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1. Abstract 8 

The paper presents the transport module of the System for Integrated modeLling of 9 

Atmospheric coMposition SILAM v.5 based on the advection algorithm of Michael Galperin. 10 

This advection routine, so far weakly presented in international literature, is non-diffusive, 11 

positively defined, stable at any Courant number, and very efficient computationally. We 12 

present the rigorous description of its original version, along with several updates that 13 

improve its monotonicity and shape preservation, allowing for applications to long-living 14 

species in conditions of complex atmospheric flows. The scheme is connected with other parts 15 

of the model in a way that preserves the sub-grid mass distribution information that is a 16 

corner-stone of the advection algorithm. The other parts include the previously developed 17 

vertical diffusion algorithm combined with dry deposition, a meteorological pre-processor, 18 

and chemical transformation modules. 19 

Quality of the advection routine is evaluated using a large set of tests. The original approach 20 

has been previously compared with several classic algorithms widely used in operational 21 

dispersion models. The basic tests were repeated for the updated scheme and extended with 22 
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real-wind simulations and demanding global 2-D tests recently suggested in literature, which 23 

allowed positioning the scheme with regard to sophisticated state-of-the-art approaches. The 24 

advection scheme performance was fully comparable with other algorithms, with a modest 25 

computational cost. 26 

This work was the last project of Dr. Sci. Michael Galperin who untimely passed away on 17 27 

March 2008. 28 

 29 
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2. Introduction 33 

One of the key problems in atmospheric composition modelling is the accuracy and reliability 34 

of numerical schemes. A less appreciated but important issue is the consistency of the 35 

approaches applied in different modules of the modelling system. Usually, model construction 36 

follows process-wise split (Yanenko 1971; Marchuk 1995; Seinfeld & Pandis 2006), thus 37 

considering separately the advection and diffusion algorithms, physical and chemical 38 

transformations, and dry and wet deposition. In practical model developments, features of the 39 

transport algorithms, first of all, advection scheme, largely shape-up the model and determine 40 

its area of application.  41 

2.1. Advection schemes 42 

There are numerous types of advection schemes currently employed in atmospheric dispersion 43 

models. Two major categories refer to Lagrangian or Eulerian treatment of tracers: as small-44 

size masses (Lagrangian particles) or as the concentration fields discretised in a prescribed 45 



3 

 

grid. The Eulerian schemes, the primary subject of this paper, can be divided to flux-form 46 

finite volume, semi-Lagrangian, or expansion-function schemes. The expansion-function 47 

schemes approximate the solution with a given set of basis functions and, in turn, can be 48 

divided to spectral, pseudospectral and finite-element approaches. Some classic schemes are 49 

also based on finite-difference approximations of the advective term of the transport equation. 50 

The basic principles of all these approaches were formulated several decades ago and, with 51 

certain modifications, are still in use. Many modern schemes combine several approaches. 52 

The large diversity of the advection algorithms is explained by a long list of requirements to 53 

such schemes. The most important ones are: positive definition, minimal numerical diffusion, 54 

limited non-monotonicity and non-linearity, stability with regard to high Courant number (the 55 

number of the model grid cells passed within one advection time step), small phase error, 56 

local and global mass conservation, and high numerical efficiency. Some of these 57 

requirements contradict to each other. For example, numerical diffusion “blurs” the resulting 58 

patterns but also makes them smoother, thus improving the monotonicity.  59 

The finite-difference schemes involve direct discretization of the dispersion equation and 60 

various interpolation functions to evaluate derivatives of the concentration fields (see reviews 61 

of (Richtmyer 1962; Leith 1965; Roach 1980), as well as section 3.1 in (Rood 1987); specific 62 

examples are, for instance, (Russell & Lerner 1981; Van Leer 1974; Van Leer 1977; Van Leer 63 

1979). These schemes, being once popular, usually suffer from large numerical diffusion and 64 

limited stability, which sets stringent limitations to the Courant number usually requiring it to 65 

be substantially less than one. Therefore, the interest has gradually shifted towards flux, 66 

finite-element, and semi-Lagrangian schemes.  67 

The flux schemes represent the transport via mass fluxes at the grid cell borders, which are 68 

calculated from concentrations in the neighbouring cells and wind characteristics. They are 69 

inherently mass conservative and have become popular in atmospheric chemistry transport 70 
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models (Kukkonen et al. 2012). Probably the most widely used flux-type scheme is the one 71 

made by A.Bott (Bott 1989; Bott 1992; Bott 1993), especially if one would count the 72 

numerous Bott-type schemes (see examples in (Syrakov 1996; Syrakov & Galperin 1997; 73 

Syrakov & Galperin 2000; Walcek & Aleksic 1998; Walcek 2000; Yamartino 1993), which 74 

are based on the same principle but involve different approximation functions, monotonicity 75 

and normalization procedures, etc.  76 

The semi-Lagrangian schemes have been among the most-widely used approaches for 77 

decades, with numerous algorithms using its basic concept [Crowley, 1968; Egan and 78 

Mahoney, 1972; Pedersen and Prahm, 1974; Pepper and Long, 1978; Prather, 1986; 79 

Smolarkiewicz, 1982; Staniforth and Cote, 1991 and references therein], [Lowe et al., 2003; 80 

Sofiev, 2000], etc. In the forward form, these schemes consider the transport of mass starting 81 

from the grid mesh points (departure points) and calculate the masses at the grid points closest 82 

to the arrival point. Backward algorithms start from arrival grid points and find the grid points 83 

near the departure point. The schemes can be based on tracking either grid points or grid cells 84 

along their trajectories. The gridpoint-based schemes are not inherently mass-conserving, 85 

whereas the volume-based schemes achieve mass conservation by integrating the mass over 86 

the departure volume. They can sometimes be described as a combination of finite-volume 87 

and semi-Lagrangian methods (Lin & Rood 1996, 1997). Stability of these schemes can be 88 

ensured for a wide range of Courant numbers (Leonard 2002). A general review can be found 89 

in (Lauritzen et al. 2011), whereas a comparison of 19 modern schemes is discussed in 90 

(Lauritzen et al. 2014), hereinafter referred to as L14. 91 

Modelling in spectral space is another approach with long history (Ritchie 1988; Kreiss & 92 

Oliger 1972; Zlatev & Berkowicz 1988; Prahm & Christensen 1977) but not widely used 93 

today. It is based on solving the transport equation in spectral space. 94 
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One of the main problems of the existing schemes is substantial numerical diffusion 95 

originating from the finite-step discretization along space and time. Seemingly inevitable in 96 

Eulerian context, this phenomenon, however, does not exist in Lagrangian advection schemes, 97 

which do not contain explicit discretization of particle movement. Lagrangian domain is a 98 

continuous space rather than a set of pre-defined grid meshes and the position of the particles 99 

can be calculated precisely. As a result, numerical diffusion of purely Lagrangian schemes is 100 

always zero – at a cost of strongly non-monotonous concentration fields due to limited spatial 101 

representativeness of a single Lagrangian particle and the limited number of particles.  102 

One of ways to reduce the diffusivity of an Eulerian scheme is to store additional prognostic 103 

variables to describe the state of each grid cell. It allows to add extra conservation equation 104 

for, e.g., first- or higher-order moments (Egan & Mahoney 1972; Prather 1986), thus 105 

preserving more features of the concentration field. In a series of works, Michael Galperin 106 

developed a semi-Lagrangian scheme that was fully non-diffusive, positively defined, and 107 

very efficient computationally (Galperin et al. 1994; Galperin et al. 1995; Galperin et al. 108 

1997; Galperin 1999; Galperin & Sofiev 1998; Galperin & Sofiev 1995; Galperin 2000). The 109 

early version of this scheme applied in the large-scale modelling by (Sofiev 2000) resembled 110 

the “moving-centre” approach widely used in aerosol dynamics models (Kokkola et al. 2008) 111 

and shared its characteristic weakness – high non-monotonicity. The later developments 112 

substantially reduced it without damaging other features (Galperin 1999; Galperin 2000). 113 

Further development of this scheme is the subject of the current paper. 114 

2.2. Horizontal and vertical diffusion, dry deposition  115 

Diffusion algorithms are less diverse than advection schemes. The physical ground for one of 116 

the common diffusion parameterizations is described in details by (Smagorinsky 1963), who 117 

suggested a formula for grid-scale scalar eddy-diffusivity based on the model resolution and 118 
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wind speed derivatives, thus connecting the numerical features of the simulations and 119 

hydrodynamics. It is widely used in chemical transport models (Kukkonen et al. 2012).  120 

The dry deposition is usually accounted for as a boundary condition to the vertical advection-121 

diffusion equation. Computation of dry deposition for gases practically always follows the 122 

electrical analogy, for which one of the first comprehensive parameterizations was suggested 123 

by (Wesely 1989). Among the extensions of this approach, one was suggested by Sofiev, 124 

(2002), who combined it with vertical diffusion and connected with the Galperin advection 125 

scheme. The algorithm used effective mean diffusion coefficient over thick layers calculated 126 

from high-resolution meteorological vertical profiles, the direction also recommended by 127 

Venkatram & Pleim (1999). These thick layers were defined using the subgrid information 128 

available from the advection scheme, which increased the accuracy of both algorithms (Sofiev 129 

2002). 130 

For aerosol species, the electrical analogy is not correct (Venkatram & Pleim 1999). 131 

Compromising approaches suggested by (Slinn 1982; Zhang et al. 2001) and updated by 132 

Petroff and Zhang (2010) involve numerous empirical relations, sometimes with thin ground. 133 

More rigorous approach unifying the gas and aerosol deposition parameterizations into a 134 

single solution was developed by (Kouznetsov & Sofiev 2012).  135 

2.3. Organization of the paper  136 

The current paper describes the Eulerian transport algorithm of the System for Integrated 137 

modeLling of Atmospheric coMposition SILAM v.5, which is based on the advection scheme 138 

of Michael Galperin with several updates.  139 

The paper is organised as follows. Section 3 describes the original algorithm of M.Galperin 140 

and positions the scheme among other approaches. Section 4 presents the improvements made 141 

during its implementation and testing in SILAM. The Section 5 outlines the scheme 142 
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interconnections with other model parts. Standard and advanced model tests are shown in 143 

section 6. Finally, discussion in the section 7 includes analysis of the scheme performance in 144 

the tests, as well as comparison with other algorithms. 145 

Following the SILAM standards, all units throughout the paper are the basic SI: [mole] for 146 

chemicals, [kg] for aerosols without chemical speciation, [m] for distance and size, [sec] for 147 

time, etc. The model operates with concentrations.  148 

 149 

3. Background 150 

3.1. Basic equations 151 

We consider the forward dispersion equation with the first-order K-theory-based closure for 152 

diffusion: 153 

( 1) 
1

, ( )i ij

i i j

L E L u
t

  
   

   
    

   
 154 

where  is concentration of the pollutant, t is time, E is emission term,  i , i = 1..3 denote the 155 

three spatial axes, ui are components of the transport velocity vector along these axes, ij are 156 

components of the turbulent diffusivity tensor,  is air density, and  represents 157 

transformation source and sink processes.  158 

The equation ( 1) is considered on the time interval 0( , )Nt t t  in the domain 159 

  1[ , ]i h H    , where the heights h1 and H are the lower and upper boundaries of the 160 

computational domain and  is the horizontal computational area with border  . The initial 161 

conditions are: 162 

( 2) 
0 0 ( )t t     163 
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Boundary conditions depend on type of the simulations. In a general form, they constrain 164 

concentration and/or its first derivative: 165 

( 3) 
j

j
i






   

 




 


 166 

Here the values of α, β, and γ depend on type of the boundary. In particular, dry deposition at 167 

the surface 3=h1 is described via α=33, =-vd (dry deposition velocity), γ=0; prescribed 168 

concentration l  at the lateral boundaries 1,2   implies α=0, =1, γ= l , etc. A global 169 

domain would require periodic longitudinal conditions. 170 

3.2. Advection scheme of Michael Galperin 171 

The current section presents the advection algorithm suggested by Michael Galperin in 2000s 172 

as a contribution to Eulerian dynamics of SILAM. The idea of the scheme can be found in a 173 

short methodological publication of (Galperin 2000) (in Russian) and conference materials 174 

(Galperin 1999; Sofiev et al. 2008). It is very briefly outlined by (Petrova et al. 2008) 175 

(hereinafter referred to as P08) but no systematic description exists so far.  176 

For the 1-D case, let us define the simulation grid, 1=x, as a set of I grid cells i = 1..I. Let the 177 

coordinate of the centre of the i-th grid cell be xi, and coordinates of the cell left- and right-178 

hand borders be xi-0.5 and xi+0.5, respectively. The 1-D cell size is then Vi= xi+0.5- xi-0.5. The 179 

advected field , in each grid cell i, is defined via the total mass in the cell Mi and position of 180 

the centre of mass Xi, 0.5 0.5[ , ]i i iX x x  :  181 

( 4) 

0.5

0.5

0.5

0.5

( )

1
( )

i

i

i

i

i

i

x

x

x

xi

M x dx

X x x dx
M





















 182 

Let us represent the mass distribution in each grid cell via the rectangular slab:  183 
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( 5 ) 

1
,

2
( )

0,

n n

i in

in

i

x X

x

otherwise







 


 




, 184 

where n is time step and  0.5 0.5min ,n n n

i i i i iX x X x      is distance from the centre of 185 

mass n

iX  to the nearest border of the cell i. The Eq. ( 5) defines the widest unit-volume slab 186 

that can be confined inside the cell (Figure 1) for the given centre of mass.  187 

The advection scheme consists of a transport step and a reprojection step. At the transport 188 

step, each slab i  is moved along the velocity field ( )u x . Advection of the slab does not 189 

change its shape within the time step 1n nt t t    but can move it anywhere over the domain 190 

or bring outside. In-essence, the slab transport is replaced with advection of its mass centre, 191 

which during this time step becomes analogous to a Lagrangian particle:  192 

( 6) 
1

1 ( , )
n

n

t

n n n

i i i

t

X X u X t dt


    ,  193 

where ( , )n

iu X t  is wind speed at the mass centre location.  194 

The original Galperin scheme employed wind at the cell mid-point xi and used explicit first-195 

order time discretization: ( , )n n

i n iu x t u . Then the transported slab is given by: 196 

( 7) ( ) ( )n n n

i i ix x u t     197 

Following the transport step ( 7), the masses kM  and centres of mass kX  of the receiving set 198 

of cells k K  are updated using the transported slabs n

i : 199 
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( 8) 

1

,

1

1

,1
1

1
,

k

k

N
n n

i k

i

N
n n

k i k

i

k i

i

k

n

M M

X M
M






















 200 

where 
0.5

,
0.5

( )
k

k

x
n

i
x

ik x dx 



   and 

0.5

,
0.5

( )
k

k

x
n

x
ii k x x dx 




   correspond to the mass and the first 201 

moment fractions arriving from the cell i into cell k. The integrals are easy to evaluate due to 202 

the simple form of ( )n

i x  in the Eq. ( 5). In-essence, Eq. ( 8) describes a mass-conservative 203 

projection of the advected slab to the computation grid. 204 

The coefficients 
0.5

,0 ( )n

ii x dx 


   and , 1
0.5

( )n

i I
I

i x dx 





   determine the transport outside 205 

the domain through the left and right borders, respectively, i.e. the scheme is fully 206 

accountable and mass-conservative since 
, ( ) 1k i

k

n

i x dx 




   for each i. Also, since the 207 

functions ( )n

i x  are nonnegative, the coefficients ,i k  are nonnegative, and consequently 208 

1 0k

nM    as long as 0n

iM   for all i . It means that the scheme is positively defined for any 209 

simulation setup: u, t , and discretization grid.  210 

In multiple dimensions, the slabs are described by the total mass in multidimensional cell and 211 

centres of mass along each dimension. In two dimensions, an analogue of Eq. ( 5) will be: 212 

( 9) , , ,( , ) ( ) ( )n n n

i j i j i jx y x y    213 

where the functions , ( )i j x  and , ( )i j y  depend on ,i jX  and ,i jY , respectively. The advection 214 

step in form of ( 7) and the slab projection integrals ( 8) are then defined in 2D space.  215 

However, a simpler procedure used in the original scheme is obtained with dimensional 216 

splitting, where the transport in each dimension is processed sequentially with the grid 217 
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projection applied in-between. For an x-y split, the intermediate distribution for each row j is 218 

obtained by setting: 219 

( 10) 
1/2

, , ,( , ) ( ) ( )n n n

i j i j i jx y x y   , 220 

evaluating ,i k  and ,i k  from , ( )i j

n x  and updating ,i jM , ,i jX  and ,i jY . Since 221 

0.5

,
0.5

( ) 1
j

j

y

i j
y

y dy



  and 

0.5

, ,
0.5

( )
j

j

y
n

i j i j
y

y y dy Y



 , the two-dimensional slab projection simplifies 222 

to: 223 

( 11) 

1/2

, , ,

1

1/2

, , ,1/2
1

1/2

, , , ,1/2
1

1

.
1

x

i

x

N
n n

k j i k i j

i

N
n n

k j i k i jn
ik

N
n n n

k j i k i j i jn
ik

M M

X M
M

Y M Y
M































 224 

The y-advection is then performed by taking the transport step for
1/

,

2 ( )i j

n y 
 starting from 225 

1/2n

iY  , evaluating ,i k  and ,i k  from 
1/2

, ( )n

i j y 
, and applying the reprojection ( 11)  with X  226 

and Y  inverted. The generalisation to three dimensions is analogous.  227 

3.3. Relations of Galperin scheme to other approaches 228 

The Galperin scheme shares some features with other approaches (see reviews (Rood 1987) 229 

and (Lauritzen et al. 2011)). Arguably the closest existing scheme is the finite-volume 230 

approach of (Egan & Mahoney 1972), hereinafter referred to as EM72, and (Prather 1986), 231 

hereinafter P86. The main similarity between these schemes is the representation of the mass 232 

distribution via a set of slabs (rectangular in EM72 and continuous polynomial distributions in 233 

P86), one per grid cell, with the mass centre identified via the slab first moment, plus 234 

additional constraints. During the EM72 and P86 advection step, mass and the first moment 235 

are conserved, similarly to the reprojection step ( 8). However, this expires the similarity.  236 



12 

 

There are several principal differences between the EM72/P86 and Galperin algorithms.  237 

Firstly, in EM72 the slab width is computed via the second moment (variance) of the mass 238 

distribution in the grid cell. P86 uses the second moments to constrain the shape of the 239 

polynomials. As a result, this moment has to be computed and stored for the whole grid, and 240 

the corresponding conservation equation has to be added, on top of those for the mass and the 241 

first moment. The Galperin’s approach does not require the second moment, instead 242 

positioning the slab against the cell wall. In fact, EM72 pointed out that the second moment 243 

can be omitted but did not use the wall-based constrain in such “degenerated” scheme, which 244 

severely affected its accuracy. 245 

Secondly, EM72 uses the movements of the slabs in adjacent grid cells to calculate the mass 246 

flows across the border. Such local consideration requires the Courant number to be less than 247 

1: the so-called “portioning parameter” (a close analogy to the Courant number in the scheme) 248 

is limited between 0 and 1. The same limitation is valid for P86 approach. Galperin’s scheme 249 

can be applied at any Courant number and its reprojection step can rather be related to (Lin & 250 

Rood 1996). 251 

 252 

4. Updates of the scheme in SILAM v.5 253 

There are several features of the original scheme, which make it difficult to use in large-scale 254 

chemical transport simulations. These are listed here and the corresponding improvements are 255 

introduced in the following sub-sections. 256 

- The scheme is formulated with zero inflow boundary conditions 257 

- Real-wind tests have shown that the scheme has difficulties in complex-wind and 258 

complex-terrain conditions, similar to EM72 (Ghods et al. 2000) 259 

- The explicit forward-in-time advection ( 7) is inaccurate 260 
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- The scheme, being very good with individual sharp plumes over zero background, 261 

noticeably distorts the smoother fields with non-zero background – see P08. 262 

4.1. Lateral and top boundary conditions 263 

The open boundary for the outgoing masses is kept in SILAM regional simulations. The 264 

inflow into a limited-area domain is defined via prescribed concentration at the boundary ( 3), 265 

=0, =1, = l . The mass coming into the domain during a single time step is equal to: 266 

( 12 ) 
1 0.5 0.5 0.5

0.5 0.5 0.5

( ) ( ) ( ( ))

( ) ( ) ( ( ))

in

l

in

I l I I I

M x u x u x t

M x u x u x t

 

   

 

  
 267 

Here (u) is Heaviside function (= 1 if u>0, = 0 if u  0). Assuming the locally-constant 268 

wind we obtain that M
 in

 is distributed uniformly inside the slab similar to that of ( 5). For, 269 

e.g., the left-hand-border, the continuous form will read: 270 

( 13 ) 

 0.5 0.5 0.5 0.5 0.5 0.5

1

( ) ( ( , )) , , ( , ) ( ( , ))

( )

0,

l k n n

n

in

x u x t t x x x u x t u x t t

x

otherwise

  


    


  



 271 

It is then projected to the calculation grid following ( 8). 272 

The top boundary follows the same rules as the lateral boundaries. At the surface, the vertical 273 

wind component is zero, which is equivalent to closure of the domain with regard to 274 

advection.  275 

Global-domain calculations require certain care: SILAM operates in longitude - latitude grids, 276 

i.e. it has singularity points at the poles and a cut along the 180E line. For longitude, if a 277 

position of a slab part appears to be west of -180E or east of 180E, it is increased or decreased 278 

by 360 degrees, respectively. Resolving the pole singularity is done via reserving a cylindrical 279 

reservoir over each pole. The radius of the reservoirs depends on the calculation grid 280 
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resolution but is kept close to 2 degrees. The calculation grid reaches the borders of the 281 

reservoirs, whose mean concentrations are used for the lateral boundary conditions: 282 

( 14) 
2 2 _ 0.5

2 2 _ 0.5

_

_

( , )

( , )
J

y y S pole

y y N pole

t z

t z

 

 









 283 

Vertical motion in the pole cylinders is calculated separately using vertical wind component 284 

diagnosed from global non-divergence requirement.  285 

4.2. Extension of the scheme for complex wind pattern 286 

The original Galperin scheme tends to accumulate mass at stagnation points where one of the 287 

wind components is small. Similar problems were reported by (Ghods et al. 2000) for the 288 

EM72. Ghods et al. (2000) also suggested an explanation and a generic principle for solving 289 

the problem: increasing the number of points at which the wind is evaluated inside the grid 290 

cell. In application to Galperin scheme, it can be achieved by separate advection of each slab 291 

edge instead of advecting the slab as a whole. This allows for shrinking and stretching the 292 

slab following the gradient of the velocity field. Formally, this can be written as follows. 293 

Let’s again consider the 1-D slab that has been formed according to ( 5). Its edges are: 294 

( 15) , ,,L i i i R i i iX X X X      295 

The advection step takes the wind velocity at the left and right slab edges and transports them 296 

in a way similar to ( 6) with the corresponding wind velocities. The new slab is formed as a 297 

uniform distribution between the new positions of the edges: 298 

( 16 ) 

1 1

, ,

, ,1

1
,

( )

0,

k k

L i R ik k

R i L ik

i

X x X
X X

x

otherwise



 




  

 




, 299 
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Where , ,,k k

L i R iX X  are the new positions of the slab edges at the end of the time step. This new-300 

slab is then projected following Eq. ( 8).  301 

The accuracy of the dimension split was increased via symmetrisation: the order of 302 

dimensions in SILAM routines is inverted each time step: x-y-z-z-y-x (Marchuk 1995). 303 

4.3. Changing wind along the mass-centre trajectory 304 

The explicit advection step ( 7) is inaccurate and can be improved under assumption of linear 305 

change of wind inside each grid cell, with values at the borders coming from the meteo input: 306 

( 17) 0.5 0.5
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

( ) ( )
( ) ( , ) ( , ) ,

( ) ( )

i i
i n i n i i

i i i i

x x x x
u x u x t u x t x x x

x x x x

 
   

   

 
   

 
 307 

Then, the trajectory equation ( 6) can be piece-wise integrated analytically for each slab edge. 308 

Let’s denote 0.5 0.5 1, , /i i n nu u u t t t u t            and consider the transport starting 309 

at, e.g. 0.5ix  . Then the time needed for passing through the entire cell, 0.5 0.5i ix x x     is: 310 

( 18) log(1 ) /cell iT xu     311 

If cellt T  , the point will not pass through the whole cell and stop at:  312 

( 19) 0.5 (exp 1) /t i ix x u t      313 

Applying sequentially ( 18) and ( 19) until completing the model time step t , one obtains 314 

the analytical solution for the final position of the slab edges. 315 

This approach neglects the change of wind with time. However, the integration method is 316 

robust, since the linearly interpolated wind field is Lipschitz-continuous everywhere, which in 317 

turn guarantees the uniqueness of the trajectories of LX  and RX . Therefore, using the 318 

analytic solution ( 18) and ( 19), the borders of the slabs will never cross. 319 
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4.4. Reducing the shape distortions 320 

The original scheme tends to artificially sharpen the plume edges and to gradually redistribute 321 

the background mass in the vicinity of the plume towards it (Figure 2, blue shapes). 322 

Distortions of the same origin were also reported by P08 for Galperin’s approach and by 323 

EM72 for their scheme.  324 

The reason for the feature can be seen from Eq. ( 8): if a large mass is concentrated at one of 325 

the grid cell sides, the centre of mass becomes insensitive to the low-mass part of the cell, i.e. 326 

a small mass that appears there from the neighbouring cell is just added to the big slab with 327 

little effect on its position and width.  328 

A cheap, albeit not rigorous, way to confront the effect is to compensate it via additional 329 

small pull of the mass centre towards the cell midpoint before forming the slab for advection: 330 

( 20) ˆ ( )(1 )n n

i i i iX x X x     , 331 

where ~0.08 is an empirically found correction factor. The adjusted mass centre n

iX  is then 332 

used to form the slab ( 5).  333 

 334 

5. Connection of the advection scheme with other SILAM 335 

modules 336 

Construction of the dispersion model using the Galperin advection scheme as its transport 337 

core is not trivial because all other modules should support the use of the sub-grid information 338 

on positions of the mass centres. In some cases it is straightforward but in others one can only 339 

make the module to return them undamaged back to advection.  340 
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5.1. Vertical axis: combined advection, diffusion, and dry 341 

deposition 342 

For the vertical axis, SILAM combines the Galperin advection with the vertical diffusion 343 

algorithm following the extended resistance analogy (Sofiev 2002), which considers air 344 

column as a sequence of thick layers. Vertical slabs within these layers are controlled by the 345 

same 1-D advection, which is performed in absolute coordinates – either z- or p- depending 346 

on the vertical (height above the surface or hybrid). Settling of particles is included into 347 

advection for all layers except for the first one, where the exchange with the surface is treated 348 

by the dry deposition scheme. 349 

The centres of masses are used but not modified by diffusion: the effective diffusion 350 

coefficient between the neighbouring thick layers is taken as an inverse of aerodynamic 351 

resistance between the centres of mass of these layers (Sofiev 2002):  352 

( 21) 
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 353 

The effective thickness , 1i iz   is taken proportional to pressure drop between the centres of 354 

mases, which assures equilibration of mixing ratios due to diffusion.  355 

In the lowest layer, the dry deposition velocity is calculated at the height of centre of mass Z1 356 

following the approach of (Kouznetsov & Sofiev 2012).  357 

The advantages of using the mass centres as the vertical diffusion meshes are discussed in 358 

details by (Sofiev 2002), where it is shown that the effect can be substantial if an inversion 359 

layer appears inside the thick dispersion layer. Then the location of the mass centre above / 360 

below the inversion can change the up / down diffusion fluxes by a factor of several times.  361 
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5.2. Emission-to-dispersion interface 362 

Emission data is the only source of sub-grid information apart from the advection itself: 363 

location of the sources is transformed into the mass centre positions of their emission.  364 

For point sources, the mass is added to the corresponding grid cell and centres of masses are 365 

updated: 366 

( 22) 
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, 367 

where Mems is the mass emitted to the cell (i,j,k) during the time step, Xems, Yems are the 368 

coordinates of the source in the grid and k

emsZ  is the effective injection height in the layer k, 369 

equal to middle of the layer if no particular information is available.  370 

For area sources, the approach depends on the source grid. If it is the same as the 371 

computational one, the mass centre is put to the middle of the cell (no extra information can 372 

be obtained). If the grids are different, the source is reprojected. For each computational grid 373 

cell (i,j), the centre of mass of emission is: 374 

( 23) 
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 375 

Where M(x,y) denotes the original source distribution. After that, the procedure is the same as 376 

in the case of point source ( 22). 377 

5.3. Meteo-to-dispersion interface 378 

Modifications described in section 4 require staggered wind fields, which have to be provided 379 

by the meteo pre-processor (unless they are directly available from the input data). Moreover, 380 
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the pre-processor needs to ensure consistency between the flow and air density fields (Prather 381 

et al. 1987; Rotman et al. 2004; Robertson & Langner 1999). This is particularly important 382 

with the present advection scheme, since mixing ratio perturbations caused by the mass-flow 383 

inconsistency are not suppressed by numerical diffusion. 384 

The wind pre-processing follows the idea of “pressure fixer”, which means adding a 385 

correction V to the original horizontal wind field 
0V  such that for their sum, the vertical 386 

integral of mass flux divergence corresponds to the surface pressure tendency: 387 

( 24) 
0

( )
sp

sp
dp

t



   

 0V V , 388 

where the surface pressure tendency /sp t   is evaluated from the meteorological input data. 389 

The correction V  is not uniquely determined, and SILAM adopts the algorithm of Heimann 390 

& Keeling (1989), where the correction term is given by the gradient of a two-dimensional 391 

potential function: 392 

( 25) ( , ).x y V   393 

Substituting ( 25) into ( 24) yields a Poisson equation for ( , )x y , which is solved to 394 

subsequently recover V . The obtained correction flux is then distributed within the column 395 

proportionally to the air mass in each layer, ending up with the corrections to the horizontal 396 

winds. The vertical wind is then evaluated in each column to enforce the proper airmass 397 

change in each cell. 398 

5.4. Chemical module interface 399 

This interface is implemented in a very simple manner: the mass centres are not affected by 400 

the transformations. Chemical module deals exclusively with concentrations in the grid cells. 401 

The newly created mass is added to the existing one, thus accepting its centre position in the 402 
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cell. If some species did not exist before the transformation the new mass centre is put to the 403 

middle point of the cell. 404 

 405 

6. Testing the Galperin advection algorithm  406 

6.1. Standard tests 407 

A set of basic tests and comparison with some classical approaches has been presented by 408 

Galperin (1999) and P08 for the original scheme, along with Bott, Holmgren,  and several 409 

other schemes. Their main conclusions were that the scheme is very good for sharp-edge 410 

patterns: in particular, it transports delta functions without any distortions. It had, however, 411 

issues with long slopes, smooth shapes, etc, where the tendency to gradually convert them to a 412 

collection of rectangles was noticeable. 413 

Addressing these concerns, tests used during the scheme improvements and implementation 414 

in SILAM included puff-over-background, conical and sin-shaped peaks and dips, etc (some 415 

examples are shown in Figure 2); divergent 1-D high-Courant wind test (Figure 3), constant-416 

level background field in eight vortices with stagnation points (Figure 4), and rotation tests 417 

for various shapes (Figure 5).  418 

The scheme stays stable at arbitrarily high Courant numbers and handles the con- and 419 

divergence of the flows (Figure 3). 420 

Transport and rotation tests of the improved scheme maintain low distortions of the shapes: 421 

the L2 norm of the error varies from 0.1% up to 3.8% of the initial-shape norm – for the most 422 

challenging task in Figure 5. The effect of the improvements in comparison with the original 423 

scheme is demonstrated in Figure 2, where the blue contours show the results of the original 424 

scheme. In particular, application of the smoothing Eq. ( 20) reduced the distortions of 425 

smooth shapes (red curves), largely resolving the concerns of P08: Figure 2b presents the 426 
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same test as one of the P08 exercises. However, the smoother also leads to a certain numerical 427 

viscosity of the scheme, so its use in problems requiring non-diffusive schemes (e.g., narrow 428 

plumes from accidental releases) should be avoided. 429 

The test with eight vortices was difficult for the original scheme (Figure 4a) due to its 430 

insufficient sub-grid resolution but the improvements ( 15) - ( 16), section 0, resolved the 431 

problem (Figure 4b). This refinement is instrumental for complex-topography domains. 432 

6.2. Global 2-D tests 433 

Performance of Galperin’s advection scheme in global spherical domain was assessed with 434 

the collection of demanding tests of (Lauritzen et al. 2012). The cases are designed to evaluate 435 

the accuracy of transport schemes at a wide range of resolutions and Courant numbers. The 436 

tests used a prescribed non-divergent 2D velocity field defined on a sphere and consisting of 437 

deformation and rotation, so that the initial concentration pattern is reconstructed at the end of 438 

the test, t=T, providing the exact solution (t=0) = (t=T). 439 

Four initial concentration distributions were used (Figure 6): “Gaussian hills” with unity 440 

maximum value, “cosine bells” with background of 0.1 and maxima of 1, “slotted cylinders” 441 

– rough pattern with 0.1 background and 1 maximum level, and “correlated cosine bells” – 442 

distribution obtained from “cosine bells” with a function: 443 

( 26) 20.9 0.8ccb cb    444 

The tests were run with SILAM on a global regular non-rotated lon-lat grid, with R=6400 km 445 

and T=12 h. Spatial resolutions were: 6, 3, 1.5, 0.75, 0.375, and 0.1875 degrees, each run with 446 

mean Courant numbers of ~5.12, ~2.56, ~0.85 (for 6 grid they correspond to the model time 447 

step of T/12=1h, T/24=30min, and T/72=5min), total 18 runs for each initial pattern.  448 

Examples of the most challenging runs with slotted cylinders at t=T/2 and at t=T are shown in 449 

Figure 7 and Figure 8, respectively. The corresponding error fields are collected in Figure 9 as 450 
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decimal logarithms of the absolute difference between the corresponding field in Figure 8 and 451 

the slotted-cylinder initial shape of Figure 6. The main complexity of the test was in 452 

reproducing the very tiny sharp-edge structures obtained from the cylinder cut at t=T/2 – and 453 

then returning them back by t=T. The pictures, together with the error field at t=T (Figure 9) 454 

show that already 24 time steps allow the scheme to make the shape recognisable (3, C=5.12 455 

pattern), whereas 48 time steps allow for main details to show up. Expectedly, certain 456 

deviations at the cylinder edge remain at any resolution – as visible from the error fields.  457 

Deviation of the resulting field ( )T t T    from the initial shape 0 ( 0)t   , was 458 

considered in three spaces: L2, L, L1. The corresponding distance metrics are defined as 459 

follows: 460 
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 461 

where S[∙] is an area-weighted sum over latitude and longitude. The values of these three 462 

metrics for all model runs are presented in Figure 10. The main interest of these curves is that 463 

they show the rate of the scheme convergence (straight grey lines correspond to the first- and 464 

second-order convergence rates). Expectedly, the rates depend on the transported shape (the 465 

smoother the shape the faster convergence) and on the norm used. Thus, the scheme 466 

converges in L1 faster than in L2, whereas in L no convergence in case of sharp edges is an 467 

expected result. The rate in the L2 norm is in-between the first- and the second order, whereas 468 

in L1 it is close to the latter one. 469 

Advection should also keep the local ratio of the tracer’s concentrations. Such ratio between 470 

“cosine bells” and “correlated cosine bells” was calculated at t=T/2 and t=T. Since these 471 

initial patterns are related by eq.( 26), the concentration fields during the tests should maintain 472 

the same relation. The scatter plots of the concentrations in these two tests give an indication 473 
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on how the ratio is kept. Ideal advection would keep all points on a line given by Eq. ( 27). 474 

The results of the tests for t=T/2 are shown in Figure 11, where the results with and without 475 

the smoothing Eq. ( 21) are presented. The smoother improves the scheme linearity, i.e. it can 476 

be recommended to chemical composition computations, which usually also tolerate some 477 

numerical viscosity.  478 

6.3. Global 3-D test with real wind  479 

Testing the scheme with real-wind conditions has one major difficulty: there is no accurate 480 

solution that can be used as a reference. An exception is simulations of constant-mixing-ratio 481 

3D field, which, once initialised, must stay constant throughout the run. Deviation from this 482 

constant is then the measure of the model quality. Such test verifies both the scheme and the 483 

meteo-to-dispersion interface, which has to provide the consistent wind fields. 484 

The constant-vmr test was set with winds taken from ERA-Interim archive of ECMWF, for an 485 

arbitrarily selected month of January 1991 (Figure 12). The model was initialised with vmr = 486 

1 and run with 3 of lon-lat resolution and time step of 30 minutes (max Courant number 487 

exceeding 13 in the stratosphere and reaching up to 2-3 in the troposphere). The model top 488 

was closed at 10Pa, which corresponds to the top level of the ERA-Interim fields. The 489 

procedure described in the section 5.3 was used to diagnose the vertical wind component. 490 

The results of the test are shown in Figure 12, which depicts the model state after 240 hours 491 

of the run, panel a) showing the near-surface vmr, and panel b) presenting it in the 492 

stratosphere. The zonally-averaged vertical cross-section is shown in panel c. Green colours 493 

in the pictures correspond to less than 1% of the instant-field error. 494 

An important message is that the limited distortions about 1-2% are visible in a few places but 495 

they are not related to topography, rather being associated with the frontal zones and 496 

cyclones. The comparatively coarse spatial and temporal resolution of the test makes the 497 



24 

 

associated changes of the wind quite sharp, so that the dimension-split errors start manifesting 498 

themselves. Smoother flows in the stratosphere posed minor challenges for the scheme. 499 

6.4. Efficiency of Galperin advection scheme 500 

Evaluation of the scheme efficiency is always very difficult as it depends on computer, 501 

parallelization, compiler options, etc. Nevertheless, some basic characteristics of the scheme 502 

have been deduced from comparison of the simple cases for classical schemes (Galperin 503 

2000). It was shown to be 2.3 - 15 times faster than, e.g., Bott scheme depending on 504 

implementation, specific test, etc. 505 

For the L14 tests, the run with 0.75 degree resolution and 120 time steps (took 47 seconds) 506 

can be related to performance of HEL and CSLAM schemes, which were tested against the 507 

same collection by (Kaas et al. 2013). With all ambiguity of the runtime parameter, it took 508 

about 200 seconds for HEL and 300 seconds for CSLAM, i.e. about 4 and 6 times longer than 509 

for SILAM. Our tests were run on a simple notebook with dual-core hyperthreaded Intel Core 510 

i5-540M CPU and 4G of RAM (Intel Linpack = 18.5 GFlops; memory bandwidth = 7.2 GB/s, 511 

according to STREAM http://www.cs.virginia.edu/stream/ benchmark). We used GNU 512 

compiler with –O3 optimization without parallelization, which corresponds to the settings of 513 

(Kaas et al. 2013). 514 

In SILAM applications, advection is parallelised using the shared-memory OMP technology, 515 

whereas the MPI-based domain split is being developed. The OMP parallelization is readily 516 

applicable along each dimension, thus exploiting the dimensional split of the advection 517 

scheme. For MPI, care should be taken to allow for a sufficient width of the buffer areas to 518 

handle the Courant > 1 cases. 519 

The original scheme was formulated for the bulk mass of all transported tracers, thus 520 

performing the advection step for all species at once: the tracer’s mass in the slab definition ( 521 
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5) was the sum of masses of all species. This algorithm is faster than the species-wise 522 

advection and reduces the number of the moments per dimension down to one regardless the 523 

number of tracers. It can also be useful in case of strong chemical binds between the species 524 

in coarse-grid and sub-optimal Courant number: as seen from Figure 11, such runs can have 525 

noticeable non-linearity between the tracer concentrations. The bulk advection does not have 526 

the non-linearity problem but instead loses much of its quality if the species have substantially 527 

different life times in the atmosphere, are emitted from substantially different sources or 528 

otherwise decorrelated in space. 529 

 530 

7. Discussion 531 

The presented SILAM v.5 transport module is based on semi-Lagrangian advection scheme of 532 

M.Galperin with subgrid information available through the positions of centres of masses. It 533 

poses certain challenges in implementation. Firstly, one has to organise the sub-grid 534 

information use and transmission between the advection and other model units. Secondly, the 535 

scheme requires storage of four full fields for each transported species (mass and moments) 536 

and care should be taken to maintain an efficient exchange between the processors and the 537 

computer memory. Thirdly, possibility to run with high Courant numbers can be utilised only 538 

if the MPI split of the domain allows for sufficient buffer zones. Finally, the better 539 

performance of the advection at Courant number greater than 1 challenges the implementation 540 

of other modules, first of all, chemistry and emission. Indeed, introduction of emitted mass 541 

once per long time step would result in a broken plume unless the mass is spread downwind 542 

over the corresponding distance. Similar problems show up in chemical transformation 543 

calculations. At present, the actual SILAM applications are performed with Courant close to 544 

but mostly smaller than one to avoid such problems.  545 
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The above challenges are mostly technical and their solution allows the scheme to 546 

demonstrate strong performance with low computational costs.  547 

In particular, by attributing the release from point source to its actual location one can reduce 548 

the impact of the common problem of Eulerian models: point release is immediately diluted 549 

over the model grid cell. This substantially improves the transport though does not solve the 550 

problem completely: (i) the chemical module still receives the diluted plume concentration, 551 

(ii) the slab size in case of the source near the centre of the grid cell will still be as large as the 552 

grid cell itself. A more accurate solution would be the plume-in-grid or similar approaches, 553 

which is being built in SILAM. Another example of the sub-grid information usage is 554 

utilisation of full meteorological vertical resolution to calculate effective values of meteo 555 

variables for thick dispersion layers (Sofiev 2002). 556 

The model can operate at any Courant number (Figure 3). Its time step is limited not by grid 557 

cell size but by a spatial scale of the wind-shear field, i.e. has to satisfy much less restrictive 558 

Lipschitz criterion, which relates spatial and temporal truncation errors (Pudykiewicz et al. 559 

1985). It follows from the advection step ( 6) and the reprojection step ( 8), which do not 560 

restrict new positions of the slabs: they can find themselves anywhere in the grid or outside it 561 

after the time step is made.  562 

SILAM heavily relies on such features of Galperin’s scheme as mass conservation and 563 

accountability: the scheme provides complete mass budget including transport across the 564 

domain boundaries. In particular, nesting of the calculations is straightforward and does not 565 

need the relaxation buffer at the edges of the inner domain: the inflow through the boundaries 566 

is described by the same slabs as the main advection. The scheme is also shape-preserving – 567 

in the sense this term is used by L14, – i.e. it does not result in unphysical solutions, such as 568 

negative mixing ratio. Some distortions are still possible (Figure 2), which can be reduced by 569 

the smoother described in section 4.4, eq. ( 20). 570 
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7.1. Standard advection tests 571 

Evaluating the Galperin’s scheme with the simple tests (Figure 2 - Figure 5), one can point 572 

out the known issues of the classical schemes resolved in Galperin’s approach: high-order 573 

algorithms suffer from numerical diffusion, oscillations at sharp gradients (require special 574 

efforts for limiting their amplitude), high computational costs and stringent limits to Courant 575 

number. None of these affect the Galperin scheme.  576 

The main issue noticed during the implementation of the original scheme was the 577 

unrealistically high concentrations near the wind stagnation points. Thus, the concentration 578 

pattern at the test Figure 4a resembles the situation of divergent wind field. However, it is not 579 

the case: the 2D wind pattern is strictly solenoidal. The actual reason is insufficient resolution 580 

of the advection grid: one centre of mass point is not enough if spatial scale of the wind 581 

variation is comparable with the grid cell size. Tracking the edges of the slab rather than its 582 

centre resolves the problem (Figure 4b). 583 

The other challenging tasks for Galperin’s algorithm were those with smooth background and 584 

soft gradients, a frequent issue for semi-Lagrangian schemes, which is easily handled by more 585 

diffusive approaches. This feature was visible in the P08 tests where the scheme noticeably 586 

distorts the Gaussian and conical plumes. For the puff-over-background pattern, the scheme 587 

makes a single low-mass dip in the vicinity of the puff, which receives this mass (Figure 2). 588 

From formal point of view, the scheme does not conserve the higher moments inside the grid 589 

cell, which becomes a problem when the pattern changes at a spatial scale shorter than the 590 

grid cell size. The smoothing step ( 20) may be advised despite it has no rigorous ground and, 591 

as in L14 evaluation of other schemes, may damage some formal quality scores (adding this 592 

step introduces numerical viscosity - Figure 2). 593 
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7.2. Global 2D and real-wind advection tests 594 

The application of the scheme to highly challenging tests of (Lauritzen et al. 2012) allowed its 595 

evaluation in a global 2-D case and comparison with the state-of-the-art schemes evaluated by 596 

L14 and (Kaas et al. 2013).  597 

Performing these tests with different spatial and temporal resolutions, as well as Courant 598 

numbers, suggested that the scheme has an “optimal” Courant number for each spatial 599 

resolution where the error metrics reach their minimum, so that the increase of temporal 600 

resolution is not beneficial. Indeed, in Figure 10 the low-Courant runs are by no means the 601 

most accurate. This is not surprising: for an ideal scheme, increasing the grid resolution and 602 

reducing the time step should both lead to gradual convergence of the algorithm, i.e. the error 603 

metrics should reduce. For real schemes, higher temporal resolution competes with 604 

accumulation of the scheme errors with increasing number of steps. Convergence in L14 tests 605 

was still solid for all fixed-Courant-number series (Figure 10) but excessive temporal 606 

resolution (specific for each particular grid cell size) was penalised by higher errors. 607 

Similarly, the most-accurate representation of the correlated patterns is obtained from the runs 608 

with the intermediate Courant numbers (Figure 11). This seems to be a common feature: the 609 

same behaviour was noticed by L14 for several schemes.  610 

High optimal Courant numbers, however, should be taken with care. For L14, the smooth 611 

wind fields reduced the dimension-split error and made the long time steps particularly 612 

beneficial.  613 

It is also seen (Figure 9) that the best performance, in case of near-optimal Courant, is 614 

demonstrated by the high-spatial-resolution simulations, which have reproduced both the 615 

sharp edges of the slotted cylinders, the flat background and the cylinder’s top planes.  616 
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The scheme demonstrated convergence rate higher than one for all metrics and all tests with 617 

smooth initial patterns. Even for the stringiest test with the slotted cylinders, the scheme 618 

showed the first-order convergence rate in the L1 norm (Figure 10). 619 

Comparing it with other schemes tested by L14 can be made along several lines. For instance, 620 

the so-called “minimal resolution” threshold for L2 norm of cosine bells to reach 0.033 621 

(Figure 3 of L14) for SILAM was about 0.75, which puts it in the middle of that multi-model 622 

chart (specific place depends on whether the shape preservation is considered or not).  623 

Another criterion can be the optimal convergence of L2 and L norms for Gaussian hills: 624 

about 1.7-1.8 for SILAM – is again around centre of the L14 histograms, in the second half if 625 

the unlimited schemes (without shape-preservation filters) are considered and in the first half 626 

if the unphysical negative concentrations are addressed (since the Galperin advection is 627 

strictly positively defined, no extra efforts needed to satisfy this requirement).  628 

Interestingly, the L14 tests were limited with 3 as the coarsest resolution, and it was pointed 629 

out that the schemes start converge only when certain limit, specific for each scheme, is 630 

reached. The SILAM results do not show such behaviour: the errors decrease with growing 631 

resolution started from the coarsest grids – except for the lowest Courant number (red lines in 632 

Figure 10), which also required appropriate resolution to start working. Higher-Courant 633 

setups were much less restrictive and, as already pointed out, often worked better than the 634 

low-Courant runs (similar to many L14 schemes). 635 

The scheme demonstrated limited non-linearity. Its best setups are favourably comparable 636 

with majority of the schemes tested in L14, especially if the versions with the shape-637 

preservation filters are considered (and chemical transformation modules are usually sensitive 638 

to negative masses). Interestingly, the smoothing step ( 20) improves the scheme linearity 639 
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(Figure 11) – to the contrast with the schemes tested in L14, where the shape-preservation 640 

filters mostly damaged the linearity. 641 

The simulations with the constant-vmr initial conditions (Figure 12) showed that the model 642 

has no major problem in keeping the homogeneous distribution: deviations do not exceed few 643 

% with no relation to topography. The existing ups and downs of the vmr are related to 644 

cyclones and atmospheric fronts, which challenge the dimension-splitting algorithm already 645 

with Courant number just above one, owing to the coarse spatial resolution. This experiments 646 

refines the “optimal-Courant” recommendation of the L14 test, which had smoother wind 647 

fields and, consequently, higher optimal Courant number. For real-life applications, especially 648 

with coarse grid, it may be necessary to keep it less than one. 649 

 650 

8. Code availability 651 

SILAM is a publicly available model. Our experience shows however that its successful 652 

application critically depends on the user’s modelling skills and understanding of the model 653 

concepts. Therefore, SILAM is available on-request basis from the authors of this paper, who 654 

also provide support in the initial model installation and setup. The model description, 655 

operational and research products, as well as reference documentation, are presented at 656 

http://silam.fmi.fi (accessed 25.6.2015). The model user’s guide is available at 657 

http://silam.fmi.fi/doc/SILAM_v5_userGuide_general.pdf (accessed 25.6.2015). Potential 658 

model users and also encouraged to refer to the SILAM Winter School material at 659 

http://silam.fmi.fi/open_source/SILAM_school/index.htm (accessed 25.6.2015).  660 

 661 

http://silam.fmi.fi/
http://silam.fmi.fi/doc/SILAM_v5_userGuide_general.pdf
http://silam.fmi.fi/open_source/SILAM_school/index.htm
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9. Summary 662 

Current paper presents the transport modules of System for Integrated modeLling of 663 

Atmospheric coMposition SILAM v.5, which are based on the improved advection routine of 664 

Michael Galperin combined with separate developments for vertical diffusion and dry 665 

deposition.  666 

The corner stone of the advection scheme is the subgrid information on distribution of masses 667 

inside the grid cells, which is generated at the emission calculation stage and maintained in a 668 

consistent way throughout the whole model, including chemical transformation, deposition, 669 

and transport itself. This information, albeit requiring substantial storage for handling, allows 670 

for accurate representation of transport. 671 

The scheme is shown to be particularly efficient for point sources and sharp gradients of the 672 

concentration fields, still showing solid performance for smooth patterns. The most 673 

challenging task was found to be the puff-over-plain test, where the scheme showed 674 

noticeable distortions of the concentration pattern. Application of a simple smoother 675 

efficiently reduces the problem at a cost of non-zero viscosity of the resulting scheme. 676 

Advanced tests and comparison with state-of-art algorithms confirmed the compromise 677 

between the efficiency and accuracy. SILAM performance was fully comparable with the 678 

other algorithms, outperforming some of them.  679 

Among the future developments, introduction of physically grounded horizontal diffusion 680 

procedure and replacement of the smoother with extensions of the core advection algorithm, 681 

are probably the most-pressing ones. 682 

 683 
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Figure captions 888 

Figure 1. Advection step of the scheme of M.Galperin 889 

 890 
Figure 2. Shape preservation tests: a) step, b) triangle peak, c) sin-shaped dip, d) sin-shaped peak . Sequential 891 
positions are shown, ‘r’ denotes the scheme without smoother, ‘r_diff’ – with it. Legend includes the number of 892 
times steps made. Wind is from left to right, Courant = 0.4. 893 

 894 
Figure 3. Linear-motion tests with a constant-release point source at Xs and varying wind speed along x-axis. 895 
Upper panel: Courant number, lower panel: concentration [arbitrary unit]. Wind blows from left to right. 896 

 897 
Figure 4. Test with eight non-divergent 2-D vortices. Left panel: test of the original scheme ( 5) - ( 7), time step 898 
8; right panel: improved scheme ( 15) - ( 16), time step 50. Both tasks were initialised with constant value 0.4, 899 
also used as boundary conditions. 900 

 901 
Figure 5. Double-vortex rotation tests for: a rectangular split between the vortices (upper panels); three single-902 
cell peaks and two connected rectangles (middle panels); sin- and cone- shaped surfaces (lower panels). A series 903 
of time steps shown in the left panels, except for the low panel (shown t=361). Right panels: error field after 1 904 
full revolution (obs 10-fold more sensitive scale and relative L2 norm given above each plot). Max Courant ~ 905 
1.5. Grid dimensions = 400  200. 906 

 907 
Figure 6. Initial shapes of the puffs for the 2-D global test on the sphere. 908 

 909 
Figure 7. Half-period (t=T/2) shapes for the 2D global test with slotted cylinders for different spatial and 910 
temporal resolutions. 911 

 912 
Figure 8. Final shapes (t=T) for the 2-D global tests with slotted cylinders for different spatial and temporal 913 
resolutions 914 

 915 
Figure 9. The error fields for the final shapes of Figure 8 as compared with slotted cylinder initial shape in 916 
Figure 6.  917 

 918 
Figure 10. Dependence of the performance metrics l1, l2, and l for the spherical 2D tests with initial shapes of 919 
Figure 6. Dashed straight lines mark the slope for the first and second order of convergence.  920 

 921 
Figure 11. Linearity test for cosine bells and correlated cosine bells ( 26) at t=T/2. Each two lines show the tests 922 
without (upper line) and with (lower line) smoother ( 20). 923 

 924 
Figure 12. Constant-vmr test with real-wind conditions after 122 hrs. a) vmr near the surface, b) vmr above the 925 
tropopause, c) zone-average vertical cross-section of vmr.  926 

 927 
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Figure 1. Advection step of the scheme of M.Galperin 935 
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a)      b)  937 

c)      d)  938 

Figure 2. Shape preservation tests: a) step, b) triangle peak, c) sin-shaped dip, d) sin-shaped peak . Sequential positions are shown, ‘r’ denotes 939 

the scheme without smoother, ‘r_diff’ – with it. Legend includes the number of times steps made. Wind is from left to right, Courant = 0.4. 940 



41 

 

 941 

 942 

 943 

 944 

Figure 3. Linear-motion tests with a constant-release point source at Xs and varying wind 945 

speed along x-axis. Upper panel: Courant number, lower panel: concentration 946 
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Figure 4. Test with eight non-divergent 2-D vortices. Left panel: test of the original scheme ( 5) - ( 7), time step 8; right panel: improved scheme 

( 15) - ( 16), time step 50. 
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Figure 5. Double-vortex rotation tests for: a rectangular split between the vortices (upper 

panels); three single-cell peaks and two connected rectangles (middle panels); sin- and cone- 

shaped surfaces (lower panels). A series of time steps shown in the left panels, except for the 

low panel (shown t=361). Right panels: error field after 1 full revolution (obs 10-fold more 

sensitive scale and relative L2 norm given above each plot). Max Courant ~ 1.5. Grid 

dimensions = 400  200. 
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Figure 6. Initial shapes of the puffs for the 2-D global test on the sphere. 
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Figure 7. Half-period (t=T/2) shapes for the 2D global test with slotted cylinders for different 

spatial and temporal resolutions. 
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Figure 8. Final shapes (t=T) for the 2-D global tests with slotted cylinders for different spatial 

and temporal resolutions 
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Figure 9. The error fields for the final shapes of Figure 8 as compared with slotted cylinder 

initial shape in Figure 6.
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Figure 10. Dependence of the performance metrics l1, l2, and l 

for the spherical 2D tests with initial shapes of Figure 6. Dashed 

straight lines mark the slope for the first and second order of 

convergence. 
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Figure 11. Linearity test for cosine bells and correlated cosine bells ( 26) at t=T/2. Each two 

lines show the tests without (upper line) and with (lower line) smoother ( 20). 
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a)      

b)     

c)    

 

Figure 12. Constant-vmr test with real-wind conditions after 122 hrs. a) vmr near the surface, 

b) vmr above the tropopause, c) zone-average vertical cross-section of vmr. 


