
Responses to comments by reviewer Wolfgang Dorn

We thank Dr. Dorn for his comments, and give our responses in detail below.

General comments:
I am wondering whether this configuration is actually intended for operational use (including 
CMIP6 simulations) or only an interim solution towards a further improved configuration.
This configuration will not be used for CMIP6 simulations.  The Met Office's CMIP6 simulations 
will be performed with coupled model configurations using the next GSI configuration, which will 
include the enhancements described in the last paragraph of Section 5 of the present paper.

Specific comments:

(1) Page 2531, lines 11–14: Although the definition of g as a dimensionless function is a correct 
citation of the paper of Thorndike et al. (1975), I would argue that the statement is incorrect. If g 
were a dimensionless function, the product g(h)dh would get the unit of a length. Assuming that 
g(h)dh should actually be a fraction of ice, and given that a fraction is dimensionless by definition, 
g(h) must have the unit of a reciprocal length. In that case, g(h) can be interpreted as the probability 
density function that describes the relative probability for the existence of ice with thickness h.  The
probability itself (that is the fraction) is then given by the integral of g(h) over dh.  This would be 
consistent and would make sense. 
We agree with this, and have changed “a dimensionless function” to “ a probability density 
function”.
Further, I would not say that g is described by Eq. (1), but that Eq. (1) is the governing 
equation which describes the evolution of g. 
We have changed “g is described by ...” to “The evolution of g(h) with time is described by the 
governing equation...”.

(2) Page 2532, lines 15–18: Does it also mean that the atmospheric surface heat fluxes calculated by
JULES are the same for each of the five ice thickness categories?  Wouldn’t it be another 
simplification worth being mentioned at this point?
These sentences refer to the ice layers in the CICE model, and not to the thickness categories.   
However, as mentioned in the conclusions (Section 5), the turbulent fluxes in JULES are indeed 
calculated as gridbox means (a simplification that will be removed in the next configuration, 
GSI7.0).  We did not state explicitly in the conclusions that the conductive fluxes are calculated 
separately on each category.  We agree with the reviewer that this should be mentioned earlier in the
paper than the conclusions section, but think that this would be more appropriate in Section 2.2 
(Thermodynamics) than in Section 2.1 (Horizontal and vertical resolution).  We have therefore 
added a paragraph explaining this at the beginning of Section 2.2.

(3) Page 2533, line 2: It would be interesting to know how the fraction of the gridbox area that is 
covered by snow is determined in the model. The distinction between snow and ice might be just as 
important as the values chosen for the respective albedos and threshold temperatures.
Our original statement (that the albedos are weighted by the snow-covered fraction of the gridbox) 
was incorrect.  In fact, the total albedo is a weighted combination of the ice and snow albedos, 
calculated via the “UKMO GCM” parametrisation of Essery et al. (1999) – see the second equation 
from the top of the right-hand column on p584 of that paper (the equations are not numbered).  We 
have now corrected this error in our paper.

(4) Page 2534, lines 5–9: To my mind, it is not necessary to discuss the enthalpy in the context of 
the new sea ice configuration. It is rather confusing than helpful. I would cut out these three 



sentences.
We have now cut these sentences, as suggested by the reviewer.

(5) Page 2534, lines 22–24: Even without any ridging, the ice area should never be able to exceed 
the grid-cell area, especially not in case of convergence. Maybe it is meant that the ice does not 
cover the entire grid cell. This should be clarified.
We agree that this sentence is confusing.  What we meant was that if, for example, the area of the 
grid-cell is AGC,  and the area of ice in the grid-cell is Aice, and ice covering area Aadv is advected 
into the grid-cell, where  Aice + Aadv > AGC, then ridging will prevent the (physically impossible) 
situation arising where the area of ice in the grid-cell is greater than the area of the grid-cell itself.  
However, as this sentence detracts from the explanation rather than adding to it, we have deleted it.

(6) Page 2535, lines 25–26: The physical argument for increasing the roughness lengths remains 
unclear. The chosen values seem to me higher than corresponding values derived from 
measurements and boundary layer theory. Is there any specific reason for this extreme increase, 
other than the sensitivity study of Rae et al. (2014)?
The roughness lengths quoted here account for form-drag in the MIZ, estimates for which lead to 
effective roughness lengths of 2 to 4cm. Our value of 10cm is probably above the 3 sigma on the 
above, but was adopted from a 1970’s field observation (original citation lost). However, its 
adoption in the NWP configuration of the Met Office model leads to an improvement in the 
simulation of MSLP over that associated with lower (more realistic) values. 

Note: More sophisticated parameterizations for the turbulent exchange over sea ice have recently 
been developed or are still in development (e.g. Lüpkes and Gryanik, 2015, 
doi:10.1002/2014JD022418). This could be a consideration for future configurations as well. 
Indeed, the belated attention to this topic, since the seminal work by Steiner et al. (1998), has led to 
a number of such formulations. We shall be adapting that of Tsamados et al. (2014) in our next GSI 
configuration.

(7) Page 2537, line 14: It is unclear to me why increased conductivities lead to reduced basal melt 
in July and August. The conductive heat flux is negligible during the melting period due to the 
small temperature difference between top and bottom of the ice.  I think this particular conclusion 
should be explained.
This was explained in Rae et al. (2014), to which we refer in the section concerned.  However, for 
completeness, we have now added the following explanation in the current paper:
“The net melting or growth of Arctic sea ice is the residual of the energy balance, and is extremely  
sensitive to small changes in the fluxes at the top and bottom of the ice pack (Keen et al., 2013).   
Rae et al. (2014)  found that increased ice and snow conductivities cause an increased upward 
conductive heat flux through the ice pack in late summer and early autumn, leading to subtle shifts 
in the energy budget within the  ice pack.  This results in reduced basal melt in July and August, and
increased basal growth in winter, leading to increased thickness, extent and volume.”

Technical corrections:

(8) Since the sea ice configuration described in the paper is definite, I would suggest adding the 
definite article ‘the’ in the title: Development of the Global Sea Ice 6.0 CICE configuration for the 
Met Office Global Coupled Model. 
Now changed.

(9) Page 2530, line 23: Williams et al. was published in ‘2015’ instead of ‘2014’. 
Now corrected.



(10) Page 2531, line 1: ‘GloSea5’ instead of ‘GloSea4’. 
Now corrected.

(11) Page 2532, line 1: The title of the section is ‘Horizontal, temporal and vertical discretisation’, 
but nothing is said about the temporal discretisation. The word ‘temporal’ could be removed. 
Now done.

(12) Page 2532, line 24: ‘parametrisation’ versus ‘parameterisation’ in the next line and in other 
places. 
Now corrected.  We are now using 'parametrisation' everywhere.

(13)  Page 2532, line 27: ‘(The HadGEM2 Development Team, 2011)’ instead of ‘(HadGEM2 
Development Team et al., 2011)’. This team already comprises all authors (‘et al.’ is redundant). 
Now corrected.

(14) Page 2533, line 14: ‘Semtner (1976)’ instead of ‘Semtner (1987)’. 
Now corrected.

(15) Page 2533, line 17: The symbol f , which is introduced here as the fraction of incident radiation
which penetrates the ice pack, has already been used for the rate of change of ice thickness due to 
thermodynamic growth and melt (page 2531). One of these f s should be replaced by a different 
symbol. 
We have now replaced f for rate of change of ice thickness on p2531 with Φ.

(16) Page 2535, line 25: ‘GSI6.0’ instead of ‘GSI6’. 
Now changed.

(17) Page 2535, line 27: calc_Tsfc does not appear in any of the CICE namelists in Appendix A. Or 
is calc_Tsfc=.false. the default in CICE?
calc_Tsfc=.false. had been omitted from Appendix A in error.  We have now included it.  We have 
also deleted year_init, ocn_data_dir, and oceanmixed_file from Appendix A, as they are not 
relevant for our setup.

(18) Page 2536, line 5: ‘(−1.8 ◦ C)’ instead of ‘(1.8 ◦ C)’. A positive freezing temperature of sea 
water makes no sense. 
Now corrected.

(19) Page 2536, line 10: ‘preprocessor keys’ instead of ‘cpp keys’. It should make no difference 
whether using cpp or any other preprocessor. 
Now changed.

(20) Page 2536, lines 11–12: A reference to Appendix A of similar type has already been given on 
page 2535. One of them could be dropped. 
We have removed the second reference to Appendix A, and retained the first one.

(21) Page 2538, line 3: ‘Labrador Sea’ instead of ‘Labrador sea’. 
Now corrected.

(22) Page 2538, line 12: ‘austral’ instead of ‘Austral’. 
Now corrected.



(23) Page 2546, lines 11–12: Megann et al. was published in GMD in 2014. The reference to the 
GMDD version of 2013 is valid but outdated. 
We have now updated this to reference the GMD paper.

(24) There is quite a number of papers in the References which are never cited in the discussion 
paper. These redundant references should be removed.
Several references had indeed survived from an earlier draft of the paper.  We have now removed 
the following from the reference list:  Andreas et al. (2010),  Calonne et al. (2011), Curry et al. 
(2001), Dorn et al. (2007), Kim et al. (2006), Lewis (1967), Maykut & Untersteiner (1971), Maykut
& McPhee (1995),  Miller et al. (2006), Miller et al. (2007), Nakawo & Sinha (1981), Notz & 
Worster (2009), Pirazzini (2008), Pringle et al. (2006), Pringle et al. (2007), Schwarzacher (1959), 
Sturm et al. (1997), Uotila et al. (2012), Vancoppenolle et al. (2005), Vancoppenolle et al. (2009), 
and Wettlaufer (1991).  We have not removed the reference to Keen et al. (2013), as we do now cite 
it as a result of one of the reviewer's other comments.

(25) Page 2550: In the caption of Table 2: ‘GC2.0-GSI6.0’ instead of ‘GC1.0-GSI6.0’. 
Now corrected.

(26) In the captions of Table 3 and Figures 2 and 3: Information on the time period of the HadISST 
and PIOMAS data is missing. They are certainly not 50-year means. 
The HadISST and PIOMAS data are means for the period 1995-2004.  We have now included this 
information in the  captions of Table 3 and Figures 2 and 3.

(27) The font size in Figure 2 is really close to the lower limit. Maybe the figure can be replotted 
with a larger font.
We have now increased the font size in this figure.
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Responses to comments by reviewer David Bailey

We thank Dr. Bailey for his comments, and give our responses below.

This manuscript describes an update to the Met Office Global Coupled Model. The CICE model 
itself remains the same, but some of the internal parameters have changed. These do have the 
desirable effect of improving the Arctic Sea Ice simulation, but overall the Antarctic sea ice 
simulation is substantially degraded. While I agree that this is due to the change in the ocean model 
resolution, I believe that the experiments described here are fundamentally flawed and not worthy 
of publication at this point.

My main issue is that the nominal resolution of 0.25 degrees is not eddy-resolving as the authors 
suggest. A recent paper by Griffies et al. 2015 clearly outlines that a resolution of 0.25-degrees with
no Gent-McWilliams or similar eddy parameterization leads to a substantially larger drift in the 
global ocean temperature (see their Figure 2). The results at 0.1-degree are closer overall in these 
metrics when compared to a 1-degree ocean simulation with GM. New simulations should be 
performed either at 0.25 degrees with a GM-like parameterization or at 0.1-degree to begin to assess
the changes in the CICE model parameters.
The resolution of 0.25 degrees is, as the reviewer points out, not eddy-resolving.   However, it is 
considered to be eddy-permitting, and it is this term that we use in the paper.  The results presented 
by Griffies et al. (2015) do indeed indicate that the parameterisation of mesoscale eddies in the 
GFDL model at 0.25 degrees resolution requires additional vertical mixing.  In NEMO at 
ORCA025 we use a  latitude-dependent viscosity and isopycnal diffusion which result in similar 
SST biases for this 1/4 degree model as we see in our 1/12-degree NEMO configuration.  In addition 
we do not observe the cool bias at depth as in the GFDL model.  Consequently we do not think the 
issues described for the GFDL model are related to our biases. The Southern Ocean warm bias in 
NEMO at ORCA025 is solely related to the cloud-related surface short wave bias.  We therefore do 
not expect that running at 0.1 degree, as suggested by the reviewer, would alter our results.

Also, the changes to the CICE parameters should be systematically evaluated to determine which of
these has the largest effect in improving the Arctic sea ice.  Also, once the ocean simulation has 
been improved, a similar analysis of the impacts of these on the Antarctic sea ice is needed.
We have published such a study previously (Rae et al., 2014).   We mentioned this briefly at the 
beginning of Section 4 of the submitted manuscript:  “In this section, the differences between 
GSI6.0 and GSI4.0 will be discussed, and put in the context of the findings of Rae et al. (2014)”.  
However, we have now expanded this by adding the following summary of that paper: “That study 
found that snow albedo, and snow and ice thermal conductivities, had the largest effect on Arctic 
sea ice, and that the winter Arctic ice extent was strongly influenced by a move to higher ice-ocean 
model resolution, through its effect on sea-surface temperatures in the Labrador Sea.  Rae et al 
(2014) also found that in the Antarctic, the effects of changing atmospheric and oceanic forcing 
generally dominated over those of changing sea ice parameters, and that the Antarctic sea ice 
simulation in the model was also strongly sensitive to increased ice-ocean resolution.”

Reference:

Rae, J.G.L., Hewitt, H.T., Keen, A.B., Ridley, J.K., Edwards, J.M., and Harris, C.M.: A 
sensitivity study of the sea ice simulation in HadGEM3, Ocean Modell., 74, 60–76, 
doi:10.1016/j.ocemod.20, 2014 .
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Abstract

The new sea ice configuration GSI6.0, used in the Met Office global coupled configu-
ration GC2.0, is described and the sea ice extent, thickness and volume are compared
with the previous configuration and with observationally-based datasets. In the Arctic,
the sea ice is thicker in all seasons than in the previous configuration, and there is now5

better agreement of the modelled concentration and extent with the HadISST dataset.
In the Antarctic, a warm bias in the ocean model has been exacerbated at the higher
resolution of GC2.0, leading to a large reduction in ice extent and volume; further work
is required to rectify this in future configurations.
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1 Introduction

Within the Met Office’s model development framework, there are four model com-
ponents: atmosphere, using the Met Office Unified Model (MetUM, see Cullen and
Davies, 1991; Davies et al., 2005); land surface, using the Joint UK Land Environment
Simulator (JULES, see Best et al., 2011); ocean, using the Nucleus for European Mod-5

elling of the Ocean (NEMO, see Madec, 2008); and sea ice, using the Los Alamos Sea
Ice Model, CICE (Hunke and Lipscomb, 2010). The UM and JULES run together as
one executable, as do NEMO and CICE. UM-JULES and NEMO-CICE communicate
via the OASIS coupler (Valcke, 2006).

The Met Office configurations of each component are known as Global Atmosphere10

(GA), Global Land (GL), Global Ocean (GO) and Global Sea Ice (GSI), and the com-
bined system is known as the Global Coupled (GC) configuration. These terms are
suffixed by a version number (e.g., “GA6.0”, “GC2.0”). The second coupled configu-
ration, GC2.0 (Williams et al., 2015), includes GA6.0 and GL6.0 (both described by
Walters et al., 2014), GO5.0 (Megann et al., 2014) and GSI6.0. GC2.0 will be used on15

a range of spatial scales (regional and global), and on a range of temporal scales, from
ocean forecasting (FOAM; see Blockley et al., 2014), through seasonal and decadal
prediction (GloSea5; see MacLachlan et al., 2014), to centennial-scale climate projec-
tions (HadGEM3; see Hewitt et al., 2011). In the present paper, we consider only the
climate configuration, HadGEM3.20

Sea ice is a key component of the earth system because of its role in the energy
balance of the polar regions. An accurate simulation of sea ice is therefore essential in
fully-coupled atmosphere-ocean-ice models run on any timescale. Here, we describe
the model setup and parametrisations used in GSI6.0 as part of GC2.0, and discuss
how the change from the previous configuration (GSI4.0) to GSI6.0 has affected simu-25

lated sea ice extent, thickness and volume.

2
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2 Description of GSI6.0

Thorndike et al. (1975) defined the ice thickness distribution (ITD), g, as a probability
density function such that g(h)dh is the fraction of ice in thickness range h to h+dh.
The evolution of g(h) with time is described by the governing equation:

∂g

∂t
=−∇·(vg)−

∂(Φg)

∂h
+ψ, (1)5

where ∇· (vg) is the rate of change of g due to dynamical processes (v is the ice ve-
locity), Φ is the rate of change of ice thickness due to thermodynamic growth and melt,
and ψ gives the contribution from mechanical redistribution (ridging). A full explanation
is given by Thorndike et al. (1975). The CICE sea ice model solves this equation to
determine the evolution of g in time and space. Full details of the model are available10

in the CICE user manual (Hunke and Lipscomb, 2010); here we summarise the main
features of the model used in GSI, and detail the specific settings and choices for the
previous configuration (GSI4.0) and the new configuration (GSI6.0). Much of the basic
model description is provided in Appendix D of Hewitt et al. (2011), but it is reproduced
here for completeness.15

2.1 Horizontal and vertical discretisation

The GSI configurations discussed here use code revision 430 of CICE version 4.1,
which allows a tripolar grid to be employed. These configurations use essentially the
same family of ORCA grids as the NEMO model (see Appendix C of Hewitt et al.,
2011), although CICE uses an Arakawa B grid rather than a C grid and so the CICE20

velocity grid points are not coincident with the NEMO velocity points. The grid and
land-mask definitions required by CICE are read in directly from a file, as are the initial
conditions. The sub-grid-scale ITD is modelled by dividing the ice pack at each grid
point into a number of thickness categories. GSI uses five categories, plus an open-
water category, which has been shown to be sufficient for climate modelling (Bitz et25

3
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al., 2001). The lower bounds for the five thickness categories are 0, 0.6, 1.4, 2.4 and
3.6 m. GSI uses the zero-layer thermodynamic model of Semtner (1976) to calculate
the growth and melt of the sea ice, with one layer of snow and one layer of ice in the
vertical. This is not the standard scheme implemented in CICE, which has a multilayer
ice model (Bitz and Lipscomb, 1999). It was not possible to use the CICE multilayer5

thermodynamics in GSI because the surface temperature at sea ice points, and the
conductive heat flux into the ice, are currently calculated by the JULES land-surface
model (which also models surface exchange over the ocean and sea ice). This would
not be consistent with the CICE multilayer thermodynamics scheme, which calculates
these quantities itself, so for GSI CICE has been adapted to use the zero-layer surface10

fluxes received from the UM atmosphere.

2.2 Thermodynamics

As discussed in the previous section, the GSI configurations use five ice thickness
categories in the CICE model. While the conductive heat fluxes through the ice are
calculated in the JULES land-surface model on these five categories, the ice albedo15

and the turbulent (latent and sensible) heat fluxes are currently calculated as gridbox
means.

The sea ice albedo is calculated as a function of temperature and snow cover, in-
cluding a parametrisation to represent the impact of melt ponds, and – in the zero-layer
model – a parametrisation to account for the effects of scattering. This is the same20

scheme used in HadGEM1 (McLaren et al., 2006), HadGEM2 (HadGEM2 Develop-
ment Team, 2011) and HadGEM3 (Hewitt et al., 2011). The total albedo is calculated
from the ice albedo αi and the snow albedo αs, following the parametrisation of Essery
et al. (1999),

αtot =αi +(αi−αs)(1−exp(−0.2S)),25

where S is the mass of snow per unit area.
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Bare ice albedo αb is set as a single value. The ice albedo αi is then calculated by
applying corrections to αb to account for the presence of melt ponds, and for scattering
within the ice pack. Melt ponds are assumed to form on bare ice when the ice temper-
ature reaches a threshold temperature Tp. As the temperature increases between Tp

and the melting temperature Tm, melt ponds are assumed to reduce the ice albedo αi5

linearly,

αi =

{

αb if T <Tp

αb + dαi

dT
(T −Tp) ifTp ≤T ≤Tm

,

where Tm is fixed at 0◦C for all simulations while the values of Tp and dαi

dT
can be set

as parameters for each simulation.
Because the ice model configuration uses a zero-layer approximation, an additional10

parametrisation is required to account for the effects of internal scattering (e.g. from
brine pockets) on the albedo. Following the suggestion of Semtner (1976), a correction
∆αi is applied to the ice albedo,

∆αi = fβ(1−αi),

where f is the fraction of incident radiation which penetrates the ice pack, and β is an15

attenuation factor to take account of backscatter.
Snow albedo αs is assumed to vary linearly with temperature between that of cold,

dry snow (αc) at a threshold temperature Tc, and that of melting snow (αm) at the
melting point, Tm,

αs =

{

αc if T <Tc

αc + αm−αc

Tm−Tc
(T −Tc) if Tc ≤T ≤Tm

,20

where Tm is fixed at 0◦C while Tc, αc and αm can be varied.
As in HadGEM1, the sea-ice surface temperature and the atmosphere-to-ice fluxes

are calculated in JULES (see McLaren et al., 2006, for details). Within CICE these
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fluxes (downward latent heat flux, surface sensible heat flux, and conductive flux through
the ice), along with the ocean-ice heat flux (McPhee, 1992), determine the rate at
which the ice grows or melts in each thickness category. The calculated thermody-
namic growth or melt rates are then used in the linear remapping scheme of Lipscomb
(2001) to exchange the ice between thickness categories.5

2.3 Dynamics and ridging

The ice velocities are calculated by solving the 2-D momentum equation for the force
balance per unit area in the ice pack (Hibler, 1979), including terms for wind stress,
ocean stress, internal ice stress, and stresses due to Coriolis effects. The internal
ice stress is calculated using the elastic viscous plastic (EVP) scheme (Hunke and10

Dukowicz, 2002), which assumes the ice has a viscous plastic rheology, and incorpo-
rates an elastic wave modification to improve the computational efficiency. The GSI
configurations use the Rothrock et al. (1975) formulation for ice strength. The sea ice
is advected using the CICE incremental remapping scheme (Lipscomb and Hunke,
2004). The mechanical redistribution (or ridging) scheme in CICE converts thinner ice15

to thicker ice and open water, and is applied after the advection of ice. The scheme is
based on work by Thorndike et al. (1975), Hibler (1980), Flato and Hibler (1995), and
Rothrock et al. (1975). It favours the closing of open water and ridging of the thinnest
ice over the ridging of thicker ice. In GSI the ridging participation function suggested
by Lipscomb et al. (2007) is used. The ridged ice is then distributed between thickness20

categories assuming an exponential ITD (Lipscomb et al., 2007).

2.4 CICE settings used for GSI6.0

Rae et al. (2014) investigated the sensitivity of Arctic and Antarctic sea ice extent,
thickness and volume in GSI4.0 to changes in several sea ice physical parameters,
as well as to changes in the resolutions of the atmosphere and ocean models. By25

testing each of these sensitivities in isolation, they identified an optimum set of sea
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ice parameters for use in the Met Office coupled configuration. They found the Arctic
sea ice to be most sensitive to changes in the albedos and thermal conductivities of
ice and snow, while the Antarctic sea ice was most sensitive to changes in ice salinity,
atmospheric and oceanic forcing, and ice-ocean model resolution.

This forms the basis for the set of parameters used in GSI6.0, with some adjustments5

to account for the effect of changes in the atmosphere model made at the same time
(see Walters et al., 2014). Parameter values are given in Table 1. The CICE namelist
used in GSI6.0, which has been edited to detail the scientific options only, is given in
Appendix A. The albedo parameters αm, f and β, were set in such a way as to increase
the surface albedo, thereby reducing summer melt; the other albedo parameters were10

left unchanged. The values of the thermal conductivities of ice and snow, κice and
κsnow, were chosen to increase the heat flux through the ice in autumn and winter,
thereby increasing ice growth. The ice salinity, S, was increased, because Rae et al.
(2014) found that this led to greater Antarctic ice growth due to a colder ocean mixed
layer through the effect of salinity on ocean mixing. Rae et al. (2014) found the Arctic15

and Antarctic sea ice extent and volume to be relatively insensitive to the value of the
ridging parameter µrdg (Hunke, 2010); however, the value was reduced from 4 m1/2 to
3 m1/2 as this is now the recommended value. The roughness lengths of pack ice and
the marginal ice zone, z0(ice) and z0(MIZ), previously had different values in the climate
and Numerical Weather Prediction (NWP) configurations of the model. In GSI6.0, the20

values in the climate configurartion have been increased to make them consistent with
those in the NWP configuration.

For coupling with the UM atmosphere, heat_capacity and calc_Tsfc are both
set to false. This means that zero-layer thermodynamics are used and that CICE
does not calculate any surface fluxes or the surface ice temperature. Note that set-25

ting calc_Tsfc to false also means that the albedo settings in the CICE namelist
are irrelevant as the albedo is not calculated by CICE. Wind stresses are passed from
the UM atmosphere rather than being calculated in CICE, so calc_strair is set to
false. A constant value for the freezing point of sea water is used (−1.8◦C), by setting
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Tfrzpt=‘constant‘. This is required for consistency with the UM atmosphere-ice
thermodynamics. The variable ns_boundary_type is set to tripole for the ORCA1
grid (i.e. in GSI4.0), indicating a tripolar grid with the “north fold” occurring along ve-
locity points. The alternative setting tripoleT is used for the ORCA025 grid (i.e. in
GSI6.0) where the north fold occurs along temperature points. The CICE preprocessor5

keys used in HadGEM3 at GC2.0 are shown in Table 2.

3 Experimental setup

We compare sea ice simulations from GSI6.0 (within GC2.0) with those from the previ-
ous configuration, GSI4.0 (within an earlier configuration of the coupled model). Both
simulations were performed with a fully-coupled configuration of the Met Office’s mod-10

elling system. The atmosphere and land-surface models were run on an N96 grid
(equivalent to a resolution of 1.875◦ in longitude and 1.25◦ in latitude); the ocean and
sea-ice models were on an ORCA1 grid (nominal 1◦ resolution) for GSI4.0, and an
ORCA025 grid (nominal 0.25◦ resolution) for GSI6.0. The model setups and parameter
values used are given in Table 1. Both simulations used initial conditions, greenhouse15

gas concentrations, and emissions of aerosols and their precursors appropriate for the
present day (equivalent to year 2000). In both cases, we consider 50 years of output
following an 80-year spin-up.

4 Model evaluation

In GSI4.0, the Arctic ice volume (Fig. 2c; Table 3) was too low relative to that from the20

PanArctic IceOcean Modeling and Assimilation System (PIOMAS, see Schweiger et
al., 2011), a coupled ice-ocean model that includes assimilation of observations. The
findings of Rae et al. (2014), and the poor agreement of GSI4.0 Arctic sea ice with ob-
servational datasets, informed the choice of parameter values for GSI6.0 (see Table 1).
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In this section, the differences between GSI6.0 and GSI4.0 will be discussed, and put
in the context of the findings of Rae et al. (2014). That study found that snow albedo,
and snow and ice thermal conductivities, had the largest effect on Arctic sea ice, and
that the winter Arctic ice extent was strongly influenced by a move to higher ice-ocean
model resolution, through its effect on sea-surface temperatures in the Labrador Sea.5

Rae et al. (2014) also found that in the Antarctic, the effects of changing atmospheric
and oceanic forcing generally dominated over those of changing sea ice parameters,
and that the Antarctic sea ice simulation in the model was also strongly sensitive to
increased ice-ocean resolution.

4.1 Arctic10

In GSI6.0, we see thickening of the Arctic ice pack at the end of winter relative to
GSI4.0 (Fig. 1a,b), resulting in improved agreement with observations (see Fig. 1 of
Laxon et al., 2013). The net melting or growth of Arctic sea ice is the residual of the
energy balance, and is extremely sensitive to small changes in the fluxes at the top
and bottom of the ice pack (Keen et al., 2013). Rae et al. (2014) found that increased15

ice and snow thermal conductivities cause an increased upward conductive heat flux
through the ice pack in late summer and early autumn, leading to subtle shifts in the
energy budget within the ice pack. This results in reduced basal melt in July and
August, and increased basal growth in winter, leading to increased thickness, extent
and volume.20

We also see an increase in summer ice extent, thickness and volume in GSI6.0
compared to GSI4.0 (Figs. 1c,d, 3d,e, 2a, 2c; Table 3). This mirrors the behaviour seen
by Rae et al. (2014) with increased ice and snow thermal conductivities, where the
increased ice thickness seen in winter persisted through the following melt season. In
addition to this, Rae et al. (2014) also found that in the Arctic increased snow albedo led25

to reduced surface melt in summer, and thus to increased summer ice extent, thickness
and volume. It is likely that similar effects are occurring here in GSI6.0. The summer
ice concentration and extent are now more in agreement with the HadISST dataset of
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Rayner et al. (2003) (Figs. 3f, 2a), and the agreement of the volume with PIOMAS has
also improved (Fig. 2c; Table 3).

In winter, there are also overall improvements in the total extent relative to HadISST
(Fig. 2a; Table 3), largely due to reduced ice cover in the Labrador Sea (Fig. 3a,b,c).
The investigations of Rae et al. (2014) suggest that this is attributable to the increased5

ice-ocean model resolution. They found that the increased resolution led to warmer
sea surface temperatures in the Labrador Sea, leading in turn to a reduced sea ice
concentration there, and thus to a lower total Arctic winter sea ice extent. Despite
this reduced winter ice extent, the increased ice thickness has led to an increased ice
volume, with the result that it is now more in agreement with that from PIOMAS (Fig.10

2c; Table 3).

4.2 Antarctic

The GC simulations have been found to display a warm bias in sea-surface temper-
atures (SST) in the Southern Ocean (Megann et al., 2014), due to a positive bias in
downward heat flux from the atmosphere into the ocean (Williams et al., 2015). In15

GSI4.0, this led to a low Antarctic sea ice extent in austral summer, although the winter
ice extent compared favourably with HadISST (Fig. 2b; Table 3).

Rae et al. (2014) found that the Antarctic ice extent and volume were generally in-
sensitive to perturbations in the ice physics parameters (other than salinity), but that
the effects of the warm SST bias were exacerbated at higher ice-ocean resolution.20

They attributed this to the removal of the Gent-McWilliams eddy parametrisation at the
eddy-permitting resolution of ORCA025. It is thought that this parametrisation helps
to mask the warm bias at lower resolution, but that its removal in the higher-resolution
runs leads to increased southward heat transport in the ocean.

As discussed in Sect. 3, GSI6.0 is run at the higher resolution of ORCA025 (see25

Table 1). The exacerbation of the warm bias in the Southern Ocean therefore has an
impact on the Antarctic sea ice in GSI6.0, and there is a substantial reduction in ice
extent and volume in all seasons (Figs. 2b,d; Table 3). Thus, while the transition from
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GSI4.0 to GSI6.0 leads to some improvements in the Arctic, the same is not true in
the Antarctic. Work is ongoing to reduce the warm bias in the Southern Ocean, and
it is anticipated that this will lead to improved simulations of Antarctic sea ice in future
configurations.

5 Conclusions5

We have described and evaluated the new Global Sea Ice configuration, GSI6.0, run
within the Met Office Global Coupled model configuration GC2.0. The choice of pa-
rameters for GSI6.0 was informed by the work of Rae et al. (2014), who conducted an
extensive sea ice parameter sensitivity study within the Met Office coupled modelling
system and in addition isolated the impact of ice physics changes from that of forcing10

and resolution changes. In the new configurations, the values of several sea ice pa-
rameters have been changed, and the ice-ocean model resolution has been increased
from ORCA1 (nominal 1◦ resolution) to ORCA025 (nominal 0.25◦ resolution). This has
resulted in thicker Arctic ice in all seasons, and Arctic ice concentration and extent that
are in better agreement with the HadISST observational dataset (Rayner et al., 2003).15

In the Antarctic, the higher ice-ocean model resolution has resulted in the exacerbation
of an existing warm bias in the Southern Ocean. This has in turn led to a large reduc-
tion in ice extent and volume. Rectification of this bias will require further development
work on atmosphere-ocean heat transfer in the coupled model.

While the sea ice simulation in GSI6.0 represents an improvement over that in20

GSI4.0 – at least in the Arctic – there are still several areas in which there is potential
for further model enhancement. First, while the GSI configurations use five ice thick-
ness categories in the CICE model,and the conductive heat fluxes through the ice are
calculated on these categories as mentioned in Sect. 2.2, the albedo and the surface
latent and sensible heat fluxes are calculated in the JULES land-surface scheme as25

gridbox means. In the next configuration, these calculations will be performed on all
five thickness categories. Second, the sea ice surface albedo scheme used in GSI4.0
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and GSI6.0 is the same broadband scheme used in HadGEM1 (McLaren et al., 2006).
The next configuration will include separate calculations for four radiation bands – di-
rect and diffuse radiation for both visible and near-infrared bands – as well as for each
ice thickness category. It is anticipated that future configurations will also include an
explicit representation of the effect of melt ponds on surface albedo. As mentioned5

in Section 2.4, GSI currently uses a fixed reference value of −1.8◦C for the freezing
temperature of sea water. In future configurations, this freezing temperature will be
calculated as a function of ocean salinity. Finally, as mentioned in Section 2.1, the cur-
rent GSI configurations use the zero-layer thermodynamics of Semtner (1976, 1987),
rather than the full multi-layer CICE scheme. Planned modifications to CICE, the UM,10

and JULES will enable the CICE multilayer model to be used with the UM atmosphere
in the future.

Appendix A CICE namelist used in GSI6.0

&setup_nml
days_per_year = 36015

, istep0 = 0
, dt = 1350.0
, ndyn_dt = 1

/
20

&grid_nml
grid_format = ’nc’

, grid_type = ’tripole’
, kcatbound = 1

/25

&domain_nml
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nprocs = 368
, processor_shape = ’square-pop’
, distribution_type = ’cartesian’
, distribution_wght = ’block’
, ew_boundary_type = ’cyclic’5

, ns_boundary_type = ’tripoleT’
/

&ice_nml
kitd = 110

, kdyn = 1
, ndte = 120
, kstrength = 1
, krdg_partic = 1
, krdg_redist = 115

, mu_rdg = 3.0
, advection = ’remap’
, heat_capacity = .false.
, conduct = ’MU71’
, atmbndy = ’default’20

, calc_strair = .false.
, calc_Tsfc = .false.
, precip_units = ’mks’
, Tfrzpt = ’constant’
, ustar_min = 5.0e-425

, update_ocn_f = .true.
, oceanmixed_ice = .false.
, ocn_data_format = ’nc’
, sss_data_type = ’default’

13



Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|

, sst_data_type = ’default’
, restore_sst = .false.
, trestore = 0
, restore_ice = .false.

/5

Appendix Code availability

The MetUM is available for use under licence. A number of research organisations
and national meteorological services use the MetUM in collaboration with the Met Of-
fice to undertake basic atmospheric process research, produce forecasts, develop the10

MetUM code and build and evaluate Earth system models. For further information on
how to apply for a licence see http: //www.metoffice.gov.uk/research/collaboration/um-
collaboration.

JULES is available under licence free of charge. For further information on how to
gain permission to use JULES for research purposes see https://jules.jchmr.org/software-15

and-documentation
The model code for NEMO v3.4 is available from the NEMO website (www.nemo-

ocean.eu). On registering, individuals can access the code using the open source
subversion software (http://subversion.apache.org/).

The model code for CICE is freely available from the United States Los Alamos20

National Laboratory (http://oceans11.lanl.gov/trac/CICE/wiki/SourceCode), again us-
ing subversion.

The versions and revisions of each model used in this paper are given in 1. A
number of branches are applied to these codes. Please contact the authors for more
information on these branches and how to obtain them.25
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Table 1. Model setup and values of sea ice parameters in GSI4.0 and GSI6.0 simulations

GSI4.0 GSI6.0

CICE revision number 430 430
Atmosphere configuration (UM version) GA4.0 (UM8.2) GA5.0 (UM8.5)
Land surface configuration (UM version) GL4.0 (UM8.2) GL5.0 (UM8.5)
Ocean configuration (NEMO version) GO4.0 (NEMO 3.4) GO5.0 (NEMO 3.4)
Coupled configuration N/A GC2.0
Atmosphere model resolution N96 N96
Ocean-ice model resolution ORCA1 ORCA025

Parameters affecting albedo αb 0.61 0.61
and radiative forcing (see αC 0.80 0.80
Sect. 2.2) αM 0.65 0.72

TC -2.0 ◦C -2.0 ◦C
Tp -1.0 ◦C -1.0 ◦C
dα/dT -0.075 ◦C−1 -0.075 ◦C−1

f 0.17 0.20
β 0.4 0.6

Roughness lengths (see Sect. z0(MIZ) 0.0005 m 0.100 m
2.8 of Rae et al., 2014) z0(ice) 0.0005 m 0.003 m
Ice salinity (see Sect. 2.7 of S 4 ppt 8 ppt
Rae et al., 2014)
Ridging parameter (see Sect. µrdg 4.0 m1/2 3.0 m1/2

2.6 of Rae et al., 2014)
Thermal conductivities (see κice 2.09 W m−1 K−1 2.63 W m−1 K−1

Sect. 2.4 of Rae et al., 2014) κsnow 0.31 W m−1 K−1 0.50 W m−1 K−1
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Table 2. The preprocessor keys used for CICE in GC2.0-GSI6.0

Preprocessor key Purpose
coupled Coupled run
ncdf NetCDF format options available for input and output files
CICE IN NEMO CICE is run in the NEMO environment. CICE is called from the NEMO

surface module which also exchanges the coupling fields between NEMO and CICE
ORCA GRID Controls reading in grid, land masks and forcing data on the ORCA family of grids.
key oasis3 Coupling uses OASIS3
REPRODUCIBLE Ensures global sums bit compare for parallel model runs with different grid decompositions

Table 3. 50-year mean sea ice extent and volume in GSI4.0 and GSI6.0, and equivalent 11-
year (1995-2004) means for HadISST and PIOMAS data.

Quantity GSI4.0 GSI6.0 HadISST PIOMAS
Sea ice extent (106 km2) Arctic Mar 17.68 14.70 15.81 -

Sept 3.88 7.58 7.23 -
Antarctic Sept 19.59 12.67 20.24 -

Mar 1.43 0.46 5.74 -
Sea ice volume (103 km3) Arctic Mar 20.95 27.50 - 26.89

Sept 1.96 10.81 - 11.56
Antarctic Sept 12.12 6.46 - -

Mar 0.73 0.11 - -
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Fig. 1. March and September 50-year mean Arctic sea ice thickness (m) in GSI4.0 and GSI6.0.
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Fig. 2. 50-year mean seasonal cycles of sea ice extent and volume in GSI4.0 and GSI6.0, and
equivalent 11-year (1995-2004) mean seasonal cycles for the HadISST and PIOMAS datasets.
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ussionPaper|Fig. 3. March and September 50-year mean Arctic sea ice concentration in GSI4.0 and GSI6.0,
and equivalent 11-year (1995-2004) means for the HadISST dataset.
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