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Abstract

State-of-the-art numerical snowpack models essentially rely on observational data for initial-
ization, forcing, parametrization and validation. Such data are available in increasing amounts,
but the propagation of related uncertainties in simulation results has received rather limited at-
tention so far. Depending on their complexity, even small errors can have a profound effect5

on simulations, which dilutes our confidence in the results. This paper aims at quantification
of the overall and fractional contributions of some archetypical measurement uncertainties on
snowpack simulations in Arctic environments. The sensitivity pattern is studied at two sites
representing the accumulation and ablation area of the Kongsvegen glacier (Svalbard) using the
snowpack scheme Crocus. The contribution of measurement errors on model output variance,10

either alone or by interaction, is decomposed using global sensitivity analysis. This allows for
investigation of the temporal evolution of the fractional contribution of different factors on key
model output metrics, which provides a more detailed understanding of the model’s sensitivity
pattern. The analysis demonstrates that the specified uncertainties in precipitation and long-
wave radiation forcings had a strong influence on the calculated surface height changes and15

surface energy balance components. The model output sensitivity patterns also revealed some
characteristic seasonal imprints. For example, uncertainties in the longwave radiation affect the
calculated surface energy balance throughout the year at both study sites, while precipitation
exerted the most influence during the winter and at the upper site. Such findings are valuable for
identifying critical parameters and improving their measurement, and correspondingly, updated20

simulations may shed new light on the confidence of results from snow or glacier mass and
energy balance models. This is relevant for many applications in the fields of, e.g., avalanche
and hydrological forecasting.

1 Introduction

Snow is a key component of the earth system, and it has a vital importance for the structure25

and dynamics of the atmospheric boundary layer by modifying, e.g., the exchange processes
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between the atmosphere and the underlying ground. Bridging the gap between the inherent
microphysical snow processes and the exchange processes at the snow surface, still constitutes
major challenges to scientists.

Sophisticated snowpack models summarize the present knowledge and prove themselves to
be a useful tool in simulating the spatial and temporal evolution of snowpacks. Thus, snow mod-5

els have been successfully adopted for avalanche forecasting (e.g. Bellaire et al., 2013; Durand
et al., 1999; Lehning et al., 1999), glacier modelling (e.g. Obleitner and Lehning, 2004; Gallée
et al., 2001), hydrological research (e.g. Magnusson et al., 2014; Lehning et al., 2006; Liston
and Elder, 2006; Bernhardt et al., 2010), and climate impact studies (e.g. Durand et al., 2009).
The currently used snow models can be roughly classified by their degree of complexity, ranging10

from simplified bulk or single-layer models to detailed physical snowpack models (Etchevers
et al., 2004; Feng et al., 2008; Rutter et al., 2009). In general, the development and use of higher
order models also induces a need for more and better data to constrain the initialization, forc-
ing, parameterizations, and validation of the simulations. However, the quality of relevant data
(model and observations) is still difficult to assess. In that sense, the "true" value of a measured15

quantity remains a rather theoretical concept and can often not be determined. One therefore
usually estimates a range of values within which the true value is likely to fall. Probability den-
sity functions are widely recognized as appropriate measures for describing the uncertainty of
input data and model parameters, and they are used in this study (see Sect. 3.2). In practise,
however, these can often not be specified in a straightforward manner due to the complex nature20

of the measurement errors. It is nevertheless a major methodical issue to account for best esti-
mated measurement errors, which allows scientists to objectively quantify their impact on the
model outcome, and to provide information on the robustness of the results. A corresponding
approach is based on Monte-Carlo methods considering randomly drawn samples for each input
factor from previously derived distribution functions. First and higher moment statistics can be25

computed to quantify the integrated model uncertainty. In this context, integrated is understood
as the total effect of all measurement or parameter uncertainties on the model’s variability. At
this point, there is still no information on how uncertainty in the model output can be assigned to
different sources of uncertainty in the input data set or parameter setting. For example, interac-
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tion effects make it difficult to unambiguously allocate the uncertainty of model parameters and
forcing data on the model’s variance. To achieve a full understanding of the sensitivity pattern
of highly interconnected and nonlinear models, such as sophisticated snow models, it is neces-
sary to decompose the complete variance of the model results. Following this line, there have
been increasing efforts to quantify the parametric and predictive uncertainty of mass and energy5

balance models (e.g. Franz et al., 2010; He et al., 2011; Schmucki et al., 2014; Gurgiser et al.,
2013; Gerbaux et al., 2005; Fujita, 2008; Radić and Hock, 2006; Greuell and Oerlemans, 1986;
Oerlemans, 1992; Braithwaite and Zhang, 2000). Some of these also consider the investigation
of effects on the energy and mass balance of glaciers or ice sheets (e.g. Karner et al., 2013;
Van de Wal and Oerlemans, 1994; Greuell and Konzelmann, 1994). Raleigh et al. (2015) were10

the first to explore how different error types and distributions influence the physically based
simulations of snow variables in snow-affected catchments. Their approach to testing the model
sensitivity to co-existing errors in the forcing was based on Sobol’s global sensitivity analysis.
The present study was developed independently and follows a similar concept to identify how
the systematic measurement errors (biases) and uncertainties of some critical factors influence15

our confidence in glacier mass balance simulations. We study the seasonal evolution of the en-
ergy and mass balance of snow and ice at two sites on the Arctic glacier Kongsvegen (Svalbard)
(see Sect. 2.2). These sites are chosen to represent conditions in the accumulation and ablation
area of the glacier, thus addressing different mass and energy balance regimes. The snowpack
model Crocus was originally developed and is still used for operational snow avalanche warn-20

ings (Brun et al., 1992; Durand et al., 2009) and has been applied to various research studies,
e.g. Brun et al. (2013); Fréville et al. (2014); Carmagnola et al. (2013); Wang et al. (2013); Phan
et al. (2014); Gallet et al. (2014); Castebrunet et al. (2014); Vernay et al. (2015). Vionnet et al.
(2012) provide a comprehensive review of Crocus and its implementation in SURFEX, which
is an integrated platform for simulating earth surface processes.25

This study is the first to address the uncertainty of simulations due to measurement errors
using Crocus, and it may be generalized due to the local application and possible specific in-
fluences due to the Arctic environmental conditions. However, it may be helpful to demon-
strate the benefits of the applied method, to identify critical issues concerning model input and
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parametrization and to establish future priorities in corresponding research. An attractive ap-
proach for estimating sensitivity measures independently of the degree of linearity (model-free)
is based on global sensitivity analysis (GSA), which is introduced in Sect. 2.4. We then de-
veloped reference runs which are validated by key observations at the two glacier sites. Based
on these reference runs and the specification of the uncertainties of key variables and param-5

eters, we performed Monte-Carlo simulations. The results are presented in Sect. 3.1 and are
mainly discussed regarding the impact of key drivers in terms of first and total order indices and
inherent limitations as well as regarding differences concerning the two sites at the glacier.

2 Data and methods

2.1 Crocus model setup10

Crocus is a physically based finite-element and one-dimensional multilayer snow scheme im-
plemented in the land-surface model ISBA of the modelling platform SURFEX. The model
is extensively described elsewhere (Vionnet et al., 2012; Brun et al., 1992), and we therefore
simply provide a basic description and note modifications important for this study.

Snow is considered a porous material whose properties are described through bulk physical15

properties (thickness, density, temperature and liquid water content) and basic microstructure
characteristics – dendricity, sphericity, grain size and snow grain history. The parameter of snow
grain history indicates whether there once was liquid water or faceted crystals in the layer (Brun
et al., 1992; Vionnet et al., 2012). The changes in the morphological shape of snow crystals
depend on snow metamorphism in response to atmospheric forcing and internal processes. To20

adequately treat the internal processes, the model employs a number of parametrizations derived
from specific field and laboratory experiments (Brun et al., 1989). The governing equations are
numerically solved in a vertical domain with space and time varying grid distances (which are
necessary in order to cope with accumulation or settling processes). The model is forced by the
basic meteorological parameters (air temperature, humidity, wind speed and precipitation rate25

as well as incoming solar and longwave radiation) and is initialized by the vertical profiles of
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the key physical properties of snow and its underlying substrate. Model outputs comprise the
vertical profiles of the snow temperature, density, liquid water content and structure parameters
and prognostic time series of surface temperature, snow depth and energy- and mass balance
components, the latter two being coupled. Following, e.g., Armstrong and Brun (2008), the
model treats layerwise changes of internal energy according to5

SEB = NR+SHF+LHF+R+G (1)

= Lli(Rf −RM)−
HS∫

z=0

[
d

dt
(ρzcpTz)

]
dz. (2)

Therein, SEB denotes the surface energy budget, i.e. the sum of net radiation (NR), the tur-
bulent fluxes of sensible (SHF) and latent heat (LHF), the heat transferred by precipitation and10

blowing snow (R), and by conduction from the underlying material G (glacier ice in our case).
The associated changes in energy can be used for changes in the cold content of the snow pack
throughout its total depth (HS) (second term in Eq. 2) or phase changes (melt or freeze; first
term in Eq. 2).Rf andRM are the freezing and melting rate, Lli is the latent heat of the fusion of
ice (3.34×105 J kg−1), cp is the specific heat capacity of ice (2.1×103 J kg−1K−1) and ρz and15

Tz denote the density and snow temperature at depth z, repsectively. Net radiation itself is com-
posed of the sum of incoming and outgoing solar- and longwave radiation. Crocus treats solar
radiation in three spectral bands ([0.3-0.8],[0.8-1.5] and [1.5-2.8] µm). For each band, the spec-
tral albedo is computed as a function of the snow properties (microstructure), and the incoming
radiation in each band is then depleted as a funtion of the spectral albedo. The remaining energy20

penetrates into the snowpack and is assumed to decay exponentially with snow depth. Turbu-
lent fluxes are parametrized following the standard micrometeorological framework based on
the Monin–Obukhov similarity theory, which employs a bulk-transfer approach and a stability
correction for stable stratification of the atmospheric surface layer.

Layerwise changes in internal energy induce either varying cold content (warming/cooling;25

second term of Eq. 2) or phase changes of individual snow layers (Eq. 2, first term). Precipitation
6
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(P ), melt water refreezing and/or sublimation/evaporation rates (E) as well as runoff (Rrunoff)
couple the energy- and the mass budget of a snow pack according to

dM

dt
= P ±E−Rrunoff. (3)

The key parameters of this coupled system will also be addressed in this study. Crocus has5

not yet been applied to Kongsvegen. The following paragraphs summarize the main modifica-
tions and setup used in this study in order to develop reference runs properly reproducing the
seasonal evolution of snow and ice at the two glacier sites.

Water flow and refreezing. The formation of superimposed ice is an important factor for the10

mass balance of Arctic glaciers, and an appropriate treatment is also important in this study. We
refer to superimposed ice as all water which percolates through the snowpack and refreezes on
the glacier surface (Wright et al., 2007; Brandt et al., 2008; König et al., 2002). Obleitner and
Lehning (2004) and Karner et al. (2013) showed that on the Kongsvegen glacier, the superim-
posed ice layer can reach a thickness of several decimetres in some years. The water percolation15

and refreezing routine in the current Crocus version basically simulates the gravitational water
flow through the snowpack (Gascon et al., 2014). The energy available for refreezing is calcu-
lated at the beginning of each iteration step. If the snow layer temperature is below the melting
point, water refreezes and the residual liquid water is retained up to a maximum holding capac-
ity, which is difficult to determine. Default Crocus assumes a value of 5% of the pore volume20

and reproduces an increase of the average density of layers affected by the refreezing of water
(Vionnet et al., 2012). This implementation is appropriate for the simulation of snow evolution
in Alpine terrain but it fails to reproduce the formation of superimposed ice because water can
percolate through glacier ice as well. To overcome the issue, all water exceeding the maximum
liquid water holding capacity at an impermeable snow–ice interface is assumed to contribute to25

the runoff, and the water flow to the next layer is simply set to zero. This prevents percolation
of water into the glacier ice and increases the refreezing potential at the snow–ice interface.
This approach has been successfully applied in a similar setting using a different snow model
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(Obleitner and Lehning, 2004).

Model input/output. The Crocus model is forced by air temperature (T ), relative humidity
(RH), wind speed (U ), incoming shortwave radiation (SW ), incoming longwave radiation
(LW ), precipitation rate (P ) and atmospheric pressure (see Sect. 2.2). These time-dependent5

parameters were measured at both sites and are provided to the model by Netcdf-file for hourly
time steps. The input file was modified to include the roughness length for momentum as well
as the fraction of total pore volume used to calculate the maximum holding capacity. Constant
model parameters are provided by a static option file describing the initial and boundary condi-
tions and the basic model parameters.10

2.2 Input data

To run Crocus, we use meteorological and glaciological observations from two sites at the
Kongsvegen glacier, located in north-western Svalbard. The Kongsvegen glacier currently cov-
ers a total surface area of∼ 100 km2 and extends over a total length of 26 km. From the highest
point (750ma.s.l.) in the east, the glacier flows towards the north-west coast of the archipelago.15

Several automatic weather stations were operated along the flow line of the glacier. The study
makes use of two of them: KNG8 (78.75◦ N, 13.33◦ E, 668ma.s.l.), located in the accumula-
tion zone, and KNG1 (78.84◦ N, 12.66◦ E, 162ma.s.l.), located in the ablation zone (see Fig. 1).
Due to computational limitations, we had to restrict our simulations and error analysis to a one-
year period. The stations are equipped with state-of-the-art sensors for air temperature (unventi-20

lated), relative humidity, wind speed, and direction as well as shortwave and longwave radiation
components (see Table 2). Surface height changes were measured by an ultrasonic ranger. Com-
prehensive quality control of the recorded data was performed following the method of Karner
et al. (2013). The data have been further corrected:

25

Filling data gaps. For shorter gaps, the missing values were estimated by linear regression
from surrounding stations, where it was possible. When the surrounding stations had missing
values, the values were estimated by a stochastic nearest-neighbour resampling conditioned on
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the remaining variables (Beersma and Buishand, 2003). This was achieved by first calculat-
ing the Euclidean distance between the present day and all other days without gaps. Then the
missing value was replaced by randomly drawing of one out the 20 most analogous days. This
approach is convenient for small gaps and guarantees physically consistent fields.

5

Conversion of snow depth changes to water equivalent. Snow precipitation rates were calcu-
lated offline from surface height changes measured by the ultrasonic ranger, and converted to
snow water equivalent (SWE) for input to the model. The density of freshly fallen snow ρnew
was calculated according to the default parametrization used by Crocus, which is a function of
wind speed U , and air temperature Tair, given as10

ρnew = aρ+ bρ · (Tair− 273.16)+ cρ ·
√
U, (4)

where aρ = 300 kgm−3, bρ = 6kgm−3K−1, and cρ = 26 kgm−7/2 s−1/2 (Brun et al., 1992;
Vionnet et al., 2012). Note, that the default value for aρ is set to 109 kgm−3 (Pahaut, 1976).
The modification of this parameter accounts for the systematic underestimation of simulated15

settling and compaction of the near-surface snow layers compared to repeated snow-pit obser-
vations. The latter reveal that the mean density of the near surface snow layers is usually in the
range of 100–200 kgm−3. It was further necessary to reduce the amount of noise in the original
snow records in order to avoid erratic precipitation events, which lead to unrealistically high
accumulation. The main factors that affect the sensor signal are blowing snow, intense snow-20

fall, uneven snow surfaces, extreme temperatures and snow crystal type. Blowing and drifting
snow are frequent processes in the European Arctic and often result in the formation of sastrugi,
which introduce additional surface variability not associated with precipitation events (Sauter
et al., 2013). In principle, the associated small scale variability can be usually reduced by mov-
ing average filter, but the very different event durations sometimes make it difficult to determine25

an appropriate subset size. We therefore decided to take the mean saltation trajectory height as
a criterion of the uncertainty, which is assumed to be proportional to the surface shear stress u2∗
[m2 s−2] (Pomeroy and Gray, 1990):

9
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hsalt =
1.6 ·u2∗
2 · g

, (5)

where g [ms−2] is the gravitational acceleration. The surface shear stress has been estimated
by assuming a logarithmic wind profile and an arbitrarily chosen constant roughness length of
z0 = 0.02m. Finally, snow depth variations smaller than 0.8·hsalt were considered as noise. The5

factors z0 and 0.8 were used for calibration and to determine how much signal was removed
from the original time series. At KNG8, for example, this procedure yields a simulated end-
winter snow accumulation which is well validated by independent stake observations.

Large amplitude spikes. Large amplitude data spikes in recorded snow depth can occur during10

intense snowfall events when snow particles obstruct the propagation of the sensor signal (ultra-
sonic pulses). Sudden snow depth changes in excess of 50mmh−1 are assumed to belong to
this class of events, and were simply ignored. Transition from rain to snow was assumed to
take place in the range from 0 to 1 ◦C, with half the precipitation falling as snow, and the other
half as rain. There was no direct information available to better constrain this threshold. Input15

of calculated changes in precipitation water equivalent are considered as part of the calibration
procedure of the reference runs and yield overall satisfactory reproduction of the independently
observed end winter snow height, i.e. accumulation at both sites.

2.3 Reference run setups

The reference runs serve as basis for the subsequent assessment of the uncertainty of the sim-20

ulation results (see Sect. 3.2), and the corresponding decomposition of the model variance (see
Sect. 3.4). The modified Crocus model (see Sect. 2.1) is forced with the pre-processed and
adjusted input data introduced in Sect. 2.2. The most relevant model parameters are given in
Table 1. Following Björnsson et al. (1996) and Brandt et al. (2008), the model at KNG8 is ini-
tialized with an isothermal firn layer (273.16K) with a mean density of 600 kgm−3 and a total25

thickness of 20m. At the bottom of the model domain a constant base temperature of 271K
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has been applied. The maximum number of snow layers is set to 50 in order to obtain a detailed
snowpack stratigraphy. The initial grid spacing is increased from 0.01m at the surface to 10m at
the bottom. The number of grid cells and their spacing is updated during the simulation accord-
ing to the accumulation, temperature, density and melt. KNG8 is located in the accumulation
zone of the glacier, where the near surface layers consist of perennial snow rather than bare ice5

(Björnsson et al., 1996; Brandt et al., 2008). KNG1 is located in the ablation area of the glacier,
where surface conditions are characterized by less snow accumulation during winter, stronger
melt during summer and a corresponding prevalence of bare ice at the surface. At both sites,
the simulations start at the end of the ablation season, with the lowest recorded snow depth (de-
fined by the minimum recorded surface height), and they are forced by hourly measurements.10

Simulation results are stored every 6 h for analysis. At the lower station, KNG1, the glacier
ice reappears at the surface in the course of the ablation season. To represent the site-specific
condition, the initial density is set to 830 kgm−3, which is corroborated by observations from
ice cores. Measurements of surface temperature and albedo are used for validation only and are
considered as key indicators to judge the model’s ability to calculate the energy balance. Val-15

idation of mass balance calculations is performed by comparing simulated and observed snow
temperature and density profiles. Note, however, that the reference simulations were not opti-
mized to fully reproduce the available observations. This would have required further tunings,
which are not necessary for the purpose of this methodical study. There is no doubt, however,
that the two reference runs truly reflect the basic characteristics of the seasonal evolution of20

snow and ice at the two considered sites.

2.4 Global sensitivity analysis (GSA)

In general, sensitivity analysis (SA) permits inferences on the different sources of uncertainty
in model inputs (Sauter and Venema, 2011). This section gives an overview of how model-free
sensitivity measures can be derived from variance-based methods. For the purpose of illustra-25

tion, let’s assume a generic model f
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Y = f(X1,X2, · · · ,Xk), (6)

with the model output Y, the input quantity Xk and the corresponding total or uncondi-
tional variance V (Y). Most common SA measures are based on local derivatives ∂Y/∂Xk to
estimate the relative importance of individual components. It is convenient to normalize the5

derivatives by the standard deviation so that the measures are weighted and sum up to one. It
is also interesting to note in this context that in linear models, the normalized derivatives co-
incide with the well-known standardized (linear) regression coefficients (Saltelli et al., 2006).
Obviously, both measures rely on the assumption of linearity, which makes them unsuitable for
complex models. This is particularly true when interaction effects become important, which is10

a characteristic property of nonlinear and non-additive models. However, such effects may be
addressed by so-called model-free measures, which can be effectively estimated by the GSA
method described here. In contrary to the commonly used SA, GSA calculates the sensitivity
measures in broader regions of parameter space by selecting appropriate distributions instead
of a specific value of each parameter.15

If one forcing input Xi is fixed at a particular value x∗i , the resulting conditional variance of Y
is given by VX∼i(Y|Xi = x∗i ). This measure characterizes the relative importance of the factor
Xi, since the conditional variance will be less than the unconditional variance. The fact that
this sensitivity measure depends on the value of x∗i makes it rather impractical. Taking instead
the average over the uncertainty distribution of x∗i , the undesired dependence will disappear20

(Saltelli et al., 1999, 2006). The expression

V (Y) = EXi(VX∼i(Y|Xi = x∗i ))+VXi(EX∼i(Y|Xi = x∗i )), (7)

decomposes the total variance V (Y) into the first-order (second right-hand-side term) and
higher-order (first right-hand-side term) contributions. The corresponding first-order sensitivity25

index of Xi is given by
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Si =
VXi(EX∼i(Y|Xi = x∗i ))

V (Y)
. (8)

This sensitivity index indicates the importance of individual factors without considering in-
teractions effects. When the model belongs to the class of additive models, the first-order terms
add up to one, e.g.

∑k
i=1Si = 1. If this is not the case, the remaining variance must be explained5

by the higher-order effects induced by the interaction of input factor uncertainties. Interactions
represent an important feature of nonlinear non-additive models. The total sensitivity STi of
a factor Xi is made up of the first- and all higher order terms where a given factor Xi is partic-
ipating, consequently giving information on the non-additive character of the model. The STi

can be computed using10

STi =
E(V (Y|X∼i))

V (Y)
, (9)

where X∼i indicates that all factors have been fixed and only Xi varies over its uncertainty
range. This approach permits, even for non-additive models, the recovery of the complete vari-
ance of Y. The sum of STi is equal to one for perfectly additive models, otherwise it is always15

greater than one. The difference between Si and STi is a useful measure of how much each
factor is involved in interactions with any other factor (Saltelli et al., 2010).

First and total-order indices can be computed by Monte-Carlo based numerical procedures
(Saltelli et al., 2010; Sobol et al., 2007). Estimating the conditional variances, such as VXi(EX∼i(Y|Xi =
x∗i )), is computationally expensive, but Saltelli et al. (2010) provide an efficient algorithm for20

the simultaneous computation of Si and STi . The calculation requires two independent sam-
pling matrices A and B, with the elements aji and bji. The subscript i runs from one to the
number of factors k, while j runs from one to the number of samples N. A third matrix ,A(i)

B , is
introduced, where all columns are taken from A, except for the i-th column, which is from B.
The first-order effect can then be computed as25
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VXi(EX∼i(Y|Xi = x∗i )) =
1

N

N∑
j=1

f(B)j(f(A
(i)
B )j − f(A)j), (10)

where f(·)j denotes the model output of the j-th row. Similarly, total effect can be estimated
by

E(V (Y|X∼i)) =
1

2N

N∑
j=1

(f(A)j − f(A(i)
B )j)

2
. (11)5

The indices are estimated at a total cost of N · (k+2) model runs with N , a sufficiently large
number of base samples. In this study, we performed 20000 model runs with k = 8 factors and
N = 2000 base samples, which proved to be a reasonable compromise between computational
feasibility and robustness of the results. The elements of the matrices A and B are generated10

from quasi-random Sobol sequences (see Sec. 2.6). The Sobol sequence generates quasi-random
numbers in a range between [0,1]. The random numbers are then mapped to match the uncer-
tainty distributions given in Table 2 (see also Sec. 2.5). The roughness length for heat zh0 is
derived from the roughness length for momentum using the relation zh0 = z0/10 as its a default
setting for Crocus. The snowpack model is forced with each of the 20000 parameter combina-15

tions.
Sensitivity indices are computed from the 6-hourly model output of these Monte-Carlo runs

and are analysed with regard to snow depth, surface energy balance, turbulent heat flux and
latent heat flux. The calculations are based on the reference runs performed at the two glacier
sites. Therefore, this strategy allows for the study of the detailed temporal evolution and distinc-20

tion of patterns during summer and winter and in different mass balance regimes of the glacier
(accumulation and ablation area), respectively. The accuracy of the sensitivity indices was as-
sessed from 1000 empirical bootstrap samples being randomly drawn with replacement from
the original dataset. The indices STi are calculated for each of the bootstrap datasets, and the
95 % confidence regions are estimated.25
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2.5 Measurement error characteristics

The model uncertainty is estimated from a set of quasi-Monte Carlo sequences (see Sec. 2.6),
based on the calibrated reference runs and specified uncertainty measures of key input factors
and model parameters (Table 2). The probability density distributions of the measurement errors
are either derived from simultaneous measurements with two sensors (as for air temperature)5

or by the accuracy of the sensor given by the manufacturer specifications (this setup is simi-
lar to the NB_lab scenario in Raleigh et al. (2015)). When dealing with measurement errors,
there is usually insufficient information on how the given uncertainties were determined and
how the underlying distribution functions look. Regarding field applications, additional factors
come into play that are usually not considered in calibration procedures. For example, tem-10

perature measurements may be affected by aging or insufficient shielding from solar radiation,
both being crucial in glacier environments, too. To characterize the uncertainty of the measured
meteorological parameters used to force the model, we follow a common approach and assign
normally distributed errors considering the standard deviation derived from the manufacturer
specifications. Roughness length and pore volume fraction are assumed to vary uniformly in a15

pre-defined range, which appears justified by observational evidence indicating high local and
temporal variability of snow surface conditions due to the formation of sastrugi or melt water
conduits (Sauter et al., 2013). It therefore also seems reasonable to use a uniform range of pore
volume fractions rather than assuming a truncated normal distribution.

2.6 Sobol sampling20

Randomly drawn samples from a hypercube space tend to have clusters and gaps. Such se-
quences are said to have a high discrepancy. Low-discrepancy sequences, also known as quasi-
random sequences, are designed to have well-distributed numbers in a multidimensional space,
even for small quantities. Quasi-random algorithms bias the selection of points to maintain an
even spread across the hypercube. These sequences are commonly used in sensitivity analysis25

and provide better estimates of the model-free sensitivity measures (see Sect. 2.4). Sobol se-
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quences, which are used in this study, belong to this class of sequences (Sobol, 1998; Sobol
et al., 2007).

3 Results

3.1 Reference run

Here we mainly examine the accuracy of the reference run at KNG8, which is representative of5

the accumulation area of the glacier and prevailing snow conditions. Validation of the reference
run for KNG1 (representative of the ablation area of the glacier) reveals similar skills, and so
we more or less forego a detailed description of those results. Comparison of the simulation at
KNG8 with the snow pit profile from 6 April 2011 shows a difference in snow depth at the end
of the winter period of less than 0.1m (see Fig. 2).10

In terms of water equivalent, the accumulated mass during the winter amounts to +0.76m,
compared to +0.82m having been observed. Fig. 2 also shows the comparison of simulated
snow surface temperature with observational data. The simulated snow surface temperature
is derived from upwelling longwave radiation assuming a snow emissivity of 0.99. Surface
temperature is a key variable for flux parametrizations and also links the calculated mass and15

energy balance. Its temporal variability is well captured (R2 = 0.93), and a root mean squared
error of 2.3K conforms to the general skill of most sophisticated snowpack models (Obleitner
and De Wolde, 1999; Rutter et al., 2009; Etchevers et al., 2004). The spread increases in the
winter, which, for example could be associated with undetected riming of the sensor or structural
model uncertainties. The vertical temperature gradient in the snowpack is an important driver20

of snow metamorphism and is depicted in Fig. 2. In the upper 0.6m, the observed temperature
is slightly higher than modelled and the RMSE=1.2 ◦C is in part also attributed to measurement
shortcomings (Obleitner and De Wolde, 1999). The corresponding density profile confirms that
the model is able to simulate the gross snowpack layering (see Fig. 2). The relatively large
difference within the upper 0.1m is due to the fact that the constant aρ in Eq. (4) is set to25

300 kgm−3. The RMSE between the measured and modelled albedo over the entire simulation
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period is 0.06. Note that the measured albedo ranges between 0.65 in the ablation period and
0.92 in the accumulation period, which is characteristic for a site in the accumulation region
(Armstrong and Brun, 2008; Greuell et al., 2007). Albedo is significantly depleted at the lower
site during summer, as is typical for a site in the ablation area due to exposure of darker glacier
ice, which has also been confirmed by Greuell et al. (2007).5

Table 3 gives a summary of the observed meteorological variables and the calculated en-
ergy balance components at KNG8 and KNG1. We thereby distinguish values for consistent
summer and winter periods covering the months JJA and DJF, respectively. These must not be
interpreted as ablation or accumulation periods, which are, in fact, of different durations at both
sites. Air temperatures decrease with elevation and remain negative all over the glacier during10

the considered winter period, while they are positive during the central summer months. This is
basically reflected in the observed surface temperatures, which indicate that the glacier (snow)
surface melts during JJA while remaining frozen during the DJF period. Bulk vertical temper-
ature gradients between the 2 m level (nominal) and the surface indicate inversion conditions
prevailing throughout the year. Humidity increases with elevation along the glacier as expected.15

The otherwise observed decrease of vapour pressure with elevation during the summer may
be related to low-lying clouds (as suggested by longwave incoming radiation data). The local
vertical gradients in vapour pressure are calculated by assuming saturation at the surface, and
they reveal higher values in the air. This leads to positive latent heat fluxes providing mass and
energy to the surface. Wind speeds are generally higher at KNG1, which is more pronounced20

during the winter months, when the air is more stably stratified. Katabatic winds play a role in
this context, as is obvious from analysis of wind directions (shown in Karner et al. (2013)). With
regard to the radiation components, there is virtually no input from solar radiation during the
winter months. During summer, global radiation, i.e. the sum of direct and diffuse solar radia-
tion, increases by about 5Wm−2 per 100 m elevation. About 80% of incoming solar radiation25

is reflected at the higher site (KNG8) during the summer and reflects the persistence of snow.
An albedo of about 48% is calculated for the lower site (KNG1), where snow disappears early in
the spring and exposes darker glacier ice at the surface. Longwave incoming radiation is an im-
portant source of energy during both seasons. Its increase with elevation during the winter and
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the decrease during the summer, which reflects corresponding changes in cloud characteristics
(low level fog in winter). These characteristics of the radiation components induce a decrease
of net radiation with elevation, with overall negative values during the winter and positive ones
during the summer. Sensible heat fluxes are generally directed towards the surface, which is
more pronounced during the winter and at the lower site KNG1. This is also true with regard5

to latent heat fluxes, which by magnitude equally contribute to the calculated surface energy
budget. The latter is characterized by negative values during the winter, when small gradients
along the glacier occur. During the considered summer months, the energy budget is strongly
positive and fosters melt at both sites. Naturally, this is more effective at the lower site, which
mainly can be traced back to stronger input from solar radiation (lower albedo) and turbulent10

fluxes. There were corresponding developments of the mass balance at both sites. Note that fur-
ther energy and mass balance components were calculated by the simulations, which on average
were small by magnitude. Therefore, they are not considered in the overall context of this study,
which does not aim at a detailed investigation of the individual fluxes and associated processes
themselves.15

3.2 Integrated model uncertainty

Fig. 3 shows the time series of snow depth for the reference run as well as of the quantiles
estimated from the ensemble simulations for KNG8 and KNG1. At KNG8, the 95% quantile
range can be clearly divided into two regimes: (i) the build up of the snow pack when the 95%
interquartile range increases towards±1.2m until the end of June, and (ii) the melt period when20

the interquartile range experiences an additional increase. At the end of the one-year simulation
period, the uncertainty (95% quantile range) in snow depth caused by the systematic measure-
ment errors reaches more than 3m. Note that the interquartile range shows a clear asymmetry
which is more pronounced after June 2011. This marks the onset of effective melt, which in-
duces a higher liquid water content of the near-surface snow layers. The associated wet snow25

metamorphism drives a decrease in albedo. The development is enhanced upon exposure of
snow from the previous year, which is characterized by even lower albedo and higher density.
Sporadic snowfall events in August 2011 led to an increase of the upper 99% quantile bound.
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The simulations are also quite sensitive to disturbances during the first two months, when the
amounts of snowfall are small. The overall evolution and the final characteristics of the en-
semble variability at KNG1 are similar to that at KNG8. Note, however, that the accumulation
season is significantly shorter (beginning in November compared to August at KNG8) and is
characterized by a smaller ensemble spread compared to KNG8. The latter reflects that precip-5

itation at this elevation mostly comes in the form of rain. Throughout the accumulation season,
the ensemble spread is low and is related to small snowfall amounts and widens significantly in
the ablation season, when the glacier reappears at the surface. The point at which the glacier ice
reappears depends on the maximum snow depth and can occur between May and the beginning
of July. The final uncertainty (95% quantile range) in snow depth due to measurement errors is10

almost 5.5m at the end of the ablation season.

3.3 Mean total-order sensitivity indices

Fig. 4 shows the mean STi of individual factors on the variance of calculated surface height
changes (SHC), surface energy balance (SEB), the turbulent sensible (SHF) and latent heat
(LHF) flux at KNG8 and KNG1. Recall that total-order indices, STi , measure the contribution15

of each factor to the ensemble variance, including all interaction effects.
At KNG8, SHC is mainly affected by uncertainties in precipitation P (0.58) and incoming

longwave radiation LW (0.29). The remaining factors are very likely to have little impact.
SEB, SHF and LHF are most sensitive to LW , with STi values ranging from 0.53 to 0.77. Of
note is the sensitivity of SEB to P (0.25) and z0 (0.4). Hence, z0 is the second-most important20

parameter for SEB and SHF, and it even explains most of the LHF variance (0.27). A smaller
share of SHF and LHF uncertainty is explained byU andRH . In particular,RH is important for
LHF. In order to make an important contribution to the ensemble spread, the total-order indices
should exceed the 0.05 limit (Saltelli et al., 2006). Following this criteria, some factors (T , SW
and PV OL) can be designated as insensitive and with little influence on SHC, SEB, SHF, and25

LHF. The averaged first-order indices vary between 0.66 and 0.82, depending on the considered
model output (see Fig. 4). The sensitivity pattern at KNG1 differs from that at KNG8. SHC
is sensitive to LW , P and z0. In contrast to KNG8, P has less influence on SHC variability
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than LW at KNG1. In total, the model is less affected by the uncertainty of z0. However, RH
(STi = 0.1) explains slightly more of the LHF variability at KNG1 than at KNG8.

3.4 Temporal evolution of the total-order sensitivity indices

Fig. 5 and 6 show the temporal evolution of the STi values with respect to SHC, SEB, SHF,
and LHF. The STi values are calculated for each time step using the 20000 Monte-Carlo runs.5

The variability of SHC at KNG8 is mainly caused by the uncertainty of P and LW . From
November to May, almost all uncertainty is attributed to P , with STi ranging between 0.7 and
0.9. During the ablation season, LW becomes a dominant factor. Other factors, such as U , z0
and SW , make less of a contribution (< 0.2) to overall SHC variability, even though they can
have an intermittently strong impact (> 0.3) on the variance of SEB, SHF and LHF. Errors in10

LW and z0 have a strong impact on SEB all year, while P is only relevant in the winter season.
During the spring, SW has an increased influence on SEB and drops to zero during the arctic
winter. RH and U contribute most to SEB variability in the period from August to March.
Along with LW , U and z0 have a significant effect on both SHF and LHF variance. The
uncertainty in T and PV OL do not have an influence on either SHC or SEB.15

At KNG1, the contribution of P and LW is lower and not as consistent as at KNG8. In
August and September, z0 temporarily contributes (up to 0.8) to the SHC variability. In contrast
to the sensitivity pattern at KNG8, other factors (z0, U , RH , SW ) contribute substantially to
SHC. SEB is by far most sensitive to errors in LW . SW gains importance for a short period
in May, with STi up to 0.4, although most of the time the contribution is very low, which is20

also true for RH , T and PV OL. In general, the sensitivity pattern of SHF and LHF is similar
to the pattern observed at KNG8. Here again, z0 and U temporarily explain a large share of
the variability in turbulent fluxes (> 0.75) in the summer. Errors in RH mainly impact LHF
variability.
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4 Discussion

We investigated the seasonal pattern of the sensitivity of snow model output to uncertainties in
input data and some key model parameters. Eight metrics characterizing forcing uncertainties
(LW , P , PV OL, RH , SW , T , U and z0) and four metrics characterizing the model response
(SHC, SEB, SHF and LHF) have been considered. The introduced uncertainties represent the5

typical measurement errors of data used to force the model. The presented results are based
on Monte-Carlo simulations and subsequent application of Sobol’s sensitivity analysis to de-
compose first- and higher-order effects on the resultant variance. Simulations and analysis were
applied to two sites at an Arctic glacier to address characteristics in different mass balance
regimes.10

The results from the reference simulations at the two sites allow for an in-depth discussion
of the typical meteorological conditions at the two study sites and the related surface exchange
processes which are reflected in the constellation of the energy and mass balance components.
Such a study has not been performed at the Kongsvegen glacier thus far, but related aspects
will nevertheless not be discussed in more detail here due to the rather methodical outline of15

this study. Note, however, that Obleitner and Lehning (2004) and Karner et al. (2013) have al-
ready studied this issue at another site close to the average equilibrium line of the glacier (ca.
537 m asl.). This location is only about 137 m below KNG8, but the results concerning energy
and mass balance are not directly comparable because the sites are located in different glacio-
logical regimes (equilibrium line altitude vs. accumulation area). Some common features may20

be inferred from Table 3 though, which in part is addressed in Sec. 3.1. Consideration of sites
other than KNG6 was mainly motivated by the availability of correspondingly suitable data.
It is to be noted in this context that for the purpose of this study, the reference runs were not
fully calibrated towards the observations, which would have been necessary for, e.g. quantita-
tive mass balance studies. The overall results of this work show that on average about 80% of25

the total variance of SHC and SEB can be explained by first-order effects (Fig. 4). This means
that the remaining 20% of the variance is due to non-linear interaction effects. There is no sig-
nificant difference between the two sites at the glacier. This is in partial contrast to the findings
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of Raleigh et al. (2015), who performed similar investigations for different snow regimes and
found that first- and total-order indices are of comparable magnitude. However, the results can-
not be directly compared because they analysed different model output variables and used a
simpler (i.e. bulk model), which possibly enhances the interaction effects. The performed sen-
sitivity analysis further demonstrates that the considered model output metrics respond most5

sensitively to uncertainties in the forcings of longwave incoming radiation, precipitation and
surface roughness (Figs. 4, 5, and 6). Considered in more detail, however, each of these three
factors exerts specific footprints depending on season and site, which will be discussed, along
with the occasionally emerging impact of the remaining factors. As far as is possible, we try to
relate the statistical findings to physical processes in the near-surface snow layers.10

Longwave incoming radiation depends on column integrated air temperature humidity and
cloudiness and is the dominant source of energy for the glacier, independent of site and sea-
son. This is typical for glacier environments (Greuell and Smeets, 2001) and is enhanced in
the Arctic, where input from shortwave insolation is missing during the polar night conditions15

(e.g. Obleitner and Lehning, 2004; Van den Broeke et al., 2011; Karner et al., 2013). Variability
in LW therefore directly impacts NR and hence SEB. This also holds true for correspond-
ing measurement uncertainties, which are comparatively large. The sensitivity analysis shows,
that about 50% of SEB variance can be explained by total-order effects due to LW (Fig. 4).
The effect is slightly reduced at the higher site (KNG8), which may be related to the general20

decrease of longwave incoming radiation with elevation (Tab. 3). Neither study site shows a
pronounced seasonal variability in the corresponding SEB sensitivity pattern, which may be
related to the rather continuous nature of longwave incoming radiation and its dominance for
NR (Figs. 5 and 6). LW uncertainty also strongly impacts on the variance of the calculated
turbulent fluxes. Yearly averaged total-order indices are somewhat lower than for SEB, ranging25

at about 0.3 (KNG8) and ca. 0.5 (KNG1), respectively. The sensitivity analysis further reveals
a stronger impact on SHF and an outstanding seasonal dependency of the sensitivity of the
turbulent fluxes (Figs. 5 and 6). Feedback related to surface temperature provides a key for
understanding these features, which couples the (longwave) radiation budget and the turbulent
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fluxes. The stronger input by longwave radiation, the more positive NR is, which in part is ab-
sorbed at the surface and increases surface temperature. Hence, surface temperature fluctuations
are larger than those of air temperature and respond very sensitively to changes (uncertainties)
in LW . This in turn effectively changes the stability of the near-surface air, which drives turbu-
lent exchange therein. This feedback is most effective during dry snow, i.e. winter conditions,5

with large total-order sensitivity indices from autumn until spring (Fig. 5). In the ablation sea-
son, when the surface temperature is more or less at the melting point, SHF and LHF are no
longer sensitive to uncertainties in LW . LHF is affected too (though to a lesser extent) because
of the associated changes in vapour pressure at the surface. LW also strongly impacts SHC
variability, which is more pronounced at KNG1 (Fig. 4) and during the summer (Figs. 5 and10

6) when LW uncertainty explains more than 80% of SHC variability. This can be related to
the fact that in our approach the input uncertainty range (±10%) proportionally increases with
the magnitude of LW . The latter is essentially true during summer when air temperature and
humidity are high. LW is further enhanced due to cloudiness and during precipitation events.
Note that in the Kongsvegen area the percentage of low clouds rises over 60% from April to15

October (Kupfer et al., 2006). Stronger longwave radiation input leads to higher surface tem-
peratures which induce steeper temperature gradients within the near-surface snow layers and
enhance their metamorphism (settling or even melt). To put these findings in a broader con-
text, Karner et al. (2013) applied another snow model to data from KNG6 (Fig. 1) and also
identified LW uncertainty as the most influencial factor on calculated mass balance and SEB.20

However, their study is based on consideration of single-order effects only. Another hint regard-
ing the outstanding influence of uncertainties in LW is provided by Raleigh et al. (2015), who
systematically explored the propagation of forcing uncertainties to snow model output based
on Sobol’s sensitivity analysis. Their results confirm the importance of LW uncertainty, but a
straightforward comparison to our results is hampered due to the different metrics used for input25

uncertainties and model output.

Precipitation is another influential factor on the variance of snow model output. This mainly
concerns the simulated surface height changes (which is considered as a metric of calculated
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mass balance) and surface energy balance. Total-order sensitivity indices are particularly high
during the winter and at KNG8 (Fig. 4). The lower values in summer are bound up with the fact
that no liquid precipitation is measured at this site, and hence has no impact on the variability. In
these higher regions of the Kongsvegen glacier, recurrent snowfall events may occur year round,
which results in a deeper snow pack (2.2 m) and a longer accumulation period (October through5

April). This is evident from Fig. 3 and the corresponding SHC sensitivity patterns. Snowfall oc-
curs comparatively infrequently and is overall inefficient at the glacier tongue and during the
summer months. This is mainly an effect of temperature lapse-rate determining the rain-snow
transition and the tendency of cloud formation at the crest of mountains. Similar to Raleigh et al.
(2015), we find that P uncertainty is a critical factor for the snow disappearance in the ablation10

zone (see Fig. 3). Depending on the winter conditions, the reappearance of glacier ice typically
occurs between May and July. However, we find little evidence that ablation rates are signifi-
cantly controlled by P . Note that in our study, precipitation was derived from ultrasonic sensors
and corresponding uncertainty was specified from the manufacturer specifications. Frequently,
however, snow precipitation is derived from standard gauges. As previously mentioned, even15

small errors due to wind-induced under-catch or conversion of snow depth changes to precip-
itation rates in terms of SWE (see also Sec. 2.2) might thus have a significant impact on the
simulations. According to Eq. (4), the conversion is sensitive to air temperature (∂ρ/∂Tair = bρ)
and wind velocity (∂ρ/∂U = cρ/(2 ·

√
U )). This demonstrates that the conversions are particu-

larly sensitive to measurement errors at low wind speed. However, precipitation measurements20

at higher wind velocities usually show a systematic under-catch. Schmucki et al. (2014) showed
that for standard precipitation measurements, a correction of under-catch may reduce the mean
absolute percentage error by 14% for snow depth at high alpine stations. Førland and Hanssen-
Bauer (2000) demonstrated the importance of this issue for Svalbard environments. During
winter and spring the calculated SEB is strongly affected by uncertainties in precipitation input,25

which explains about 25% of the total variance. There is no indication of important interaction
with shortwave radiation (missing during winter) or turbulent fluxes. Hence precipitation in-
duced perturbation of LW is considered as the most important factor linking the variability of
P and SEB. The effect is more pronounced at upper site. At the lower part of the glacier, fresh
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snow events are comparatively infrequent and inefficient. During the summer in particular, fresh
snow usually melts within a short period without leaving a significant impact on SEB.

Surface roughness length has a strong impact on the turbulent fluxes and hence on SEB
variances. Overall, this is due to the associated processes and their parameterizations (Vionnet5

et al., 2012). The sensitivity is particularly pronounced regarding SHF and at the upper study
site (KNG8), where total-order sensitivity indices reach 0.3 on average throughout the year (Fig.
4) and are highest during the period from April until June. Interestingly enough, KNG1 experi-
ences the most pronounced impact of z0 uncertainty on SEB during the period from July until
September, which constitutes the main ablation period at this site (Fig. 3). This feature is at-10

tributed to the concurrent appearance of bare ice and the accordingly parameterized increase of
surface roughness, which represent the formation of, e.g., melt water channels. Uncertainty in
z0 also impacts the simulations of SHC, which is most pronounced at the lower site and during
the summer. This again is related to the overall increased roughness (factor 10) and accordingly
enhanced turbulent fluxes contributing the surface melt. These findings basically conform to the15

first-order sensitivity studies by Karner et al. (2013), changing z0 by an order of magnitude.
However, as a straightforward comparison is difficult due to the choice of error range, which
can have a strong influence on the results (Raleigh et al., 2015).

Errors in wind speed significantly impact the calculated turbulent fluxes during the period20

from April-June (KNG8) and July-September (KNG1). It is notable that the latter periods cor-
respond to those when z0 uncertainties exert the most influence, indicating combined effects.
We therefore attribute their impact on SEB and SHC mainly to their direct involvement in the
calculation of the turbulent fluxes The largest sensitivity of U is associated with lower wind
speeds (Tab. 3). This is in line with the findings of Dadic et al. (2013), who found higher sensi-25

tivity of the turbulent fluxes with respect to wind speed in the range of 3–5ms−1. The effect of
local wind velocity variations on turbulent fluxes and ablation rates has been also addressed by
other studies (Mott et al., 2013; Marks et al., 1998).
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Air temperature may be expected to strongly influence the calculation of the turbulent fluxes
and, therefore, also on the SEB. However, this is not seen in the results of the sensitivity anal-
ysis, which at both stations does not show significant impacts on any of the considered model
output metrics (SHF, LHF, SEB and SHC). Further, this result must be considered in light of the
variances rather than absolute values. The driving temperature gradients between the surface5

and the air are in the order of 2-5 K (Tab. 3), which reduces the sensitivity of the calculated
fluxes due to the comparatively small measurement errors that have been assumed (±0.3 K).
Further, Raleigh et al. (2015) found that T -forcing biases had a stronger impact on ablation rates
(which may be considered as measure of summer SEB) compared to random errors, while peak
snow water equivalent (comparable to winter SHC) was hardly affected. Similarly, Karner et al.10

(2013) found a strong impact of T -biases on the calculated SEB. The seasonal T -sensitivity pat-
terns on SEB and its components are characterized by relatively strong impacts in the spring and
autumn. During this period, temperature is crucial whether precipitation is considered as snow
or rain. Feedback related to albedo or LW may play an additional role there. The sensitivity
study was performed based on standard, i.e. laboratory specifications given by the manufac-15

turers. However, the actual uncertainties of air temperature measurements can be much larger
depending on the efficiency of the used radiation shields or ventilation devices. Relevant to this
study, Karner et al. (2013) did not find significant biases between ventilated or unventilated air
temperature measurements. However, this result may not be generalized.

20

The impact of humidity forcing errors on the simulation metrics was analysed concerning
the directly measured variable (relative humidity). By definition, however, the latter combines
humidity and temperature information and is therefore not an ideal metric, which may be con-
sidered in forthcoming studies. Irrespective of that, our results reveal that on average RH un-
certainty has an overall small but somewhat stronger impact on calculated SEB compared to25

U (Fig. 4). The impact is less pronounced at the lower site and during the summer (Figs. 5
and 6). The overall variability of the seasonal SEB sensitivity pattern is small, however, and is
difficult to interpret due to the inherent temperature effects. There are indications of stronger
impacts in the spring when conditions are favourable for sublimation due to high saturation
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deficits occurring simultaneously with strong winds and moderate temperatures (Sauter et al.,
2013; Obleitner and Lehning, 2004; Karner et al., 2013). CalculatedRH-sensitivity is generally
stronger regarding LHF compared to SHF, which is reasonable.

Shortwave incoming radiation is a strongly influential factor on the SEB of snow and ice,5

and corresponding uncertainties are expected to have a strong impact on respective simulations.
Contrasting this general anticipation, our sensitivity analysis reveals that on an annual basis,
only a small amount of the total SEB variance can be explained by the assumed uncertainty of
SW input data (Fig. 4). This concerns both sites and basically reflects that in the Arctic, the
anticipated effect is generally reduced due to the lack of solar insolation during winter. Recall10

that in the Kongsvegen environment, the polar night conditions last from late October to early
February. This is also reflected in the seasonal sensitivity pattern, which do not show any signal
during the winter. There is, however, a significant influence on SEB in the spring and autumn
(Fig. 5 and 6). This might be related to the previously mentioned influence of intermittent fresh
snow on older surfaces with lower albedo, whose effectiveness also depends on SW and its vari-15

ability (and temperature as addressed above). Another reasoning is based on the consideration of
energy supplied by uncertainties in SW compared to those in LW . Hence, the sensitivity of net
shortwave radiation (∂G) to measurement errors (∂ESW) is given by ∂G/∂ESW = 1−α, with
α denoting albedo. Therefore, the ratio (R) of the sensitivities of incoming longwave radiation
and available net shortwave radiation at the ground isR= 1/(1−α). By multiplyingR with the20

error ratio, we obtain a properly scaled ratio R̂= (ELW/ESW) · (1/(1−α)). Assuming a 10%
error of typical daytime values in the summer (ESW = 40Wm−2, and ELW = 26Wm−2) and
a α= 0.75, we obtain R̂= 2.6. This means that the changes in energy due to the measurement
uncertainty of LW are about 2.6 times greater than that for SW . In spring and autumn, the ratio
becomes larger due to an increasing albedo and decreasing incoming shortwave radiation. This25

also leads to the conclusion that increasing the accuracy of SW measurements by a few percent
would not increase our confidence in simulations of snow depth or SEB components. The sensi-
tivity of SHC on uncertain specification of shortwave radiation SW is negligible overall, except
in summer the latter being more pronounced at the lower site. This again reflects a coupling to
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albedo, which is lower at KNG1. The results conform to Karner et al. (2013) showing that the
overall influence of SW is strikingly smaller compared to that of LW . As was pointed out by
Raleigh et al. (2015), overall, this is attributed to the high albedo of snow (reducing absorbed
energy and the associated impact of uncertainties) and the non-linear (amplifying) interactions
of LW , which through surface temperature is coupled to the calculation of the turbulent fluxes.5

The liquid water holding capacity of snow, PV OL, strongly depends on snow microstruc-
ture and related surface/subsurface developments throughout the winter season, and it is dif-
ficult to measure (Armstrong and Brun, 2008). However, investigation of the propagation of
corresponding uncertainties in the snow model results was hardly addressed and therefore was10

considered in this study. According to our results, the uncertainty in specifying liquid water
holding capacity of snow makes the least contribution to the total model variance of virtually
all considered output metrics, mainly by interactions. The seasonal PV OL sensitivity pattern
reveals some enhanced impact on SEB variability in the spring and autumn, which is more
pronounced at the upper site (KNG8). Tentatively, this feature could be attributed to the perco-15

lation of rain or melt water and subsequent refreezing. However, it remains to be investigated
whether the associated release of energy can explain the observed variance pattern. Gascon et al.
(2014) remarked that the Crocus percolation scheme tends to favour near-surface freezing and
insufficient refreezing at depth, which could be another factor in this context. Overall, the as-
sumption of default values (as in this study) does not have a significant impact on the calculated20

mass-balance (SHC).

5 Conclusions

We investigated the seasonal pattern of the sensitivity of snow model output to uncertainties
in input data and some key model parameters. A set of eight metrics characterizing forcing
uncertainties and four metrics characterizing the model response have been considered. The25

introduced uncertainties characterize typical measurement errors of data used to force a state-
of-the-art snow model, and the presented results are based on Monte-Carlo simulations and
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subsequent application of Sobol’s GSA. Simulations and analysis are applied to two sites at an
Arctic glacier to address characteristics in different mass balance regimes. The results clearly
demonstrate that even conservatively estimated input uncertainties can lead to a significant loss
of confidence in key simulation results concerning the surface energy and mass budget. The
overall impact of individual error sources on the sensitivity pattern varies between the two5

stations considered. In the accumulation zone (higher elevation station), precipitation and long-
wave radiation are key factors for the evolution of the snowpack and contribute most to the
model uncertainty. The precipitation variability is of less significance at the lower elevation
station, while other factors, such as wind velocity or surface roughness, gain importance. Un-
certainties in the measurement of incoming shortwave radiation and air temperature have little10

influence on the model outcome, the former being biased by the specific Arctic conditions. The
calculated seasonal sensitivity patterns are similar overall at both study sites. The most tem-
porally continuous influence on model output is exerted by variance of longwave radiation and
surface roughness. Precipitation tends to have the strongest impact during the winter, while wind
velocity, air temperature, humidity and liquid water holding capacity mainly impact the simu-15

lations in the summer or transitional seasons. The results thus allow for the identification of the
most critical parameters and environmental conditions, which together with the consideration of
relevant model parameterizations, provide directions for future improvements. The analysis is
based on rather conservative though commonly used uncertainty estimations. These are mostly
based on manufacturer specifications and hence on laboratory settings. In field applications,20

however, effective uncertainty is likely enhanced but is difficult to quantify. Moreover, we did
not systematically consider effects of different uncertainty types (bias vs. random), different
probability distributions or their combined propagation effects. Correspondingly set-up ensem-
ble simulations fed by sampling from quasi-random sequences are therefore recommended for
future investigations. Overall, the performed decomposition of the snow model output sensitiv-25

ity by GSA proved valuable for enhancing our understanding of key snow model output sen-
sitivity patterns in response to uncertainties in forcing data. The key findings either confirm or
complement those derived from a few other studies employing GSA. The revealed importance
of longwave radiation input may be considered as a trend-setting example. No doubt, how-
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ever, more common efforts are necessary to further test and improve the method. This concerns
enhanced consideration of the effects of different combinations of error types and probabil-
ity distributions, including the propagation of parametrization uncertainties, which are mostly
even less constrained than measurement errors. Detailed consideration of the parameterization
of albedo in Crocus is suggested for the future, which was not addressed in this study. The pre-5

sented approach is universal and can be applied to earth system models in general and may be
applied to snow and glacier mass- and energy balance modelling in all climate regions. From
a practical and methodical point of view, the main limitations of this study are the high com-
putational effort and proper specification of the probability density functions of the parameter
uncertainties. Finally, we would like to note that measurement uncertainties are independently10

sampled and do not possess any correlation structures. Consequently, the approach cannot be
used to investigate the response of snow or ice depending on systematic changes in the envi-
ronmental (climate) conditions. This requires appropriate sampling strategy to obtain the same
correlation structure as those observed in nature.
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Table 1. Model parameters used for the reference run.

Parameter Value Description

z0 0.002 m Roughness length for momentum
zh0 0.0002 m Roughness length for heat
HCLW 0.05 – Max. liquid water holding capacity
ALB0.3 0.38 – Ice albedo for spectral band 0.3–0.8mm
ALB0.8 0.23 – Ice albedo for spectral band 0.8–1.5mm
ALB1.5 0.08 – Ice albedo for spectral band 1.5–2.8mm
ρthres 830 kgm−3 Ice density threshold
Rainthres 1 ◦C Rain threshold temperature
Snowthres 0 ◦C Snow threshold temperature
ε 0.99 – Snow emissivity
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Table 2. Specification of basic model input uncertainties and assigned probability density functions. The
Sobol sequence has been generated from the distributions given in the last column, where N (µ,σ) is a
Normal distribution with mean µ and standard deviation σ and U(lb,ub) is a Uniform distribution in the
interval [lb,ub]).

Parameter Description Uncertainty Distribution

Tair Air temperature ±0.3K N (0.00,0.30)
RH Relative humidity ±3.0% N (0.00,3.00)
SW Shortwave incoming radiation ±10.0% N (0.00,0.10)
LW Longwave incoming radiation ±10.0% N (0.00,0.10)
U Wind speed ±0.3ms−1 N (0.00,0.30)
P Precipitation ±25.0% N (0.00,0.25)
z0 Aerodynamic roughness length 0.001–0.10m U(0.001,0.10)
PVOL Pore volume fraction for maximum liquid

water holding capacity
0.03–0.05 U(0.03,0.05)
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Table 3. Mean and standard deviation (brackets) of the meteorological variables and energy balance
components for the summer months (JJA) and winter months (DJF) at KNG8 and KNG1.

KNG8 KNG1
Variable DJF JJA DJF JJA

Air temperature (2 m) [◦C] 253.5 (8.0) 271.5 (2.6) 261.1 (6.9) 277.1 (1.6)
Surface temperature [◦C] 252.3 (9.1) 270.1 (3.9) 255.9 (9.4) 273.1 (0.3)
Rel. humidity (2 m) [%] 97 (6) 91 (7) 83 (12) 83 (9)
Water vapour pressure (2 m) [hPa] 3.3 (0.8) 5.3 (0.5) 2.1 (1.3) 6.9 (0.7)
Wind speed (2 m) [m s−1] 1.2 (1.9) 0.8 (1.9) 4.6 (3.6) 1.6 (2.6)
SW-incoming radiation [W m−2] 0.1 (0.9) 239.5 (167.9) 1.0 (7.0) 209.3 (157.5)
SW-outgoing radiation [W m−2] 0.1 (0.8) 193.6 (137.4) 0.8 (5.6) 99.6 (86.4)
LW-incoming radiation [W m−2] 223.4 (43.9) 268.5 (39.6) 200.7 (55.2) 288.2 (35.7)
LW-outgoing radiation [W m−2] 231.5 (32.4) 301.8 (16.9) 245.1 (35.3) 315.2 (1.9)
Sensible heat flux [W m−2] 3.1 (36.0) 3.5 (17.1) 21.0 (16.3) 12.1 (15.2)
Latent heat flux [W m−2] 2.9 (4.5) -1.1 (6.1) 20.8 (17.2) 20.5 (33.4)
Surface energy balance [W m−2] -1.9 (14.5) 14.8 (34.3) -2.2 (20.7) 101.1 (86.2)
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Figure 1. A map showing the location of the Kongsvegen glacier and the position of the automatic
weather stations KNG8, KNG6 and KNG1 (Norwegian Polar Institute, 2014).
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Figure 2. Comparison of the modelled and measured snow temperatures (upper left), snow density (lower
left), snow surface temperature (upper right) and snow albedo (lower right) at the location KNG8.
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Figure 3. Spread of the ensemble simulation at KNG8 (upper panel) and KNG1 (lower panel) due to
propagating uncertainties in the model inputs. The black lines represent the reference run. The intervals
show the 99, 95 and 75% quantiles estimated from the quasi-random Monte-Carlo runs (20000 ensemble
members). Note the different horizontal and vertical scales.
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Figure 4. Yearly averaged total-order effects of factors (see Table 2) on surface height change (SHC),
surface energy balance (SEB) and sensible heat and latent heat flux (HF) at KNG8 and KNG1. The
whiskers show the 95% confidence interval derived from 1000 empirical bootstrap samples. The mean
(taken over the whole period) of the 6 hourly first-order sums (linear effects) are given in the upper right
corner.
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Figure 5. Evolution of the 6 hourly total-effect indices affecting modelled surface height change (SHC),
surface energy balance (SEB), sensible heat flux (SHF) and latent heat flux (LHF) at KNG8. Refer to
Table 2 for the explanation of the indicated uncertainty factors.

44



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 6. Evolution of the 6 hourly total effect indices affecting modelled surface height change (SHC),
surface energy balance (SEB), sensible heat flux (SHF) and latent heat flux (LHF) at KNG1. Refer to
Table 2 for the explanation of the indicated uncertainty factors.
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