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 11 

Abstract 12 

Large uncertainties exist in estimated rates and the extent of soil erosion by surface runoff on a 13 

global scale, and this limits our understanding of the global impact that soil erosion might have 14 

on agriculture and climate. The Revised Universal Soil Loss Equation (RUSLE) model,due to its 15 

simple structure and empirical basis, is a frequently used tool in estimating average annual soil 16 

erosion rates at regional to global scales. However, large spatial scale applications often rely on 17 

coarse data input, which is not compatible with the local scale at which the model is 18 

parameterized. This study aimed at providing the first steps in improving the global applicability 19 

of the RUSLE model in order to derive more accurate global soil erosion rates.  20 

We adjusted the topographical and rainfall erosivity factors of the RUSLE model and compared 21 

the resulting soil erosion rates to extensive empirical databases on soil erosion from the USA and 22 

Europe. Adjusting the topographical factor required scaling of slope according to the fractal 23 

method, which resulted in improved topographical detail in a coarse resolution global digital 24 

elevation model.  25 
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Applying the linear multiple regression method to adjust rainfall erosivity for various climate 26 

zones resulted in values that compared well to high resolution erosivity data for different regions. 27 

However, this method needs to be extended to tropical climates, for which erosivity is biased due 28 

to the lack of high resolution erosivity data. 29 

After applying the adjusted and the unadjusted versions of the RUSLE model on a global scale 30 

we find that the adjusted RUSLE model not only shows a global higher mean soil erosion rate 31 

but also more variability in the soil erosion rates. Comparison to empirical datasets of the USA 32 

and Europe shows that the adjusted RUSLE model is able to decrease the very high erosion rates 33 

in hilly regions that are observed in the unadjusted RUSLE model results. Although there are still 34 

some regional differences with the empirical databases, the results indicate that the methods used 35 

here seem to be a promising tool in improving the applicability of the RUSLE model on a coarse 36 

resolution on global scale. 37 

 38 

1 Introduction 39 

For the last centuries to millennia soil erosion by surface runoff is being accelerated globally due 40 

to human activities, such as deforestation and agricultural practices (Bork and Lang, 2003). 41 

Accelerated soil erosion is a process that triggers land degradation in the form of nutrient loss, a 42 

decrease in the effective root depth, water imbalance in the root zone and finally also 43 

productivity reduction (Yang et al., 2003). It is widely recognized that soil erosion is a major 44 

threat to sustainable agriculture and food production across the globe for many decades. These 45 

effects of soil erosion are currently exacerbated by the global population growth and climatic 46 

changes. Organizations such as the United Nations Convention to Combat Desertification 47 

(UNCCD) try to address this problem by stating a new goal for Rio +20 of zero land degradation 48 

(UNCCD, 2012).  49 

Another aspect underpinning the relevance of soil erosion on the global scale is the effect of soil 50 

erosion on the global nutrient cycles. Recently, the biogeochemical components of Earth System 51 

Models (ESMs) became increasingly important in predicting the global future climate (Thornton 52 

et al., 2007; Goll et al., 2012). Not only the global carbon cycle but also other nutrient cycles 53 

such as the nitrogen (N) and phosphorous (P) cycles cannot be neglected in ESMs anymore (Goll 54 

et al.,2012; Gruber and Galloway, 2008; Reich et al., 2006). Soil erosion may have a significant 55 
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impact on these nutrient cycles through lateral fluxes of sediment, but the impact on the global 56 

scale is still largely unknown. For example, Quinton et al. (2010) showed that erosion can 57 

significantly alter the nutrient and carbon cycling and result in lateral fluxes of nutrients that are 58 

similar in magnitude as fluxes induced by fertilizer application and crop removal. Regnier et al. 59 

(2013) looked at the effect of human induced lateral fluxes of carbon from land to ocean and 60 

concluded that human perturbations, which include soil erosion, may have enhanced the carbon 61 

export from soils to inland waters.  62 

In general, the effect of soil erosion on the global carbon cycle has received considerable 63 

attention after the pioneering work of Stallard (1998), who proposed that global soil erosion can 64 

result in sequestration of carbon by soils. After his work, the effect of soil erosion on the carbon 65 

cycle has been studied extensively, but there remains a large uncertainty in the effect of soil 66 

erosion on the carbon cycle. For example, several recent global assessments of the influence of 67 

soil erosion on the carbon cycle indicate a large uncertainty with a range from a source of 0.37 to 68 

1 Pg C year
-1

 to a net uptake or sink of 0.56 to 1 Pg C year
-1

 (van Oost et al., 2007). Thus, in 69 

order to better constrain the global carbon budget and to identify optimal management strategies 70 

for land use, it is essential to have accurate estimates of soil erosion and its variability on a 71 

global scale.  72 

Currently, however, there exists a large uncertainty in the global soil erosion rates as can be seen 73 

from recent studies that show rates between 20 and 200 Pg y
-1

 (Doetterl et al., 2012). This 74 

indicates that modelling soil erosion on a global scale is still a difficult task due to the very high 75 

spatial and temporal variability of soil erosion. Different approaches were previously applied to 76 

estimate soil erosion on a large or global scale. Most of these approaches are based on 77 

extrapolated data from agricultural plots, sediment yield or extrapolated river sediment estimates 78 

(Milliman and Syvitski, 1992, Stallard, 1998, Lal, 2003, Hooke, 2000, Pimentel et al.,1995, 79 

Wilkinson and McElroy, 2007). An alternative approach is based on the use of soil erosion 80 

models. One of the most applied models to estimate soil erosion on a large spatial scale is the 81 

semi-empirical/process-based Revised Universal Soil Loss Equation (RUSLE) model (Renard et 82 

al., 1997). This model stems from the original Universal Soil Loss Equation (USLE) model 83 

developed by USDA (USA Department of Agriculture), which is based on a large set of 84 

experiments on soil loss due to water erosion from agricultural plots in the United States (USA). 85 

These experiments covered a large variety of agricultural practices, soil types and climatic 86 
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conditions, making it a potentially suitable tool on a regional to global scale. The RUSLE model 87 

predicts the average annual soil erosion rates by rainfall and is formulated as a product of a 88 

rainfall erosivity factor (R), a slope steepness factor (S), a slope length factor (L), a soil 89 

erodibility factor (K), a crop cover factor (C) and a support practice factor (P). The RUSLE 90 

model was first applied on a global scale by Yang et al. (2003) and Ito (2007) for estimating the 91 

global soil erosion potential and various limitations related to applying the RUSLE model on the 92 

global scale. Firstly, the model is originally developed to be applicable on the agricultural plot 93 

scale, which is not compatible with the coarse spatial scale of global datasets on soil erosion 94 

influencing factors such as precipitation, elevation, land-use and soil characteristics. Secondly, 95 

the RUSLE and USLE models were parameterized for environmental conditions of the United 96 

States (USA), and are thus not directly applicable to other areas in the world. Thirdly, only sheet 97 

and rill erosion are considered, and finally the RUSLE model does not contain sediment 98 

deposition and sediment transport terms, which are closely linked to soil erosion.  99 

The RUSLE model is to our knowledge one of the few erosion models that has the potential to be 100 

applied on a global scale due to its simple structure and empirical basis. Therefore it is of key 101 

importance to address the above mentioned limitations first.   102 

To address the first two limitations, Van Oost et al. (2007) presented in their work a modified 103 

version of the USLE model for application on agricultural areas on a global scale. They based 104 

their model on large-scale experimental soil erosion data from the USA (National Resource 105 

Inventory, NRI database, USDA, 2000) and Europe, by deriving reference factors for soil 106 

erosion and for certain RUSLE parameters. They also introduced a procedure to scale slope, 107 

which is an important parameter in the topographical factors S and L of the RUSLE model. In 108 

this scaling procedure slope was scaled from the GTOPO30 1km resolution digital elevation 109 

model (USGS, 1996) to the coarser resolution of the erosion model based on high resolution OS 110 

Ordnance (10m resolution) and SRTM data on elevation (90m resolution, International Centre 111 

for Tropical Agriculture (CIAT), 2004) for England and Wales.  112 

Doetterl et al. (2012) showed that together with the S factor, the rainfall erosivity or R factor 113 

explain up to 75 % of the erosion variability across agricultural areas at the large watershed 114 

scale, as these factors represent the triggers for soil erosion by providing energy for soil to erode. 115 

The S and R factors can also be seen as the natural components of the RUSLE model, as they 116 
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have very little or no modification by human activities (Angulo-Martínez et al., 2009) apart from 117 

indirect effects on precipitation and extreme events due to anthropogenic climate change that are 118 

included in the R factor. In this way they represent the natural environmental constraints to soil 119 

erosion that are important to capture before the effect of human activities on soil erosion through 120 

land use change can be investigated. Previous studies on global soil erosion estimated the global 121 

R factor based on the total annual precipitation (Renard and Freimund, 1994), due to the lack of 122 

high resolution precipitation intensity on a global scale. However, high resolution precipitation 123 

intensity is an important explaining parameter of the R factor and therefore, the applicability of 124 

this method is limited. 125 

The overall objective of this study is to extend the applicability of the RUSLE model to a coarse 126 

resolution at a global scale, in order to enable future studies on the effects of soil erosion for the 127 

past, current and future climate. To this end, we develop generally applicable methods that 128 

improve the estimation of slope and climatic factors from coarse resolution global datasets. 129 

These methods should not only be applicable across agricultural areas as in the studies of Van 130 

Oost et al. (2007) and Doetterl et al. (2012), but also across non-agricultural areas. We adjust the 131 

S factor to the coarse resolution of the global scale based on the scaling of slope according to the 132 

fractal method. The adjustment of the R factor to the global scale is based on globally applicable 133 

regression equations for different climate zones that include parameters for precipitation, 134 

elevation and the simple precipitation intensity. This approach is validated using several high 135 

resolution datasets on the R factor. Finally, the effects of these adjustments of both factors on 136 

global soil erosion rates are investigated separately and tested against independent estimates of 137 

soil erosion from high resolution and high precision datasets of Europe and the USA. 138 

 139 

2.  Adjustment of the topographical factor 140 

2.1 Scaling slope according to the fractal method 141 

The topographical factors of RUSLE are the slope steepness factor (S) and a slope length factor 142 

(L). The S factor is generally computed by the continuous function of Nearing (1997): 143 

S=1.5+
17

1+e(2.3-6.1* sin θ)
                      (1) 144 

And the L factor is computed according to Renard et al. (1997): 145 
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L=(
l

22.13
)
m

                             (2) 146 

where:  m=
F

1+F
 and  F= 

(sin θ/0.0896)

(3*(sin θ)0.8+0.56)
                   (3) 147 

in which θ is the slope and l is the slope length in meters. 148 

As seen in the equations of the L and S factors, slope is a crucial parameter and thus an accurate 149 

estimation is essential in deriving accurate estimates of the L and S factors and finally also the 150 

soil erosion rates. For an accurate estimation of slope the input elevation data from digital 151 

elevation models (DEMs) should capture the detailed spatial variability in elevation. However, 152 

global DEMs are often too coarse to capture the detailed topography because of the surface 153 

smoothening effect. To account for this problem it is assumed that topography is fractal. 154 

Following Klinkenberg and Goodchild (1992) and Zhang et al. (1999), slope can be expressed as 155 

a function of the spatial scale by applying the variogram equation. The variogram equation is 156 

used to approximate the fractal dimension of topography and is expressed as follows: 157 

(Zp-Zq)
2
=kdpq

4-2D
                 (4) 158 

so that: 159 

|Zp-Zq|

dpq
=αdpq

1-D
                  (5) 160 

where 𝑍𝑝 and 𝑍𝑞 are the elevations at points p and q, dpq is the distance between p and q, k is a 161 

constant, α = k
0.5

 and D is the fractal dimension. Because the left side of Eq. (5) represents the 162 

slope, it can be assumed that the slope θ is related to the spatial scale or the grid size d in: 163 

θ= αd
1-D

                  (6) 164 

This result implies that by calculating the fractal properties (D and α) Eq. (6) can be used to 165 

calculate slope at any specified scale d. The local fractal dimension describes the roughness of 166 

the topography while the local value of α is related to the concept of lacunarity, which is a 167 

measure of the size of “gaps” (valleys and plains) in the topography (Zhang et al., 2002). To 168 

estimate the spatial variations of the fractal dimension D and the fractal coefficient α, Zhang et 169 

al. (1999) proposed to relate these parameters to the standard deviation of elevation. Hereby it is 170 

assumed that the standard deviation of elevation does not change much with the DEM resolution. 171 



7 
 

D is then calculated as a function of the standard deviation (σ) in a 3 x 3 pixels moving window 172 

as proposed by Zhang et al. (1999): 173 

D=1.13589+0.08452 ln σ                (7) 174 

To estimate α we used the modified approach by Pradhan et al. (2006), who derived α directly 175 

from the steepest slope in a 3 x 3 pixels moving window, called αsteepest in the following. Having 176 

obtained αsteepest and D from a grid at a given resolution, the scaled slope (θscaled )for a target grid 177 

resolution dscaled is obtained by: 178 

θscaled=αsteepestdscaled
1-D

                 (8) 179 

Pradhan et al. (2006) also showed that in their case study the ideal target resolution for 180 

downscaling slope was 150m due the breakdown of the unifractal concept at very fine scales, 181 

which they showed to happen at a scale of 50m. Altogether, this fractal method shows that a high 182 

resolution slope can be obtained from a low resolution DEM as needed by the RUSLE model.   183 

 184 

2.2 Application of the fractal method on global scale 185 

In this study, we investigate the performance of the fractal method on a global scale using 186 

different global DEMs as a starting point. The target resolution of downscaling is put to 150m 187 

(about 5 arc-second) according to Pradhan et al. (2006). It should be noted that the original 188 

spatial scale that the RUSLE and USLE models are operating on is usually between 10 and 189 

100m, which indicates that the 150m target resolution may be still too coarse for a correct 190 

representation of slope. The DEMs that are used here are given in Table 1. 191 

As reported in previous studies (Zhang et al., 1999; Chang and Tsai, 1991; Zhang and 192 

Montgomery, 1994), the average slope decreases with decreasing DEM resolution. This confirms 193 

the expectation of loss of detail in topography at lower DEM resolutions. A large difference is 194 

found between the unscaled global average slope of the 5 arc-minute and the 30 arc-second 195 

DEMs, which is in the order of 0.017 m m
-1

 or 74 % (Table 2). After applying the fractal 196 

method, the scaled slopes of the DEMs at 150 m target resolution are all increased significantly 197 

compared to the unscaled slopes (Fig. 1). However, there is still a difference of about 0.05 m m
-1

 198 

or 8.5 % between the scaled slopes of the 5 arc-minute and the 30 arc-second DEMs (Table 2). 199 
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This difference can be attributed to several factors. One factor could be the underlying 200 

assumption that the standard deviation of elevation (σ) is independent of the DEM resolution. 201 

Although σ does not change much when considering different resolutions, there is still a general 202 

decrease in mean global σ when going from the 5 arc-minute to the 30 arc-second DEM (Table 203 

2). Due to the dependence of the fractal dimension D on σ (Zhang et al., 1999), a decrease of σ 204 

leads to a decrease in D and therefore an increase in the scaled slope. Other factors that could 205 

play a role here are the dependence of αsteepest on the steepest slope and the breakdown of the 206 

fractal method at certain scales and in certain environments. Zhang et al. (1999) mentioned that 207 

the scaling properties of slope are affected in very coarse resolution DEMs if σ changes 208 

considerably. On the other hand, Pradhan et al. (2006) mentioned the breakdown of the fractal 209 

method at very fine scales. This can indicate that the 150m target resolution is not appropriate for 210 

some topographically complex regions in the world when downscaling from the DEMs used in 211 

this study. Or based on the limitation of the fractal method as addressed by Zhang et al. (1999) 212 

the DEMs used in this study are too coarse to scale down the slope to 150m accurately.  213 

After applying the fractal method on a 30 arc-second resolution DEM, the scaled slope shows a 214 

clear increase in detail, while the unscaled slope shows a strong smoothening effect (Fig. 2A and 215 

2B). It is found that after scaling the slope values range from 0 to 85 degrees and are less than 2 216 

degrees in 80% of the area. In contrast, all slope values are less than 45 degrees and range 217 

between 0 and 2 degrees in 89% of this area when slope is computed directly from the 30 arc-218 

second DEM.  219 

The scaled slope from the 30 arc-second DEM will be used in this study to estimate the global 220 

soil erosion rates by the RUSLE model.  221 

 222 

3. Adjustment of the rainfall erosivity factor 223 

3.1 The approach by Renard and Freimund (1994) 224 

Rainfall erosivity (R factor) is described by Hudson (1971) and Wischmeier and Smith (1978) as 225 

the result of the transfer of the kinetic energy of raindrops to the soil surface. This causes a 226 

detachment of soil and the downslope transport of the soil particles depending on the amount of 227 

energy, rainfall intensity, soil type and cover, topography and management (Da Silva, 2004). The 228 
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original method of calculating erosivity is described by Wischmeier and Smith (1978) and 229 

Renard et al. (1997) as: 230 

R= 
1

n
*∑ ∑ (EI

30
)
k

𝑚𝑗

k=1
n
j=1                      (9) 231 

where n is the number of years of records, mj is the number of storms of a given year j, and EI30 232 

is the rainfall erosivity index of a storm k. The event’s rainfall erosivity index EI30 (MJ mm ha
-1

 233 

h
-1

) is defined as: 234 

EI30=I30*∑ ervr
m
r=1                    (10)  235 

where er and vr are, respectively, the unit rainfall energy (MJ ha
-1

 mm
-1

) and the rainfall depth 236 

(mm) during a time period r, and I30 is the maximum rainfall intensity during a time period of 30 237 

minutes (mm h
-1

). The unit rainfall energy, er, is calculated for each time period as: 238 

er=0.29*(1-0.72*e-0.05*ir)               (11) 239 

where ir is the rainfall intensity during the time period (mm h
-1

).  240 

The information needed to calculate the R factor according to the method of Wischmeier and 241 

Smith (1978) is difficult to obtain on a large spatial scale or in remote areas. Therefore, different 242 

studies have been done on deriving regression equations for the R factor (Angulo-Martinez et al., 243 

2009, Meusburger et al., 2012, Goovaerts, 1999, Diodato and Bellocchi, 2010). Most of these 244 

studies, however, concentrate on a specific area and can therefore not be implemented on the 245 

global scale. Studies on global soil erosion estimation by the RUSLE model or a modified 246 

version of it (Doetterl et al., 2012, van Oost et al., 2007, Montgomery et al., 2007, Yang et al., 247 

2003) have all used the method of Renard and Freimund (1994). Renard and Freimund related 248 

the R factor to the total annual precipitation based on erosivity data available for 155 stations in 249 

the USA, shown in the following equation: 250 

R=0.0483*P1.61,  P <= 850 mm 251 

R=587.8-1.219*P+0.004105*P2, P > 850 mm           (12) 252 

To test how this method performs globally, first the R factor was calculated in this study 253 

according to the method of Renard and Freimund (Eq. 12) using the 0.25 degree resolution 254 

annual precipitation data from the GPCC product (Table 1). Then, three regions were selected to 255 
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validate the resulting R values and their variability: the USA (EPA, 2001), Switzerland 256 

(Meusburger et al., 2011), and the Ebro basin in Spain (Angulo-Martinez et al., 2009). For these 257 

regions high resolution erosivity data are available obtained from pluviographic data from local 258 

meteorological stations across the whole region. 259 

Figure 3 shows that the R values computed with the Renard and Freimund method strongly 260 

overestimate R when compared to the high resolution R data of the selected regions. For the USA 261 

the R factor of Renard and Freimund shows an overall overestimation for western USA and for a 262 

large part of eastern USA when compared to the high resolution R (Table 7 and Fig. 3A). 263 

Especially a strong overestimation is seen for the north-west coast of the USA. This region is 264 

known to have complex rainfall patterns due to the presence of mountains and high local 265 

precipitation intensities with frequent snow fall (Cooper, 2011). It should be noted that the USA 266 

is not a completely suited case study for testing the R values computed with the Renard and 267 

Freimund method, as this method is based on data from stations in the USA. The available high 268 

resolution data on the R factor from Switzerland and the Ebro basin are better suited for an 269 

independent validation.  270 

For Switzerland, which has a complex precipitation variability influenced by the relief of the 271 

Alps (Meusburger et al., 2012), the R factor of Renard and Freimund shows a strong overall 272 

overestimation when compared to the observed or high resolution R values (Table 7 and Fig. 273 

3B). For the Ebro basin located in Spain, the observed R data were available for the period 1997-274 

2006 from Angulo-Martinez et al., 2009. Also here the method of Renard and Freimund 275 

overestimates the R factor and is not able to model the high spatial variability of the R data 276 

(Table 7 and Fig. 3C). 277 

 278 

3.2 The linear multiple regression approach using environmental factors 279 

To better represent the R factor on a global scale, the R estimation was based on the updated 280 

Köppen-Geiger climate classification (Table 3 and Fig.4). The Köppen-Geiger climate 281 

classification is a globally climate classification and is based on the vegetation distribution 282 

connected to annual cycles of precipitation and temperature (Lohmann et al., 1993). The reason 283 

for this approach is that this classification system includes annual cycles of precipitation and is 284 

thus indirectly related to precipitation intensity. Based on this it is possible to derive regression 285 
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equations for the R factor that are applicable for each individual climate zone. This provides a 286 

basis to calculate R with coarse resolution data on a globally scale.  287 

As a basis for deriving the regression equations for the R factor for most climate zones the high 288 

resolution R maps of the USA from EPA (2001) were used. The USA covers most of the world’s 289 

climate zones and is also the largest region with available high resolution R data. Linear multiple 290 

regression was used to adjust R:  291 

log(R
i
)=β

0
+∑ 𝛽𝑖𝑗 ∗ log(𝑋𝑖𝑗)

𝑛
𝑗=1 +εi, for i = 1, 2,…., n         (13) 292 

where X is the independent explanatory variable, j is the number of explanatory variables, β is a 293 

constant and ε is the residual.  294 

The regression operates on one or more of the following parameters (Xj): total annual 295 

precipitation (GPCC 0.25 degree product), mean elevation (ETOPO 5 DEM), and the simple 296 

precipitation intensity index, SDII. It should be mentioned that the SDII was only available on a 297 

very coarse resolution of 2.5 degree resolution for certain regions on earth, such as parts of 298 

Europe and the USA. The SDII is calculated as the daily precipitation amount on wet days (>= 1 299 

mm) in a certain time period divided by the number of wet days in that period. Previous studies 300 

that performed regression of R showed that precipitation and elevation were in most cases the 301 

only explanatory variables. Here, the SDII is added as it is a simple representation of 302 

precipitation intensity, which is an important explaining variable of R. The precipitation and 303 

SDII datasets were rescaled to a 5 arc-minute resolution (corresponding to 0.0833 degree 304 

resolution) to match the Köppen-Geiger climate classification data that was available at the 305 

resolution of 6 arc-minute (corresponding to 0.1 degree). Furthermore, high resolution erosivity 306 

data from Switzerland (Meusburger et al., 2011) and annual precipitation from the GPCC 0.5 307 

degree product were used to derive the regression equations for R for the polar (E) climates, 308 

which are not present in the USA. For the rest of the climate zones not present in the USA it was 309 

difficult to obtain high resolution erosivity data. Therefore, for those climate zones the method of 310 

Renard and Freimund was maintained to calculate erosivity. Also, if no clear improvement of the 311 

R factor is found when using the new regression equations for a specific climate zone, the R 312 

factor of Renard and Freimund is kept. Here, we mainly used the r
2
 combined with the residual 313 

standard error to evaluate if the new regression equations showed a clear improvement in the R 314 

factor. From the climate zones where high resolution erosivity data was available, the Renard 315 
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and Freimund R factors where kept for the BWh and Csa climate zones.  These are just two 316 

climate zones out of the 17 evaluated ones, which shows that the regression method performs 317 

better than the old method in most cases. All datasets for deriving the R factor are described in 318 

Table 1.  319 

 320 

3.3 Application of the linear multiple regression method on a global scale 321 

Tables 4 and 5 show the resulting regression equations for climate zones for which initially a low 322 

correlation was found between the R values calculated by the method of Renard and Freimund 323 

and the high resolution or observed R values from the maps of EPA (2001) and Meusburger et al. 324 

(2011). Figure 5 shows for each addressed climate zone how the method of Renard and 325 

Freimund and the new regression equations compare to the observed R of the USA. For the Ds 326 

climate zones the new regression equations showed only a slight improvement as compared to 327 

the method of Renard and Freimund. Also for the E climate zones the new regression equations 328 

still showed a significant bias. However, they performed much better compared to the method of 329 

Renard and Freimund. For most of the addressed climate zones the simple precipitation intensity 330 

index (SDII) explained a large part of the variability in the R factor. The elevation played a 331 

smaller role here. Elevation can be an important explaining variable in regions with a high 332 

elevation variability, which then affects the precipitation intensity. Furthermore, from Table 4  333 

and Table 6 it can be concluded that the R factor in f climate zones, which have no dry season, 334 

can be easily explained by the total annual precipitation and the SDII. Dry climate zones, 335 

especially dry summer climate zones showed a weaker correlation, which is most probably due 336 

to the fact that the SDII is too coarse to explain the variability in the low precipitation intensity in 337 

the summer. It is also interesting to see that even though the SDII was derived from a very coarse 338 

dataset, it turned out to be still important for deriving more accurate R values. Furthermore, 339 

Table 6 showed for each addressed climate zone a comparison of the newly computed average R 340 

factor with the average observed R factor, and the uncertainty range. The uncertainty range was 341 

computed by taking into account the standard deviation of each of the parameters in the 342 

regression equations. As mentioned before, the E climate zones showed the largest uncertainty 343 

range. The new regression equations significantly improved the R values and spatial variability 344 

in the western USA and lead to a mean R factor that was closer to the data mean (Table 7 and 345 
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Fig. 6A). Although the new regression equations showed a bias for the E climate zones (the 346 

minimum and maximum R were not captured), the resulting mean R for Switzerland showed a 347 

strong improvement (Table 7 and Fig. 6B). Furthermore, the variability in the estimated R 348 

compared well with the variability of the observed R. It should be noted that Switzerland is not 349 

an independent case study anymore for the E climate zones. However, the Ebro basin case study 350 

confirms that the improvement for the E climate zones that also occur here, is significant (Fig. 351 

6C). As the observed R values of the USA and Switzerland were used to derive the regression 352 

equations, the third case study, the Ebro basin in Spain, provided an important independent 353 

validation. For the Ebro basin, the new regression equations not only improved the overall mean 354 

but also captured the minimum R values better, resulting in an improved representation of the R 355 

variability (Table 7 and Fig. 6C). In Fig. 6C, however, there was a clear pattern separation in the 356 

newly computed R values, which was due to the fact that the SDII data were not available for 357 

part of the Ebro basin. As mentioned before, SDII is an important explaining parameter in the 358 

regression equations for most of the addressed climate zones.  359 

Figure 7A showed the global patterns of the estimated R from respectively the method of Renard 360 

and Freimund and the new regression equations. Figure 7B showed a difference plot between the 361 

estimated R with the method of Renard and Freimund and the R estimated with the new 362 

regression equations. The new regression equations significantly reduced the R values in most 363 

regions. However, the tropical regions still showed unrealistic high R values (maximum R values 364 

go up to 1 * 10
5
 MJ mm ha

-1
 h

-1
 yr

-1
). This is because the R factor was not adjusted for the 365 

tropical climate zones due to the lack of high resolution R data. Oliveira et al. (2012) found for 366 

the R factor in Brazil that the maximum R values for the tropical climate zones reach 22,452 MJ 367 

mm ha
-1

 h
-1

 yr
-1

.  368 

Finally, it should be noted that the purpose of the adjusting methods in this study is to capture 369 

more accurately the large scale mean erosion rates rather than the extremes. Therefore, even 370 

though the new regression equations are still not accurate enough for certain climate zones, it is 371 

important that the mean R factor is represented well. The approach for adjusting the R factor also 372 

showed that even though there is no high temporal resolution precipitation intensity data 373 

available on a global scale, the R factor can still be represented well for most climate zones on a 374 

large spatial scale by using other parameters, such as elevation, and especially a representative of 375 

precipitation intensity, such as the SDII. The SDII played an important role here as it improved 376 
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the estimation of the R factor significantly, even though data was only available at a very low 377 

resolution as compared to the other datasets of precipitation, elevation and climate zone 378 

classification. 379 

 380 

4 Global application of the adjusted RUSLE model 381 

4.1 Computation of the soil erodibility and crop cover factors 382 

In the following the consequences of the new parameterizations of the S and R factors for global 383 

soil erosion rates are demonstrated. First, the other individual RUSLE factors, soil erodibility (K) 384 

and crop cover (C) needed to be computed. Estimations of the K factor were based on soil data 385 

from the gridded 30 arc-second Global Soil Dataset for use in Earth System Models (GSCE). 386 

GSCE is based on the Harmonized World Soil database (HWSD) and various other regional and 387 

national soil databases (Shangguan et al., 2014). The method of Torri et al. (1997) was then used 388 

to estimate the K factor. Volcanic soils were given a K factor of 0.08 t ha h ha
-1

 MJ
-1

 mm
-1

, as 389 

these soil types are usually very vulnerable for soil erosion and the K values are beyond the 390 

range predicted by the method of Torri et al. (1997) (van der Knijff et al., 1999). To account for 391 

the effect of stoniness on soil erosion a combination of the methods used by Cerdan et al. (2010) 392 

and Doetterl et al. (2012) was applied, who base their methods on the original method of Poesen 393 

et al. (1994). For non-agricultural areas the method of Cerdan et al. (2010) was used where they 394 

reduced the total erosion by 30 % for areas with a gravel percentage larger or equal to 30%. For 395 

agricultural and grassland areas the method of Doetterl et al. (2012) was used, where erosion was 396 

reduced by 80 % in areas where the gravel percentage exceeded 12%.  397 

The C factor was calculated according to the method of De Jong et al. (1998), using 0.25 degree 398 

Normalized Difference Vegetation Index (NDVI) and land use data for the year 2002. An 399 

important limitation of this method is the fact that in winter the C factor is estimated too large 400 

(van der Knijff et al., 1999). This is because the equation does not include the effects of mulch, 401 

decaying biomass and other surface cover reducing soil erosion. To prevent the C factor of being 402 

too large, maximum C values for forest and grassland of 0.01 and 0.05 for pasture were used. 403 

Doetterl et al. (2012) showed that the slope length (L) and support practice (P) factors do not 404 

contribute significantly to the variation in soil erosion at the continental scale to global scale, 405 

when compared to the contribution of the other RUSLE factors (S,R and C). However, this does 406 
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not mean that their influence on erosion should be ignored completely. They may play an 407 

important role in local variation of erosion rates. In our erosion calculations we do not include 408 

these factors, because we have too little to no data on these factors on a global scale. Including 409 

them in the calculations would only add an additional large uncertainty to the erosion rates, 410 

which would make it more difficult to judge the improvements we made to the S and R factors. 411 

 412 

4.2 Computation of global soil erosion and comparison to empirical databases 413 

The RUSLE model with the settings mentioned in the previous paragraph is applied on a 5 arc-414 

minute resolution on a global scale for the present time period (see time resolutions of datasets in 415 

Table 1). Global soil erosion rates are calculated for four different versions of the RUSLE model: 416 

(a) the unadjusted RUSLE, (b) RUSLE with only an adjusted S factor, (c) RUSLE with only an 417 

adjusted R factor and (d) the adjusted RUSLE (all adjustments included). The global mean soil 418 

erosion rate for the adjusted RUSLE is found to be 7 t ha
-1

 y
-1

 (Fig. 8A). When including the 419 

uncertainty arising from applying the linear multiple regression method, the mean global soil 420 

erosion rate differs between 6 and 18 t ha
-1

 y
-1

. Furthermore, the RUSLE version with only an 421 

adjusted S factor shows the highest mean global soil erosion rate, while the lowest rate is found 422 

for the RUSLE version with only the adjusted R factor (Table 8). From the global map showing 423 

the difference between the erosion rates of the S adjusted RUSLE and the unadjusted RUSLE 424 

versions (Fig. 8C) one can see that erosion rates are in general increased and mostly pronounced 425 

in mountainous regions. This feature is ‘dampened’ by adjusting the R factor. Looking at the 426 

global map showing the difference between the R adjusted RUSLE and unadjusted RUSLE 427 

versions (Fig. 8D), one can see that the erosion rates are overall decreased in regions where the 428 

adjustments are made. When combining both adjustments of the RUSLE model in the fully 429 

adjusted RUSLE version and subtract the unadjusted RUSLE erosion rates (Fig. 8B), one can see 430 

that the erosion rates are slightly decreased in areas where the R factor is adjusted. However, in 431 

the tropics for example there is an increase in erosion rates by the fully adjusted RUSLE due to 432 

the lack of adjusting the R factor there. This indicates that these two factors balance each other, 433 

and that it is important to have a correct representation of all the RUSLE factors on a global scale 434 

in order to predict reliable erosion rates.   435 



16 
 

In this study the K and C factors are not tested and adjusted for a coarse resolution at the global 436 

scale and thus validation with existing empirical databases on soil erosion is not fully justified. 437 

However, to test if the global erosion rates are in an acceptable range, they are compared to 438 

erosion estimates from the NRI database for the USA and erosion estimates from the study of 439 

Cerdan et al. (2010) for Europe. These are to our knowledge the only large scale high resolution 440 

empirical databases on soil erosion.  441 

The NRI database contains USLE erosion estimates for the year 1997, which are available at the 442 

HUC4 watershed level. After aggregating the resulting erosion rates from the adjusted and 443 

unadjusted RUSLE models to the HUC4 watershed level, the results showed that the mean 444 

erosion rates from the adjusted RUSLE model come closer to that of the NRI database (Table 9 445 

and Fig. 9A). However, the maximum observed mean HUC4 soil erosion rate from the adjusted 446 

RUSLE was twice as high as compared to the NRI database. This maximum is observed in the 447 

hilly and relatively wet region on the west coast of the USA. From these results we can conclude 448 

that the erosion rates of the adjusted RUSLE fall in the range of observed values, but that there 449 

are still some local overestimations. For example, the north west of the US shows a slightly 450 

worse performance in the adjusted model most probably because in this region the estimation of 451 

the R factor could not be improved, while the S factor is increased. This gives an overall increase 452 

in soil erosion rates. In this region of the USA, the Csb climate prevails, for which the R factor is 453 

still difficult to estimate in a correct way (Table 4). So for this climate there are some outliers in 454 

the R factor in this specific region. 455 

For Europe, Cerdan et al. (2010) used an extensive database of measured erosion rates on plots 456 

under natural rainfall. They extrapolated measured erosion rates to the whole Europe (European 457 

Union area) and adjusted them with a topographic correction based on the L and S factors of 458 

RUSLE, and a correction to account for soil stoniness. For comparison, the soil erosion rates 459 

from Cerdan et al. (2010) and the RUSLE estimates are aggregated at country level. The 460 

performance of the adjusted RUSLE model was not as good for Europe compared to the USA, 461 

which is not surprising due to the fact that the RUSLE model is based on soil erosion data of the 462 

USA. However, also on the European scale the adjusted RUSLE model performed better than the 463 

unadjusted RUSLE model (Table 9 and Fig. 9B). Especially the large erosion rates in the south 464 

of Europe as observed in the results of the unadjusted RUSLE model are less extreme for the 465 
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adjusted RUSLE model results. Still, the overall mean erosion rate for Europe was overestimated 466 

by approximately two times (Table 9).  467 

These biases in erosion rates as seen for the USA and Europe can be attributed to several factors. 468 

Firstly, the other RUSLE factors (K and C) and the way they interact with each other are not 469 

adjusted to the coarse resolution of the global scale. From figures 8, which provide global 470 

erosion rates, no clear signal can be found for which land cover types the RUSLE performs 471 

worse or better. In general, we can see that the adjusted RUSLE model still overestimates 472 

erosion rates for most land cover types. A short analysis for Europe showed that the largest 473 

biases are found for shrubs, and the least for grassland. However, a more explicit analysis is 474 

needed here to find out how we can improve the contribution of land cover and land use to 475 

erosion rates in the RUSLE model. For example looking at the location of land use in a certain 476 

grid cell could make a difference in the resulting erosion rates. If the land use in a grid cell is 477 

located on steep slopes the resulting erosion in that gridcell would be higher than when it would 478 

be located in the flatter areas. In this study, however, only mean fractions of land cover and the 479 

NDVI are used for each gridcell, which can lead to possible biases in the resulting erosion rates. 480 

Secondly, land management is not accounted for in this study, which could introduce an 481 

important systematic bias in the soil erosion rates for especially agricultural areas. Furthermore, 482 

uncertainties in the coarse resolution land cover/land use, soil and precipitation datasets that are 483 

not accounted for, can lead to the model biases. Also, better adjustment of the R factor for 484 

climate zones such as the E climate zones, could help improving the overall results. Some biases 485 

in the erosion rates can also be attributed to the fact that stepped relief, where flat plateaus are 486 

separated by steep slopes, are not well captured by the 150m target resolution used in the fractal 487 

method to scale slope. In this way erosion would be overestimated in these areas. Finally, errors 488 

and limitations in the observational datasets can also contribute to the differences between model 489 

and observations. The study of Cerdan et al. (2010) on Europe for example used extrapolation of 490 

local erosion data to larger areas that could introduce some biases. Also the underlying studies on 491 

measured erosion rates used different erosion measuring techniques that can be linked to 492 

different observational errors.  493 

 494 

5 Conclusions 495 



18 
 

In this study we introduced specific methods to adjust the topographical and rainfall erosivity 496 

factors to improve the application of the RUSLE model on a global scale using coarse resolution 497 

input data.  498 

Our results show that the fractal method by Zhang et al. (1999) and Pradhan et al. (2006) can be 499 

applied on coarse resolution DEMs to improve the resulting slope. Although the slope 500 

representation improved after applying this method, the results still show a slight dependence on 501 

the original grid resolution. This is attributable to several factors such as the underlying 502 

assumption that the standard deviation of elevation (𝜎) is independent of the DEM resolution, 503 

and to the breakdown of the fractal method at certain scales.  504 

We compared the rainfall erosivity calculated by the method of Renard and Freimund to 505 

available high resolution or observed erosivity data of the USA, Switzerland and the Ebro basin, 506 

and showed overall significant biases. We implemented a linear multiple regression method to 507 

adjust erosivity for climate zones of the Köppen-Geiger climate classification system in the USA 508 

that showed a bias in erosivity calculated with the method of Renard and Freimund. Using 509 

precipitation, elevation and the simple precipitation intensity index as explaining parameters, the 510 

resulting adjusted erosivity compares much better to the observed erosivity data for the USA, 511 

Switzerland and the Ebro basin. Not only the mean values but also the spatial variability in 512 

erosivity is improved. It was surprising to notice that using the rather coarse resolution simple 513 

precipitation intensity index in the regression analysis made it possible to explain much of the 514 

variability in erosivity. This, once more, underpins the importance of precipitation intensity in 515 

erosivity estimation.  516 

After calculating the newly adjusted erosivity on a global scale, it is apparent that the tropical 517 

climate zones, for which erosivity was not adjusted, show strong overestimations in some areas 518 

when compared to estimated erosivity from previous studies. This shows that adjusting erosivity 519 

for the tropical climate zones should be the next step. The challenge is to find enough reliable 520 

long term and high resolution erosivity data for those regions.  521 

To investigate how the adjusted topographical and rainfall erosivity factors affect the global soil 522 

erosion rates, we applied the adjusted RUSLE model on a global scale and estimate a mean 523 

global soil erosion rate of 7 t ha
-1

 y
-1

. It is, however, difficult to provide accurate uncertainty 524 

estimates to the global erosion rates of this study and to provide a good validation with 525 
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observations, due to lack of high resolution data on other individual RUSLE factors such as the 526 

soil erodibility, slope length and support practice. These RUSLE factors, together with the crop 527 

cover factor, which includes the effects of land use, are therefore not adjusted for application on 528 

a coarse resolution on global scale.  529 

To test if the soil erosion rates from the adjusted RUSLE model are in a realistic range, we 530 

compared the results to the USLE erosion estimates for the USA from the NRI database and the 531 

erosion estimates for Europe from the study of Cerdan et al. (2010). The adjusted RUSLE soil 532 

erosion rates, which we aggregated to the HUC4 watershed level, show a better comparison with 533 

the NRI USLE estimates for the USA then the unadjusted RUSLE erosion rates. For Europe the 534 

comparison of the adjusted RUSLE soil erosion rates to the study of Cerdan et al. (2010) were 535 

not as good as for the USA. This is not surprising due to the fact that the parameterizations of the 536 

RUSLE model are based on soil erosion data of the USA. However, also for Europe, the adjusted 537 

RUSLE model performs better than the unadjusted RUSLE model. 538 

We find strong overestimations by the adjusted RUSLE model for hilly regions in the west coast 539 

of the USA and for south of Europe. We argue that besides for reasons mentioned before, these 540 

biases are due to the fact that the topographical detail may not be enough in some regions to 541 

capture the true variability in soil erosion effects by topography. Also erosivity could not be 542 

adjusted for some climate zones that are not present in the USA or Switzerland, and needs to be 543 

improved for climate zones such as the polar climate zones.  544 

We conclude that even though there is still much improvement of the RUSLE model possible 545 

with respect to topography and erosivity, the methods proposed in this study seem to be 546 

promising tools for improving the global applicability of the RUSLE model. A globally 547 

applicable version of the RUSLE model together with data on environmental factors from Earth 548 

System Models (ESMs) can provide the possibility for future studies to estimate accurate soil 549 

erosion rates for the past, current and future time periods.  550 
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Table 1. List of datasets used in this study 

Category Dataset Source Spatial 

resolution 

Temporal-

period 

Variables 

DEM GTOPO Elevation Model USGS, 1996, Gesch et al., 

1999 

30 arc-seconds   elevation 

  ETOPO1 Elevation 

Model 

Amante and Eakins, 2009 1 arc-minute   elevation 

  ETOPO2 Elevation 

Model 

US Department of 

Commerce and NOAA, 

2001 

2 arc-minute   elevation 

  ETOPO5 Elevation 

Model 

National Geophysical Data 

Center/NESDIS/NOAA, 

1995 

5 arc-minute   elevation 

Climate GPCC 0.5 degree dataset Schneider et al., 2011 0.5 degrees Years 1989-

2010 

total yearly 

precipitation 

  GPCC 0.25 degree Meyer-Christoffer et al., 0.25 degrees years 1951- total yearly 
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dataset 2011 2000 precipitation 

  GHCNDEX dataset CLIMDEX (Donat et al., 

2013) 

2.5 degrees years 1951-

present 

simple precipitation 

intensity index (SDII) 

  Köppen-Geiger dataset Peel et al., 2007 5 arc-minute   Köppen-Geiger 

climate classifications 

Soil Global Soil Dataset for 

use in Earth System 

Models (GSCE) 

Shangguan et al., 2014 30 arc-seconds   sand, silt and clay 

fractions, organic 

matter %, gravel % 

  Harmonized World Soil 

Database (HWSD) 

version 1.2 

Nachtergaele et al., 2012 30 arc-seconds   volcanic soils 

Land-cover GIMMS  dataset ISLSCP II (Tucker et al., 

2005, Hall et al., 2006 

0.25 degrees year 2002 Normalized difference 

vegetation index 

(NDVI) 

Land-use MODIS dataset ISLSCP II (Friedl et al., 

2010, Hall et al., 2006) 

0.25 degrees year 2002 Land use fractions 
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Table 2. Fractal parameters and the resulting mean global slopes before and after applying the fractal method on the different DEMs; 

Increase of slope means the increase of the average global slope of a DEM after applying the fractal method; difference after scaling 

=
𝜃𝑠𝑐𝑎𝑙𝑒𝑑(𝐷𝐸𝑀)−𝜃𝑠𝑐𝑎𝑙𝑒𝑑(𝐺𝑇𝑂𝑃𝑂30)

𝜃𝑠𝑐𝑎𝑙𝑒𝑑(𝐺𝑇𝑂𝑃𝑂30)
∗ 100; difference before scaling =

𝜃(𝐷𝐸𝑀)−𝜃(𝐺𝑇𝑂𝑃𝑂30)

𝜃(𝐺𝑇𝑂𝑃𝑂30)
∗ 100 

 

DEM resolution 

standard 

deviation 

of 

elevation    mean D 

mean 

αsteepest  θ 𝜃𝑠𝑐𝑎𝑙𝑒𝑑 Increase of θ 

difference 

after 

scaling  

difference 

before 

scaling 

  arc-minute m 

 

  m m-1 m m-1 % %  % 

GTOPO30 0.5 570 1.32 0.99 0.023 0.059 61 0 0 

ETOPO1 1 530 1.35 1.08 0.016 0.057 71.9 -3.4 -30.4 

ETOPO2 2 549 1.37 1.17 0.011 0.055 80 -6.8 -52.2 

ETOPO5 5 562 1.42 1.25 0.006 0.054 88.9 -8.5 -73.9 
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Table 3. Description of Köppen climate symbols and defining criteria (from Peel et al., 2007). 

1st 2nd 3rd Description  Criteria* 

A     Tropical Tcold>=18 

  f   - Rainforest Pdry>=60 

  m   - Monsoon 
Not (Af) & Pdry>=100–
MAP/25 

  w   - Savannah Not (Af) & Pdry<100–MAP/25 

B     Arid MAP<10×Pthreshold 

  W   - Desert MAP<5×Pthreshold 

  S   - Steppe MAP>=5×Pthreshold 

    h   Hot MAT>=18 

    k  Cold MAT<18 

C     Temperate Thot>10&0<Tcold<18 

  s   - Dry Summer Psdry<40&Psdry<Pwwet/3 

  w   - Dry Winter Pwdry<Pswet/10 

  f   - Without dry season Not (Cs) or (Cw) 

    a  Hot Summer Thot>=22 

    b  Warm Summer Not (a) & Tmon10>=4 

    c  Cold Summer Not (a or b) & 1<=Tmon10<4 

D      Cold Thot>10&Tcold<=0 

  s   - Dry Summer Psdry<40&Psdry<Pwwet/3 

  w   - Dry Winter Pwdry<Pswet/10 

  f   - Without dry season Not (Ds) or (Dw) 

    a  Hot Summer Thot>=22 

    a  Warm Summer Not (a) & Tmon10>=4 

    c  Cold Summer Not (a, b or d) 

    d  Very Cold Winter Not (a or b) & Tcold<=-38 

E     Polar Thot<10 

  T   - Tundra Thot>0 

  F   - Frost Thot<-0 
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* MAP = mean annual precipitation, MAT = mean annual temperature, Thot = temperature of the hottest month, Tcold = temperature of the coldest month, Tmon10 = 

number of months where the temperature is above 10, Pdry = precipitation of the driest month, Psdry = precipitation of the driest month in summer, Pwdry = 

precipitation of the driest month in winter, Pswet = precipitation of the wettest month in summer, Pwwet = precipitation of the wettest month in winter, Pthreshold = 

varies according to the following rules (if 70% of MAP occurs in winter then Pthreshold = 2 x MAT, if 70% of MAP occurs in summer then Pthreshold = 2 x MAT + 

28, otherwise Pthreshold = 2 x MAT + 14). Summer (winter) is defined as the warmer (cooler) six month period of ONDJFM and AMJJAS. 
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Table 4. Linear multiple regression equations for different climate zones, relating high resolution erosivity from the USA with one or 

more significant parameters: annual total mean precipitation (P), mean elevation (z) and the simple precipitation intensity index (SDII) 

 

Climate 

zone 

Explaining 

parameters 

Regression function  - optimal R
2
 Residual standard error 

BWk P, SDII 𝑅 = 0.809 ∗ 𝑃0.957 + 0.000189 ∗ 𝑆𝐷𝐼𝐼6.285   

BSh P, SDII log 𝑅 = −7.72 + 1.595 ∗ log 𝑃 + 2.068 ∗ log 𝑆𝐷𝐼𝐼 0.97 0.22 

BSk P, SDII, Z log 𝑅 = 0.0793 + 0.887 ∗ log 𝑃 + 1.892 ∗ log 𝑆𝐷𝐼𝐼 − 0.429 ∗ log 𝑍 0.89 0.35 

Csb P 𝑅 = 98.35 + 0.000355 ∗ 𝑃1.987  0.16 

Cfa P, SDII, Z log 𝑅 = 0.524 + 0.462 ∗ log 𝑃 + 1.97 ∗ log 𝑆𝐷𝐼𝐼 − 0.106 ∗ log 𝑍 0.89 0.11 

Cfb P, SDII log 𝑅 = 4.853 + 0.676 ∗ log 𝑃 + 3.34 ∗ log 𝑆𝐷𝐼𝐼 0.97 0.21 

Dsa Z, SDII log 𝑅 = 8.602 − 0.963 ∗ log 𝑆𝐷𝐼𝐼 − 0.247 ∗ log 𝑍 0.51 0.05 

Dsb P log 𝑅 = 2.166 + 0.494 ∗ log 𝑃 0.45 0.25 

Dsc SDII log 𝑅 = 6.236 − 0.869 ∗ log 𝑆𝐷𝐼𝐼 0.51 0.02 

Dwa P log 𝑅 = −0.572 + 1.238 ∗ log 𝑃 0.99 0.02 

Dwb P, SDII log 𝑅 = −1.7 + 0.788 ∗ log 𝑃 + 1.824 ∗ log 𝑆𝐷𝐼𝐼 0.98 0.02 

Dfa P, SDII log 𝑅 = −1.99 + 0.737 ∗ log 𝑃 + 2.033 ∗ log 𝑆𝐷𝐼𝐼 0.9 0.16 

Dfb P, SDII, Z log 𝑅 = −0.5 + 0.266 ∗ log 𝑃 + 3.1 ∗ log 𝑆𝐷𝐼𝐼 − 0.131 ∗ log 𝑍 0.89 0.32 

Dfc SDII log 𝑅 = −1.259 + 3.862 ∗ log 𝑆𝐷𝐼𝐼 0.91 0.23 

ET P log 𝑅 = −3.945 + 1.54 ∗ log 𝑃 0.14 0.42 

EF+EFH P log 𝑅 = 16.39 − 1.286 ∗ log 𝑃 0.6 0.13 
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ETH P, SDII log 𝑅 = 21.44 + 1.293 ∗ log 𝑃 − 10.579 ∗ log 𝑆𝐷𝐼𝐼 0.52 0.53 
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Table 5. Linear multiple regression equations for different climate zones for regions that have no data on the simple precipitation 

intensity index (SDII). The regression equations relate high resolution erosivity from the USA with the annual total mean precipitation 

(P) and/or the mean elevation (z) 

 

Climate zone Optimal regression function   

(when SDII is not available) 

R
2
 Residual 

standard error 

BWk Method Renard & Freimund (1994)   

BSh log 𝑅 = −8.164 + 2.455 ∗ log𝑃 0.86 0.5 

BSk log 𝑅 = 5.52 + 1.33 ∗ log 𝑃 − 0.977 ∗ log 𝑍 0.76 0.52 

Cfa log 𝑅 = 3.378 + 0.852 ∗ log 𝑃 − 0.191 ∗ log 𝑍 0.57 0.23 

Cfb log 𝑅 = 5.267 + 0.839 ∗ log 𝑃 − 0.635 ∗ log 𝑍 0.81 0.5 

Dsa log 𝑅 = 7.49 − 0.0512 ∗ log 𝑃 − 0.272 ∗ log 𝑍 0.48 0.06 

Dsc log 𝑅 = 4.416 − 0.0594 ∗ log 𝑃 0.015 0.03 

Dwb log 𝑅 = 1.882 + 0.819 ∗ log 𝑃 0.81 0.08 

Dfa log 𝑅 = −2.396 + 1.5 ∗ log 𝑃 0.65 0.29 

Dfb log 𝑅 = 1.96 + 1.084 ∗ log 𝑃 − 0.34 ∗ log 𝑍 0.74 0.48 

Dfc log 𝑅 = −3.263 + 1.576 ∗ log𝑃 0.56 0.49 

ETH log 𝑅 = −10.66 + 2.43 ∗ log 𝑃 0.4 0.59 
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Table 6. Mean high resolution R values from the USA and Switzerland and mean modelled R 

values with uncertainty range for each addressed climate zone  

 

 

 observed old 

method 

adjusted 

method Adjusted method 

climate description R mean R mean R mean uncertainty range 

BWk arid, desert, cold 284 533 291 158-495 

BSh arid, steppe, hot 2168 1356 2207 1723-2828 

BSk arid, steppe, cold 876 884 885 749-1046 

Csb temperate, dry warm 

summer 

192 1136 192 

133-292 

Cfa temperate, without dry 

season, hot summer 

5550 5607 5437 

4830-6123 

Cfb temperate, without dry 

season, warm summer 

1984 5359 1971 

1431-2715 

Dsa cold, dry hot summer 172 445 171 86-340 

Dsb cold, dry warm summer 175 896 168 151-187 

Dsc cold, dry cold summer 115 374 115 91-145 

Dwa cold, dry winter, hot 

summer 

1549 1444 1551 

1280-1879 

Dwb cold, dry winter, warm 

summer 

1220 1418 1214 

1057-1395 

Dfa cold, without dry season, 

hot summer 

2572 2983 2582 

2346-2843 

Dfb cold, without dry season, 

warm summer 

1101 1798 1124 

922-1371 

Dfc cold, without dry season, 

cold summer 

483 701 483 

423-552 

ET polar, tundra 1352 6257 1249 23-68088 

EF+EFH polar, frost + polar, frost, 

high elevation 

 

1468 

 

5469 

 

1450 16-132001 

ETH polar, tundra, high 

elevation 

945 5580 832 

0-6314918 
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Table 7. Statistics of the comparison of high resolution erosivity from three regions to estimated erosivity from the Renard and 

Freimund method and the new regression equations 

 

 Observed Estimated – Renard & Freimund Estimated – multiple linear regression 

  Range Mean 
Standard 
deviation Range Mean 

Standard 
deviation 

Correlation 
coefficient 

Rank 

correlation 
coefficient Range Mean 

Standard 
deviation 

Correlation 
coefficient 

Rank 

correlation 
coefficient 

Switzerland 121-6500 1204 833 2335-10131 5798 1654 0.51 0.42 225-2572 1256 472 0.49 0.3 

 

the USA 
(aggregated 

huc4) 105-4963 1271 1174 57-15183 1870 2088 0.51 0.68 60-15808 1691 2188 0.58 0.83 

 
Ebro basin 40 - 4500 891 622 747 - 5910 1529 846 - - 167 - 4993 836 701 - - 
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Table 8. Comparison of the global erosion rates (t ha
-1

 y
-1

) and percentiles between different 

versions of the RUSLE model 

  mean 

25th  

percentile 

50th  

percentile 75th percentile 90th percentile 

RUSLE unadjusted 5.1 0.2 0.8 2.8 8.6 

RUSLE adjusted with S 11.1 0.3 1.2 4.3 15.7 

RUSLE adjusted with R 3.6 0.1 0.6 1.9 6.3 

RUSLE adjusted with S & R 7.3 0.2 0.8 3 10.9 
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Table 9. Statistics of the observed and modelled erosion rates from the unadjusted and adjusted versions of the RUSLE for the USA 

and Europe (t ha
-1

 y
-1

) 

 

Region 

 

 

Source 

Observations 

  

  

Adjusted RUSLE 

  

  

Unadjusted RUSLE 

  

  

  

 

Range Mean 

Standard 

deviation Range Mean 

Standard 

deviation Range Mean 

Standard 

deviation 

Europe 

(Aggregation 

country level) 

no small 

countries 

Cerdan et 

al., 2010 

0.1-2.6 0.9 0.7 0.1-7 2.3 2.1 0-14 2.8 3.6 

 

the USA 

(Aggregation 

HUC4 level) 

 

 

NRI 

database 0-11 1.7 2.1 0.2-21 1.7 2.5 0-14 1.9 2.3 



39 
 

 

Figure 1. Global average unscaled slope estimated from different coarse resolution digital 

elevation models (DEMs) as function of their resolution (blue); and global average scaled slope 

from the same DEMs as function of their resolution (red). 
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Figure 2. (A) A global map of the unscaled slope derived from the 30 arc-second DEM using a 

target resolution of 150m; (B) A global map showing the difference between the unscaled and 

scaled slopes (in degrees), where blue colours show an underestimation by the unscaled slope 

when compared to the scaled slope and reddish colours show and overestimation.  

   

 

   

 

 

   

Figure 3. Spatial difference plots showing the difference between the high resolution erosivity 

and erosivity calculated with the method of Renard and Freimund for (A) the USA, (B) 

Switzerland and (C) the Ebro basin in Spain; In (A) and (B) the blue colours show an 

underestimation of the calculated erosivity when compared to the high resolution erosivity, while 

the red colours show an overestimation; the Ebro basin serves here as an independent validation 

(A) (B) 

(C1) (C2) 
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set and it has two graphs, (C1) a spatial plot of erosivity according to Renard and Freimund, and 

(C2) the high resolution erosivity from Angulo-Martinez et al. (2009); All values in the graphs 

are in MJ mm ha
-1

 h
-1

 y
-1

 

 

 

Figure 4. The Köppen-Geiger climate classification global map with resolution of 5 arc-minute 

(Peel et al., 2007) 
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Figure 5. Comparison of high resolution erosivity data and predicted erosivity from (1) the 

Renard and Freimund method and (2) the new regression equations, for various climate zones; 

the red line is the 1 tot 1 line that always lies on the 45 degree diagonal, and does not appear in 

some graphs because predicted erosivity is  overestimated; All values in the graphs are in MJ 

mm ha
-1

 h
-1

 y
-1
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Figure 6. Spatial difference plots showing the difference between the high resolution rainfall 

erosivity and erosivity calculated with the new regression equations for (A) the USA, (B) 

Switzerland and (C) the Ebro basin in Spain; In (A) and (B) the blue colours show an 

underestimation of the calculated erosivity when compared to the high resolution erosivity, while 

the red colours show an overestimation; the Ebro basin serves here as an independent validation 

set and it has two graphs, (C1) a spatial plot of erosivity according to the new regression 

equations, and (C2) the high resolution erosivity from Angulo-Martinez et al. (2009); All values 

in the graphs are in MJ mm ha
-1

 h
-1

 y
-1

; The Ebro basin is presented differently here when 

compared to the USA and Switzerland, due to the lack of the original erosivity data from 

Angulo-Martinez et al., 2009. 

(A) (B) 

(C1) (C2) 
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Figure 7. (A) Global distribution of the new modelled rainfall erosivity values according to the 

new regression equations; and (B) a difference map between erosivity calculated according to the 

method of Renard and Freimund and the new modelled erosivity values (MJ mm ha
-1

 h
-1

 y
-1

), 

(A) 

(B) 
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where blue colours indicate lower erosivity values by Renard and Freimund, while redish colours 

indicate higher erosivity values; map resolution is 5 arc-minute 

 

 

 

 

 

(A) 

(B) 
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Figure 8. (A) Global yearly averaged erosion rates according to the fully adjusted RUSLE 

model; (B) a difference map between the fully adjusted and unadjusted RUSLE model; (C) a 

difference map between the adjusted S RUSLE and the unadjusted RUSLE model; (D) a 

difference map between the adjusted R RUSLE and the unadjusted RUSLE model; in figures 

(C) 

(D) 
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B,C and D the reddish colors show an overestimation of by the adjusted RUSLE model and 

yellow to bluish colors show an underestimation; resolution of all maps is 5 arc-minute and the 

units are in t ha
-1

 y
-1

 

 

 

 

 

 

 

 

(A1) 

(A2) 
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Figure 9. (A) Difference plots between soil erosion estimates from the NRI database for the USA 

and estimates of (A1) the unadjusted RUSLE model, and of (A2) the adjusted RUSLE model; all 

(B1) 

(B2) 
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aggregated at HUC4 watershed level; (B) Difference plots between soil erosion estimates from 

the database of Cerdan et al. (2010) for Europe and estimates of (B1) the unadjusted RUSLE 

model and of (B2) the adjusted RUSLE model; all aggregated at country level; reddish colors 

represent an overestimation (%) while the bluish represent and underestimation (%) compared to 

the erosion values from the databases; black color is an overestimation > 10%.  


