100

Time delayed (time-lagged) relationships that exist between climate variables in different geographical locations

have also been addressed by the climate networks approach (Gozolchiani et al., 2008; Berezin et al., 2012; Tir,

2013; Feng and Dijkstra, 2014; Tupikina et al., 2014). These are commonly measured by examining the correlation

between the time series of two locations relatively shifted in time with respect to one another. Technically this can

be done by defining a time-lag interval and computing the correlation measures between the shifted time series105

(Feng and Dijkstra, 2014). One can also define a time interval, say [tmin,tmax], and then find the value of t in this

interval where Cij(t) is maximal (Gozolchiani et al., 2008).

Having derived the correlation matrix C, a threshold τ is usually applied to define strong similarities between

nodes as ‘links’. The adjacency matrix A for the network is then found by

Aij =Aji = Θ(Cij−τ)−δij , (3)110

where Θ is the Heaviside function and δ is Kronecker delta. If correlation values are to be considered as weights

for the resulted links, the elements of A after thresholding C with τ become

Aij =

0 Cij <τ,

Cij Cij ≥ τ .
(4)

Note that because C is symmetric, the resulting network is always undirected when C is calculated at zero time-

lag. However, when time-lagged correlations are studied, directions are added to the links between nodes, reflect-115

ing the direction of the shifting of their corresponding time series. If only thresholding is applied, but the values

of the correlation matrix are kept, a weighted network will result.
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2.2 Network analysis

Many properties in climate networks have interesting physical interpretations and hence are required to be com-

puted efficiently. For reference in section 3 and 4, we list here the most important properties.120

– Degree centrality. The degree centrality ki of a node i refers to the number of its incident vertices, that is,

ki =|N(i) |, where N(i) is the set of vertices adjacent to i.

– Strength centrality. For a weighted network, the strength centrality is given by the sum of the weights of

the edges between the node and its incident vertices.

– Clustering Coefficient. The Watts-Strogatz clustering coefficient Ci measures the probability that two ran-125

domly chosen neighbors of a node are also neighbors (Watts and Strogatz, 1998). This metric is calculated

for each i∈V by

Ci =
2%i

ki(ki−1)
, (5)

where ki is the number of neighbors of i and %i is the number of connected pairs between all its neighbors.

When d indicates the average number of i’s neighbors in a graph, this metric can be obtained in O(|V |d)130

time and in O(|V |) space.

– Entropy. The Shannon entropy (Hi) of the incident edges’ weights (Anand and Bianconi, 2009) which is

given for node i∈V by

Hi =−
ki∑
j=1

pij log pij ; pij =
wij

ki∑
l=1

wil

, (6)

where ki is the (total) degree of node i and wij is the weight of edge(s) between nodes i and j. The135

computation of the entropy for all nodes in a graph is obtained in O(|V |+ |E|) time and in O(|V |) space.

– Eigenvector Centrality. This centrality metric is commonly used to evaluate the influence of a vertex

in a network qualitatively. Unlike degree centrality, which weights every edge equally, the eigenvector

centrality assigns relative scores to all vertices in the network based on the concept that edges with high-

scoring vertices contribute more to the score of the vertex in question than equal edges with low-scoring140

nodes. As a result, one would find that a vertex having high degree does not necessarily imply a high

eigenvector centrality, since its connectivity might be with less important vertices. Equally, a vertex with a

high eigenvector centrality is not necessarily highly linked (the vertex might have few but important links).

As defined in Bonacich (1972), let A= (Aij) be the adjacency matrix of the graph G(V,E), the centrality

score (xi) of node i∈V is then found by145

xi =
1

λ

∑
j∈ki

xj =
1

λ

∑
j∈V

Aijxj , (7)
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where ki is the set of i’s neighbors, and λ is a constant. Note that there could be many eigenvalues λ for

which an eigenvector exists, however, the centrality score is determined by calculating the eigenvector corre-

sponding to the largest positive eigenvalue of the adjacency matrix. This metric is obtained computationally

in O(|V |+ |E|) time and O(|V |) space.150

– Betweenness Centrality. This measure, indicated here by BCi is based on shortest-path enumeration. It is

considered one of the more commonly used metrics to quantify the relative importance of nodes in a graph

(Freeman, 1977). To obtain this metric given a graph G(V,E), let σst denote the number of shortest paths

between the vertices s and t. When the count of those which pass through the node i is σst(i), then the BCi

is obtained by155

BCi =
∑

s6=i 6=t∈V

σst(i)

σst
(8)

With the sequential algorithm which has been proposed in Brandes (2001), it can be computed in O(|V |+
|E|) space and O(|V ||E|) time.

All these quantities can be obtained using the igraph library for relatively small node networks.

3 Description of the toolbox160

In practice, the reconstruction and analyses of climate networks are carried out through performing a set of sep-

arate tasks, progressively. First, the preprocessing of climate time series occurs, then the correlation matrix is

calculated, followed by network construction from either the correlation matrix or another graph data structure

like an adjacency matrix, and finally the network is analyzed using the selected graph algorithms library. Con-

trary to these sequence of computations, Par@Graph is designed to provide end-to-end support for the creation165

and analysis of climate networks by integrating parallel computing tools to perform all the involved processing

efficiently. With attention at the same time to optimize required computing memory.

Par@Graph is composed of a set of coupled parallel tools designed to leverage the inherited hybrid parallelism

in distributed-memory clusters of multi-core (SMPs) machines, using MPI/OpenMP standards. The provided tools

are classified into two major software modules, which we refer to as the Network Constructor and the Analysis170

Engine, together with additional interfacing tools and wrappers.

3.1 Network Constructor

This module carries out the calculation of the correlation matrix C from the given time series. It also applies

a user defined threshold τ to generate the corresponding network adjacency matrix A. Then it proceeds to the

transformation of the resulted matrix into a network data structure which will later be analyzed by the analysis175

module.

The design of the Constructer follows a master-worker parallel computing paradigm for distributed-memory

parallel clusters of SMPs. The calculation of the correlations between time series is distributed over the computing

elements (workers), forming a ring topology of processes (Fig. 3.1), which communicate between each other using
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Fig. 1: Provided a parallel machine of p proces-

sors, p−1 processes are initialized and assigned

with equal blocks of time series, each block’s set

of time series are correlated, then these blocks

are exchanged (p−1)/2 times (half round of the

ring) between processes to complete the all-to-all

correlations between the whole set of time series.

Conversely, p0 (the master computing element) is

initialized as a master process to gather the result-

ing calculations and perform the analysis tasks on

the resulted network.

MPI standards. As soon as a process finds Cij ≥ τ , then the pair (i,j) is copied to a local process’s buffer of a180

user-configurable size, and sends the iteratively filled buffer to the master p0, where the network is to be analyzed.

Note that if the network is weighted, the value of Cij itself is also copied and sent to the master side by side with

its pair of nodes i and j (and in like manner time-lag values).

A brief description of the processing associated to each ring process is described in Algorithm 1 below.

Algorithm 1 Network Constructor
1: procedure RING PROCESS(p)

2: Nlocal← p’s block of time series

3: Nneighbor← neighbor’s block of time series

4: neighbor(right)← p+1

5: neighbor(left)← p−1

6: preprocessing←remove user specified time cycle

7: performance← reorder time series of Nlocal . for better memory-access

8: local block← cross correlate Nlocal . performed once

9: for i← 0 to (p−1)/2 do . iterate half ring

10: function SEND(Nlocal,neighbor(right)) . send block to a neighbor

11: function RECEIVE(Nneighbor,neighbor(left)) . receive block from another

12: function C(ij,∀i,j ∈Nlocal+Nneighbor)

13: if (Cij >= τ) then

14: if weighted then

15: function SEND→MASTER(i, j, Cij) . time-lag t is also sent to master if needed

16: else

17: function SEND→MASTER(i, j)

18: neighbor(right)← neighbor(right)+1

19: neighbor(left)← neighbor(left)-1

20: return Done

Note that only a subset C̄ ofC, such that ∀C̄ij ∈ C̄,C̄ij ≥ τ , is sent progressively to the master computing element.185
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This indeed means that the under-threshold values of C are discarded directly at each ring process. This reduces

both the amount of data sent to the master element and the memory required there for the construction of the

network.

The process of constructing the network itself is performed progressively in the events that the master (p0)

receives edges’ coordinates (and attributes, e.g. weights/lags) from any ring process. Initially p0, having the190

number of dataset grid points, constructs a completely unconnected network, i.e. no edges between graph vertices.

As soon as ring processes start sending edge coordinates to p0, these edges are added to the network straightaway.

In the long run, constructing the network following this approach results in saving time, since the master is idle

(except when receiving data from workers) during the ring processing iterations. And more importantly, because

the coming edges are added directly to the graph data structure, memory usage is optimized at the master as data195

redundancy is markedly minimized.

With attention to the overall performance, it is crucial not to overlook the I/O overhead, especially because the

toolbox is intended to be processing large climate datasets. To that end, the Constructor is designed to perform

multiple I/O collective operations at the same time (MPI-IO). In like manner, simultaneously, each ring process

reads its chunk of time series from a parallel file system. Furthermore, owing to the fact that the elements of200

those time series are neither read nor stored contiguously, another key point in order to improve performance is

to optimize memory access at each processor. This is provided at each process by performing preprocessing tasks

that include the reordering of each process’s chunk of time series, for the sake of reducing cache misses during

calculation.

3.2 Analysis Engine205

Once correlations and their coordinates are available at the master machine, it consecutively runs graph algo-

rithms to analyze the resulted network. The developed parallel algorithms for network analysis are based on those

in igraph. The intent here is that this design (coupled with the Network Constructor) will achieve three pri-

mary goals:- 1) to construct the network rapidly, 2) to enable efficient and safe multithreading of the core library

algorithms and 3) to reduce memory usage for network representation.210

With respect to the analyzing algorithms, a set of 20 of the core algorithms of igraph have been parallelized

using POSIX threads and OpenMP directives. Generally speaking, the embedded routines of those algorithms (a

sample pseudocode is shown below in (a)), could naively be parallelized by transforming their iterative instruc-

tions into parallel loops, see (b) pseudocode:

while i≤ vertices

do

result(i)←some processing

i← i+1

(a)

#pragma omp parallel for private(i)

for i← 0 to vertices,i← i++

do
{
result(i)←some processing

(b)

For instance, in a global transitivity routine, by which the network’s average clustering coefficient is obtained, the215

value result is scalar (average value), so that parallelism appears straightforward and safe multithreading could be

achieved by applying reduction binary operators over its parallelizable loop. Although this may be approachable
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in similar cases, unfortunately in most routines result’s value does not depend linearly on the iteration variable

i but in some arbitrary way (depending on the algorithm). This is added to the synchronization overhead which

could be imposed in algorithms where dependent iterative operations are found, which need careful consideration220

to prevent conflicts commonly caused by the concurrent access to shared memory spaces.

The parallelized algorithms of igraph are those mostly used to obtain important network metrics needed to

evaluate structural (local and global) properties of graphs. Amongst them are the algorithms of shortest paths,

centrality measures (e.g., betweenness, closeness, eigenvector), transitivity and clustering coefficient, connected

components, degree and strength centralities, entropy and diameter. A complete list of the parallelized routines225

and algorithms as well as the particular approach of parallelism for each would make this paper too technical and

will be reported elsewhere. However, our approach to achieve efficient fine-grained parallelism for the targeted

algorithms of igraph included major changes in their internal routines and the used data structures. For example,

shared memory queues were added to achieve safe multithreading, loops’ iterations were optimized to minimize

synchronization costs, and iterative workload was accordingly designed to be scheduled dynamically amongst230

threads in order to improve load imbalance caused by the poor locality of data. Furthermore, the internal data

structure of the graph itself was modified from indexed edge lists (supported by iterators and internal stacks) to

graph adjacency lists which resulted in achieving significant reduction of memory requirements, especially in the

case of sparse networks.

Additionally, special attention was given to the calculation of both the degree and strength centralities. As such,235

both metrics’ algorithms were redesigned to be computed progressively during the time while the network is being

constructed. In other words, each time the master receives edges from one of the ring processes, these are added to

the accumulated count of the edges that corresponds to their relative vertices. As soon as the last packet of edges

is received by the master, these metrics are instantly available. A notable benefit of this approach, of course apart

from saving time, is the significant reduction of memory requirements, as each time the master receives a new set240

of edges, the previous ones are released. Such technique enables computing machines of rather few gigabytes of

memory to process degree and strength centrality metrics for large-scale networks.

3.3 Interfaces and other features

In order to match a wider range of user requirements, Par@Graph is provided with all the necessary tools to do the

job, including parallel collective tools to write the resulted correlation or mutual information matrices, where each245

ring process writes its calculated portion to a common file in a parallel file system. This is added to other tools

to read (in parallel) and also construct a graph directly from a matrix as well as tools to read and write standard

graph formats, including edge lists, adjacency lists and the popular Pajek format which contains metadata added

to an edge list.

Another key point is the flexible interface between the Constructor and the analysis engine. That is, although250

the toolbox provides wrappers to the parallelized igraph, those are quite flexible to be used with any other anal-

ysis library instead of igraph, or any other user developed routines. Additionally, users are provided with a

configuration input file where they can specify their experimental settings. These include the selection of the

data grid (location coordinates), preprocessing parameters, the threshold (τ ), the type of the network (weighted,
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unweighted, directed, etc), time-lag intervals, whether to construct a network from time series, a matrix or another255

graph format.

4 Application and performance

In this section, we will apply Par@Graph to reconstruct and analyze networks obtained from high-resolution ocean

model data. The motivation for performing these computations is to understand coherence of the ocean circulation

at different scales (Froyland et al., 2014) .260

4.1 The POP model data

The data used here are taken from simulations which were performed with the Parallel Ocean Program (POP,

Dukowicz and Smith, 1994), developed at Los Alamos National Laboratory. This configuration has a nominal

horizontal resolution of 0.1◦ and is the same as that used by Maltrud et al. (2010). We note that this configuration

has a tripolar grid layout, with poles in Canada and Russia and the model has 42 non-equidistant z-levels, increas-265

ing in thickness from 10 m just below the upper boundary to 250 m just above the lower boundary at 6000 m

depth. We use data from the control simulation of this model as described in Weijer et al. (2012), where the POP

is forced with a repeated annual cycle from the (normal-year) Coordinated Ocean Reference Experiment (CORE4)

forcing dataset (Large and Yeager, 2004), with the 6-hourly forcing averaged to monthly.

Correlation networks were built from one year (year 136 of the control run) of the simulated global daily sea270

surface height (SSH) data. The seasonal cycle was removed by subtracting for each day of the year its 5 days

running mean averaged over years 131 to 141. The mean and standard deviation of the SSH for this year are

plotted in Fig. 2a and Fig. 2b, respectively. Strong spatial and temporal variability can be observed in the region

of the western boundary currents (e.g. the Gulf Stream in the Atlantic, the Kuroshio in the Pacific and the Agulhas

Current in the Indian Ocean) and the Southern Ocean.

(a) (b)

Fig. 2: Mean (a) and standard-deviation (b) of the daily SSH (units in cm) for year 136 of the POP control run as in Weijer

et al. (2012).

275

Two datasets have been used for network reconstruction, one with the actual 0.1◦ horizontal resolution of the

model, resulting in 4.7×106 grid points, and an interpolated one with a lower 0.4◦ horizontal resolution resulting
4see http://www.clivar.org/clivar-panels/omdp/core-2
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in 3×105 grid points. The latter data set has been used for the performance analysis in the next subsection.

4.2 Performance analysis

The results were computed on a bullx supercomputer 5 composed of multiple ”fat” computing nodes of 4-socket280

bullx R428 E3 each, having 8-core 2.7 GHz Intel Xeon E5-4650 (Sandy Bridge) CPUs, with a shared Intel smart

cache of 20 MB at each socket, resulting in SMP nodes of 32 cores which share 256 GB of memory. The

interconnection between those ”fat” nodes is built on InfiniBand technology providing 56 Gbits/s of inter-node

bandwidth. The same technology is used to connect the nodes to a Lustre parallel file system of 48 OSTs each

with multiple disks.285

First experiments were performed to construct weighted Pearson correlation networks from the 0.4◦ POP grid,

having 300842 grid points. Different edge densities (see Table 1) were obtained as a result of applying different

threshold values τ for the link definition. The parallel speedup of the toolbox and the corresponding computational

time are plotted in Fig. 3a and Fig. 3b, respectively.

Network POP τ Vertices Edges

1 0.4◦ 0.7 3.0×105 3.2×108

2 0.4◦ 0.6 3.0×105 1.5×109

3 0.4◦ 0.5 3.0×105 2.7×109

4 0.1◦ 0.4 4.7×106 1.4×1012

Table 1: Different threshold values τ used in the reconstruction of Pearson Correlation networks from the 0.4◦ and 0.1◦ POP

datasets and corresponding number of network vertices and edges.

The execution time falls nearly super linearly with the number of processors up to 100. Moreover, the perfor-290

mance becomes strongly super linear for τ > 0.5 as the number of processors increases. This super linearity is due

to a reduction in cache misses at each processor’s cache (note that 20 MB of cache are shared among each 8 cores)

as less time series are needed to fit in those shared caches when more cores are implied. In a further analysis, we

also observed that the reordering of input time series did improve the performance of the toolbox, mainly when the

number of processors was less than 100. In the case of τ = 0.5, performance drops with larger system sizes. First295

thing to remember here is that regardless of the value of the applied τ , the all-to-all correlations are calculated

amongst the ring processes. However, the only difference when different values of τ are applied is the amount

of data (edges, weights/attributes) which is sent to the master processor, as they will be more when lower values

of τ are applied. That is to say that in such cases, communication overhead hinders the overall performance.

The timing for both the parallel reading and the reordering of time series is comparatively constant and pointless300

compared to the overall execution time, regardless of the number of processors, as shown in Fig. 4.

Results of the performance tests to determine the six network properties as discussed in section 2.2 are shown

in Fig. 5. Although there are some differences in the performance gain in each of the algorithms, a general

improvement is achieved by our fine-grained parallel implementation over the sequential igraph algorithms.

5see https://surfsara.nl/systems/cartesius
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(a) Speedup (b) Execution time corresponding to (a)

Fig. 3: Speedup ratio (a) for the parallel construction of SSH climate networks from the POP model data having 0.4◦ spatial

resolution. The shown speedup also includes the parallel reading and reordering of the input time series. The corresponding

execution times (in seconds) over different sizes of computing processors starting from 5 processors upwards is given in (b).

(a) (b)

Fig. 4: In (a) the overall runtime of the experiment in Fig. 3b (for τ = 0.5) is shown in the upper curve and compared to

the time for parallel reading and reordering of time series (the lower curve). The shaded area corresponds to real cpu time

for the calculation of the correlation matrix and the communication between processors. Both times for parallel reading and

reordering preprocessing tasks are shown respectively in (b).
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(a) clustering coefficient (b) entropy

(c) degree centrality (d) strength centrality

(e) eigenvector centrality (f) betweenness

Fig. 5: Performance of the parallel algorithms running on a single SMP bullx node of 30 compute cores. The speedup ratios

correspond to the analysis of the networks 1-3 presented in Table 1.
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In some algorithms, like the clustering coefficient, parallel performance seems more sensitive to the density305

of the network, whereas in others like the degree centrality, performance remains intact. However, although an

evident performance gain is observed here, one has to remember that the performance of the vast majority of

network analyzing algorithms is highly dependent on the topology of the network itself, and thus, further study

should be carried out to compare results for different types of networks.

In view of memory requirements, we show in Table 2 a comparison of the needed memory to represent an edge310

(for different types of networks) when using igraph’s data structures with Par@Graph’s adjacency list. Indeed,

the presented networks constructed by our toolbox, as a result of changing the internal data structure, are at least

60% lighter in size compared to their size in memory when using the original data structures of igraph.

bytes / edge in igraph

weighted unweighted

directed 40 32

undirected 40 32

bytes / edge in Par@Graph

weighted unweighted

8 4

16 8

Table 2: A single edge’s size in memory when using the indexed edge list used in igraph compared to its corresponding size

when applying Par@Graph. Additionally, a vertex in igraph is represented by 16 bytes in memory, whereas it needs only 4

bytes in Par@Graph.

Similar performance results were obtained for tests using the much larger correlation networks from the 0.1◦

POP grid, resulting in networks of 4.7×106 nodes and edges ranging from 1.5×1010 to 1.4×1012 for thresh-315

olds from 0.8 to 0.4, respectively. Excluding however the performance for betweenness centrality and clustering

coefficient algorithms for the network of 1.4×1012 which have not been performed. In summary, it is possible to

construct large-scale climate networks in quite reasonable times on modest parallel computing platforms.

4.3 Coherence of global sea level

Being able to reconstruct and analyze the large complex networks arising from the POP ocean model, we now320

shortly demonstrate the novel results one can obtain. One of the important questions in physical oceanography

deals with the coherence of the global ocean circulation. In low-resolution (non-eddying) ocean models, the flows

appear quite coherent with near steady currents filling the ocean basins. However, as soon as eddies are represented

when the spatial resolution is smaller than the internal Rossby radius of deformation, a fast decorrelation is seen

in the flow field.325

The issue of coherence has for example been tackled by looking at the eigenvalues of the transfer matrix (Dell-

nitz et al., 2009; Froyland et al., 2014) but also complex networks are very suited to address this question (Tantet

and Dijkstra, 2014). Preliminary results on some of the important properties (degree, clustering and betweenness)

of the complex network derived from the SSH data of the 0.4◦ POP simulation are shown in Fig. 6a-c. In all cases,

a weighted, undirected network was constructed by using the Pearson correlation with zero lag and a threshold330

value τ = 0.5.
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(a) (b)

(c) (d)

Fig. 6: (a) Degree, (b) Clustering and (c) Betweenness for the SSH POP data interpolated on the 0.4◦ grid and a threshold of

τ =0.5. (d) Degree field for the 0.1◦ grid and a threshold τ =0.4; here the reconstructed network has 4.7×106 nodes and

1.4×1012 edges.

In Fig. 6d, the degree field for the network constructed with τ = 0.4 from the 0.1◦ POP SSH data is shown. The

overall features of the degree field for the 0.1◦ POP data are already found in the degree field for the 0.4◦ POP

data, but additional small-scale correlations can be distinguished.

The precise physical interpretation of these metrics is outside the scope of this paper as it requires a background335

in dynamical oceanography. However, one can observe that the subtropical gyres (Dellnitz et al., 2009; Froyland

et al., 2014) tend to have a large degree while the regions of the western boundary currents, equator and southern

ocean tend to have smaller degree.

5 Summary and conclusions

Up to now, the data sets (both observational and model based) used to reconstruct and analyze climate networks340

have been relatively small due to computational limitations. In this paper we presented the new parallel software

toolbox Par@Graph to construct and analyze large-scale complex networks. The software exposes parallelism

on distributed-memory computing platforms to enable the construction of massive networks from a large number

of time series based on the calculation of common statistical similarity measures between them. Additionally,

Par@Graph is provided with a set of parallel graph algorithms to enable fast calculation of important properties345

of the generated networks on SMPs. These include those of the betweenness, closeness, eigenvector and degree

centralities. Besides the algorithms needed for the calculation of transitivity, connected components, entropy

and diameter. Additionally, a parallel implementation of a community detection algorithm based on modularity

optimization (Blondel et al., 2008) is provided.
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The capabilities of Par@Graph were shown by using sea surface height data of a strongly eddying ocean model350

(POP). The resulting networks had number of nodes ranging from 3.0×105 to 4.7×106, with the number of

edges ranging from 3.2×108 to 1.4×1012. The performance of Par@Graph showed excellent parallel speedup

in the construction of massive networks, especially when higher thresholds were applied. When lower values of

τ were used, communication overhead was seen to decrease the performance. On the other hand, we observed

a significant speed gain in the calculation of the discussed network characteristics which were obtained by our355

parallel implementation of igraph.

With regards to the challenging issue of memory requirements in order to compute such big networks, we

showed that the presented toolbox notably optimizes the usage of memory during the reconstruction of large-scale

networks by minimizing the accompanying data redundancy. Additionally, the resulted networks themselves are

markedly lighter in size compared to their equivalents in igraph as a result of changing the data structures from360

indexed edge lists to adjacency lists.

The availability of Par@Graph will allow to solve a new set of questions in climate research one of which,

the coherence of the ocean circulation at different scales, was shortly discussed in this paper. Apart from higher

resolution data sets of one observable, it will now also be possible to deal with data sets of several variables and to

more efficiently reconstruct and analyze networks of networks (Berezin et al., 2012). However, apart from climate365

research, Par@Graph will also be very useful for all fields of science where very large-scale networks are applied,

and it is hoped that the toolbox will find its way into the complexity science community.

Code availability

Par@Graph is not yet provided with a license. For the time being, source code will be available from authors upon

request. Authors will also provide support in the initial software installation and setup.370
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