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Abstract. An analytical solution of the Boussinesq equations for the motion of a 5	
  

viscous stably stratified fluid driven by a surface thermal forcing with large horizontal 6	
  

gradients (step changes) is obtained. This analytical solution is one of the few available 7	
  

for wall-bounded buoyancy-driven flows. The solution can be used to verify that 8	
  

computer codes for Boussinesq fluid system simulations are free of errors in formulation 9	
  

of wall boundary conditions and to evaluate the relative performances of competing 10	
  

numerical algorithms. Because the solution pertains to flows driven by a surface thermal 11	
  

forcing, one of its main applications may be for testing the no-slip, impermeable wall 12	
  

boundary conditions for the pressure Poisson equation. Examples of such tests are 13	
  

presented.  14	
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1  Introduction 15	
  

Thermal disturbances associated with variations in underlying surface properties can 16	
  

drive local circulations in the atmospheric boundary layer (Atkinson, 1981; Briggs, 1988; 17	
  

Hadfield et al., 1991; Segal and Arritt, 1992; Simpson, 1994; Mahrt et al., 1994; Pielke, 18	
  

2001; McPherson, 2007; Kang et al., 2012) and affect the development of the convective 19	
  

boundary layer (Patton et al., 2005; van Heerwaarden et al., 2014). Computational fluid 20	
  

dynamics (CFD) codes for modeling such flows commonly solve the Boussinesq 21	
  

equations of motion and thermal energy for a viscous/diffusive stably stratified fluid. In 22	
  

this paper we present an analytical solution of the Boussinesq equations for flows driven 23	
  

by a surface thermal forcing with large gradients (step changes) in the horizontal. The 24	
  

solution can be used to verify that CFD codes for Boussinesq fluid system simulations 25	
  

are free of errors, and to evaluate the relative performances of competing numerical 26	
  

algorithms. Such verification procedures are important in the development of CFD 27	
  

models designed for research, operational, and classroom applications. 28	
  

 We solve the linearized Navier-Stokes and thermal energy equations analytically 29	
  

for the case where the surface buoyancy varies laterally as a square wave (Fig. 1). 30	
  

Attention is restricted to the steady state. No boundary-layer approximations are made; 31	
  

the solution is non-hydrostatic, and both horizontal and vertical derivatives are included 32	
  

in the viscous stress and thermal diffusion terms. The solution is similar to that of 33	
  

Axelsen et al. (2010) for katabatic flow above a cold strip, but is easier to evaluate (no 34	
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slope present) and applies to the more general scenario where the viscosity and 35	
  

diffusivity coefficients can differ. The flow is also similar to a special case (no slope) 36	
  

considered by Egger (1981), although a final analytical solution was not provided in 37	
  

that study. Strictly speaking, the linearized Navier-Stokes equations apply to a class of 38	
  

very low Reynolds number motions known as creeping flows. Such flows appear in 39	
  

studies of lubrication, locomotion of microorganisms, lava flow, and flow in porous 40	
  

media. Of course, for the task at hand, if our linear solution is to serve as a benchmark 41	
  

for a nonlinear numerical model solution, it is essential that the parameter space be 42	
  

restricted to values for which the model's nonlinear terms are negligible. 43	
  

 Because the solution pertains to flows driven by a surface thermal forcing, one of 44	
  

its main applications may be as a test for surface boundary conditions in the pressure 45	
  

Poisson equation. In models of atmospheric boundary-layer flows, the buoyancy is a 46	
  

major contributor to the forcing term in the Poisson equation and also appears in the 47	
  

associated surface boundary condition. The pressure boundary condition on a solid 48	
  

boundary in incompressible (Boussinesq) fluid flows is an important and complex issue 49	
  

that has long been fraught with technical difficulties and controversies (Strikwerda, 50	
  

1984; Orszag et al., 1986; Gresho and Sani, 1987; Gresho, 1990; Temam, 1991; Henshaw, 51	
  

1994; Petersson, 2001; Sani et al., 2006; Rempfer, 2006; Guermond et al., 2006; 52	
  

Nordström et al., 2007; Shirokoff and Rosales, 2011; Hosseini and Feng, 2011; Vreman, 53	
  

2014). Typical fractional-step solution methodologies and associated pressure (or 54	
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pseudo-pressure) boundary-condition implementations are often verified using various 55	
  

prototypic flows such as Poiseuille flows, lid-driven cavity flows, flows over cylinders or 56	
  

bluff bodies, viscously decaying vortices, and dam-break flows. We are unaware of 57	
  

verification tests in which flows were driven by a heterogeneous surface buoyancy 58	
  

forcing. Our solution is designed to fill this gap. 59	
  

 The analytical solution is derived in Sect. 2. In Sect. 3, this solution is compared 60	
  

to numerically simulated fields in a steady state. Two versions of a numerical code are 61	
  

run: a version in which the correct surface pressure boundary condition is applied, and a 62	
  

version in which the pressure condition is mis-specified. A summary follows in Sect. 4. 63	
  

 64	
  

2  Analytical solution 65	
  

We derive the solution for steady flow over an underlying surface along which the 66	
  

buoyancy varies laterally as a single harmonic function. This single-harmonic solution is 67	
  

then used as a building block in a Fourier representation of the square-wave solution. 68	
  

 69	
  

2.1  Governing equations 70	
  

Consider the flow of a viscous stably stratified fluid that fills the semi-infinite domain 71	
  

above a solid horizontal surface (placed at z = 0). This surface undergoes a steady 72	
  

thermal forcing that varies periodically in the right-hand Cartesian x direction, but is 73	
  

independent of the y direction. The two-dimensional (x, z) flow is periodic in x, and 74	
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satisfies the linearized (assuming the disturbance is of small amplitude) governing 75	
  

equations under the Boussinesq approximation, 76	
  

 
    
0 =!

"#
"x

+ !$2u ,           (2.1) 77	
  

 
    
0 =!

"#
"z

+b + !$2w ,          (2.2) 78	
  

 0 =!N 2w +!"2b ,           (2.3) 79	
  

 !u
!x
+
!w
!z
= 0 .           (2.4) 80	
  

Apart from notational differences, (2.1)–(2.4) are the two-dimensional steady state 81	
  

versions of (55)–(57) of Sect. II of Chandrasekhar (1961). Equations (2.1) and (2.2) are 82	
  

the horizontal (x) and vertical (z) equations of motion, respectively, (2.3) is the thermal 83	
  

energy equation (differential form of the first law of thermodynamics) expressed in 84	
  

terms of the buoyancy variable (defined below), and (2.4) is the incompressibility 85	
  

condition. Here u and w are the horizontal and vertical velocity components,  ! "  86	
  

    [p! pe(z)]/!w  is the kinematic pressure perturbation [p is pressure,   pe(z)  is pressure in a 87	
  

hydrostatic environmental state in which the density profile is !e(z) ,   !w  is a constant 88	
  

reference density, say,    !e(0) ], and     b !"g[!"!e(z)]/!w  is the buoyancy, where  !  is the 89	
  

actual density, and g is the acceleration due to gravity. The Brunt-Väisälä frequency90	
  

    N ! "(g/!w)d!e/dz  of the ambient fluid (Kundu 1990), kinematic viscosity ! , and 91	
  

thermal diffusivity !  are taken constant. 92	
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 We obtain our solution using a standard vorticity/streamfunction formulation. 93	
  

Cross-differentiating (2.1) and (2.2) yields the vorticity equation, 94	
  

 0 =!"b
!x
+ !!2" ,           (2.5) 95	
  

where ! ! "u/"z #"w/"x  is the vorticity. Eliminating b from (2.3) and (2.5) yields 96	
  

 
    
!4! =

N 2

"#
"w
"x

.           (2.6) 97	
  

Introducing a streamfunction !  defined through 98	
  

 u = !!/!z, w ="!!/!x ,         (2.7) 99	
  

guarantees that (2.4) is satisfied, and transforms (2.6) into a single equation for  ! , 100	
  

 
    
!6!+

N 2

"#
"2!

"x2 = 0 .           (2.8) 101	
  

The dependent variables are assumed to vanish far above the surface (z !" ). On the 102	
  

surface we apply no-slip (u = 0 ) and impermeability (   w = 0 ) conditions, and specify a 103	
  

periodic (in x) buoyancy distribution. As we will now see, restricting the dependent 104	
  

variables to steady periodic forms that vanish as   z !"  also restricts acceptable 105	
  

distributions of the surface buoyancy. The restriction was first noted by Egger (1981, 106	
  

Sect. 3c), though without details. Averaging (2.3) over one period (using w =!"!/"x ) 107	
  

yields d2b /dz2 = 0 , which integrates to   b = A + Bz  ( b  is the average of b; A and B are 108	
  

constants). Taking    b! 0  as   z !" , implies that b ! 0  as   z !" , in which case A =109	
  

   B = 0 , and b (z)= 0 . In particular, at the surface,    b (0) = 0 . If a surface distribution 110	
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b(x,0) violates this condition, the ground acts as a net heat source/sink. In an unsteady 111	
  

model, such a source/sink would force a continually upward-developing disturbance, and 112	
  

a steady state could never be attained.   113	
  

 114	
  

2.2  Single-harmonic forcing 115	
  

For a surface buoyancy of the form    b(x,0)! sinkx , (2.3) indicates that  !  is of the form 116	
  

     ! = A(z)coskx .           (2.9) 117	
  

Application of (2.9) in (2.8) yields 118	
  

 
    

d2

dz2 !k2
"

#

$$$$$

%

&

'''''

3

A!N 2k2

!"
A = 0 ,        (2.10) 119	
  

which has solutions of the form A ! eMz  for M satisfying 120	
  

 (M 2 !k2)3 = N
2k2

!"
.          (2.11) 121	
  

Taking the one-third power of (2.11) yields a useful intermediate result: 122	
  

 
    
M 2!k2 =

N 2/3k2/3

!1/3"1/3 e2n#i/3 ,         (2.12) 123	
  

where n is an integer. Rearranging (2.12) and taking the square root yields 124	
  

 M = ± k2 + N
2/3k2/3

!1/3"1/3
e2n#i/3 .        (2.13) 125	
  

Equation (2.13) furnishes six roots, two for each of n = 0, 1, 2. To ensure that    A(z)! 0  126	
  

as z !" , we reject the roots with a positive real part. With the radicand of (2.13) 127	
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expressed in polar form, the physically acceptable roots are 128	
  

 
    
M0 =! k2 +

N 2/3k2/3

!1/3"1/3 , (n = 0),             (2.14a) 129	
  

 M1 =!r
1/2ei!/2 ,  (n = 1),             (2.14b) 130	
  

 M2 =!r
1/2e!i!/2 ,  (n = 2),             (2.14c) 131	
  

where the subscript on M denotes the associated value of n, and r and  !  are defined by 132	
  

 r ! k2 + N
2/3k2/3

!1/3"1/3
cos 2#

3
"

#
$$$$

%

&
''''

(

)

*
*
*

+

,

-
-
-

2

+
N 2/3k2/3

!1/3"1/3
sin 2#

3
"

#
$$$$

%

&
''''

(

)

*
*
*

+

,

-
-
-

2

,     (2.15) 133	
  

 
    
cos! =

1
r

k2 +
N 2/3k2/3

"1/3#1/3 cos 2$
3
!

"
####

$

%
&&&&

'

(

)
)
)

*

+

,
,
,
,      sin! = 1

r
N 2/3k2/3

!1/3"1/3

!

"

#####

$

%

&&&&&
sin 2#

3
!

"
####

$

%
&&&&
> 0 .  (2.16) 134	
  

While solving (2.16) for ! , care must be taken when evaluating arcsin or arccos 135	
  

functions that !  appears in the correct quadrant (!  should be in quadrant I or II so 136	
  

  !/2  should always be in quadrant I). Also note from (2.14b) and (2.14c) that   M2  is the 137	
  

complex conjugate of   M1  (   M2 = M1*), a fact that will often be used below. 138	
  

 With the general solution for !  written as 139	
  

 ! = (BeM0z +CeM1z +DeM2z )coskx ,       (2.17) 140	
  

where B, C, and D are constants, the vorticity becomes, 141	
  

 
    
! = B(M0

2!k2)eM0z +C(M1
2!k2)eM1z + D(M2

2!k2)eM2z"
#
$

%
&
' coskx ,   (2.18) 142	
  

and the buoyancy follows from (2.3) as 143	
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b =

kN 2

!
B

M0
2!k2 eM0z +

C
M1

2!k2 eM1z +
D

M2
2!k2 eM2z

"

#

$$$$$

%

&

''''''
sinkx +bh ,   (2.19) 144	
  

where !2bh = 0 . In view of (2.12), equation (2.19) becomes 145	
  

 
    
b =

k1/3!1/3N 4/3

"2/3 (BeM0z +e!2#i/3CeM1z +e!4#i/3 DeM2z )sinkx +bh .   (2.20) 146	
  

Applying (2.18) and (2.20) in (2.5) yields an equation for    !bh/!x , which upon use of 147	
  

(2.12) and    M2 = M1* reduces to    !bh/!x = 0 . So  bh  is, at most, a function of z. Since 148	
  

   !
2bh = 0 ,  bh  is, at most, a linear function of z, and since b should vanish as   z !" , 149	
  

that linear function must be 0. Thus, bh = 0 . 150	
  

 The pressure follows from (2.1) and (2.12) as 151	
  

 ! =
!2/3N 2/3

k1/3!1/3
(BM0 e

M0z +CM1e
2!i/3eM1z +DM2e

4!i/3eM2z )sinkx +G(z) ,  (2.21) 152	
  

where G(z) is a function of integration. Applying (2.21) in (2.2), and using (2.11) yields 153	
  

   dG/dz = 0 , so G is constant. For  !  to vanish as   z !" , this constant must be zero. 154	
  

 The surface conditions determine B, C, and D. The surface buoyancy is 155	
  

  b(x,0)= b0 sinkx ,          (2.22) 156	
  

where   b0  is a constant forcing amplitude. Application of (2.20) in (2.22) yields 157	
  

 B+e!2!i/3C +e!4!i/3D =
b0"

2/3

k1/3#1/3N 4/3
.       (2.23) 158	
  

In view of (2.7) and (2.17), the impermeability condition    w(x,0) = 0  and no-slip 159	
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condition u(x,0)= 0  yield 160	
  

 B +C +D = 0 ,          (2.24) 161	
  

 BM0 +CM1 +DM2 = 0 .         (2.25) 162	
  

Straightforward but lengthy manipulations yield the solution of (2.23)–(2.25): 163	
  

 B =!
b0 !

2/3

3 k1/3"1/3N 4/3

"

#

$$$$$

%

&

''''''

2r1/2sin(#/2)
M0 + 2r

1/2cos($/3+#/2)
,     (2.26) 164	
  

 
    
C =!i

b0 !
2/3

3 k1/3"1/3N 4/3

"

#

$$$$$

%

&

''''''

M2!M0
M0 + 2r1/2cos(#/3 +$/2)

,     (2.27) 165	
  

 D = i
b0 !

2/3

3 k1/3"1/3N 4/3

!

"

#####

$

%

&&&&&&

M1'M0
M0+ 2r

1/2cos(#/3+$/2)
.     (2.28) 166	
  

Applying (2.26)–(2.28) in (2.17), (2.20), and (2.18), with (2.12) used in the latter 167	
  

equation, and noting that B is real, while D =C *  (since    M2 = M1*), we obtain168	
  

 b =
2b0
3
e!Zc [µ cos(Zs+ !/6)+ cos(Zs+ !/6+"/2)]!e

M0zsin("/2)
µ+ 2cos(!/3+"/2)

sinkx ,  (2.29) 169	
  

 ! =
2b0 "

2/3

3 k1/3#1/3N 4/3
e!Zc [µ sinZs + sin(Zs+$/2)]!e

M0zsin($/2)
µ+ 2cos(%/3+$/2)

coskx ,  (2.30) 170	
  

where 171	
  

 Zs ! z r
1/2 sin(!/2), Zc ! z r

1/2 cos(!/2), µ !M0/r
1/2 .    (2.31) 172	
  

Application of (2.30) in (2.7) yields the velocity components as 173	
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u =

2b0 !
2/3r1/2

3 k1/3!1/3N 4/3
e!Zc [µ sin(!/2!Zs)! sinZs ]!µe

M0zsin(!/2)
µ+ 2cos(!/3+!/2)

coskx   (2.32) 174	
  

 
    
w =

2b0 !
2/3k2/3

3 "1/3N 4/3
e!Zc [µ sinZs + sin(Zs+#/2)]!eM0z sin(#/2)

µ + 2cos($/3 +#/2)
sinkx .   (2.33) 175	
  

 176	
  

2.3  Piecewise constant (square wave) forcing 177	
  

Next, consider the case where the surface buoyancy varies horizontally as a square 178	
  

wave, with a distribution over one period L given by 179	
  

 
   
b(x,0) =

bmax, 0 < x < L/2,
!bmax, L/2 < x < L.

"
#
$$

%$$
         (2.34) 180	
  

Such a distribution can be expressed as the Fourier series: 181	
  

 b(x,0)= bn
n=1

!

" sin n!x
L
#

$
%%%%

&

'
((((
,         (2.35) 182	
  

 bn =
2
L

b(x,0)sin n!x
L
!

"
####

$

%
&&&&0

L

' .         (2.36) 183	
  

Application of (2.34) in (2.36) yields 184	
  

 
    
bn =

2bmax
n !

1!2cos(n !/2)+ cos(n !)"
#$

%
&' .      (2.37) 185	
  

The solutions for b,  ! , u, and w can then be written as summations over the single-186	
  

harmonic solutions (2.29), (2.30), (2.32), and (2.33), with k related to n by  187	
  

 
   
k =

n !
L

,           (2.38) 188	
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and with   b0  replaced by  bn : 189	
  

b = 2
3

bn
e!Zc [µ cos(Zs+ !/6)+ cos(Zs+ !/6+!/2)]!e

M0zsin(!/2)
µ+ 2cos(!/3+!/2)n=1

"

# sin n!x
L
$

%
&&&&

'

(
))))
,  (2.39) 190	
  

! =
2!2/3

3 !1/3N 4/3
bn
k1/3

e!Zc [µ sinZs + sin(Zs+!/2)]!e
M0zsin(!/2)

µ+ 2cos(!/3+!/2)
cos n!x

L
"

#
$$$$

%

&
''''n=1

(

) ,  (2.40) 191	
  

u = 2!2/3

3 !1/3N 4/3
bn
r1/2

k1/3
e!Zc [µ sin(!/2!Zs)! sinZs ]!µe

M0zsin(!/2)
µ+ 2cos(!/3+!/2)

cos n!x
L
"

#
$$$$

%

&
''''n=1

(

) , (2.41) 192	
  

w = 2!2/3

3 !1/3N 4/3
bnk

2/3 e
!Zc [µ sinZs + sin(Zs+!/2)]!e

M0z sin(!/2)
µ+ 2cos(!/3+!/2)

sin n!x
L
"

#
$$$$

%

&
''''n=1

(

) .  (2.42) 193	
  

 194	
  

3  Verification tests 195	
  

A solution of the linearized equations may be used to verify a nonlinear code if the 196	
  

nonlinear terms are sufficiently small. Unfortunately, a priori estimates of such terms 197	
  

expressed, for example, through a Reynolds number, are not straightforward since the 198	
  

relevant velocity and length scales in our problem are only evident after a solution has 199	
  

been obtained. We thus seek an appropriate set of test parameters through trial and 200	
  

error, guided by a posteriori linear solution estimates of the terms    u !"b  and u !"!  201	
  

[u = (u,w)]  present in nonlinear versions of (2.3) and (2.5), respectively. Specifically, for 202	
  

any computed candidate solution, we formed the ratios of the largest values of those 203	
  

nonlinear terms to the largest values of the corresponding linear terms, that is, the 204	
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terms actually present in (2.3) and (2.5). We need only consider one such linear term 205	
  

per ratio since (2.3) and (2.5) are comprised of two terms of equal magnitude. A 206	
  

solution was deemed to be sufficiently linear if 207	
  

 

     

R! !
max u "#!
max $b/$x

< ", and Rb !
max u "#b

max ##2b
< " ,      (3.1) 208	
  

where  !  (<< 1) is a prescribed threshold. The suitability of this approach was 209	
  

confirmed by the very close agreement between the analytical solutions and the 210	
  

numerical solutions obtained with the correct surface pressure condition. 211	
  

 The numerical model employed in our tests is a variant of a direct numerical 212	
  

simulation (DNS) code used in the boundary-layer and slope-flow studies of Fedorovich 213	
  

et al. (2001), Fedorovich and Shapiro (2009a,b), and Shapiro and Fedorovich (2013, 214	
  

2014). The model solves the Boussinesq governing equations on a staggered (Arakawa 215	
  

C) grid. Although designed for three-dimensional simulations, the model was run in a 216	
  

two-dimensional (x, z) mode. The overall solution procedure is patterned on a fractional 217	
  

step method proposed by Chorin (1968). In our version, the prognostic equations are 218	
  

integrated using a filtered leapfrog scheme with explicit treatment of the viscous term. 219	
  

The pressure is diagnosed from a Poisson equation (equation (A3b), discussed in the 220	
  

Appendix), which is solved using a fast Fourier transform technique in horizontal 221	
  

planes, and a tridiagonal matrix inversion in the vertical. The surface condition on 222	
  

pressure is the inhomogeneous Neumann condition (INC) that arises from projecting the 223	
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vertical equation of motion into the vertical, and imposing the impermeability condition 224	
  

(Vreman, 2014; also see the Appendix). We also run a version of the code in which the 225	
  

surface pressure condition is mis-specified as a homogeneous Neumann condition (HNC). 226	
  

We hasten to add, however, that our implementation of the HNC may be quite different 227	
  

from implementations described in the literature. We elaborate on these technical 228	
  

differences and review general aspects of the problem of surface pressure specification in 229	
  

the Appendix. 230	
  

 The analytical solution was evaluated on an un-staggered (x, z) grid extending 231	
  

over one period of the square wave (x = 0 to x = L). The series were truncated at 232	
  

 50000  terms. The governing parameters were adjusted so that the linearity criteria 233	
  

were satisfied in comparisons with    ! = 5!10"3 .  234	
  

 In the first test, we set ! = " = 0.001m2 s!1 , N = 0.02s!1 ,    L = 5.12m , and bmax235	
  

  = 1!10"5m s"2 . For the analytical solution A-1, the (x, z) grid consisted of  513  points 236	
  

in the x direction and 1025  points in the z direction, with grid spacings 237	
  

!x =!z = 0.01m . The linearity criteria (3.1) were satisfied with R! ! 8.2"10
#5  and 238	
  

   Rb ! 2.8"10#3 . The analytical b and w fields shown in Fig. 2 depict a broad zone of 239	
  

ascent above the warm surface and a compensating zone of descent over the cold 240	
  

surface, roughly for    z <1.8m . In the upper part of these zones (at roughly 241	
  

   0.9m<z <1.8m ), adiabatic expansion/compression has reversed the senses of the 242	
  



	
   15	
  

buoyancy fields. Surprisingly, the numerical fields in the inhomogeneous INC-1 and 243	
  

homogeneous HNC-1 cases are very similar to each other and to the A-1 fields. The u 244	
  

fields from A-1, INC-1, and HNC-1 shown in Fig. 3 are visually indistinguishable from 245	
  

one another. 246	
  

 To understand why the INC-1 and HNC-1 simulations are so similar, and to 247	
  

identify simulation parameters that might evince more substantial differences, we 248	
  

consider the idealized problem in which a specified buoyancy     b = b0e
!!z sinkx  (    ! = h!1 , 249	
  

where h is the e-folding depth scale) is the only forcing term in the Poisson equation 250	
  

  !2" =    !b/!z , with Neumann surface condition 
   
!"/!z 0= b(x,0) . This idealized 251	
  

problem is solved as  252	
  

 
    
!INC

* =
b0

!2"k2 ke"kz " !e"!z( )sinkx .        (3.2) 253	
  

The corresponding solution obtained with the homogeneous Neumann condition, 254	
  

!"/!z
0
= 0 , is 255	
  

 !HNC
* =

b0
!2 !k2

!2

k
e!kz ! !e!!z

!

"
####

$

%
&&&&&
sinkx .        (3.3) 256	
  

The relative error (RE) in the vertical pressure gradient force associated with (3.2) and 257	
  

(3.3), defined as the local absolute error in that force divided by the local buoyancy, is 258	
  

calculated as 259	
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 RE ! "#INC
* /!z "!#HNC

* /!z
b

= e(a!1)kz ,       (3.4) 260	
  

where     a ! !/k . Written in terms of the depth scale h and wavelength     ! = 2"/k , a can 261	
  

be interpreted as an aspect ratio characterizing the width to depth scales of the 262	
  

disturbance,     a = !/(2"h)! !# . From (3.4) we see that RE decreases exponentially with 263	
  

z for disturbances characterized by small aspect ratios, a < 1  (which we refer to as deep 264	
  

disturbances) and increases exponentially with z for disturbances characterized by large 265	
  

aspect ratios,    a >1  (which we refer to as shallow disturbances). The buoyancy in Fig. 2 266	
  

is suggestive of a < 1, which indicates that the first test could be classified as a deep 267	
  

(error-forgiving) simulation. 268	
  

 The preceding analysis suggests that simulations with shallow thermal 269	
  

disturbances (a > 1) might yield large differences between cases with inhomogeneous 270	
  

and homogeneous Neumann conditions. There did not appear to be a straightforward 271	
  

way to increase the effective a by systematically varying the parameters (e.g., increasing 272	
  

L tended to increase the effective h), but a set of suitable parameters were identified 273	
  

through trial and error and were used as the basis for the second test case. 274	
  

 In the second test, we set ! = " = 	
   0.0001m2s!1 , N = 0.2s!1 ,    L = 10.24m , and 275	
  

bmax = 5!10
"6ms"2 . The analytical solution A-2 was generated with 2049  points in the 276	
  

x direction and  513  points in the z direction, with grid spacings of    !x =!z = 0.005m . 277	
  

The linearity criteria were satisfied with 
    
R! ! 4.8"10#5  and Rb ! 3.8"10

#3 . In 278	
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contrast to the counter-rotating convection rolls seen in the first test, the analytical b 279	
  

and w fields shown in Fig. 4 depict narrow updraft/downdraft pairs straddling the 280	
  

buoyancy discontinuities. Between the narrow updrafts is a broad region of relatively 281	
  

weak ascent. The w and b fields above the cold surface are mirror images of the fields 282	
  

above the warm surface. Note the change in the scales of the x and (especially) the z 283	
  

axes between Figs. 4 and 2: the low-level thermal disturbance in the second test is much 284	
  

shallower than the disturbance in the first test (and is suggestive of a > 1). In this 285	
  

second test case we find dramatic differences between the inhomogeneous INC-2 and 286	
  

homogeneous HNC-2 cases. Specifically, while the INC-2 and A-2 fields are in excellent 287	
  

agreement, the HNC-2 fields showed no signs of even approaching a steady state. Long 288	
  

after the INC-2 simulation had reached a steady state, the HNC-2 fields continued to 289	
  

amplify and develop asymmetric structures associated with flow nonlinearities. The very 290	
  

close agreement between the A-2 solution and the steady state in the INC-2 simulation 291	
  

is shown for the u field in Fig. 5. The u field in the disastrous HNC-2 simulation, at a 292	
  

time when a steady state had already been attained in the INC-2 simulation, is shown 293	
  

in Fig. 6. 294	
  

 295	
  

4  Summary 296	
  

The linearized Boussinesq equations for the motion of a viscous stably stratified fluid 297	
  

are solved analytically for a surface buoyancy that varies laterally as a square wave. 298	
  



	
   18	
  

The solution describes two-dimensional laminar convective structures such as thermal 299	
  

convective rolls and updraft/downdraft pairs. The main applications of the solution may 300	
  

be in code verification and the evaluation of different implementations of the surface 301	
  

pressure condition for the pressure Poisson equation. Tests have been conducted for 302	
  

cases where the aspect ratios of the thermal disturbance have been large and small. 303	
  

With attention restricted to disturbances of sufficiently small amplitude, the linear 304	
  

solution and numerically simulated fields with the inhomogeneous Neumann condition 305	
  

for pressure (which is appropriate in the context of the particular fractional step 306	
  

procedure adopted in our DNS code) have been found to be in excellent agreement for 307	
  

both tests. However, in tests with a mis-specified Neumann condition, an excellent 308	
  

agreement with the analytical solution has been found only for the deep (small aspect 309	
  

ratio) disturbance case; errors in the shallow (large aspect ratio) disturbance case have 310	
  

been catastrophic.  311	
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Appendix A: Comment on the pressure condition at a lower solid surface 312	
  

 Consider a three-dimensional Boussinesq system with equation of motion, 313	
  

 !u
!t
=!"#+ !!2u+F .          (A1) 314	
  

Here u = (u, v,w)  is the three-dimensional velocity vector, !  is a kinematic pressure 315	
  

perturbation, !  is the kinematic viscosity coefficient, and F  is the sum of nonlinear 316	
  

acceleration and buoyancy terms. Applying the incompressibility condition, 317	
  

 !"u = 0 ,             (A2) 318	
  

in the equation that results from taking the divergence of (A1) (e.g., Orszag et al., 1986) 319	
  

yields the Poisson equation,  320	
  

 !2" =!#F .          (A3a) 321	
  

 Although (A1) and (A2) imply (A3a), the reverse statement is not generally true. 322	
  

Indeed, eliminating  !  from between (A3a) and the equation arising from taking the 323	
  

divergence of (A1) yields the diffusion equation     !!/!t = ""2!  for the velocity 324	
  

divergence ! ! "#u , whose solution is (A2) only if !  is zero initially and on all 325	
  

boundaries (Orszag et al., 1986; Gresho and Sani, 1987, Vreman 2014).  326	
  

 The same steps leading to (A3a) also lead to an alternative Poisson equation, 327	
  

 !2! ="# !!2u+F( ) .          (A3b) 328	
  

Although !"!!2u  was omitted in (A3a) [this term is zero if (A2) is satisfied], without 329	
  

further constraints on !  (described above), (A2) may not be satisfied. Gresho and Sani 330	
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(1987) showed that the retention of !"!!2u  in (A3b) assures that (A2) is satisfied, 331	
  

and thus leads to the paradox: "If you include it, you don't need it; if you don't include 332	
  

it, you need it." Vreman (2014) revisited this paradox, and showed that for a standard 333	
  

staggered method, the discretized form of (A3b) is equivalent to that of (A3a) 334	
  

supplemented with the constraint that    !"!2u = 0  (!2! = 0)  on points adjacent to the 335	
  

solid boundary [with the same inhomogeneous Neumann boundary condition for !  336	
  

implied for (A3a) and (A3b)]. When supplemented with this !2! = 0  near-wall 337	
  

condition, the diffusion equation for !  led to    ! = 0  for all time. We note that (A3b) is 338	
  

the form adopted in our numerical code. 339	
  

 Evaluating the vertical component of (A1) on the surface, where the 340	
  

impermeability condition applies, yields the inhomogeneous Neumann condition, 341	
  

 !"
!z 0

= !
!2w
!z2 0

+Fz 0 ,          (A4) 342	
  

where w ! k "u ,    Fz ! k "F , k  is the upward unit vector, and 
 
( )0  is a surface value. It 343	
  

has been argued that (A4), by itself, is not a proper boundary condition because it does 344	
  

not provide new information (it is not independent of the governing equations) and does 345	
  

not enforce the incompressibility condition (A2) at the boundary (Strikwerda, 1984; 346	
  

Henshaw, 1994; Sani et al., 2006). However, as pointed out by Henshaw (1994), many 347	
  

studies that impose (A4) (or a variant of it) also apply (A2) on the boundary. 348	
  

 In our numerical model, (A1) is integrated using a fractional step procedure with 349	
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explicit treatment of the viscous term. First, a provisional velocity field !u  that does not 350	
  

satisfy (A2) is obtained by integrating a discretized form of (A1) in which the pressure 351	
  

gradient is omitted. The provisional velocity is equal to the velocity at the end of the 352	
  

previous time step plus the sum of the forcing terms (nonlinear acceleration, buoyancy, 353	
  

and viscous stress) multiplied by the time step   !t . With the forcing terms explicitly 354	
  

evaluated, !u  is readily computed throughout the flow domain, including on the surface, 355	
  

where, in surface-forced flows, the buoyancy will make a substantial contribution. In 356	
  

terms of !u  and its vertical component   !w , (A3b) and (A4) become, 357	
  

 !2! =
"# !u
!t

,            (A5) 358	
  

 !"
!z 0

!
1
"t
!w
0
= 0 .           (A6) 359	
  

In the second step, a velocity field that does satisfy (A2) is obtained by solving (A5) for 360	
  

!  and then adding the pressure gradient force associated with  !  (multiplied by !t ) to 361	
  

!u .  362	
  

 In some explicit fractional step procedures (including the DNS code used in our 363	
  

study), the problem of solving (A5) subject to (A6) with 
   
!u 0  evaluated from model data 364	
  

is replaced by what appears to be an entirely different (but is actually equivalent) 365	
  

problem: solving (A5) subject to the homogeneous Neumann condition, 366	
  

 !"
!z 0

= 0,             (A7) 367	
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in concert with 
   
!u 0  being set to 0, obviating the need to calculate 

   
!u 0  from model data. 368	
  

It can be shown that 
   
!w 0  and the discretized form of !"/!z

0
 appear in the discretized 369	
  

form of (A5) valid half a grid point above the physical surface as !"/!z
0
! !w

0
/!t , that 370	
  

is, in the same combination as they appear in (A6). Thus, setting 
   
!w 0  and !"/!z

0
 to 0, 371	
  

is equivalent to implementing (A6) with the model-computed values of 
   
!w 0 : the 372	
  

discretized form of (A5) near the surface is the same in either case. Moreover, on the C 373	
  

grid, setting the tangential components 
   
!u 0  and !v

0
 to 0 only affects the values of !u  and 374	
  

  !v  half a grid point beneath the physical boundary. These values do not appear in the 375	
  

discretized form of (A5) at any z-level, and thus have no bearing on the solution. In 376	
  

essence, the errors associated with the conflation of the two physically unjustifiable 377	
  

specifications (homogeneous Neumann condition for pressure, and !u
0
= 0 ) cancel out. 378	
  

 The homogeneous Neumann condition for pressure can be the source of confusion 379	
  

if the context in which the condition is applied is not made clear: it would be a correct 380	
  

condition if 
   
!u 0  is set to zero (per the equivalence described above), but it would be an 381	
  

incorrect condition if the explicit model-computed values of 
   
!u 0  are used. In the 382	
  

experiments with the mis-specified condition described in Sect. 3, the homogeneous 383	
  

condition is imposed in the latter context. Unfortunately, in many numerical model 384	
  

descriptions, the nature of the surface pressure condition is left vague, for example, by 385	
  



	
   23	
  

not indicating whether a Neumann condition is homogeneous or inhomogeneous, or, if a 386	
  

homogeneous Neumann condition is indicated, not mentioning how 
   
!u 0  is treated. 387	
  

 Finally, we note that in fractional step procedures that treat the viscous term 388	
  

implicitly (e.g., Kim and Moin, 1985; Gresho, 1990; Armfield and Street, 2002; 389	
  

Guermond et al., 2006, and many others), the homogeneous Neumann condition is often 390	
  

applied as a surface condition for a Poisson equation, but it is again different from our 391	
  

implementation described in Sect. 3. In the implicit treatments, the provisional velocity 392	
  

is obtained as the solution of a boundary value problem (
   
!u 0  should be specified; often 393	
  

it is set to 0) in which the relevant Poisson equation resembles (A5) but applies to a 394	
  

scalar function (sometimes called a pseudo-pressure) that is not the real pressure. 395	
  

Temam (1991) refers to this scalar as, "... a technical quantity, a mathematical 396	
  

auxiliary..." and advocates that it should not even be considered as an approximation of 397	
  

the pressure. Interestingly, in the context of implicit treatments, the homogeneous 398	
  

Neumann condition on the pseudo-pressure has sometimes been implicated as corrupting 399	
  

solution accuracy through the development of spurious numerical boundary layers 400	
  

adjacent to solid boundaries (Gresho, 1990; Guermond et al., 2006; Hosseini and Feng, 401	
  

2011). 402	
  

 403	
  

Code availability 404	
  

The Fortran program used to generate output data files from the analytical solution is 405	
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available as a supplement to this article. That program (square.f) is configured for test 406	
  

A-1, but can be easily adjusted to run test A-2 or other tests. Running square.f 407	
  

automatically generates an output file for each dependent variable (e.g., u.dat) as well 408	
  

as an output file (square.out) that summarizes the test parameters and gives the 409	
  

computed values of the linearity ratios 
  
R!  and Rb  defined in (3.1). 410	
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Figure 1. Schematic of two-dimensional (x, z) thermal convection induced by a surface 511	
  

buoyancy that varies horizontally (x) as a square wave. Red denotes positive surface 512	
  

buoyancy, blue denotes negative surface buoyancy.  513	
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Figure 2. Vertical cross section of the analytical (A-1) buoyancy b and vertical velocity 520	
  

w fields from the first test case. Color bar units are   m s!2  for b, and m s!1  for w. 521	
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 530	
  

Figure 3. Vertical cross section of u from the first test case. A-1 is the analytical 531	
  

solution. INC-1 is the numerical simulation with inhomogeneous Neumann condition for 532	
  

pressure. HNC-1 is the numerical simulation with the homogeneous Neumann condition 533	
  

for pressure. Color bar units are   m s!1 . 534	
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 541	
  

Figure 4. Vertical cross section of the analytical (A-2) buoyancy b and vertical velocity 542	
  

w fields from the second test case. Color bar units are   m s!2  for b, and m s!1  for w. 543	
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Figure 5. Vertical cross section of u from the second test case. A-2 is the analytical 552	
  

solution. INC-2 is the numerical simulation with inhomogeneous Neumann condition for 553	
  

pressure. Color bar units are m s!1 . 554	
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Figure 6. Vertical cross section of u from HNC-2, the numerical simulation with 560	
  

homogeneous Neumann condition for pressure in the second test case. Color bar units 561	
  

are m s!1 . 562	
  


