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Abstract 10 

Large uncertainties exist in estimated rates and the extent of soil erosion by surface runoff on a 11 

global scale. This limits our understanding of the global impact that soil erosion might have on 12 

agriculture and climate. The Revised Universal Soil Loss Equation (RUSLE) model is due to its 13 

simple structure and empirical basis, a frequently used tool in estimating average annual soil 14 

erosion rates at regional to global scales. However, large spatial scale applications often rely on 15 

coarse data input, which is not compatible with the local scale on which the model is 16 

parameterized. Our study aims at providing the first steps in improving the global applicability of 17 

the RUSLE model in order to derive more accurate global soil erosion rates.  18 

We adjusted the topographical and rainfall erosivity factors of the RUSLE model and compared 19 

the resulting erosion rates to extensive empirical databases from the USA and Europe. By scaling 20 

the slope according to the fractal method to adjust the topographical factor, we managed to 21 

improve the topographical detail in a coarse resolution global digital elevation model.  22 

Applying the linear multiple regression method to adjust rainfall erosivity for various climate 23 

zones, resulted in values that compared well to high resolution erosivity data for different 24 

regions. However, this method needs to be extended to tropical climates, for which erosivity is 25 

biased due to the lack of high resolution erosivity data. 26 
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After applying the adjusted and the unadjusted versions of the RUSLE model on a global scale 27 

we find that the adjusted version shows a global higher mean erosion rate and more variability in 28 

the erosion rates. Comparison to empirical datasets of the USA and Europe shows that the 29 

adjusted RUSLE model is able to decrease the very high erosion rates in hilly regions that are 30 

observed in the unadjusted RUSLE model results. Although there are still some regional 31 

differences with the empirical databases, the results indicate that the methods used here seem to 32 

be a promising tool in improving the applicability of the RUSLE model on a coarse resolution on 33 

global scale. 34 

 35 

1 Introduction 36 

For the last centuries to millennia soil erosion by surface runoff is being accelerated globally due 37 

to human activities, such as deforestation and agricultural practices (Bork and Lang, 2003). 38 

Accelerated soil erosion is a process that triggers land degradation in the form of nutrient loss, a 39 

decrease in the effective root depth, water imbalance in the root zone and finally also 40 

productivity reduction (Yang et al., 2003). It is widely recognized that soil erosion has been a 41 

major threat to sustainable agriculture and food production across the globe since the start of 42 

agricultural activities (UNCCD, 2012, Walling, 2009). These effects of soil erosion are currently 43 

exacerbated by the global population growth and climatic changes. Organizations such as the 44 

United Nations Convention to Combat Desertification (UNCCD) try to address this problem by 45 

stating a new goal for Rio +20 of zero land degradation (UNCCD, 2012).  46 

Another aspect underpinning the relevance of soil erosion on the global scale is the effect of 47 

erosion on global nutrient cycles. Recently, the biogeochemical components of Earth System 48 

Models (ESMs) became increasingly important in predicting the global future climate (Thornton 49 

et al., 2007, Goll et al., 2012). Not only the global carbon cycle but also other nutrient cycles 50 

such as the nitrogen and phosphorous cycles cannot be neglected in ESMs anymore (Goll et 51 

al.,2012, Gruber and Galloway, 2008, Reich et al., 2006). Soil erosion may have a significant 52 

impact on these biogeochemical cycles through lateral fluxes of sediment, but the impact on the 53 

global scale is still largely unknown. For example, Quinton et al. (2010) showed that erosion can 54 

significantly alter the nutrient and carbon cycling and result in lateral fluxes of nutrients that are 55 

similar in magnitude as fluxes induced by fertilizer application and crop removal. Regnier et al. 56 
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(2013) looked at the effect of human induced lateral fluxes of carbon from land to ocean and 57 

concluded that human perturbations, which include soil erosion, may have enhanced the carbon 58 

export from soils to inland waters.  59 

In general, the effect of soil erosion on the global carbon cycle has received considerable 60 

attention after the pioneering work of Stallard (1998), who proposed that global soil erosion can 61 

result in sequestration of carbon by soils. After his work, the effect of soil erosion on the carbon 62 

cycle has been studied extensively, but there remains a large uncertainty in the effect of soil 63 

erosion on the carbon cycle. For example, several recent global assessments of the influence of 64 

soil erosion on the carbon cycle indicate a large uncertainty with a range from a source of 0.37 to 65 

1 Pg C year
-1

 to a net uptake or sink of 0.56 to 1 Pg C year
-1

 (van Oost et al., 2007). Thus, in 66 

order to better constrain the global carbon budget and to identify optimal management strategies 67 

for land use, it is essential to have accurate estimates of soil erosion and its variability on a 68 

global scale.  69 

Currently, there exists a large uncertainty in the global soil erosion rates as can be seen from 70 

recent studies that show rates between 20 and 200 Pg year
-1

 (Doetterl et al., 2012). This indicates 71 

that modelling soil erosion on a global scale is still a difficult task due to the very high spatial 72 

and temporal variability of soil erosion. Different approaches were previously applied to estimate 73 

soil erosion on a large or global scale. Most of these approaches are based on extrapolated data 74 

from agricultural plots, sediment yield or extrapolated river sediment estimates (Milliman and 75 

Syvitski, 1992, Stallard, 1998, Lal, 2003, Hooke, 2000, Pimentel et al.,1995, Wilkinson and 76 

McElroy, 2007).  77 

An alternative approach is based on the use of soil erosion models, in order to be able to predict 78 

soil erosion rates for the past and future. One of the most applied models to estimate soil erosion 79 

on a large spatial scale is the semi-empirical/process-based Revised Universal Soil Loss 80 

Equation (RUSLE) model (Renard et al., 1997). This model stems from the original Universal 81 

Soil Loss Equation (USLE) model developed by USDA (USA Department of Agriculture), 82 

which is based on a large set of experiments on soil loss due to water erosion from agricultural 83 

plots in the United States (USA). These experiments covered a large variety of agricultural 84 

practices, soil types and climatic conditions, making it a potentially suitable tool on a regional to 85 

global scale. The RUSLE model predicts the average annual soil erosion rates by rainfall and is 86 
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formulated as a product of a rainfall erosivity factor (R), a slope steepness factor (S), a slope 87 

length factor (L), a soil erodibility factor (K), a land cover factor (C) and a support practice factor 88 

(P). The RUSLE model was first applied on a global scale by Yang et al. (2003) and Ito (2007) 89 

for estimating the global soil erosion potential. Various limitations were observed when applying 90 

this model on global scale. Firstly, the model is originally developed to be applicable on the 91 

agricultural plot scale. This makes the model incompatible with the coarse spatial scale of global 92 

datasets on soil erosion influencing factors such as precipitation, elevation, land-use and soil 93 

characteristics. Secondly, the RUSLE and USLE models were parameterized for environmental 94 

conditions of the United States (USA), and are thus not directly applicable to other areas in the 95 

world. Thirdly, only sheet and rill erosion are considered. Finally, the RUSLE model does not 96 

contain sediment deposition and sediment transport terms, which are closely linked to soil 97 

erosion.  98 

However, the RUSLE model is to our knowledge one of the few erosion models that has the 99 

potential to be applied on a global scale due to its simple structure and empirical basis. 100 

Therefore, it is of key importance to address the above mentioned limitations first.   101 

To address the first two limitations, Van Oost et al. (2007) presented in their work a modified 102 

version of the USLE model for application on agricultural areas on global scale. They based their 103 

model on large-scale experimental soil erosion data from the USA (National Resource Inventory, 104 

NRI database, USDA, 2000) and Europe, by deriving reference factors for soil erosion on 105 

agricultural land, and for certain USLE parameters. They also introduced a procedure to scale 106 

slope, which is an important parameter in the topographical factors S and L of the USLE/RUSLE 107 

model. In this scaling procedure slope was scaled from the GTOPO30 1km resolution digital 108 

elevation model (USGS, 1996) to the coarser resolution of the erosion model. This method was 109 

based on high resolution OS Ordnance (10 m resolution) and SRTM data on elevation (90 m 110 

resolution, International Centre for Tropical Agriculture, CIAT) for England and Wales.  111 

Doetterl et al. (2012) showed that together with the S factor, the rainfall erosivity or R factor 112 

explain up to 75 % of the erosion variability across agricultural areas at the large watershed 113 

scale. These factors represent the triggers for soil erosion by providing energy for soil to erode. 114 

They can also be seen as the natural components of the RUSLE model, as they include very little 115 

or no modification by human activities (Angulo-Martínez et al., 2009) apart from indirect effects 116 
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on precipitation and extreme events due to anthropogenic climate change. In this way they 117 

represent the natural environmental constraints to soil erosion that are important to capture 118 

before the effect of human activities on soil erosion through land use change can be investigated.  119 

Previous studies on global soil erosion calculated the global R factor based on the total annual 120 

precipitation (Renard and Freimund, 1994). This method is different from the method presented 121 

in the original RUSLE model (Renard et al., 1997), which is mainly based on 30 minute 122 

precipitation intensity. The reason for the method of Renard and Freimund is the lack of high 123 

resolution precipitation intensity on a global scale. However, high resolution precipitation 124 

intensity is an important explaining parameter of the R factor and therefore, the applicability of 125 

the method of Renard and Freimund is limited. 126 

The overall objective of our study is to extend the applicability of the RUSLE model to a coarse 127 

resolution at global scale, in order to make the model compatible with ESMs. This would enable 128 

future studies on the effects of soil erosion for the past, current and future climate. To this end, 129 

we develop generally applicable methods that improve the estimation of slope and climatic 130 

factors from coarse resolution global datasets. These methods should not only be applicable 131 

across agricultural areas as in the studies of Van Oost et al. (2007) and Doetterl et al. (2012), but 132 

also across non-agricultural areas. We adjust the S factor to the coarse resolution of the global 133 

scale based on the scaling of slope according to the fractal method. The adjustment of the R 134 

factor to the global scale is based on globally applicable regression equations. We derived these 135 

regression equations for different climate zones based on parameters for precipitation, elevation 136 

and the simple precipitation intensity. This approach is validated using several high resolution 137 

datasets on the R factor. Finally, the effects of these adjustments of both factors on global soil 138 

erosion rates are investigated separately and tested against independent estimates of soil erosion 139 

from high resolution and high precision datasets of Europe and the USA. 140 

 141 

2.  Adjustment of the topographical factor 142 

2.1 Scaling slope according to the fractal method 143 

The topographical factors of RUSLE are the slope steepness factor (S) and a slope length factor 144 

(L). The S factor is generally computed by the continuous function of Nearing (1997): 145 
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S=1.5+
17

1+e(2.3-6.1* sin θ)
                      (1) 146 

And the L factor is computed according to Renard et al. (1997): 147 

L=(
l

22.13
)
m

                             (2) 148 

where:  m=
F

1+F
 and  F= 

(sin θ/0.0896)

(3*(sin θ)0.8+0.56)
                   (3) 149 

in which θ is the slope and l is the slope length in meters. 150 

As seen in the equations 1 to 3, slope is a crucial parameter and thus an accurate estimation is 151 

essential in deriving accurate estimates of the L and S factors and soil erosion rates. For an 152 

accurate estimation of the slope, input elevation data from digital elevation models (DEMs) 153 

should capture the detailed spatial variability in elevation. However, global DEMs are often too 154 

coarse to capture the detailed topography because of the surface smoothening effect. To account 155 

for this problem it is assumed that topography is fractal. Following Klinkenberg and Goodchild 156 

(1992) and Zhang et al. (1999), slope can be expressed as a function of the spatial scale by 157 

applying the variogram equation. The variogram equation is used to approximate the fractal 158 

dimension of topography and is expressed as follows: 159 

(Zp-Zq)
2
=k d pq

 4-2D
                 (4) 160 

so that: 161 

|Zp-Zq|

dpq
=α d pq

 1-D
                  (5) 162 

where 𝑍𝑝 and 𝑍𝑞 are the elevations at points p and q, dpq is the distance between p and q, k is a 163 

constant, α = k
0.5

, and D is the fractal dimension. Because the left side of Eq. (5) represents the 164 

slope, it can be assumed that the slope (θ) is related to the spatial scale or the grid size (d) in: 165 

θ= α d 1-D
                  (6) 166 

This result implies that by calculating the fractal properties (D and α) Eq. (6) can be used to 167 

calculate slope at any specified d. The local fractal dimension (D) describes the roughness of the 168 

topography while the local value of α is related to the concept of lacunarity, which is a measure 169 

of the size of “gaps” (valleys and plains) in the topography (Zhang et al., 2002). To estimate the 170 

spatial variations of D and α, Zhang et al. (1999) proposed to relate these parameters to the 171 



7 
 

standard deviation of elevation. Hereby it is assumed that the standard deviation of elevation 172 

does not change much with the DEM resolution. D is then calculated as a function of the 173 

standard deviation (σ) in a 3 x 3 pixels moving window, as proposed by Zhang et al. (1999): 174 

D=1.13589+0.08452 ln σ                (7) 175 

To estimate α we used the modified approach by Pradhan et al. (2006). They derived α directly 176 

from the steepest slope in a 3 x 3 pixels moving window, called αsteepest in the following. Having 177 

obtained αsteepest and D from a grid at a given resolution, the scaled slope (θscaled) for a target grid 178 

resolution (dscaled) is obtained by: 179 

θscaled=α steepest d scaled
 1-D

                 (8) 180 

Pradhan et al. (2006) also showed that in their case study the ideal target resolution for 181 

downscaling slope was 150 m. This is due to the breakdown of the unifractal concept at very fine 182 

scales, which was shown to happen at a scale of 50 m. Altogether, this fractal method shows that 183 

a high resolution slope can be obtained from a low resolution DEM as is needed by the RUSLE 184 

model.   185 

 186 

2.2 Application of the fractal method on global scale 187 

In this study, we investigate the performance of the fractal method on a global scale using 188 

different global DEMs as a starting point. The target resolution of downscaling is put to 150 m 189 

(about 5 arc-second) according to Pradhan et al. (2006). It should be noted that the spatial scale 190 

on which the original RUSLE and USLE models are operating, is usually between 10 and 100 m, 191 

which indicates that the 150 m target resolution may be still too coarse for a correct 192 

representation of slope. The DEMs that are used here are given in Table 1. 193 

As reported in previous studies (Zhang et al., 1999, Chang and Tsai, 1991, Zhang and 194 

Montgomery, 1994), the average slope decreases with decreasing DEM resolution. This confirms 195 

the expectation of loss of detail in topography at lower DEM resolutions. A large difference is 196 

found between the unscaled global average slope from the 5 arc-minute and the 30 arc-second 197 

DEMs, which is in the order of 0.017 m m
-1

 or 74 % (Table 2). After applying the fractal 198 

method, the scaled slopes at 150 m target resolution from all DEMs all increased significantly 199 



8 
 

compared to the unscaled slopes (Fig. 1). However, there is still a difference of about 0.05 m m
-1

 200 

or 8.5 % between the scaled slopes from the 5 arc-minute and the 30 arc-second DEMs (Table 201 

2). This difference can be attributed to several factors. One factor could be the underlying 202 

assumption that the standard deviation of elevation (σ) is independent of the DEM resolution. 203 

Although σ does not change much when considering different resolutions, there is still a general 204 

decrease in mean global σ when going from the 5 arc-minute to the 30 arc-second DEM (Table 205 

2). Due to the dependence of the fractal dimension (D) on σ (Zhang et al., 1999), a decrease of σ 206 

leads to a decrease in D and therefore an increase in the scaled slope. Other factors that could 207 

play a role here are the dependence of αsteepest on the steepest slope, and the breakdown of the 208 

fractal method at certain scales and in certain environments. Zhang et al. (1999) mentioned that 209 

the scaling properties of slope are affected in very coarse resolution DEMs if σ changes 210 

considerably. On the other hand, Pradhan et al. (2006) mentioned the breakdown of the fractal 211 

method at very fine scales. This can indicate that the 150 m target resolution is not appropriate 212 

for some topographically complex regions in the world or, as addressed by Zhang et al. (1999), 213 

the DEMs used in this study are too coarse to scale down the slope to 150 m accurately for these 214 

regions.  215 

After applying the fractal method on a 30 arc-second resolution DEM, the scaled slope shows a 216 

clear increase in detail, while the unscaled slope shows a strong smoothening effect (Fig. 2A and 217 

2B). It is found that after scaling the slope values range from 0 to 85 degrees and are less than 2 218 

degrees in 80 % of the area. In contrast, all slope values are less than 45 degrees and range 219 

between 0 and 2 degrees in 89 % of this area when slope is computed directly from the 30 arc-220 

second DEM.  221 

The scaled slope from the 30 arc-second DEM will be used in this study to estimate the global 222 

soil erosion rates by the RUSLE model.  223 

 224 

3. Adjustment of the rainfall erosivity factor 225 

3.1 The approach by Renard and Freimund (1994) 226 

Rainfall erosivity (R factor) is described by Hudson (1971) and Wischmeier and Smith (1978) as 227 

the result of the transfer of kinetic energy of raindrops to the soil surface. This causes a 228 
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detachment of soil and the downslope transport of the soil particles, depending on the amount of 229 

energy, rainfall intensity, soil type and cover, topography and management (Da Silva, 2004). The 230 

original method of calculating erosivity is described by Wischmeier and Smith (1978) and 231 

Renard et al. (1997) as: 232 

R= 
1

n
* ∑ ∑ (EI

30
)
k

𝑚𝑗

k=1
n
j=1                      (9) 233 

where n is the number of years of records, mj is the number of storms of a given year j, and EI30 234 

is the rainfall erosivity index of a storm k. The event’s rainfall erosivity index EI30 (MJ mm ha
-1

 235 

hour
-1

) is defined as: 236 

EI30=I30* ∑ ervr
m
r=1                    (10)  237 

where er and vr are, respectively, the unit rainfall energy (MJ ha
-1

 mm
-1

) and the rainfall depth 238 

(mm) during a time period r, and I30 is the maximum rainfall intensity during a time period of 30 239 

minutes (mm hour
-1

). The unit rainfall energy, er, is calculated for each time period as: 240 

er=0.29*(1-0.72*e-0.05*ir)               (11) 241 

where ir is the rainfall intensity during the time period (mm hour
-1

).  242 

The information needed to calculate the R factor according to the method of Wischmeier and 243 

Smith (1978) is difficult to obtain on a large spatial scale or in remote areas. Therefore, different 244 

studies have been done on deriving regression equations for the R factor (Angulo-Martinez et al., 245 

2009, Meusburger et al., 2012, Goovaerts, 1999, Diodato and Bellocchi, 2010). Most of these 246 

studies, however, concentrate on a specific area and can therefore not be implemented on the 247 

global scale. Studies on global soil erosion estimation by the RUSLE model or a modified 248 

version of it (Doetterl et al., 2012, van Oost et al., 2007, Montgomery, 2007, Yang et al., 2003) 249 

have all used the method of Renard and Freimund (1994). Renard and Freimund related the R 250 

factor to the total annual precipitation based on erosivity data available for 155 stations in the 251 

USA, shown in the following equations: 252 

R=0.0483*P1.61,  P <= 850 mm 253 

R=587.8-1.219*P+0.004105*P2, P > 850 mm           (12) 254 
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To test how this method performs globally, we calculated the R factor according to the method of 255 

Renard and Freimund (Eq. 12) first. Here we used the 0.25 degree resolution annual precipitation 256 

data from the Global Precipitation Climatology Center (GPCC) product (Table 1). Then, we 257 

selected three regions to validate the resulting R values and their variability: the USA (EPA, 258 

2001), Switzerland (Meusburger et al., 2011), and the Ebro basin in Spain (Angulo-Martinez et 259 

al., 2009). For these regions high resolution erosivity data are available obtained from 260 

pluviographic data from local meteorological stations across the whole region. 261 

Figure 3 shows that the R values computed with the Renard and Freimund method strongly 262 

overestimate R when compared to the high resolution R data of the selected regions. For the USA 263 

the R factor of Renard and Freimund shows an overall overestimation for western USA and for a 264 

large part of eastern USA when compared to the high resolution R (Table 7 and Fig. 3A). 265 

Especially a strong overestimation is seen for the north-west coast of the USA. This region is 266 

known to have complex rainfall patterns due to the presence of mountains and high local 267 

precipitation intensities with frequent snow fall (Cooper, 2011). It should be noted that the USA 268 

is not a completely suited case study for testing the R values computed with the Renard and 269 

Freimund method, as this method is based on climate data from stations in the USA. The 270 

available high resolution or observed data on the R factor from Switzerland and the Ebro basin 271 

are better suited for an independent validation.  272 

For Switzerland, which has a complex precipitation variability influenced by the relief of the 273 

Alps (Meusburger et al., 2012), the R factor of Renard and Freimund shows a strong overall 274 

overestimation when compared to the high resolution R values (Table 7 and Fig. 3B). For the 275 

Ebro basin located in Spain, the observed R data were available for the period 1997-2006 from 276 

Angulo-Martinez et al., 2009. Also here the method of Renard and Freimund overestimates the R 277 

factor and is not able to reproduce the high spatial variability of the R data (Table 7 and Fig. 3C). 278 

 279 

3.2 The linear multiple regression approach using environmental factors 280 

To better represent the R factor on a global scale, the R estimation was based on the updated 281 

Köppen-Geiger climate classification (Table 3 and Fig. 4). The Köppen-Geiger climate 282 

classification is a global climate classification and is based on the vegetation distribution 283 

connected to annual cycles of precipitation and temperature (Lohmann et al., 1993). The reason 284 
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for this approach is that this classification system includes annual cycles of precipitation and is 285 

thus indirectly related to precipitation intensity. Based on this, it is possible to derive regression 286 

equations for the R factor that are applicable for each individual climate zone of the 287 

classification. This provides a basis to calculate the R factor with coarse resolution data on a 288 

global scale.  289 

As a basis for deriving the regression equations for the R factor we used high resolution R maps 290 

of the USA from EPA (2001). The USA covers most of the world’s climate zones and is also the 291 

largest region with available high resolution R data. Linear multiple regression was used to 292 

adjust R:  293 

log(R
i
)=β

0
+ ∑ 𝛽𝑖𝑗

∗ log (𝑋𝑖𝑗
)𝑛

𝑗=1 +εi, for i = 1, 2,…., n         (13) 294 

where X is the independent explanatory variable, j is the number of explanatory variables, β is a 295 

constant and ε is the residual.  296 

The regression operates on one or more of the following parameters (Xj): total annual 297 

precipitation (GPCC 0.25 degree product), mean elevation (ETOPO 5 DEM), and the simple 298 

precipitation intensity index, SDII. It should be mentioned that the SDII was only available on a 299 

very coarse resolution of 2.5 degree resolution for certain regions on earth, such as parts of 300 

Europe and the USA. The SDII is calculated as the daily precipitation amount on wet days (>= 1 301 

mm) in a certain time period divided by the number of wet days in that period. Previous studies 302 

that performed regression of R showed that precipitation and elevation were in most cases the 303 

only explanatory variables (Meusburger et al., 2012, Mikhailova et al., 1997, Goovaerts, 1999, 304 

Diodato and Bellocchi, 2010, Angulo-Martinez et al., 2009). Here, we added to the regression 305 

the SDII as it is a simple representation of precipitation intensity, which is an important 306 

explaining variable of the R factor. The precipitation and SDII datasets were rescaled to a 5 arc-307 

minute resolution (corresponding to 0.0833 degree resolution) to match the Köppen-Geiger 308 

climate classification data that was available at the resolution of 6 arc-minute (corresponding to 309 

0.1 degree).  310 

Furthermore, high resolution erosivity data from Switzerland (Meusburger et al., 2011) and 311 

annual precipitation from the GPCC 0.5 degree product were used to derive the regression 312 

equations for the R factor for the polar (E) climate zones. These climate zones are not present in 313 

the USA. For the rest of the climate zones that are not present in the USA it was difficult to 314 
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obtain high resolution erosivity data. Therefore, we maintained the method of Renard and 315 

Freimund for those climate zones to calculate erosivity. Also, we kept the R factor of the Renard 316 

and Freimund method if no clear improvement of the R factor was found when using the new 317 

regression equations for a specific climate zone. Here, we mainly used the r
2
 combined with the 318 

residual standard error to evaluate if the new regression equations showed a clear improvement 319 

in the R factor. The Renard and Freimund R factors where kept for the hot arid climate zone 320 

(BWh) and the temperate climate zone with a hot summer (Csa) in the USA.  These are just two 321 

climate zones out of the 17 evaluated ones, which show that the Renard and Freimun method 322 

performs as good as or slightly better than the regression method. All datasets for deriving the R 323 

factor are described in Table 1.  324 

 325 

3.3 Application of the linear multiple regression method on a global scale 326 

Tables 4 and 5 show the resulting regression equations for climate zones for which we found 327 

initially a low correlation between the R values calculated by the method of Renard and 328 

Freimund and the high resolution R values from EPA (2001) and Meusburger et al. (2011). 329 

Figure 5 shows for each addressed climate zone how the method of Renard and Freimund and 330 

the new regression equations compare to the high resolution R of the USA. For the cold climate 331 

zones with a dry summer (Ds) the new regression equations show only a slight improvement as 332 

compared to the method of Renard and Freimund. Also for the polar climate zones (E) the new 333 

regression equations still show a significant bias. However, they perform much better compared 334 

to the method of Renard and Freimund. For most of the addressed climate zones the simple 335 

precipitation intensity index (SDII) explains a large part of the variability in the R factor. The 336 

elevation plays a smaller role here. Elevation can be an important explaining variable in regions 337 

with a high elevation variability, which then affects the precipitation intensity.  338 

From Table 4 and Table 6 it can be concluded that the R factor in climate zones without a dry 339 

season (f), can be easily explained by the total annual precipitation and the SDII. Dry climate 340 

zones, especially dry summer climate zones showed a weaker correlation. This is most probably 341 

due to the fact that the SDII is too coarse to explain the variability in the low precipitation 342 

intensity in the summer. It is also interesting to see that even though the SDII was derived from a 343 
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very coarse resolution dataset, it turned out to be still important for deriving more accurate R 344 

values.  345 

We also show for each addressed climate zone a comparison of the newly computed average R 346 

factor with the average high resolution R factor, and the uncertainty range (Table 6). The 347 

uncertainty range was computed by taking into account the standard deviation of each of the 348 

parameters in the regression equations. As mentioned before, the polar climate zones (E) showed 349 

the largest uncertainty range. The new regression equations significantly improved the R values 350 

and spatial variability in the western USA, and lead to an average R factor that was closer to the 351 

data mean (Table 7 and Fig. 6A). Although the new regression equations show a bias for the 352 

polar climate zones (E) (the minimum and maximum R values are not captured), the resulting 353 

mean R values for Switzerland show a strong improvement (Table 7 and Fig. 6B).  354 

Furthermore, the variability in the estimated R factor compares well with the variability of the 355 

high resolution R factor. It should be noted that Switzerland is not an independent case study for 356 

the polar climate zones (E), as the high resolution R values from this case study were used in our 357 

regression analysis. However, the Ebro basin case study confirms the strong improvement for the 358 

polar climate zones (E) (Fig. 6C). As the high resolution R values of the USA and Switzerland 359 

were used to derive the regression equations, the third case study, the Ebro basin in Spain, 360 

provided an important independent validation. For the Ebro basin, the new regression equations 361 

not only improve the overall mean but also capture the minimum R values better. This resulted in 362 

an improved representation of the R variability (Table 7 and Fig. 6C). In Fig. 6C, however, there 363 

is a clear pattern separation in the newly computed R values, which is due to the fact that the 364 

SDII data are not available for part of the Ebro basin. As mentioned before, SDII is an important 365 

explaining parameter in the regression equations for most of the addressed climate zones.  366 

Figure 7A shows the global patterns of the estimated R factor from the method of Renard and 367 

Freimund and the new regression equations. Figure 7B shows a difference plot between the 368 

estimated R factor with the method of Renard and Freimund and the R factor estimated with the 369 

new regression equations. The new regression equations significantly reduced the R values in 370 

most regions. However, the tropical regions still show unrealistic high R values (maximum R 371 

values go up to 1 * 10
5
 MJ mm ha

-1
 h

-1
 year

-1
). This is because the R factor was not adjusted for 372 

the tropical climate zones due to the lack of high resolution R data. Oliveira et al. (2013) found 373 
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for the R factor in Brazil that the maximum R values for the tropical climate zones reach 22,452 374 

MJ mm ha
-1

 h
-1

 year
-1

. We find R values in Brazil that exceed this maximum R value found by 375 

Oliveira et al. (2013). 376 

Finally, it should be noted that the purpose of the adjusting methods for the S and R factors in 377 

this study is to capture more accurately the large scale mean erosion rates rather than the 378 

extremes. Therefore, even though the new regression equations are still not accurate enough for 379 

certain climate zones, it is important that the average R factor is represented well. The approach 380 

for adjusting the R factor also showed that although there is no high temporal resolution 381 

precipitation intensity data available on a global scale, the R factor can still be represented well 382 

for most climate zones on a large spatial scale. This can be done by using other parameters, such 383 

as elevation, and especially a representative of precipitation intensity, such as the SDII. The SDII 384 

played an important role here as it improved the estimation of the R factor significantly, even 385 

though data was only available at a very low resolution as compared to the other datasets of 386 

precipitation, elevation and climate zone classification. 387 

 388 

4 Global application of the adjusted RUSLE model 389 

4.1 Computation of the soil erodibility and land cover factors 390 

In the following we demonstrate the consequences of the new parameterizations of the S and R 391 

factors for global soil erosion rates. First, we compute the other individual RUSLE factors, soil 392 

erodibility (K) and crop cover (C). Estimations of the K factor we based on soil data from the 393 

gridded 30 arc-second Global Soil Dataset for use in Earth System Models (GSCE). GSCE is 394 

based on the Harmonized World Soil database (HWSD) and various other regional and national 395 

soil databases (Shangguan et al., 2014). We used the method of Torri et al. (1997) to estimate the 396 

K factor, and gave volcanic soils a K factor of 0.08 t ha h ha
-1

 MJ
-1

 mm
-1

. This because these soil 397 

types are usually very vulnerable to soil erosion, and the observed K values are beyond the range 398 

predicted by the method of Torri et al. (1997) (van der Knijff et al., 1999). To account for the 399 

effect of stoniness on soil erosion we used a combination of the methods by Cerdan et al. (2010) 400 

and Doetterl et al. (2012), who based their methods on the original method of Poesen et al. 401 

(1994). For non-agricultural areas we used the method of Cerdan et al. (2010), where they 402 

reduced the total erosion by 30 % for areas with a gravel percentage larger or equal to 30 %. For 403 
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agricultural and grassland areas we used the method of Doetterl et al. (2012), where erosion was 404 

reduced by 80 % in areas where the gravel percentage exceeded 12 %.  405 

We calculated the C factor according to the method of De Jong et al. (1998), using 0.25 degree 406 

Normalized Difference Vegetation Index (NDVI) and land use data for the year 2002. An 407 

important limitation of this method is the fact that in winter the C factor is estimated too high 408 

(van der Knijff et al., 1999). This is because the method does not include the effects of mulch, 409 

decaying biomass and other surface cover reducing soil erosion. To prevent the C factor of being 410 

too high, maximum C values for forest and grassland of 0.01 and 0.05 for pasture were used. 411 

Doetterl et al. (2012) showed that the slope length (L) and support practice (P) factors do not 412 

contribute significantly to the variation in soil erosion at the continental scale to global scale, 413 

when compared to the contribution of the other RUSLE factors (S, R and C). However, this does 414 

not mean that their influence on erosion should be ignored completely. They may play an 415 

important role in local variation of erosion rates. In our erosion calculations we do not include 416 

these factors, because we have too little or no data on these factors on a global scale. Including 417 

them in the calculations would only add an additional large uncertainty to the erosion rates. This 418 

would make it more difficult to judge the improvements we made to the S and R factors. 419 

 420 

4.2 Computation of global soil erosion rates and comparison to empirical 421 

databases 422 

We applied the RUSLE model with the settings mentioned in the previous paragraph on a 5 arc-423 

minute resolution on global scale for the present time period (see time resolutions of datasets in 424 

Table 1). We calculated global soil erosion rates with four different versions of the RUSLE 425 

model: (a) the unadjusted RUSLE, (b) RUSLE with only an adjusted S factor, (c) RUSLE with 426 

only an adjusted R factor and (d) the adjusted RUSLE (all adjustments included).  427 

We found a global average soil erosion rate for the adjusted RUSLE of 6.5 t ha
-1

 year
-1

 (Fig. 8A). 428 

When including the uncertainty arising from applying the linear multiple regression method, the 429 

mean global soil erosion rate differs between 5.3 and 15 t ha
-1

 year
-1

. Furthermore, the RUSLE 430 

version with only an adjusted S factor shows the highest average global soil erosion rate, while 431 

the lowest rate is found for the RUSLE version with only the adjusted R factor (Table 8). Figure 432 

8C shows the difference between the erosion rates of the S adjusted RUSLE and the unadjusted 433 
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RUSLE versions. The erosion rates are in general increased here, and mostly pronounced in 434 

mountainous regions. This feature is ‘dampened’ when adjusting the R factor. The difference 435 

between the R adjusted RUSLE and unadjusted RUSLE versions (Fig. 8D) shows that the 436 

erosion rates are overall decreased in regions where the adjustments are made. When combining 437 

both adjustments of the RUSLE model in the fully adjusted RUSLE version and subtract the 438 

unadjusted RUSLE erosion rates (Fig. 8B), erosion rates are slightly decreased in areas where the 439 

R factor is adjusted. However, for the tropics there an increase in erosion rates is found in the 440 

fully adjusted RUSLE due to the lack of adjusting the R factor there. This indicates that these 441 

two factors balance each other, and that it is important to have a correct representation of all the 442 

RUSLE factors on a global scale in order to predict reliable erosion rates.   443 

In this study the K and C factors are not tested and adjusted for a coarse resolution at global scale 444 

and thus validation with existing empirical databases on soil erosion is not fully justified. 445 

However, to test if the global erosion rates are in an acceptable range, they are compared to 446 

erosion estimates from the NRI database for the USA, and erosion estimates from the study of 447 

Cerdan et al. (2010) for Europe. These are to our knowledge the only large scale high resolution 448 

empirical databases on soil erosion.  449 

The NRI database contains USLE erosion estimates for the year 1997, which are available at the 450 

Hydrologic Unit 4
th

 Code (HUC4) watershed level. We aggregated the resulting erosion rates 451 

from the adjusted and unadjusted RUSLE models to the HUC4 watershed level. The results show 452 

that the average erosion rates from the adjusted RUSLE model come closer to that of the NRI 453 

database (Table 9 and Fig. 9A). However, the maximum average HUC4 soil erosion rate from 454 

the adjusted RUSLE is somewhat higher compared to the NRI database. From these results we 455 

can conclude that the erosion rates of the adjusted RUSLE fall in the range of observed values, 456 

but that there are still some local overestimations. Some of these overestimations can be found in 457 

south west of the USA where the adjusted RUSLE shows a slightly worse performance 458 

compared to the unadjusted RUSLE. The R factor in this region was not changed as it was 459 

already estimated well by the method of Renard and Freimund, however, the S factor increased 460 

due to the hilly terrain. Without adjusting the other RUSLE factors (K and C), this resulted in an 461 

overall increase in soil erosion rates. This indicates that the other RUSLE factors may play an 462 

important role in this region. Furthermore, we see that along the west coast of the USA the 463 

erosion values are not much improved with the adjusted RUSLE model. This is mainly because 464 
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some climate zones such as the temperate climate zone with a dry and warm summer (Csb) 465 

prevail in this region, for which the R factor is still difficult to estimate in a correct way (Table 466 

4). 467 

For Europe, Cerdan et al. (2010) used an extensive database of measured erosion rates on plots 468 

under natural rainfall. They extrapolated measured erosion rates to whole Europe (European 469 

Union area) and adjusted them with a topographic correction. This correction was based on the L 470 

and S factors of the RUSLE model. They also applied a correction to account for soil stoniness. 471 

For comparison, the soil erosion rates from Cerdan et al. (2010) and the RUSLE estimates in our 472 

study are aggregated at country level. The performance of the adjusted RUSLE model was not as 473 

good for Europe as compared to the USA. This is not surprising as the RUSLE model is based on 474 

soil erosion data of the USA. However, also on the European scale the adjusted RUSLE model 475 

performed better than the unadjusted RUSLE model (Table 9 and Fig. 9B). Especially the large 476 

erosion rates in the south of Europe as observed in the results of the unadjusted RUSLE model 477 

are less extreme in the adjusted RUSLE model. Still, the overall average erosion rate for Europe 478 

is overestimated by approximately two times (Table 9).  479 

The biases in erosion rates as seen for the south west of the USA and south Europe can be 480 

attributed to several factors. As mentioned before, the other RUSLE factors (K and C) and the 481 

way they interact with the R and S factors are not adjusted to the coarse resolution at global 482 

scale. We found no clear signal for which land cover types the adjusted RUSLE performs better 483 

or worse. In general, we can see that the adjusted RUSLE model still overestimates erosion rates 484 

for most land cover types. A short analysis for Europe showed that the largest biases are found 485 

for shrubs, and the least for grassland. However, a more explicit analysis is needed to find out 486 

how we can improve the contribution of land cover and land use to erosion rates in the RUSLE 487 

model. Explicitly including the interaction between the C and R factor on a monthly timescale 488 

could be crucial. This is very important for example in areas with agriculture, and areas with a 489 

strong seasonal character. Another aspect related to improving the C factor is looking at the 490 

location of land use in a certain grid cell. If the land use in a grid cell is located on steep slopes 491 

the resulting erosion in that grid cell would be higher than when it would be located in the flatter 492 

areas. In this study, however, only mean fractions of land cover and the NDVI are used for each 493 

grid cell. This can lead to possible biases in the resulting erosion rates.  494 
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Furthermore, land management is not accounted for in this study, which could introduce an 495 

important systematic bias in the soil erosion rates for especially agricultural areas. Land 496 

management is represented by the P factor in the original USLE, however, it is partly also 497 

incorporated in the C factor for agricultural land use through plant residues, cover crops and 498 

tillage. A limitation of the NDVI approach to estimate the C factor lies therefore in the inability 499 

to estimate this land management effect. Applying this method also limits the interaction 500 

between the R and C factors on a monthly to seasonally scale, because this interaction is partly 501 

based on land management.   502 

Furthermore, uncertainties in the coarse resolution land cover/land use, soil and precipitation 503 

datasets that are not accounted for, can lead to the model biases. Also, better adjustment of the R 504 

factor for climate zones such as the polar climates (E) could help improving the overall results. 505 

Some biases in the erosion rates can also be attributed to the fact that stepped relief, where flat 506 

plateaus are separated by steep slopes, are not well captured by the 150 m target resolution used 507 

in the fractal method to scale slope. In this way erosion would be overestimated in these areas. 508 

Finally, errors and limitations in the observational datasets can also contribute to the differences 509 

between model and observations. The study of Cerdan et al. (2010) on Europe for example, used 510 

extrapolation of local erosion data to larger areas that could introduce some biases. Also, the 511 

underlying studies on measured erosion rates used different erosion measuring techniques that 512 

can be linked to different observational errors.  513 

 514 

5 Conclusions 515 

In this study we introduced specific methods to adjust the topographical and rainfall erosivity 516 

factors to improve the application of the RUSLE model on global scale, using coarse resolution 517 

input data.  518 

Our results show that the fractal method by Zhang et al. (1999) and Pradhan et al. (2006) can be 519 

applied on coarse resolution DEMs to improve the resulting slope. Although the slope 520 

representation improved after applying this method, the results still show a slight dependence on 521 

the original grid resolution. This is attributable to several factors such as the underlying 522 

assumption that the standard deviation of elevation (𝜎) is independent of the DEM resolution, 523 

and to the breakdown of the fractal method at certain scales.  524 
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We compared the rainfall erosivity calculated by the method of Renard and Freimund to 525 

available high resolution or observed erosivity data of the USA, Switzerland and the Ebro basin. 526 

We find that this method results in overall significant biases in erosivity. Therefore, we 527 

implemented a linear multiple regression method to adjust erosivity for climate zones of the 528 

Köppen-Geiger climate classification system in the USA. Using precipitation, elevation and the 529 

simple precipitation intensity index as explaining parameters, the resulting adjusted erosivity 530 

compares much better to the observed erosivity data for the USA, Switzerland and the Ebro 531 

basin. Not only the mean values but also the spatial variability in erosivity is improved. It was 532 

surprising to notice that using the rather coarse resolution simple precipitation intensity index in 533 

the regression analysis made it possible to explain much of the variability in erosivity. This, once 534 

more, underpins the importance of precipitation intensity in erosivity estimation.  535 

After calculating the newly adjusted erosivity on global scale, it is apparent that the tropical 536 

climate zones, for which erosivity was not adjusted, show strong overestimations in some areas. 537 

This shows that adjusting erosivity for the tropical climate zones should be the next step. The 538 

challenge is to find enough reliable long term and high resolution erosivity data for those 539 

regions.  540 

To investigate how the adjusted topographical and rainfall erosivity factors affect the global soil 541 

erosion rates, we applied the adjusted RUSLE model on global scale. We found an average 542 

global soil erosion rate of 6.5 t ha
-1

 year
-1

. It is, however, difficult to provide accurate uncertainty 543 

estimates to these global erosion rates, and to provide a good validation with observations. This 544 

is due to lack of high resolution data on other individual RUSLE factors such as the land cover, 545 

soil erodibility, slope length and support practice. These RUSLE factors are therefore not 546 

adjusted for application on a coarse resolution on global scale. We argue that it is important to 547 

focus on adjusting the other RUSLE factors, for an improved application of the RUSLE model 548 

on global scale. The next step would be to better capture the anthropogenic contribution to global 549 

soil erosion. This can be done by adjusting first of all the land cover factor to a coarse resolution 550 

application, and focus on the interaction of this factor with rainfall erosivity on a monthly to 551 

seasonal basis. This is important, because the land cover factor has strong interactions with the 552 

rainfall erosivity factor, and includes the effect of human activities on erosion through 553 

agricultural activities and land management.   554 
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To test if the soil erosion rates from the adjusted RUSLE model are in a realistic range, we 555 

compared the results to the USLE erosion estimates for the USA from the NRI database, and the 556 

erosion estimates for Europe from the study of Cerdan et al. (2010). The adjusted RUSLE soil 557 

erosion rates, which we aggregated to the watershed level, show a better comparison with the 558 

NRI USLE estimates than the unadjusted RUSLE erosion rates. For Europe the comparison of 559 

the adjusted RUSLE soil erosion rates to the study of Cerdan et al. (2010) were not as good as 560 

for the USA. This is not surprising due to the fact that the parameterizations of the RUSLE 561 

model are based on soil erosion data of the USA. However, also for Europe, the adjusted RUSLE 562 

model performs better than the unadjusted RUSLE model. 563 

We find overestimations by the adjusted RUSLE model for hilly regions along the west coast of 564 

the USA, and for south of Europe. We argue that besides for reasons mentioned before, these 565 

biases are due to the fact that the topographical detail may not be enough in some regions to 566 

capture the true variability in soil erosion effects by topography. Also, erosivity could not be 567 

adjusted for some climate zones that are not present in the USA or Switzerland, and needs to be 568 

further improved for climate zones such as the polar climate zones.  569 

We conclude that even though there is still much improvement of the RUSLE model possible 570 

with respect to topography and erosivity, the methods proposed in this study seem to be 571 

promising tools for improving the global applicability of the model. A globally applicable 572 

version of the RUSLE model, together with data on environmental factors from Earth System 573 

Models (ESMs), can provide the possibility for future studies to estimate accurate soil erosion 574 

rates for the past, current and future time periods.  575 
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Table 1. List of datasets used in this study 

Category Dataset Source Spatial 

resolution 

Temporal-

period 

Variables 

DEM GTOPO Elevation Model USGS, 1996, Gesch et al., 

1999 

30 arc-seconds   elevation 

  ETOPO1 Elevation 

Model 

Amante and Eakins, 2009 1 arc-minute   elevation 

  ETOPO2 Elevation 

Model 

US Department of 

Commerce and NOAA, 

2001 

2 arc-minute   elevation 

  ETOPO5 Elevation 

Model 

National Geophysical Data 

Center/NESDIS/NOAA, 

1995 

5 arc-minute   elevation 

Climate GPCC 0.5 degree dataset Schneider et al., 2011 0.5 degrees Years 1989-

2010 

total yearly 

precipitation 

  GPCC 0.25 degree Meyer-Christoffer et al., 0.25 degrees years 1951- total yearly 
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dataset 2011 2000 precipitation 

  GHCNDEX dataset CLIMDEX (Donat et al., 

2013) 

2.5 degrees years 1951-

present 

simple precipitation 

intensity index (SDII) 

  Köppen-Geiger dataset Peel et al., 2007 5 arc-minute   Köppen-Geiger 

climate classifications 

Soil Global Soil Dataset for 

use in Earth System 

Models (GSCE) 

Shangguan et al., 2014 30 arc-seconds   sand, silt and clay 

fractions, organic 

matter %, gravel % 

  Harmonized World Soil 

Database (HWSD) 

version 1.2 

Nachtergaele et al., 2012 30 arc-seconds   volcanic soils 

Land-cover GIMMS  dataset ISLSCP II (Tucker et al., 

2005, Hall et al., 2006 

0.25 degrees year 2002 Normalized difference 

vegetation index 

(NDVI) 

Land-use MODIS dataset ISLSCP II (Friedl et al., 

2010, Hall et al., 2006) 

0.25 degrees year 2002 Land use fractions 
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Table 2. Fractal parameters and the resulting mean global slopes before and after applying the fractal method on the different DEMs; 

Increase of slope means the increase of the average global slope of a DEM after applying the fractal method; difference after scaling 

=
𝜃𝑠𝑐𝑎𝑙𝑒𝑑(𝐷𝐸𝑀) − 𝜃𝑠𝑐𝑎𝑙𝑒𝑑(𝐺𝑇𝑂𝑃𝑂30)

𝜃𝑠𝑐𝑎𝑙𝑒𝑑(𝐺𝑇𝑂𝑃𝑂30)
∗ 100; difference before scaling =

𝜃(𝐷𝐸𝑀) − 𝜃(𝐺𝑇𝑂𝑃𝑂30)

𝜃(𝐺𝑇𝑂𝑃𝑂30)
∗ 100 

 

DEM resolution 

standard 

deviation 

of 

elevation    mean D 

mean 

αsteepest  θ 𝜃𝑠𝑐𝑎𝑙𝑒𝑑 Increase of θ 

difference 

after 

scaling  

difference 

before 

scaling 

  arc-minute m 

 

  m m-1 m m-1 % %  % 

GTOPO30 0.5 570 1.32 0.99 0.023 0.059 61 0 0 

ETOPO1 1 530 1.35 1.08 0.016 0.057 71.9 -3.4 -30.4 

ETOPO2 2 549 1.37 1.17 0.011 0.055 80 -6.8 -52.2 

ETOPO5 5 562 1.42 1.25 0.006 0.054 88.9 -8.5 -73.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

Table 3. Description of Köppen climate symbols and defining criteria (from Peel et al., 2007). 

1st 2nd 3rd Description  Criteria* 

A     Tropical Tcold>=18 

  f   - Rainforest Pdry>=60 

  m   - Monsoon 
Not (Af) & Pdry>=100–
MAP/25 

  w   - Savannah Not (Af) & Pdry<100–MAP/25 

B     Arid MAP<10×Pthreshold 

  W   - Desert MAP<5×Pthreshold 

  S   - Steppe MAP>=5×Pthreshold 

    h   Hot MAT>=18 

    k  Cold MAT<18 

C     Temperate Thot>10&0<Tcold<18 

  s   - Dry Summer Psdry<40&Psdry<Pwwet/3 

  w   - Dry Winter Pwdry<Pswet/10 

  f   - Without dry season Not (Cs) or (Cw) 

    a  Hot Summer Thot>=22 

    b  Warm Summer Not (a) & Tmon10>=4 

    c  Cold Summer Not (a or b) & 1<=Tmon10<4 

D      Cold Thot>10&Tcold<=0 

  s   - Dry Summer Psdry<40&Psdry<Pwwet/3 

  w   - Dry Winter Pwdry<Pswet/10 

  f   - Without dry season Not (Ds) or (Dw) 

    a  Hot Summer Thot>=22 

    a  Warm Summer Not (a) & Tmon10>=4 

    c  Cold Summer Not (a, b or d) 

    d  Very Cold Winter Not (a or b) & Tcold<=-38 

E     Polar Thot<10 

  T   - Tundra Thot>0 

  F   - Frost Thot<-0 
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* MAP = mean annual precipitation, MAT = mean annual temperature, Thot = temperature of the hottest month, Tcold = temperature of the coldest month, Tmon10 = 

number of months where the temperature is above 10, Pdry = precipitation of the driest month, Psdry = precipitation of the driest month in summer, Pwdry = 

precipitation of the driest month in winter, Pswet = precipitation of the wettest month in summer, Pwwet = precipitation of the wettest month in winter, Pthreshold = 

varies according to the following rules (if 70% of MAP occurs in winter then Pthreshold = 2 x MAT, if 70% of MAP occurs in summer then Pthreshold = 2 x MAT + 

28, otherwise Pthreshold = 2 x MAT + 14). Summer (winter) is defined as the warmer (cooler) six month period of ONDJFM and AMJJAS. 
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Table 4. Linear multiple regression equations for different climate zones, relating high resolution R factor from the USA with one or 

more significant parameters: annual total mean precipitation, P (mm), mean elevation, z (m), and the simple precipitation intensity 

index, SDII (mm/day). 

 

Climate 

zone 

Explaining 

parameters 

Regression function  - optimal R2 Residual standard error 

BWk P, SDII 𝑅 =  0.809 ∗ 𝑃0.957 + 0.000189 ∗ 𝑆𝐷𝐼𝐼6.285   

BSh P, SDII log 𝑅 = −7.72 + 1.595 ∗ log 𝑃 + 2.068 ∗ log 𝑆𝐷𝐼𝐼 0.97 0.22 

BSk P, SDII, Z log 𝑅 = 0.0793 + 0.887 ∗ log 𝑃 + 1.892 ∗ log 𝑆𝐷𝐼𝐼 − 0.429 ∗ log 𝑍 0.89 0.35 

Csb P 𝑅 =  98.35 +  0.000355 ∗ 𝑃1.987  0.16 

Cfa P, SDII, Z log 𝑅 = 0.524 + 0.462 ∗ log 𝑃 + 1.97 ∗ log 𝑆𝐷𝐼𝐼 − 0.106 ∗ log 𝑍 0.89 0.11 

Cfb P, SDII log 𝑅 = 4.853 + 0.676 ∗ log 𝑃 + 3.34 ∗ log 𝑆𝐷𝐼𝐼 0.97 0.21 

Dsa Z, SDII log 𝑅 = 8.602 − 0.963 ∗ log 𝑆𝐷𝐼𝐼 − 0.247 ∗ log 𝑍 0.51 0.05 

Dsb P log 𝑅 = 2.166 + 0.494 ∗ log 𝑃 0.45 0.25 

Dsc SDII log 𝑅 = 6.236 − 0.869 ∗ log 𝑆𝐷𝐼𝐼 0.51 0.02 

Dwa P log 𝑅 = −0.572 + 1.238 ∗ log 𝑃 0.99 0.02 

Dwb P, SDII log 𝑅 = −1.7 + 0.788 ∗ log 𝑃 + 1.824 ∗ log 𝑆𝐷𝐼𝐼 0.98 0.02 

Dfa P, SDII log 𝑅 = −1.99 + 0.737 ∗ log 𝑃 + 2.033 ∗ log 𝑆𝐷𝐼𝐼 0.9 0.16 

Dfb P, SDII, Z log 𝑅 = −0.5 + 0.266 ∗ log 𝑃 + 3.1 ∗ log 𝑆𝐷𝐼𝐼 − 0.131 ∗ log 𝑍 0.89 0.32 

Dfc SDII log 𝑅 = −1.259 + 3.862 ∗ log 𝑆𝐷𝐼𝐼 0.91 0.23 

ET P log 𝑅 = −3.945 + 1.54 ∗ log 𝑃 0.14 0.42 
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EF+EFH P log 𝑅 = 16.39 − 1.286 ∗ log 𝑃 0.6 0.13 

ETH P, SDII log 𝑅 = 21.44 + 1.293 ∗ log 𝑃 − 10.579 ∗ log 𝑆𝐷𝐼𝐼 0.52 0.53 
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Table 5. Linear multiple regression equations for different climate zones for regions that have no data on the simple precipitation 

intensity index, SDII (mm/day). The regression equations relate high resolution erosivity from the USA with the annual total mean 

precipitation, P (mm), and/or the mean elevation, z (m). 

 

Climate zone Optimal regression function   

(when SDII is not available) 

R2 Residual 

standard error 

BWk Method Renard & Freimund (1994)   

BSh log 𝑅 = −8.164 + 2.455 ∗ log 𝑃 0.86 0.5 

BSk log 𝑅 = 5.52 + 1.33 ∗ log 𝑃 − 0.977 ∗ log 𝑍 0.76 0.52 

Cfa log 𝑅 = 3.378 + 0.852 ∗ log 𝑃 − 0.191 ∗ log 𝑍 0.57 0.23 

Cfb log 𝑅 = 5.267 + 0.839 ∗ log 𝑃 − 0.635 ∗ log 𝑍 0.81 0.5 

Dsa log 𝑅 = 7.49 − 0.0512 ∗ log 𝑃 − 0.272 ∗ log 𝑍 0.48 0.06 

Dsc log 𝑅 = 4.416 − 0.0594 ∗ log 𝑃 0.015 0.03 

Dwb log 𝑅 = 1.882 + 0.819 ∗ log 𝑃 0.81 0.08 

Dfa log 𝑅 = −2.396 + 1.5 ∗ log 𝑃 0.65 0.29 

Dfb log 𝑅 = 1.96 + 1.084 ∗ log 𝑃 − 0.34 ∗ log 𝑍 0.74 0.48 

Dfc log 𝑅 = −3.263 + 1.576 ∗ log 𝑃 0.56 0.49 

ETH log 𝑅 = −10.66 + 2.43 ∗ log 𝑃 0.4 0.59 
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Table 6. Mean high resolution R values (MJ mm ha
-1

 h
-1

 year
-1

) from the USA and Switzerland 

and mean modelled R values with uncertainty range for each addressed climate zone  

 

 

observed Renard & 

Freimund 

method 

adjusted 

method 

Adjusted method 

climate R mean R mean R mean uncertainty range 

BWk 284 533 291 158-495 

BSh 2168 1356 2207 1723-2828 

BSk 876 884 885 749-1046 

Csb 192 1136 192 133-292 

Cfa 5550 5607 5437 4830-6123 

Cfb 1984 5359 1971 1431-2715 

Dsa 172 445 171 86-340 

Dsb 175 896 168 151-187 

Dsc 115 374 115 91-145 

Dwa 1549 1444 1551 1280-1879 

Dwb 1220 1418 1214 1057-1395 

Dfa 2572 2983 2582 2346-2843 

Dfb 1101 1798 1124 922-1371 

Dfc 483 701 483 423-552 

ET 1352 6257 1249 23-68088 

EF+EFH  

1468 

 

5469 

 

1450 16-132001 

ETH 945 5580 832 0-6314918 
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Table 7. Statistics of the comparison of high resolution R values (MJ mm ha
-1

 h
-1

 year
-1

) from three regions to estimated R values  

from the Renard and Freimund method and the new regression equations 

 

 Observed Estimated – Renard & Freimund Estimated – multiple linear regression 

  Range Mean 

Standard 

deviation Range Mean 

Standard 

deviation 

Correlation 

coefficient 

Rank 

correlation 

coefficient Range Mean 

Standard 

deviation 

Correlation 

coefficient 

Rank 

correlation 

coefficient 

Switzerland 121-6500 1204 833 2335-10131 5798 1654 0.51 0.42 225-2572 1256 472 0.49 0.3 

 

the USA 

(aggregated 

huc4) 105-4963 1271 1174 57-15183 1870 2088 0.51 0.68 60-15808 1691 2188 0.58 0.83 

 

Ebro basin 40 - 4500 891 622 747 - 5910 1529 846 - - 167 - 4993 836 701 - - 
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Table 8. Comparison of the global erosion rates (t ha
-1

 year
-1

) and percentiles between different 

versions of the RUSLE model 

  mean 

25th  

percentile 

50th  

percentile 75th percentile 90th percentile 

RUSLE unadjusted 4.5 0.2 0.7 2.4 7.5 

RUSLE adjusted with S 9.8 0.3 1.0 3.8 13.5 

RUSLE adjusted with R 3.2 0.1 0.5 1.7 5.7 

RUSLE adjusted with S & R 6.5 0.1 0.7 2.7 9.6 
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Table 9. Statistics of the observed and modelled erosion rates from the unadjusted and adjusted versions of the RUSLE for the USA 

and Europe (t ha
-1

 year
-1

) 

 

Region 

 

 

Source 

Observations 

  

  

Adjusted RUSLE 

  

  

Unadjusted RUSLE 

  

  

  

 

Range Mean 

Standard 

deviation Range Mean 

Standard 

deviation Range Mean 

Standard 

deviation 

Europe 

(Aggregation 

country level) 

no small 

countries 

Cerdan et 

al., 2010 

0.1-2.6 0.9 0.7 0.1-7 2.3 2.1 0-14 2.8 3.6 

 

the USA 

(Aggregation 

HUC4 level) 

 

 

NRI 

database 0-11 1.6 2.1 0.2-13 1.6 1.9 0-14 1.4 1.8 
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Figure 1. Global average unscaled slope estimated from different coarse resolution digital 

elevation models (DEMs) as function of their resolution (blue); and global average scaled slope 

from the same DEMs as function of their resolution (red). 

 

Figure 2. (A) A global map of the scaled slope derived from the 30 arc-second DEM using a 

target resolution of 150m; (B) A global map showing the difference between the unscaled and 

scaled slopes (in degrees), where blue colours show an underestimation by the unscaled slope 

when compared to the scaled slope and reddish colours show and overestimation.  

   

Figure 3. Spatial difference plots showing the difference between the high resolution R values 

and R values calculated with the method of Renard and Freimund for (A) the USA, (B) 

Switzerland and (C) the Ebro basin in Spain; In (A) and (B) the blue colours show an 

underestimation of the calculated R factor when compared to the high resolution R values, while 

the red colours show an overestimation; the Ebro basin serves here as an independent validation 

set and it has two graphs, (C1) a spatial plot of erosivity according to Renard and Freimund, and 

(C2) the high resolution R values from Angulo-Martinez et al. (2009); All values in the graphs 

are in MJ mm ha
-1

 h
-1

 year
-1

. 

 

Figure 4. The Köppen-Geiger climate classification global map at a resolution of 5 arc-minute 

(Peel et al., 2007). 

 

Figure 5. Comparison of high resolution R factor data and predicted R values from (1) the 

Renard and Freimund method and (2) the new regression equations, for various climate zones; 
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the red line is the 1 tot 1 line, and does not appear in some graphs because predicted R values are  

overestimated. 

 

Figure 6. Spatial difference plots showing the difference between the high resolution R values 

and R values calculated with the new regression equations for (A) the USA, (B) Switzerland and 

(C) the Ebro basin in Spain; In (A) and (B) the blue colours show an underestimation of the 

calculated R values when compared to the high resolution R values, while the red colours show 

an overestimation; the Ebro basin serves here as an independent validation set and it has two 

graphs, (C1) a spatial plot of the R factor according to the new regression equations, and (C2) the 

high resolution R values from Angulo-Martinez et al. (2009); All values in the graphs are in MJ 

mm ha
-1

 h
-1

 year
-1

. 

 

Figure 7. (A) Global distribution of the new modelled R values according to the new regression 

equations; and (B) a difference map between R values calculated according to the method of 

Renard and Freimund and the new modelled R values (MJ mm ha
-1

 h
-1

 year
-1

), where blue 

colours indicate lower R values by Renard and Freimund compared to the new modelled R 

values, while redish colours indicate higher R values; map resolution is 5 arc-minute. 

 

Figure 8. (A) Global yearly averaged erosion rates according to the fully adjusted RUSLE 

model; (B) a difference map between the fully adjusted and unadjusted RUSLE model; (C) a 

difference map between the adjusted S RUSLE and the unadjusted RUSLE model; (D) a 

difference map between the adjusted R RUSLE and the unadjusted RUSLE model; in figures 

B,C and D the reddish colors show an overestimation of by the adjusted RUSLE model and 
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yellow to bluish colors show an underestimation; resolution of all maps is 5 arc-minute and all 

units are in t ha
-1

 year
-1

. 

 

Figure 9. (A) Difference plots between soil erosion estimates from the NRI database for the USA 

and estimates of (A1) the unadjusted RUSLE model, and of (A2) the adjusted RUSLE model; all 

aggregated at HUC4 watershed level; (B) Difference plots between soil erosion estimates from 

the database of Cerdan et al. (2010) for Europe and estimates of (B1) the unadjusted RUSLE 

model and of (B2) the adjusted RUSLE model; all aggregated at country level; reddish colors 

represent an overestimation (t ha
-1

 year
-1

) while the bluish represent and underestimation (t ha
-1

 

year
-1

) compared to the erosion values from the databases. 
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Figure 6 

 

 

 

 

     

 

 

 

 

 

 

 

 

(A) (B) 

(C1) (C2) 



51 
 

Figure 7 
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Figure 8 
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