Geosci. Model Dev. Discuss., 8, 2437–2495, 2015 www.geosci-model-dev-discuss.net/8/2437/2015/ doi:10.5194/gmdd-8-2437-2015 © Author(s) 2015. CC Attribution 3.0 License.



This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

# Validating a 1-D SVAT model in a range of USA and Australian ecosystems: evidence towards its use as a tool to study Earth's system interactions

G. P. Petropoulos<sup>1</sup>, M. R. North<sup>1</sup>, G. Ireland<sup>1</sup>, P. K. Srivastava<sup>2,3</sup>, and D. V. Rendall<sup>1</sup>

<sup>1</sup>Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
 <sup>2</sup>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
 <sup>3</sup>Earth System Science Interdisciplinary Center, University of Maryland, Maryland, USA
 Received: 9 January 2015 – Accepted: 12 February 2015 – Published: 5 March 2015
 Correspondence to: G. P. Petropoulos (george.petropoulos@aber.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.



# Abstract

This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation ( $R_g$ ), Net Radiation ( $R_{net}$ ), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m ( $T_{air 1.3 m}$ ) and Air Temperature at 50 m ( $T_{air 50 m}$ ). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation.

The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed

- <sup>15</sup> daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, *H*,  $T_{air 1.3 m}$  and  $T_{air 50 m}$ parameters (RMSD = 39.47, 55.06 W m<sup>-2</sup>, 3.23, 3.77 °C respectively). A systematic underestimation of  $R_g$  and  $R_{net}$  (RMSD = 67.83, 58.69 W m<sup>-2</sup>, MBE = 67.83, 58.69 W m<sup>-2</sup> respectively) was also found. Highest simulation accuracies were obtained for the open
- <sup>20</sup> woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash–Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations.

To our knowledge, this study presents the first comprehensive validation of Sim-<sup>25</sup> Sphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research tool. This includes ongoing research by different Space Agencies



examining its synergistic use with Earth Observation data towards the development of global operational products.

# 1 Introduction

- The importance of studying land surface interactions to develop a better understanding of Earth's physical processes and feedbacks is evident from several investigations. Today, particularly so in the face of climate change, it has been recognised by the global scientific community as a topic requiring further attention and investigation (Battrick et al., 2006; Petropoulos et al., 2014). The importance of this work is documented within numerous scientific disciplines, and a further understanding of land surface inter-
- <sup>10</sup> actions is of crucial importance to help address directives such as the European Parliament "Directive 2000/60/EC", aimed at establishing a framework for community action in the field of water policy, namely the EU Water Framework Directive. Furthermore, Space Agencies have also been trying to identify how they can potentially contribute to research in this field. One example being the European Space Agency (ESA), which via
- its Living Planet programme has identified a number of scientific challenges covering different aspects of the Earth system on which the Agency hopes to provide significant contributions (ESA, 1999). On this basis, the need to develop a holistic understanding of how land surface parameters characterising the planet's energy and water budget in different ecosystems has never been more important (WMO, 2002; ESA, 2014).
- Generally, the requirement for accurate information on such parameters can be addressed by two efforts: (1) in the field by obtaining actual measurements, and (2) by development and validation of models (Zhan et al., 2003; Verbeek et al., 2008). However, obtaining reliable measurements of those parameters can be very cumbersome, if not in some cases impractical, as they are characterised by certain limitations (e.g. see recent review by Petropoulos et al., 2013e). On the other hand, mathematical models have been prevented as a prevented of the set of t
- have been proven useful in providing estimates of those parameters. Indeed, models are characterised by certain advantages including their ability to estimate the behaviour



of complex terrain ecosystems which cannot be derived by normal logic. Furthermore, they have an ability to extrapolate results and study various hypothetical scenarios. These advantages allow situating knowledge of certain phenomena in a broader context (Verbeek et al., 2008). A representative description of land surface interactions
<sup>5</sup> requires mathematical models capable of accurately describing the physical and biological processes in the soil-vegetation-atmosphere continuum (Olchev et al., 2008; Petropoulos, 2013). One of the main goals of modellers in the area of environmental studies is to improve our understanding of complex natural systems and advance the development and application of models that simplify the representation of the real
<sup>10</sup> world systems under study (Silberstein, 2006; Sheikh et al., 2009). This recognition of the importance for a better understanding of the biophysical mechanisms of land

surface–atmosphere interactions has motivated the rapid progress in environmental mathematical modelling over the past few decades (Stoyanova and Georgiev, 2013; Koirala et al., 2014). Indeed, significant progress has been made towards the development of models able to describe the processes between the vegetation, soil, and the atmosphere of the Earth's system (Bellocchi et al., 2010; Stoyanova and Georgiev, 2013).

Land surface parameterisation schemes (LSPs, also known as land surface models (LSMs)) are one of the preferred scientific tools to quantify, at fine spatial and temporal resolutions, Earth system interactions. Such modelling schemes simulate a number of parameters characterising land surface feedbacks and processes within the lower atmospheric boundary from a predefined set of surface characteristics (i.e. properties of soil, vegetation and water). LSPs have begun to emerge as valuable tools in a number of associated fields within environmental sciences. Often LSP's are utilised.

amongst others, to assess water resources, to evaluate the hydrological impacts of changes in climate and land use, to model land atmosphere exchanges and emissions of aerosols (Prentice et al., 2014). Early LSP models generally represented the surface effect on the atmosphere or were based on simple approximate equations (Pedinotti, 2013). Manabe (1969) was the first to include land surface interactions explicitly in



a climate model thorough adopting the simple so-called "Bucket" scheme of Budyko (1961). His scheme predicted the water vapour in the atmosphere, the soil moisture and snow cover without taking into account the soil and vegetation categories. Recent developments in mathematical modelling have been driven primarily by the progress

- in computer technology, the expansion of modelling into new fields and disciplines and the need for increased accuracy in model predictions (Olchev et al., 2008; Bellocchi et al., 2010). As a result, LSPs have advanced considerably since the simple scheme developed by Manabe (1969) to include detailed parameterisations of momentum, energy, mass and biogeochemistry (Sellers et al., 1997; Rosolem et al., 2013).
- <sup>10</sup> One group of LSPs include the Soil–Vegetation–Atmosphere Transfer (SVAT) models. Those are mathematical representations of vertical "views" of the physical mechanisms controlling energy and mass transfers in the soil–vegetation–atmosphere continuum. These deterministic models are able to provide estimates of the time course of soil and vegetation state variables at time-steps compatible with the dynamics of atmo-
- spheric processes. During the last number of decades, SVAT models have evolved from simple energy balance parameterisations e.g. the bucket schemes adopted by Manabe (1969), through the schemes of Deardorff (1978), to the Biosphere–Atmosphere Transfer Scheme (BATS) of Dickinson et al. (1986) and the Simple Biosphere (SiB) model of Sellers et al. (1986). Nowadays, they are developed to incorporate complex sub-models
- including a full integration of connected biogeochemical processes (Sellers et al., 1997; Akkermans et al., 2014). At present, SVAT models are able to describe the multifarious transfer processes through varying degrees of complexity, including the energy, water and carbon dioxide (CO<sub>2</sub>) fluxes between the ground surface covered by different vegetation types and the atmosphere over different temporal and spatial scales (Olchev
- et al., 2008). These embedded modelling efforts require an application context constrained by input variables (atmospheric forcing and vegetation) and input parameters (soil and vegetation properties, initialisation) to simulate the water and energy budget at the surface (Coudert et al., 2008; Ridler et al., 2012).



However, before applying a computer simulation model to perform any kind of analysis or operation, a variety of validatory tests need to be executed. This allows establishing the adequacy of the developed computer model in terms of its ability to reproduce the desired mechanisms with the necessary reality (Petropoulos et al., 2009a).

- As such, the process of validating a mathematical model's performance, coherence and representation of the natural environment is regarded as an essential step in its development. A comprehensive model validation determines the variance between the model predictions and observations. This allows evaluation of its ability to systematically reproduce the system being simulated (model reliability) and the level of accu-
- <sup>10</sup> racy in which the model reproduces the natural environment (model usefulness) (Huth and Holzworth, 2005; Wallach, 2006). Numerous model validation techniques exist; for a comprehensive overview of validation strategies see Hamilton (1991) and Bellocchi et al. (2010). The procedures to perform the task of validation appear in several forms, depending on data availability, system characteristics and researchers' opinion (Hsu
- et al., 1999). A common strategy is to examine the model's simulated outputs vs. observations acquired from the real world using common statistical metrics proposed in the classic literature. In addition, Kramer et al. (2002) in an attempt to holistically assess the capability of a model of portraying a real world system, has proposed a set of model assessment criteria, namely: accuracy, generality and realism. Accuracy is
  described by Kramer et al. (2002) as the "goodness of fit" to in situ measurements.
- Generality is described as the applicability of the model in numerous ecosystems. Realism is described as the ability of the model to address relationships between modelled phenomena.

The SimSphere land biosphere model is one example of a SVAT model. For-<sup>25</sup> merly known as the Penn-State University Biosphere–Atmosphere Modelling Scheme (PSUBAMS) (Carlson and Boland, 1978; Carlson et al., 1981; Lynn and Carlson, 1990), this 1-D model was considerably modified to its current state by Gillies et al. (1997) and Petropoulos et al. (2013a). Since its early development, the model has become highly variable in its applicational use (for a recent review of the model



use see Petropoulos et al., 2009a). Amongst others, it has been involved in studies concerning the study of land surface interactions (Todhunter and Terjung, 1987; Ross and Oke, 1988) and the examination of hypothetical scenarios examining land surface feedbacks (Wilson et al., 1999; Grantz et al., 1999). Furthermore, its use synergisti-

- <sup>5</sup> cally with Earth Observation (EO) data is being considered at present by several Space Agencies for the development of operational products of energy fluxes and/or soil moisture on a global scale (Chauhan et al., 2003; ESA STSE, 2012). These investigations have been based around the implementation of a technique commonly termed in the literature as the "triangle" (Carlson, 2007; Petropoulos and Carlson, 2011). A variant of
- it is already deployed over Spain to operationally deliver surface soil moisture at 1 km spatial resolution from ESA's own Soil Moisture and Ocean Salinity (SMOS) satellite (Piles et al., 2011).

As SimSphere's use is rapidly expanding worldwide as both a research and educational tool alike, its validation and establishment of its coherence and correspondence to what it has been built to simulate is of paramount importance. In this respect

- <sup>15</sup> dence to what it has been built to simulate is of paramount importance. In this respect, a series of Sensitivity Analysis (SA) experiments have already been conducted on the model (Olioso et al., 1996; Petropoulos et al., 2009b, 2013a–c). Such studies have allowed the quantification of the relative influence of each model input to the simulation of key parameters by the model, rank them in order of importance and understand
- how different parts of the model interplay. Yet, to our knowledge, validation studies involving direct comparisons of model predictions against in situ observations have as of now been scarce and incomprehensive. Such validation exercises have only been performed over a very small range of land use/cover types and on earlier versions of the model when it was still under development (e.g. Todhunter and Terjung, 1987;
- Ross and Oke, 1988). Furthermore, to our knowledge, very few studies, if any, have acted to specifically validate SimSphere to numerous global ecosystems, for example, over Australian ecosystems. In this context, and given SimSphere's currently expanding global use, a fully inclusive and comprehensive validation of the model is now of fundamental importance.



In this paper, the results from SimSphere's evaluation are presented and its applicability for modelling land surface interactions is demonstrated. The main objective was to understand specifically the models' ability in predicting Shortwave Incoming Radiation  $(R_g)$ , Net Radiation  $(R_{net})$ , Latent Heat (LE), Sensible Heat (*H*), and Air temperature  $(T_{air})$  at a height of 1.3 and 50 m. Model validation is assessed through a comparison of the model results with corresponding observations from actual in situ measurements acquired at local scale from 8 experimental sites (72 days in total) belonging to the OzFlux (Australia) and AmeriFlux (USA) global monitoring networks. This allowed including contrasting conditions in the model evaluation.

#### **2** SimSphere model description

This work deals with the SimSphere 1-D boundary layer model devoted to the study of energy and mass interactions of the Earth system. It is currently maintained and freely distributed from Aberystwyth University, UK (http://www.aber.ac.uk/simsphere). Figure 1 illustrates the different components of SimSphere's structure, namely the *physical*, the *vertical* and the *horizontal*. Further details about the model architecture can be found in Gillies (1993). In brief, the *physical* components ultimately determine the microclimate conditions in the model and are grouped into three categories, radiative, atmospheric and hydrological. The primary forcing of this component is the available clear sky radiant energy reaching the surface or the plant canopy, calculated
as a function of sun and earth geometry, atmospheric transmission factors for scatter-

ing and absorption, the atmospheric and surface emissivities and surface (including soil and plant) albedoes.

The *vertical structure* effectively corresponds to the components of the Planetary Boundary Layer (PBL) that are divided into four layers – *a surface mixing layer*, a *sur-*

face of constant flux layer, a surface of vegetation or bare soil layer. The depths of all four layers are somewhat variable with time. The top of the mixing layer is identified by the presence of a temperature inversion that caps the air in convective contact with the



surface layer. At night, the situation is reversed as the Earth cools down more rapidly than the atmosphere. The surface "constant flux" layer evolves in the model as a series of equilibrium states between the transition layer below and the mixing layer above. Heat and moisture are assumed to be instantaneously conveyed between the surface

- and the top of the surface layer, which is chosen to be at a height of 50 m. In reality this height varies between 20 and 50 m. The transition layer applies to a layer in which the vertical exchanges are dominated by molecular and radiative effects as well as by vertical wind changes. In the case of vegetation, the transition layer is represented by the microclimate within and at the top of the vegetation canopy. The substrate layer refers
- to the depth of the soil over which heat and water is conducted. It consists of two layers, a surface layer and a root zone. Water flows from the surface and the root zone to the atmosphere respectively by direct evaporation or through the plants as well as between the two layers. Soil water content is specified by assigning a fractional volume of field capacity, which essentially is the "soil moisture availability". Five layers are used to
- compute the flow of heat in the substrate. An initial soil temperature profile is assigned on the basis of the initial surface temperature (furnished from a meteorological sounding) and a climatological substrate temperature, which one obtains from mean data. A governing parameter for heat conduction is the "thermal inertia" that contains both soil conductivity and soil diffusivity (or alternately, the volumetric heat content). This
  parameter is the one that also governs the rate of *H* flux to or from the atmosphere through the soil surface.

The *horizontal* component of the model is composed of 4 parts: (i) *Planetary Boundary Layer* (PBL), (ii) *Surface Layer*, (iii) *Transition Layer* and (iv) *Substrate Layer*. Due to SimSphere simulating parameters in a 1-dimensional vertical column, the model is restricted horizontally only to areas representative of its initialised conditions, therefore the model has an undefined spatial coverage. The vegetation component is dormant at night, that is, after radiation sunset. The night time dynamics for the surface fluxes differ from those during the day time. Heat and moisture fluxes are exchanged between both the ground and foliage, between plant and inter-plant airspaces through stomatal



and cuticular resistances in the leaf (for water vapour) and the air, between soil and the interplant air spaces and between the entire vegetation canopy and the air. A separate component exists for the bare soil fluxes between the surface and the air. Vegetation and soil fluxes meld at the top of the vegetation canopy, their relative weights depend-

- <sup>5</sup> ing on the fractional vegetation cover, which is specified as an input to the model. As such, SimSphere is thus referred to as a form of two-stream or two-source model. The soil hydraulic parameters are prescribed from the Clapp and Hornberger (1978) classification. The soil surface turbulent fluxes are determined following the Monin and Obukov (1954) similarity theory which takes into account atmospheric stability.
- <sup>10</sup> SimSphere represents various physical processes taking place in a column that extends from the root zone below the soil surface up to a level well above the surface canopy, the top of the surface mixing layer. The processes and interactions simulated by the model are allowed to develop over a 24 h cycle at a chosen time step (typically 30'), starting from a set of initial conditions given in the early morning. For its param-
- eterisation, input parameters are categorised into 7 defined groups; time and location, vegetation, surface, hydrological, meteorological, soil and atmospheric (Table 1). From initialisation, over a 24 h cycle SimSphere assesses the diurnal evolution of more than 30 prognostic variables associated with the radiative, hydrological and atmospheric physical domains. Outputs of the model include, between others, the surface energy
- <sup>20</sup> fluxes (LE and *H* fluxes) below and at the soil surface, around and above the vegetation canopy and the transfer of water in the soil and in the plants. Several meteorological parameters are also predicted including the radiometric surface temperature, wind velocity, air temperature, and humidity at various levels in and above the canopy.

#### 3 Experimental set up

<sup>25</sup> A total of 5 AmeriFlux and 3 OzFlux experimental sites were used, providing a comprehensive dataset of measured micrometeorological parameters together with general meteorological observations. Both networks are part of FLUXNET, the largest global



network of micrometeorological flux measurement sites. The flux sites use eddy covariance methods to measure the exchanges of carbon dioxide, water vapour, and energy between terrestrial ecosystems and the atmosphere (Aubinet et al., 2000). Table 2 provides an overview of the experimental sites characteristics used in this study,

- <sup>5</sup> whereas the geographical location of those sites within USA and Australia is illustrated in Fig. 2. At each site, micrometeorological measurements of various parameters are acquired, including the turbulent fluxes of heat and moisture, Shortwave Incoming Radiation ( $R_g$ ), Net Radiation ( $R_{net}$ ) and Air Temperature ( $T_{air}$ ) (often at different heights). Flux measurements methods and calculations performed within the FLUXNET sites are
- designed with the same hardware and software specifications at all sites. All data are quality-controlled and standard procedures for error corrections are prescribed. Details on the FLUXNET measurements and the processing of the raw data can be found in Aubinet et al. (2000).
- The sites included in this study to validate SimSphere were representative of a range of ecosystem types with markedly different site characteristics to include contrasting conditions in the model evaluation. All in situ data acquired from each site was collected covering the year 2011, allowing for a sufficient database for model parameterisation and validation to be developed. All data was obtained from the FLUXNET database (http://fluxnet.ornl.gov/obtain-data) at both Level 2 (AmeriFlux) and Level 3 (OzFlux)
- <sup>20</sup> processing levels. At both processing levels, the data has been subjected to basic quality control checks with the removal of erroneous data, and has also been subject to quality control and post processing (for the case of level 3 data). For both networks, no gap filled data was used to ensure that modelled predictions were compared against actual observational measurements as opposed to estimated values. Additionally, at-
- <sup>25</sup> mospheric in situ data was collected from the freely distributed University of Wyoming's weather balloon data archive (http://weather.uwyo.edu/upperair/sounding.html). Local profiles of temperature, dew point temperature, wind direction, wind speed and atmospheric pressure were taken from nearest possible experimental sites which and were also used in model parameterisation.



#### 4 SimSphere parameterisation and validation

This section provides a synopsis of the methodology followed in evaluating Sim-Sphere's ability to simulate key parameters characterising land surface interactions. An overview of the main steps included in this process is furnished in Fig. 3.

#### 5 4.1 Datasets pre-processing

10

Following data acquisition, further analysis was implemented aimed at identifying the specific days for which SimSphere would be parameterised and validated for each experimental site. Initially, cloudy days were identified and eliminated from any further analysis. Judgement on which days (or time-periods) were cloud-free was based on the observation of  $R_g$  diurnal observation, where cloud-free days were flagged as those having smooth and symmetrical  $R_g$  curves, a property signifying clear-sky conditions (e.g. Carlson et al., 1991).

Subsequently, for the subset of cloud-free days, the Energy Balance Closure (EBC) was evaluated. EBC evaluation has been accepted as a valid method for accuracy assessment of turbulent fluxes derived from eddy covariance measurements (Wilson et al., 2002; Barr et al., 2006). Energy imbalance provides important information on how they should be compared with model simulations (e.g. Twine et al., 2000; Culf et al., 2002). In this study, EBC was principally evaluated by performing a regression analysis (e.g. see Wilson and Baldocchi, 2000; Wilson et al., 2002; Castellvi et al., 2006). The linear regression coefficients (slope and intercept) as well as the coefficient

- of determination ( $R^2$ ) were calculated from the Ordinary Least Squares (OLS) relationship between the 30 min estimates of the dependent flux variables (LE + *H*) and the independently derived available energy ( $R_{net} - G - S$ ). In addition to this, the Energy Balance Ratio (EBR) parameter was computed by cumulatively summing  $R_{net} - G - S$
- <sup>25</sup> and LE + *H* from the 30 min mean average surface energy flux components, and then rationing each of the cumulative sums as follows (e.g. Wilson et al., 2002 ; Liu et al.,



2006):

$$\mathsf{EBR} = \frac{\sum(\mathsf{LE} + H)}{\sum(R_{\mathsf{net}} - G - S)}$$

This index generally ranges from zero to one, with values closer to one highlighting a satisfactory diurnal energy closure, indicating a good quality of in situ measurements.

<sup>5</sup> All days with poor EBC (EBR < 0.75, slope < 0.85,  $R^2$  < 0.930) were excluded from further analysis.

Further conditions were subsequently employed to ensure that selected days were of the highest possible quality in terms of in situ data quality. Firstly, all days selected were within the same year to eliminate effects ascribed from inter-annual variability in
vegetation phenology or climatic conditions. Secondly, selected simulation days were assessed for atmospheric stable conditions, namely low wind speeds and low available energy (Maayar et al., 2001). Such conditions were identified by the evaluation of the in situ data, where direct measurements of wind speed and energy flux amplitude and diurnal trend were used as indicators of atmospherically stable conditions. As a result,
a final set of a total of 72 non-consecutive days from the different experimental sites were identified as being suitable for use in SimSphere validation.

## 4.2 Model parameterisation

SimSphere was parameterised to the daily conditions existent at the flux tower for each of the selected days. In situ data sets provided measurements of soil water content,
 temperature, wind speed, wind direction and atmospheric pressure at the corresponding time of initialisation, 06:00 LT. Ancillary parameters, critical for the models' initialisation, were largely acquired through either the sites respective Principal Investigator (PI) (for the case of OzFlux), or the FLUXNET database (for the case of AmeriFlux). Such measurements included detailed information on the vegetation (LAI, FVC, vegetation height, cuticle resistance), pedological (soil morphology and soil classification)





(1)

no ancillary information was available, specific parameters were acquired through the analysis of standard literature sources (e.g. Mascart et al., 1991; Carlson et al., 1991). The soil type parameters were obtained using the soil texture data provided at each FLUXNET test site and information supplied in some instances by the experimental site managers themselves. This was also the case for the topographical information required in model initialisation. Wind and water vapour sounding profiles which were attained at 06:00 GMT from the University of Wyoming database to correspond to the models' initialisation were also used in model parameterisation. Upon completion of its initialisation, the model was executed for each site/day forced by observations acquired from each site on which it had been parameterised. The 30' average value of each of the targeted model outputs per site for the period 05:30–23:30 LT was subsequently exported in SPSS to validate the model predictions.

#### 4.3 Model performance assessment

Due to a good database of reference data from the OzFlux and AmeriFlux networks, a multi-faceted validation of the model was feasible. The two datasets were compared using a series of statistical terms which included the Mean Bias Error (MBE, or bias – Eq. 2) and Mean Standard Deviation (MSD, or scatter – Eq. 3) of the observed and modelled values, the Root Mean Square Difference (RMSD) (Eq. 4), the Mean Absolute Difference (MAD) (Eq. 5) the linear regression fit model coefficient of determination ( $R^2$ ) (Eq. 6) and the Nash–Sutcliffe (1970) (denoted as Nash) index (Eq. 7):

Bias = MBE = 
$$\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$$
  
Scatter = MSD =  $\frac{1}{(N-1)} \sum_{i=1}^{N} (P_i - O_i - \overline{(P_i - O_i)})^2$   
RMSD =  $\sqrt{\text{bias}^2 + \text{scatter}^2}$   
2450



(2)

(3)

(4)

$$MAD = N^{-1} \sum_{i=1}^{N} |P_i - O_i|$$

$$R^2 = \left[ \sum_{i=1}^{N} \left( P_i - \overline{P} \right) \left( O_i - \overline{O} \right) \right] \left[ \sum_{i=1}^{N} (O_i - \overline{O})^2 \sum_{i=1}^{N} \left( P_i - \overline{O} \right)^2 \right]^{0.5} \right]^2$$

$$NASH = 1 - \left[ \frac{\sum_{i=1}^{N} (O_i - \overline{O})^2}{\sum_{i=1}^{N} (O_i - \overline{O})^2} \right]$$

*P* denotes the "predicted" values obtained from SimSphere and *O* denotes the "observed" values from the selected OzFlux and AmeriFlux site-days.

The utilisation of these statistics to characterise the quality of model simulations has been widely demonstrated in a number of previous studies comparing model outputs to observational networks (e.g. Alexandris and Kerkides, 2003; Marshall et al., 2013). All statistical metrics were computed from comparisons performed at identical 0.5 hourly

intervals between the two datasets for each day of comparison. In addition, these statistical parameters, where appropriate, were also computed for each site, providing a summary of the model predictions per experimental site.

## 5 Results

The main results from the SimSphere validation for each of the model predicted paramteters evaluated in this study are summarised in Tables 3 to 8. In addition, Figs. 4 to 9 provide a graphical illustration in the form of a scatterplot of the agreement between the simulated values and in situ measurements per parameter for all sites together. The detailed validation of the model performance is provided next.



(5)

(6)

(7)

## 5.1 Incoming shortwave radiation $(R_g)$

Simulation accuracy of  $R_g$  was largely accurate, exhibited by low RMSD and MAE values, and also high correlation coefficients (RMSD = 67.83 Wm<sup>-2</sup>, MAE = 46.43 Wm<sup>-2</sup>,  $R^2 = 0.97$ , NASH = 0.963) (Table 3 and Fig. 4). A moderate underestimation of the observed fluxes was also evident (MBE =  $-19.48 Wm^{-2}$ ). Although simulation accuracies were generally satisfactory, it should be noted that simulation of  $R_g$  by the model displayed both the highest mean error (RMSD = 67.83 Wm<sup>-2</sup>, MAE = 46.43 Wm<sup>-2</sup>), and also the highest variable range of RMSD on a per site basis of all the parameters (39.97 to 100.65 Wm<sup>-2</sup>). MSD similarly displayed a high range of values (36.57 to 83.36 Wm<sup>-2</sup>) when evaluated on a per site basis, showing to some extent a deficiency in the capability of the model to fully capture the land surface process. Notably, in contrast,  $R_g$  also yielded highest correlated results of all parameters assessed ( $R^2 = 0.971$ ). This was further illustrated in Fig. 4, where the distribution of points was mainly centred on the 1 : 1 line.

- <sup>15</sup> When analysing the results on a per site basis, the highest simulation accuracies were attained within the US\_MOZ deciduous broadleaf site in comparison to all other sites (MSD = 47.58 W m<sup>-2</sup>, RMSD = 50.36 W m<sup>-2</sup>, MAE = 36.57 W m<sup>-2</sup>,  $R^2$  = 0.981). However, the Howard Springs woody savannah site also attained comparable high simulation accuracies (MBE = 50.37 W m<sup>-2</sup>, RMSD = 52.53 W m<sup>-2</sup>, MAE = 33.79 W m<sup>-2</sup>,  $R^2$  = 0.981). The model predictions of  $R_g$  for the US\_WHS shrubland site was significantly lower, indicating weakest model performance within this site (RMSD = 100.65 W m<sup>-2</sup>,  $R^2$  = 0.964, MBE = -56.40 W m<sup>-2</sup>, MSD = 83.36 W m<sup>-2</sup>), closely followed by the Australian Calperum grazing pasture site (RMSD = 90.45 W m<sup>-2</sup>,  $R^2$  = 0.956, MBE = -40.42 W m<sup>-2</sup>, MSD = 80.91 W m<sup>-2</sup>). Within the majority of sites, model simulation consistently underestimated the in situ measurements (MBE = -4.85 W m<sup>-2</sup>)
- to  $56.40 \text{ W m}^{-2}$ ), with the US\_MOZ deciduous forest site being the only exception (MBE =  $16.47 \text{ W m}^{-2}$ ).



Evidently, accuracy of model estimations over the Australian sites generally increased for the period between February to June, with a significant decrease in accuracy from August to early February. For example, over the Calperum grazing pasture site, RMSD ranged from 24.14 to 53.78 Wm<sup>-2</sup> for all the test days located within <sup>5</sup> the period from 24 February 2011 to 24 April 2011. In contrast, for the same site, RMSD varied from 84.41 to 149.29 Wm<sup>-2</sup> for all the test days within the period between 22 July 2011 to 29 December 2011. Similar trends were observed for all other Australian sites, although some anomalies were present. In relation to the US sites the adverse was found; highest simulation accuracy were predominantly derived for the test days located during the period between October and late April. Generally the results for the US sites suggested that the conditions prevalent within the wet season (October to May) may have had an influence on model accuracy.

## 5.2 Net radiation (R<sub>net</sub>)

Table 4 and Fig. 5 indicate a high overall performance in the models' ability to accurately predict  $R_{net}$ , confirmed by the high simulation accuracy (RMSD = 58.69 W m<sup>-2</sup>, MAE =  $46.42 \text{ W m}^{-2}$  and  $R^2 = 0.96$ ) reported for all sites. Furthermore, comparisons of  $R_{net}$  for all days of simulation showed an average MSD of  $54.44 \text{ W m}^{-2}$ , indicating the model's capability to precisely represent the amplitude of the  $R_{net}$  flux, with low dispersion of variance from the in situ trends. This is also evidenced in Fig. 5 where the points within the scatterplot are closely distributed on the 1 : 1 line. MBE results indicated a moderate underestimation of the in situ measurements by the model ( $-16.49 \text{ W m}^{-2}$ ). The  $R_{net}$ results exhibited largely similar statistical agreement to those observed for those of the  $R_{a}$  parameter.

<sup>25</sup> Most noticeably, in correspondence with the  $R_g$  parameter results, the model showed <sup>25</sup> superior simulation accuracy within the Alice Springs mulga woodland site in comparison to the other land cover types, with the reported accuracies significantly above the overall average (RMSD = 33.90 W m<sup>-2</sup>,  $R^2$  = 0.988, MBE = -16.35 W m<sup>-2</sup>,



 $MSD = 29.69 \text{ Wm}^{-2}$ ,  $MAE = 26.25 \text{ Wm}^{-2}$ , NASH = 0.981). Moreover, the woody savannah site of Howard Springs again also exhibited high simulation accuracies  $(RMSD = 47.05 Wm^{-2}, R^2 = 0.974, MBE = 10.35 Wm^{-2}, MSD = 45.89 Wm^{-2}, MAE =$  $35.74 \text{ Wm}^{-2}$ , NASH = 0.972). Conversely, the model showed an inferior performance when simulating  $R_{net}$  within the US\_TON wooded savannah site. A systematic underestimations of  $R_{\rm net}$  was evident, leading to an overall satisfactory agreement between the model predictions and in situ observations (RMSD = 78.03 W m<sup>-2</sup>,  $R^2$  = 0.954.  $MBE = -46.10 \text{ Wm}^{-2}$ ,  $MSD = 62.96 \text{ Wm}^{-2}$ ). It should be noted that the accuracy of the model estimations on a per site basis did not correlate between both the  $R_{a}$  and R<sub>net</sub> parameter estimations, with only the US\_WHS shrubland site exhibiting weaker 10 simulation accuracies for both parameters. Notably, Howard Springs, an open wooded

savannah ecosystem, was the only site on which an overall overestimation of the in situ measurements by the model was reported (MBE =  $10.35 \text{ Wm}^{-2}$ ). For all other sites the model systematically underestimated  $R_{net}$  with negative MBE values in a range of -0.09 to -46.10 W m<sup>-2</sup>.

Evidently, as indicated by Table 4, trends in simulation accuracy dependent on test day were apparent. Although comparable; the trends were not as prominent as those exhibited for the R<sub>net</sub> parameter. Within the Australian sites, low RMSD was exhibited predominantly for the test days within the period of March to July, although some discrepancies were present during specific days. For example, the date of 23 March 2011

- 20 for the Alice Springs site indicated an RMSD of 62.14 Wm<sup>-2</sup>, with the 27 May 2011 simulation date for the Howard Springs site indicating an RMSD of 70.60 Wm<sup>-2</sup>. However, such anomalies were limited. Generally, for the US sites, highest RMSD was exhibited for the period concurrent to the wet season (October to April), with
- the highest error for a specific date exhibited for the 27 February 2011 US IB1 site 25  $(RMSD = 113.80 W m^{-2})$ , although again, anomalies in such trends were notable yet uncommon.



## 5.3 Latent heat (LE)

As presented in Table 5, lowest RMSD was reported for the LE parameter in comparison to all other parameters evaluated (RMSD =  $39.47 \text{ Wm}^{-2}$ ). This appraises the models' ability to accurately reproduce LE fluxes in numerous global ecosystems, both

<sup>5</sup> in terms of their seasonal and diurnal evolution. However, an average  $R^2$  value of 0.700 suggests a weaker representation of the LE trend in comparison to all other parameters, see Fig. 6. When averaged over all days and sites, LE was slightly overestimated; this is reported by an average MBE of 2.84 W m<sup>-2</sup>. However, this result was insignificant, indicating the models' capability to accurately report the trends in LE flux amplitude. Alongside this, the MSD values reported for LE were significantly lower than those reported for the  $R_{net}$ , H and  $R_{q}$  parameters.

The model showed excellent precision in reproducing daily trends of LE fluxes in most sites evaluated; this was evidenced for example by the low overall MSD value of 37.87 W m<sup>-2</sup> which was significantly lower than all other fluxes analysed in the present

- <sup>15</sup> study. When analysed on a site by site basis, in correspondence with the  $R_{net}$  parameter results, the Alice Springs mulga woodland site consistently yielded the highest statistical agreement between model predicted and observed values, with low error and high correlation results (RMSD = 24.75 W m<sup>-2</sup>,  $R^2$  = 0.827, MBE = 2.75 W m<sup>-2</sup>, MSD = 24.59 W m<sup>-2</sup>, MAE = 15.16 W m<sup>-2</sup>, NASH = 0.945). Notably, the US-Whs shrubland
- <sup>20</sup> site also exhibited comparably high accuracy. This was in contrast to the weaker agreement displayed for this site between the estimated and measured values for the  $R_g$  and  $R_{net}$  modelled parameters. Moreover, the deciduous broadleaf forest site, US\_MOZ, which exhibited greatest simulation accuracy for the  $R_g$  parameter, yielded less satisfactory simulation accuracy in comparison to all other sites (RMSD = 61.52 Wm<sup>-2</sup>, MAE = 42.02 Wm<sup>-2</sup>), with values exhibiting a high average MSD (55.92 Wm<sup>-2</sup>) and a general overestimation of LE (MBE = 22.65 Wm<sup>-2</sup>). Similar high MSD values were reported in the Howard Springs woody savannah site (MSD = 50.06 Wm<sup>-2</sup>) and the US\_IB1 cropland site (MSD = 52.47 Wm<sup>-2</sup>). Generally, each site exhibited a signifi-



cant range of MBE, from  $-11.49 \text{ Wm}^{-2}$  (US\_WHS) to 25.65 Wm<sup>-2</sup> (US\_MOZ), suggesting high variability between the partitioning of LE in each ecosystem. Peak LE flux values exhibited high inter-site variability, with both the US\_IB1 (cropland) and US\_MOZ (deciduous broadleaf forest) sites containing the highest LE flux peaks of 458.5 and 376 Wm<sup>-2</sup> respectively. In comparison, a maximum LE flux peak of just 143.7 Wm<sup>-2</sup> was reported for the US\_WHS (Shrubland) site, suggesting a substantial range of 314.8 Wm<sup>-2</sup> between lowest daily and maximum daily LE peak. Noticeably, trends in simulation accuracy dependent on test day were comparable to both the  $R_g$  and  $R_{\text{net}}$  parameter results, yet with lower inter-site variability in RMSD ranges.

## 10 5.4 Sensible heat (*H*)

15

SimSphere consistently showed a high ability to accurately simulate *H* fluxes in numerous ecosystems globally, with an average RMSD and  $R^2$  values of 55.06 W m<sup>-2</sup> and 0.829 respectively. Results were largely similar to that of the LE flux simulation accuracies, although model performance for the LE parameter outperformed that of the *H* flux for the majority of statistical metrics computed herein.

Average RMSD values ranged from 38.07 to 69.94 W m<sup>2</sup> (US\_VAR and US\_WHS) when analysed on a site by site basis. In addition,  $R^2$  values ranged from 0.73 (US\_IB1) to 0.94 (US\_VAR). The latter was suggestive that model predictions were in good to excellent agreement to the in situ measurements. The grassland site (US\_VAR) consistently showed superior model performance in comparison to all other sites, with values indicating an excellent agreement to the observed diurnal evolution (RMSD = 38.07 W m<sup>-2</sup>,  $R^2$  = 0.941, MBE = 13.82 W m<sup>-2</sup>, MSD = 33.48 W m<sup>-2</sup>, MAE = 28.35 W m<sup>-2</sup>, NASH = 0.930). MSD values reported for US\_VAR were 19.41 W m<sup>-2</sup> lower than the all site average, suggesting a systematically accurate representation of

 $_{25}$  *H* at this site. MSD values reported for *H* flux were directly comparable to the overall average MSD values reported for  $R_{\rm g}$  and  $R_{\rm net}$ , but were significantly higher than those reported for the LE parameter. Accuracy ranges for the simulated *H* fluxes for all other



sites exhibited comparable ranges (RMSD =  $50.39-69.94 \text{ Wm}^{-2}$ ). SimSphere was often unable to represent the peak of *H* fluxes across all sites; this is shown by the MSD of values represented in Fig. 7, which is most noticeable over the US\_WHS site where SimSphere showed inferior performance in simulating *H* flux trend and magnitude in

- <sup>5</sup> comparison to all other sites. Results for the US\_WHS site thus exhibited poor RMSD and MSD values (69.94 and 67.73 W m<sup>-2</sup> respectively), adverse to the high accuracies reported over this site for the LE parameter. In addition to this, the US\_IB1 (cropland) and US\_MOZ (deciduous broadleaf forest) sites demonstrated a significantly lower flux magnitude than other sites, with peak *H* flux values of just 307 and 278 W m<sup>-2</sup>
   <sup>10</sup> respectively. These peak fluxes were significantly lower compared to that of US\_WHS
- (shrubland) which had a peak H flux magnitude of 481 W m<sup>-2</sup>.

The trends in inter-site variability of RMSD dependent on simulation day were significantly less apparent for the *H* flux results in comparison to the three previous parameters ( $R_g$ ,  $R_{net}$  and LE). For the Australian sites, no significant trends were evident,

with generally comparable accuracy ranges for the specific test days including anomalistic days which exhibited significantly higher error ranges. For example, the Howard Springs woody savannah site indicated RMSD for the majority of simulation days ranging between 28.29 and 50.31 W m<sup>-2</sup> on a per test day basis, with the 13 April 2011 and 13 May 2011 days exhibiting an RMSD of 75.86 and 96.93 W m<sup>-2</sup> respectively. Similar inter-site variability was notable for the US sites.

#### 5.5 Air temperature $1.3 \text{ m} (T_{\text{air } 1.3 \text{ m}})$

SimSphere showed a high capability in simulating  $T_{air 1.3 m}$  with an average RMSD as low as 3.23 °C and relatively high  $R^2$  value of 0.843, see Table 7. Furthermore,  $T_{air 1.3 m}$  exhibited neither a consistent over or underestimation, with an overall average MBE of 0.28 °C. Simulation accuracy for  $T_{air 1.3 m}$  was relatively stable, with a low range of RMSD values reported over all sites. RMSD values ranged from 2.17 °C in the woodland savannah site of Howard Springs, and 4.74 °C in the graz-



ing pasture site of Calperum. Overall, agreement between the predictions and observations was greatest for the Howard springs site, with results confirming a high overall correlation to the observed diurnal evolution of  $T_{air 1.3 \text{ m}}$  (RMSD = 2.17 °C,  $R^2 = 0.792$ , MBE = 0.56 °C, MSD = 2.10 °C, MAE = 1.84 °C, NASH = 0.853). The deciduous broadleaf site of US MOZ also exhibited comparably high simulation accuracy (RMSD = 2.38 °C,  $R^2 = 0.928$ , MBE = 0.23 °C, MSD = 2.37 °C, MAE = 1.84 °C, NASH = 0.853). The Calperum site exhibited the weakest agreement of  $T_{air 1.3m}$  with an average RMSD 1.51 °C higher than the all site average. The  $R^2$  analysis further appraised the models ability to accurately simulate air temperature, with a range of values indicating high correlation between model predicted and observed  $T_{air 1.3 m}$  (0.74 to 10 0.93). MSD displayed a high range of values (2.1 to 3.76 °C), showing to some extent the inability of the model to consistently predict  $T_{air 1.3m}$  with a high level of precision. The trends in simulation accuracy dependent on test day were again insignificant for the  $T_{air 1.3m}$  parameter, exhibiting similar patterns to those indicated for the H flux parameter. 15

## 5.6 Air temperature 50 m ( $T_{air 50 m}$ )

As illustrated in Table 8 and Fig. 9, the model showed a slightly inferior performance in predicting  $T_{air 50 \text{ m}}$  (RMSD = 3.77 °C) when compared to  $T_{air 1.3 \text{ m}}$  (RMSD = 3.23 °C), with an average RMSD difference of 0.54 °C. A decrease in correlation between the predicted and observed values was also evident between both parameters, with a lower average  $R^2$  value of 0.775 compared to that of  $T_{air 1.3 \text{ m}}$  ( $R^2$  = 0.843). However, the values reported still showed a highly acceptable correlation between the modelled estimates and the in situ measurements, as indicated by an average NASH value of 0.825. Once averaged,  $T_{air 50 \text{ m}}$  exhibited a minor underestimation of -0.38 °C; however

the range of MBE reported between sites was significantly less (2.1 °C), suggesting a more consistent simulation of  $T_{air}$  at 50 m compared to at 1.3 m by SimSphere. In contrast, agreement between the simulated  $T_{air 50 m}$  and in situ measurements resulted



in a higher MSD than that reported for the  $T_{air 1.3 m}$  parameter, with the exception of the Howard Springs site. When analysed on a per site basis, notably, in correspondence with the  $T_{air 1.3 m}$  parameter, agreement between the estimated and measured values over both the Howard Springs and US\_MOZ sites exhibited highest simulation accuracy (RMSD = 2.04 and 2.85 °C respectively). Moreover, weakest agreement was reported over the Calperum site, again in correspondence with the results of the  $T_{air 1.3 m}$  parameter. No systematic trends were apparent in the inter-site variability of simulation accuracy dependent on test day.

## 6 Discussion

- <sup>10</sup> In this study the ability of the SimSphere SVAT model to accurately represent various heat and water exchanges within different global ecosystems was evaluated. A total of 72 days from year 2011 were selected from Australia and USA to validate the model's ability to predict Shortwave Incoming Radiation ( $R_g$ ), Net Radiation ( $R_{net}$ ), Latent Heat (LE), Sensible Heat (H), and Air temperature ( $T_{air}$ ) at a height of 1.3 and 50 m.
- <sup>15</sup> In overall, the model proved capable in predicting the diurnal variation of all parameters to a satisfactory level of accuracy. In particular, SimSphere demonstrated a promising ability to accurately simulate LE and *H* within all ecosystems, indicated by relatively high correlation values and low average prediction error for both parameters (Tables 6 and 7). Variable model performance was clearly evident when simulating
- <sup>20</sup> both the LE and *H* fluxes within contrasting land cover types. For example, as discussed, highest simulation accuracy was attained within the grassland study sites. In contrast, simulation accuracy within forested ecosystems was less satisfactory. The deciduous forest stand (US\_MOZ), with an average canopy height of 24.2 m, attained low simulation accuracy, and was outperformed by the mulga forested ecosystem (Alice
- Springs), characterised by a sparse canopy at a height of 6.5 m. Such results suggest that the increased complexity and heterogeneity of forested environments, particularly those with understory vegetation, can have profound effects on the overall exchange



of mass and energy which cannot be represented within the models parameterisation and hence can influence LE and *H* outputs. The partitioning of LE and *H* fluxes are also highly susceptible to a number of other factors. Small changes in the moisture availability, most particularly from the deep layer soil water content (SWC), can have a strong influence on the partitioning of the fluxes (Carlson and Lynn, 1991; Olioso et al., 2000), but also on the representativeness of the radiosonde data to the existent local conditions (Taconet et al., 1986). Taconet et al. (1986) found that an error of just ~ 2 °C in the sounding profile temperature can cause a variation of ~ 45 W m<sup>-2</sup> in the corresponding fluxes, most particularly so for *H* flux. As SimSphere was forced with surface moisture and root zone moisture availability data taken directly from the in situ data, as well as nearby representative sounding profiles, an accurate representation of the local apprications were attained. These highly influential parameters were thus con-

the local conditions were attained. These highly influential parameters were thus consistently represented within the models' parameterisation, providing a possible reason in part for the high simulation accuracies attained.

 $R_{g}$  was estimated by the model to a satisfactory level of accuracy, however overall, simulation accuracy was the weakest of all parameters evaluated (mean RMSD =  $67.82 \text{ Wm}^{-2}$ ). The weaker performance of the model in simulating this parameter can potentially be attributed to the variations in the soil temperature and moisture which has an indirect impact on  $R_{g}$  (Cui et al., 2009). However, a high  $R^{2}$  value of 0.971 reported for all days of analysis suggests that model predictions had excellent correlation to the observed dataset. This indicates that SimSphere was able to simulate the trend of  $R_{g}$  well, but not necessarily the amplitude. A possible reason for the underestimation of  $R_{g}$  by the model is perhaps linked to the solar transmission model and/or

the surface albedo calculation in the model, as has also been pointed out previously by Todhunter and Terjung (1978). Furthermore, previous sensitivity analysis studies undertaken upon the model confirm that  $R_g$  is significantly influenced by the sites aspect (Petropoulos et al., 2014). Therefore the lower simulation accuracy reported may partly be related to misrepresentation of the sites topographical characteristics. In the majority of the experimental sites a general underestimation of  $R_{net}$  was attained by



the model, which led to a mean RMSD and  $R^2$  value of 58.69 W m<sup>-2</sup> and 0.96 respectively. These results are also comparable to those reported in other analogous validation studies (Carlson and Boland, 1978; Todhunter and Terjung, 1987; Ross and Oke, 1988). Todhunter and Terjung (1987) compared predicted  $R_{net}$  from the model  $_{\rm 5}$  vs. corresponding  $R_{\rm net}$  values obtained from the literature from Los Angeles, USA, and showed both daytime and night time simulations to be in agreement within the range reported in the literature. Ross and Oke (1988) also confirmed the capability of the model in simulating the day-to-day variation of  $R_{net}$  for comparisons using eighteen cloud-free days over an urban area of Vancouver, B.C. in Canada. They reported an overall average RMSD error of 43 W m<sup>-2</sup> for comparisons of all cloud-free days, a minor 10 improvement on the RMSD of 58.69 Wm<sup>-2</sup> presented herein. Disparity in the results between this work and those studies could be the results of utilising model simulations over dissimilar land cover types, where it is largely accepted that  $R_{net}$  partitioning into LE and H fluxes is highly dependable on the vegetation and surface characteristics of the site (Olioso et al., 2000). Previous sensitivity analysis studies undertaken on 15

- SimSphere further confirm this observation (Petropoulos et al., 2014). Similarly to  $R_{g}$ , simulation accuracy of  $R_{net}$  was described by Ross and Oke (1988) to be a factor of long wave radiation, mainly the values of atmospheric and surface emissivities (which effect the surface temperature estimation). Increased representation of the surface op-
- tical properties and long wave radiation estimation of the model could greatly enhance simulation accuracy.

Overall simulation accuracies were lower for estimates of  $T_{air 50 m}$  compared to estimates of  $T_{air 1.3 m}$  in all but one site, Howard Springs. One possible explanation for this may be the fundamental problem that model estimates of  $T_{air 50 m}$  could only be validated against ancillary air temperature data obtained directly from the sites flux tower,

dated against ancillary air temperature data obtained directly from the sites flux tower, thus direct comparison specifically at 50 m could not be achieved. Similarly to the LE and *H* fluxes, variable simulation accuracies dependent on land cover types were also evident. Three sites: Calperum, US\_VAR and US\_IB1, all exhibit noticeably weaker simulation accuracies in comparison to the remaining sites. On further investigation,



all 3 sites show an ecosystem which is characterised by high inter-annual variability of vegetation phenology, such as vegetation height, leaf width, FVC etc. Modelled  $T_{air}$ peaked between 10:30 and 14:30 LT, displaying a slight lag in comparison to the in situ observations on some occasions. In instances where time-lag between the predicted and observed  $T_{air}$  comparisons is observed, such effects may be linked with 5 the energy storage in the vegetation and the air, something which is not taken into account in the SimSphere simulations. This may partly explain some of the inaccuracies reported for  $T_{air}$  estimation in Alice Springs and US\_MOZ as this effect is most important for forested sites. Carlson and Boland (1978) and Carlson et al. (1991) also described a similar "hysteresis" effect in comparisons which they performed for differ-10 ent vegetation canopies and environmental conditions (urban and rural environments). Carlson and Boland (1978) suggested thermal inertia to be related proportionally to an increase in the time lag between solar noon and the time of maximum H flux and  $T_{\rm s}$ , whereas Carlson et al. (1991) admitted that they were unable to practically explain this "hysteresis" trend. Through comprehensive sensitivity analysis studies undertaken 15 by Petropoulos et al. (2009b, 2013a-c, 2014), parameters closely associated to vege-

tation phenology have been previously outlined to have a highly influential control on air temperature magnitude and extent. Conversely, sites which show relatively stable vegetation phenology such as US\_TON (wooded savannah) exhibited more accurate temperature estimates. Furthermore, the air temperature of the site covered by the

- temperature estimates. Furthermore, the air temperature of the site covered by the dead forest had greater daily fluctuation compared to the stands covered by mature forest which generally had the smallest daily fluctuations. However, more studies are required in this direction in categorising the dead forest from mature forest, which is currently not possible in the given land cover database. As the SimSphere model as-
- <sup>25</sup> sumes a homogenous canopy layer, some discrepancies may also occur in the air temperature simulation, which seemed to be the case in the present study. Furthermore a very important point to consider in the overall interpretation of the results is that the model does not account for advective conditions which may be important when strong winds exist. Yet generally, the results obtained showied a significant improvement on



values reported in previous validation attempts (Carlson and Boland, 1978; Carlson et al., 1991), suggesting that air temperature at 1.3 and 50 m was well represented by the model.

- All in all, SimSphere demonstrated a high capability of simulating parameters associated with the Earth's energy balance. It is also apparent that the model fulfils 3 of Kramer et al.'s (2002) model assessment criteria, *namely accuracy, generality and realism* (see also Sect. 1). In regards to accuracy, no significant systematic prediction errors occurred within all of the fluxes analysed, with the exception of a consistent underestimation of *R*<sub>net</sub>. Additionally, simulated peak heat and water flux values were in high accordance with the in situ data, typically at 12:30–13:30 LST, with a slight lag for LE and *H* fluxes (13:00–14:00 LST). In terms of *generality*, the model has shown high levels of generality, with acceptable simulation accuracies attained in all sites validated.
- In order to improve the models generality, the inclusion of more forested environments would comprehensively assess the models applicability to different land cover types,
- <sup>15</sup> particularly heterogeneous forest stands where simulation accuracy tends to be lower. Finally, *realism* in the model has been most notable in the simulation of LE, *H* and  $T_{air}$  fluxes, where slight change in the vegetation phenology or SWC was accountable for characterising the diurnal evolution of fluxes in all sites validated.

The study conducted herein can advance our understanding of SimSphere's ability to simulate interactions between different components of the Earth system and related land surface processes. As no model is perfect some discrepancies between model predictions and measurements will always appear. Identification of these discrepancies are most interesting, because they can teach us more about causes of model uncertainties in the prediction of hydro-meteorological variables, and help us improve

the model structure and performance. Some large discrepancies between the simulated and observed datasets could be due to model parameterisation. Apart from environmental factors, tower flux instrumentation error, indicated by the presence of spike (too large or too small values) measurements in the datasets, can also affect the accuracy, even if model simulated results are in agreement with actual conditions. The



other possible reasons is the presence of spikes in the fluxes, observed particularly on the days of low agreement, which could have occurred from horizontal advection, footprint changes as well as a non-stationarity of turbulent regimes (Papale et al., 2006). Unfortunately, such conditions cannot be captured and replicated by SimSphere.

- <sup>5</sup> In overall, it is important to recognise that uncertainty is inevitable in any model as it will never be as complex as the reality it portrays. Thus, the model fulfills its objective as a tool to accurately monitor and simulate land surface interactions. It identifies the patterns of change, if not always the magnitudes, indicating its usefulness as either a stand-alone tool or in combination with remote sensing data, for example, through the implementation of the "triangle" inversion modelling approach. On this basis, vali-
- the implementation of the "triangle" inversion modelling approach. On this basis, validation efforts presented herein are particularly important for all applications related to data assimilation, where ensuring that all model outputs are in close coherence to the physical processes being modelled are imperative to the successful development of such applications.

#### 15 7 Concluding remarks

20

This study evaluated the ability of the SimSphere land biosphere model in predicting a number of parameters characterising land surface interactions for eight sites from the global terrestrial monitoring network, FLUXNET. A rigorous comparison was performed for 72 selected days in the year 2011. The main findings of this study are concluded as follows:

In overall, SimSphere estimates of instantaneous energy fluxes and air temperature showed good agreement in all ecosystems evaluated, apart from a minor underestimation of  $R_{\rm g}$  and  $R_{\rm net}$  (MBE = -19.48 and -16.49 W m<sup>-2</sup> respectively). Some ecosystems exhibited poorer simulation accuracies than others, most noticeably cropland (US\_IB1)

and grazing pasture (Calperum); whilst the woodland savannah (Howard Springs) and mulga woodland (Alice Springs) ecosystems both attained the highest overall simulation accuracies. Comparisons showed a good agreement between modelled and mea-



sured fluxes, especially for the days with smoothed daily flux trends. Very high values of the Nash–Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters.

The process of validating any physical model is imperative to understand its representation of real world scenarios. It helps to identify any deficiencies in the models' predictive ability and helps identify any possible sources of error and uncertainty associated with a model. To our knowledge, very few studies, if any, have acted to specifically validate SimSphere to numerous ecosystems in the USA and Australia. On this

- <sup>10</sup> Ically validate SimSphere to numerous ecosystems in the USA and Australia. On this basis, with the currently expanding use of the model as either a stand-alone research or educational tool, or for its synergy with EO data, its validation is not only timely, but essential. SimSphere, despite its inherent architectural limitations can be applied in the future for solving various theoretical and applied tasks. The model presents itself as an
- <sup>15</sup> important tool to acquire regional specific data, essential for numerous hydrological modelling, agriculture and water resource management applications. There is certainly room for further improvements to the model, in particular for developing it further in terms of its representation of the various physical processes characterising land surface interactions. This is a promising research direction on which future efforts should
- <sup>20</sup> be focused. The development of this model could further its use as a helpful tool for educators, students, policy decision makers and researchers of environmental sciences alike.

Acknowledgements. This research was conducted with the support of the European Commission under the Marie Curie Re-Integration Grant "TRANSFORM-EO" project. Authors gratefully acknowledge the funding body for their financial support. Authors would also like to extend

acknowledge the funding body for their financial support. Authors would also like to extend thank you to the PI's from the AmeriFlux and OzFlux networks for the data provision which made this study possible.



#### References

5

10

25

- Akkermans, T., Thiery, W., and Van Lipzig, N. P.: The regional climate impact of a realistic future deforestation scenario in the Congo Basin, J. Climate, 27, 2714–2734, 2014.
- Alexandris, S. and Kerkides., P.: New empirical formula for hourly estimations of reference evapotranspiration, Agr. Water Manage., 60, 157–180, 2003.
- Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175, 2000.
- Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H., and Nesic, Z.: Surface energy balance closure by the eddy covariance method above three boreal forest stands and implications for the measurement of the CO<sub>2</sub> flux, Agr. Forest Meteorol., 140, 322–337, 2006.

Battrick, B. and Herland, E. A.: The Changing Earth. New Scientific Challenges for ESA's Liv-

- <sup>15</sup> ing Planet Programme, ESA SP-1304, ESA, Publications Division, ESTC, the Netherlands, 2006.
  - Bellocchi, G., Rivington, M., Donatelli, M., and Matthews, K.: Validation of biophysical models: issues and methodologies, a review, Agron. Sustain. Dev., 30, 109–130, 2010.
    Budyko, M. I.: The heat balance of the Earth's surface, Sov. Geogr., 2, 3–13, 1961.

<sup>20</sup> Calperum Mallee SuperSite, Terrestrial Ecosystem Research Network: available at: http://www.

tern-supersites.net.au/index.php/calperum, last access: 26 November 2014. Carlson, T. N.: An overview of the "triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery, Sensors, 7, 1612–1629, 2007.

Carlson, T. N. and Boland, F. E.: Analysis of urban-rural canopy using a surface heat flux/temperature model, J. Appl. Meteorol., 17, 998–1013, 1978.

Carlson, T. N. and Lynn, B.: The effects of plant water storage on transpiration and radiometric surface temperature, Agr. Forest Meteorol., 57, 171–186, 1991.

Carlson, T. N., Dodd, J. K., Benjamin, S. G., and Cooper, J. N.: Satellite estimation of the surface energy balance, moisture availability and thermal inertia, J. Appl. Meteorol., 20, 6–87, 1981.

<sup>30</sup> Castellvi, F., Martinez-Cob, A., and Perez-Coveta, O.: Estimating sensible and latent heat fluxes over rice using surface renewal, Agr. Forest Meteorol., 139, 164–169, 2006.



Chauhan, N. S., Miller, S., and Ardanuy, P.: Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach, Int. J. Remote Sens., 22, 4599–4646, 2003.

Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic-properties, Water Resour. Res., 14, 601–604, 1978.

<sup>5</sup> Water Resour. Res., 14, 601–604, 1978. Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, 1984.

Coudert, B., Ottlé, C., and Briottet, X.: Monitoring land surface processes with thermal infrared

- data: calibration of SVAT parameters based on the optimisation of diurnal surface temperature cycling features, Remote Sens. Environ., 112, 872–887, 2008.
  - Cui, X. and Graf, H. F.: Recent land cover changes on the Tibetan Plateau: a review, Climatic Change, 94, 47–61, 2009.

Culf, A. D., Folken, T., and Gash., J. H. C.: The energy balance closure problem, in: Vegetation, Water, Humans and the Climate. Springer-Verlag. Berlin, 159–166, 2002.

Water, Humans and the Climate, Springer-Verlag, Berlin, 159–166, 2002.
 Deardorff, J. W.: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res.-Oceans, 83, 1889–1903, 1978.

Dickinson, R. E. and Henderson-Sellers, A.: Modelling tropical deforestation: a study of GCM land-surface parametrizations, Q. J. Roy. Meteor. Soc., 114, 439–462, 1988.

European Space Agency: Support to Science Element, a Pathfinder for Innovation in Earth Observation, ESA, available at: http://due.esrin.esa.int/stse/files/document/STSE\_report\_ 121016.pdf (last access: 10 July 2014), 2012.

Fermi Agricultural Full Site Info, AmeriFlux, available at: http://ameriflux.ornl.gov/fullsiteinfo. php?sid=46, last access: 26 November 2014.

- <sup>25</sup> Fermi National Accelerator Laboratory (Agricultural site), FLUXNET, available at: http:// fluxnet.ornl.gov/site/899, last access: 26 November 2014.
  - Gillies, R. R.: Aphysically-Based Land Use Classification Scheme Using Remote Solar and Thermal Infrared Measurements Suitable for Describing Urbanisation, PhD Thesis, University of Newcastle, UK, 121 pp., 1993.
- Gillies, R. R., Kustas, W. P., and Humes, K. S.: A verification of the "triangle" method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e, Int. J. Remote Sens., 18, 3145–3166, 1997.



- Granz, D., Zhang, X., and Carlson., T. N.: Observations and model simulations link stomatal inhabitation to impaired hydraulic conductance following ozone exposure in cotton, Plant Cell Environ., 22, 1201–1210, 1999.
- Hamilton, M. A.: Model validation: an annotated bibliography, Commun. Stat. Theory., 20, 2207–2266, 1991.
- Hsu, M. H., Kuo, A. Y., Kuo, J. T., and Liu, W. C.: Procedure to calibrate and verify numerical models of estuarine hydrodynamics, J. Hydraul. Eng.-ASCE, 125, 166–182, 1999.
- Huth, N. and Holzworth, D.: Common sense in model testing, in: Proc. MODSIM 2005 International Congress on Modelling and Simulation: Advances and Applications for Management
- and Decision Making, Melbourne, Australia, 12–15 December, edited by: Zerger, A. and Argent, R. M., 2804–2809, 2005.
  - Kramer, K., Leinonen, I., Bartelink, H., Berbigier, P., Borgnetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, A., Granier, A., Grunwald, T., Hari, P., Jans, W., Kel-Iomaki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., Mohren, G. M., Moors, E.,
- Nissenen, A., Peltola, H., Sabate, S., Sanchez, A., Sontag, M., Valentini, R., and, Vesala., T.: Evaluation of six-process-based forest growth models using eddy-covariance measurements of CO<sub>2</sub> and H<sub>2</sub>O fluxes at six forest sites in Europe, Glob. Change Biol., 8, 213–230, 2002. Koirala, S., Yeh, P. J. F., Hirabayashi, Y., Kanae, S., and Oki, T.: Global-scale land surface hydrologic modelling with the representation of water table dynamics, J. Geophys. Res.-

<sup>20</sup> Atmos., 119, 75–89, 2014.

5

25

- Liu, Y., Hiyama, T., and Yamaguchi, Y.: Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area, Remote. Sens. Environ., 105, 115–128, 2006.
- Lucky Hills Shrubland Full Site Info, AmeriFlux, available at: http://ameriflux.ornl.gov/fullsiteinfo. php?sid=216, last access: 26 November 2014.
- Lynn, B. H. and Carlson, T. N.: A stomatal resistance model illustrating plant vs. external control of transpiration, Agr. Forest Meteorol., 52, 5–43, 1990.
- Maayar, M., Price, D. T., Delire, C., Foley, J. A., Black, T. A., and Bessemoulin, P.: Validation of the integrated biosphere simulator over Canadian deciduous and coniferous boreal forest
- <sup>30</sup> stands, J. Geophys. Res.-Atmos., 106, 14339–14355, 2001.
  - Manabe, S.: Climate and the ocean circulation 1: I. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Weather Rev., 97, 739–774, 1969.



- Marshall, M., Tu, K., Funk, C., Michaelsen, J., Williams, P., Williams, C., Ardö, J., Boucher, M., Cappelaere, B., de Grandcourt, A., Nickless, A., Nouvellon, Y., Scholes, R., and Kutsch, W.: Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach, Hydrol. Earth Syst. Sci., 17, 1079–1091, doi:10.5194/hess-17-1079-2013, 2013.
- Mascart, P., Taconet, O., Pinty, J. P., and Mehrez, M. B.: Canopy resistance formulation and its effect in mesoscale models: a HAPEX perspective, Agr. Forest Meteorol., 54, 319–351, 1991.

10

25

Missouri Ozark Full Site Info, AmeriFlux, available at: http://ameriflux.ornl.gov/fullsiteinfo.php? sid=64. last access: 26 November 2014.

- Monin, A. S. and Obukhov, A.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163–187, 1954.
- Monitoring Sites Alice Springs, OzFlux, available at: http://www.ozflux.org.au/monitoringsites/ alicesprings/index.html#intro, last access: 26 November 2014.
- <sup>15</sup> Monitoring Sites Calperum, OzFlux, available at: http://www.ozflux.org.au/monitoringsites/ calperum/calperum\_description.html, last access: 26 November 2014.
  - Monitoring Sites Howard Springs, OzFlux, available at: http://www.ozflux.org.au/ monitoringsites/howardsprings/howardsprings\_description.html, last access: 26 November 2014.
- Nash, J. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I A discussion of principles, J. Hydrol., 10, 282–290, 1970.
  - Olchev, A., Ibrom, A., Ross, T., Falk, U., Rakkibu, G., Radler, K., Grotea, S., Kreileina, H., and Gravenhorst, G.: A modelling approach for simulation of water and carbon dioxide exchange between multi-species tropical rain forest and the atmosphere, Ecol. Modell., 212, 122–130, 2008.
  - Olioso, A., Carlson, T. N., and Brisson., N.: Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop, Agr. Forest Meteorol., 81, 41–59, 1996.
  - Olioso, A., Braud, I., Chanzy, A., Courault, D., Demarty, J., Kergoat, L., and Wigneron, J. P.: SVAT modeling over the Alpilles-ReSeDA experiment: comparing SVAT models over wheat
- <sup>30</sup> fields, Agronomie-Sciences des Productions Vegetales et de l'Environnement, 22, 651–668, 2002.
  - Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net



Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, doi:10.5194/bg-3-571-2006, 2006.

- Pedinotti, V.: The SWOT Satellite Mission: Contribution of the Large Swath Altimetry for Improving the Hydrological and Hydrodynamic Processes of a Large Scale Model, PhD thesis, Institut National Polytechnique de Toulouse, France, 2013.
- Petropoulos, G. and Carlson, T. N.: Retrievals of turbulent heat fluxes and soil moisture content by remote sensing, in: Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, Taylor and Francis, Boca Raton, FL, USA, 556, 667–502, 2011.
- Petropoulos, G., Carlson, T., and Wooster, M. J.: An overview of the use of the SimSphere Soil
- Vegetation Atmospheric Transfer (SVAT) model for the study of land atmosphere interactions, 10 Sensors, 9, 4286-4308, 2009a.
  - Petropoulos, G., Wooster, M. J., Kennedy, K., Carlson, T. N., and Scholze, M.: A global sensitivity analysis study of the 1d SimSphere SVAT model using the GEM SA software, Ecol. Model., 220, 2427-2440, 2009b.
- Petropoulos, G. P., Griffiths, H. M., and Tarantola, S.: Towards operational products develop-15 ment from Earth observation: exploration of SimSphere land surface process model sensitivity using a GSA approach, in: 7th International Conference on Sensitivity Analysis of 25 Model Output, Nice, France, 1-4 July 2013, 2013a.

Petropoulos, G., Griffiths, H. M., and Ioannou-Katidis, P.: Sensitivity exploration of SimSphere

land surface model towards its use for operational products development from Earth obser-20 vation data, Chapter 14, in: Advancement in Remote Sensing for Environmental Applications, edited by: Mukherjee, S., Gupta, M., Srivastava, P. K., and Islam, T., Springer International Publishing, Cham, Switzerland, 35–56, 2013b.

Petropoulos, G. P., Griffiths, H., and Tarantola, S.: Sensitivity analysis of the SimSphere SVAT

- model in the context of EO-based operational products development, Environ. Modell. Softw., 25 49, 166-179, 2013c.
  - Petropoulos, G. P., Konstas, I., and Carlson, T. N.: Automation of SimSphere Land Surface Model Use as a standalone application and integration with EO data for deriving key land surface parameters, in: European Geosciences Union, Vienna, Austria, 7-12 April 2013, p. 14162, 2013d.
- 30

5

Petropoulos, G. P., Griffiths, H., Dorigo, W., Xaver, A., and Gruber, A.: Surface soil moisture estimation: significance, controls and conventional measurement techniques, in: Remote Sens-



ing of Energy Fluxes and Soil Moisture Content, edited by: Petropoulos, G. P., Taylor and Francis, ISBN: 978-1-4665-0578, 29–48, 2013e.

- Petropoulos, G. P., Griffiths, H. M., Carlson, T. N., Ioannou-Katidis, P., and Holt, T.: SimSphere model sensitivity analysis towards establishing its use for deriving key parameters character-
- <sup>5</sup> ising land surface interactions, Geosci. Model Dev., 7, 1873–1887, doi:10.5194/gmd-7-1873-2014, 2014.
  - Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rudiger, C., Kerr, Y. H., and Walker, J.: Downscaling SMOS-derived soil moisture using MODIS visible/infrared data, IEEE T. Geosci. Remote Se., 49, 3156–3166, 2011.
- Prentice, I. C., Liang, X., Medlyn, B. E., and Wang, Y.-P.: Reliable, robust and realistic: the three R's of next-generation land surface modelling, Atmos. Chem. Phys. Discuss., 14, 24811– 24861, doi:10.5194/acpd-14-24811-2014, 2014.
  - Ridler, M. E., Sandholt, I., Butts, M., Lerer, S., Mougin, E., Timouk, F., Kergoat, L., and Madsen, H.: Calibrating a soil-vegetation-atmosphere transfer model with remote sensing esti-
- <sup>15</sup> mates of surface temperature and soil surface moisture in a semi-arid environment, J. Hydrol., 436, 1–12, 2012.
  - Rosolem, R., Gupta, H. V., Shuttleworth, W. J., Gonçalves, L. G. G., and Zeng, X.: Towards a comprehensive approach to parameter estimation in land surface parameterization schemes, Hydrol. Process., 27, 2075–2097, 2013.
- Ross, S. L. and Oke, T. R.: Tests of three urban energy balance models, Bound.-Lay. Meteorol., 44, 73–96, 1988.
  - Second Space for Hydrology Workshop, European Space Agency (ESA): available at: http://earth.esa.int/hydrospace07/, last access: 16 December 2014.
- Sellers, P. J., Mintz, Y. C. S. Y., Sud, Y. E. A., and Dalcher, A.: A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 505–531, 1986.
- Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A.: Modelling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275, 502–509, 1997.
- <sup>30</sup> Sheikh, V., Visser, S., and Stroosnijder, L.: A simple model to predict soil moisture: Bridging Event and Continuous Hydrological (BEACH) modelling, Environ. Modell. Softw., 24, 542– 556, 2009.



- Stoyanova, J. S. and Georgiev, C. G.: SVAT modelling in support to flood risk assessment in Bulgaria, Atmos. Res., 123, 384–399, 2013.
- Taconet, O., Carlson, T., Bernard, R., and Vidal-Madjar, D.: Evaluation of a surface/vegetation parameterisation using satellite measurements of surface temperature, J. Clim. Appl. Meteorol., 25, 1752–1767, 1986.
- Todhunter, P. E. and Terjung, W. H.: Intercomparison of three urban climate models, Bound.-Lay. Meteorol., 42, 181–205, 1987.

- Tonzi Ranch Full Site Info, AmeriFlux, available at: http://ameriflux.ornl.gov/fullsiteinfo.php?sid= 29, last access: 26 November 2014.
- Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P., Meyers, T. P., Prueger, J. H., Tarks, P. J., and Wesley, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, 2000.
  - Vaira Ranch Full Site Info, AmeriFlux, available at: http://ameriflux.ornl.gov/fullsiteinfo.php?sid= 30, last access: 26 November 2014.
- <sup>15</sup> Verbeeck, H., Samson, R., Granier, A., Montpied, P., and Lemeur, R.: Multi-year model analysis of GPP in a temperate beech forest in France, Ecol. Model., 210, 85–109, 2008.
  - Wallach, D.: Evaluating crop models, in: Working with Dynamic Crop Models, edited by: Wallach, D., Makowski, D., and Jones, J. W., Elsevier, Amsterdam, the Netherlands, 11–53, 2006.
- <sup>20</sup> Walnut Gulch Experimental Watershed, USDA, available at: http://ars.usda.gov/PandP/docs. htm?docid=10978&page=2, last access: 26 November 2014.
  - Wilson, K. B. and Baldocchi, D. D.: Seasonal and inter-annual variability of energy fluxes over a broadleaved temperate deciduous forest in North America, Agr. Forest Meteorol., 100, 1–18, 2000.
- <sup>25</sup> Wilson, K., Carlson, T., and Bunce, J. A.: Feedback significantly influences the simulated effect of CO<sub>2</sub> on seasonal evapotranspiration from two agricultural species, Glob. Change Biol., 5, 903–917, 1999.
  - Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243, 2002.



**Table 1.** Summary of the main SimSphere inputs. The units of each of the model inputs are also provided in parentheses where applicable.

| Name of the model input                                     | Process in which parameter | Min   | Max   |
|-------------------------------------------------------------|----------------------------|-------|-------|
|                                                             |                            | value | value |
|                                                             |                            | 0     | 45    |
| Aspect (degrees)                                            | TIME and LOCATION          | 0     | 360   |
| Station Height (meters)                                     | TIME and LOCATION          | 0     | 4.92  |
| Fractional vegetation Cover (%)                             | VEGETATION                 | 0     | 100   |
| LAI (m <sup>2</sup> m <sup>-2</sup> )                       | VEGETATION                 | 0     | 10    |
| Foliage emissivity (unitless)                               | VEGETATION                 | 0.951 | 0.990 |
| [Ca] (external [CO <sub>2</sub> ] in the leaf) (ppmv)       | VEGETATION                 | 250   | 710   |
| [Ci] (internal [CO <sub>2</sub> ] in the leaf) (ppmv)       | VEGETATION                 | 110   | 400   |
| [O3] (ozone concentration in the air) (ppmv)                | VEGETATION                 | 0.0   | 0.25  |
| Vegetation height (meters)                                  | VEGETATION                 | 0.021 | 20.0  |
| Leaf width (meters)                                         | VEGETATION                 | 0.012 | 1.0   |
| Minimum Stomatal Resistance (sm <sup>-1</sup> )             | PLANT                      | 10    | 500   |
| Cuticle Resistance (sm <sup>-1</sup> )                      | PLANT                      | 200   | 2000  |
| Critical leaf water potential (bar)                         | PLANT                      | -30   | -5    |
| Critical solar parameter ( $W m^{-2}$ )                     | PLANT                      | 25    | 300   |
| Stem resistance (sm <sup>-1</sup> )                         | PLANT                      | 0.011 | 0.150 |
| Surface Moisture Availability (vol vol <sup>-1</sup> )      | HYDROLOGICAL               | 0     | 1     |
| Root Zone Moisture Availability (volvol <sup>-1</sup> )     | HYDROLOGICAL               | 0     | 1     |
| Substrate Max. Volum. Water Content (volvol <sup>-1</sup> ) | HYDROLOGICAL               | 0.01  | 1     |
| Substrate climatol. mean temperature (°C)                   | SURFACE                    | 20    | 30    |
| Thermal inertia (Wm <sup>-2</sup> K <sup>-1</sup> )         | SURFACE                    | 3.5   | 30    |
| Ground emissivity (unitless)                                | SURFACE                    | 0.951 | 0.980 |
| Atmospheric Precipitable water (cm)                         | METEOROLOGICAL             | 0.05  | 5     |
| Surface roughness (meters)                                  | METEOROLOGICAL             | 0.02  | 2.0   |
| Obstacle height (meters)                                    | METEOROLOGICAL             | 0.02  | 2.0   |
| Fractional Cloud Cover (%)                                  | METEOROLOGICAL             | 1     | 10    |
| RKS (satur. thermal conduct.) (Cosby et al., 1984)          | SOIL                       | 0     | 10    |
| Cosby B (see Cosby et al., 1984)                            | SOIL                       | 2.    | 12.   |
| THM (satur. vol. water cont.) (Cosby et al., 1984)          | SOIL                       | 0.3   | 0.5   |
| PSI (satur. water potential) (Cosby et al., 1984)           | SOIL                       | 1     | 7     |
| Wind direction (degrees)                                    | WIND SOUNDING PROFILE      |       | 360   |
| Wind speed (knots)                                          | WIND SOUNDING PROFILE      | -     | -     |
| Altitude (1000's feet)                                      | WIND SOUNDING PROFILE      | -     | -     |
| Pressure (mBar)                                             | MOISTURE SOUNDING PROFILE  | -     | -     |
| Temperature (Celsius)                                       | MOISTURE SOUNDING PROFILE  | -     | -     |
| Temperature – Dewpoint Temperature (Celsius)                | MOISTURE SOUNDING PROFILE  | -     | -     |

**GMDD** 8, 2437-2495, 2015 Validating a 1-D SVAT model G. P. Petropoulos et al. Title Page Abstract Introduction Conclusions References Tables Figures I. ►I. < Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

**Discussion** Paper

**Discussion** Paper

**Discussion** Paper

**Discussion** Paper

| Printer-friendly Version         Printer-friendly Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Discussion Pap | <b>GM</b><br>8, 2437–2       | I <b>DD</b><br>495, 2015   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|----------------------------|
| G. P. Petropoulos et al.          Title Page         Abstract       Introduction         Conclusions       References         Tables       Figures         I<       ►I         Back       Close         Full Screen / Esc       Printer-friently Version         Interactive Discussion       Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er             | Validating<br>mo             | a 1-D SVAT<br>del          |
| Abstract Introduction<br>Conclusions References<br>Tables Figures<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Discussic      | G. P. Petrop                 | ooulos et al.              |
| Abstract       Introduction         Conclusions       References         Tables       Figures         I▲       ▶I         Back       Close         Full Screen / Esc       Printer-friently Version         Interactive Discussion       Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n P            | Title                        | Page                       |
| Conclusions       References         Tables       Figures         Tables       Figures         I       ►I         I       ►I         Back       Close         Full Screen / Esc       Printer-friendly Version         Interactive Discussion       Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ape            | Abstract                     | Introduction               |
| Tables       Figures         I       ►I         I       ►I         Back       Close         Full Screen / Esc       Printer-friendly Version         Interactive Discussion       Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Conclusions                  | References                 |
| Cussion Paper I ► I<br>Back Close<br>Full Screen / Esc<br>Printer-friendly Version<br>Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dis            | Tables                       | Figures                    |
| Image: Second state stat | cuss           | 14                           | ►I.                        |
| Back     Close       Full Screen / Esc       Discussion       Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ion F          | •                            | •                          |
| Full Screen / Esc       Discussion       Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Daper          | Back                         | Close                      |
| Discussion<br>Interactive Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Full Scre                    | een / Esc                  |
| D BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discussion Pap | Printer-frier<br>Interactive | ndly Version<br>Discussion |

#### Table 2. Site descriptions of chosen sites.

| Site Name                | Site<br>Abbreviation | Country   | Geographic<br>Location | PFT | Ecosystem<br>Type      | Dominant<br>Species                                                | Elevation | Climate                                                           |
|--------------------------|----------------------|-----------|------------------------|-----|------------------------|--------------------------------------------------------------------|-----------|-------------------------------------------------------------------|
| Alice Springs            | -                    | Australia | -22.283/133.249        | MWO | Mulga Woodland         | Acacia aneura                                                      | 606 m     | Desert: hot and<br>dry summers and<br>cold winters                |
| Calperum                 | -                    | Australia | -34.003/140.588        | PAS | Grazing Pasture        | Eucalyptus stricta                                                 | 200 m     | Subtropical dry<br>summer                                         |
| Howard Springs           | -                    | Australia | -12.495/131.15         | WSV | Woody Savannah         | Eucalyptus<br>miniata and Eucalyptus<br>tentrodonata               | 64 m      | Tropical wet and<br>dry: hot and humid<br>summers                 |
| Vaira Ranch              | US_VAR               | USA       | 38.406/-120.950        | GRA | Grassland              | Brachypodium distachyon,<br>Hypochaeris glabr,<br>Trifolium dubium | 129 m     | Mediterranean: hot<br>and dry summers,<br>wet and cold<br>winters |
| Missouri Ozark           | US_MOZ               | USA       | 38.7441/-92.200        | DBL | Deciduous<br>Broadleaf | Quercus alba, Quercus<br>velutina, Carya ovata                     | 219 m     | Temperate<br>continental                                          |
| Fermi Agricultural       | US_IB1               | USA       | 41.8593/-88.2227       | CRO | Cropland               | Soybean (C3)                                                       | 225 m     | Wet and hot<br>summers and mild<br>winters                        |
| Tonzi Ranch              | US_TON               | USA       | 38.4316/-120.9660      | WSV | Woody Savannah         | Quercus douglasii, Pinus<br>sabiniana, Brachypodium<br>distachyon  | 169 m     | Mediterranean: hot<br>and dry summers,<br>wet and cold<br>winters |
| Lucky Hills<br>Shrubland | US_WHS               | USA       | 31.7438/-110.0522      | SHR | Shrubland              | Larrea tridentate, Acacia<br>constricta, Flourensia<br>cernua      | 1372 m    | Semi-Arid                                                         |

**Discussion** Paper **GMDD** 8, 2437-2495, 2015 Validating a 1-D SVAT model G. P. Petropoulos et al. **Discussion Paper** Title Page Abstract Introduction Conclusions References Tables Figures **Discussion Paper** Þ١ **I**◀ Back Close Full Screen / Esc **Discussion Paper** Printer-friendly Version Interactive Discussion

**Table 3.** Daily simulation accuracy and average site simulation accuracy for  $R_g$  fluxes. Bias, scatter, RMSD and MAE are expressed in Wm<sup>-2</sup>. NASH index is unitless.

|                |             |          | Sta     | tistical Test |         |       |
|----------------|-------------|----------|---------|---------------|---------|-------|
| Location       | Date        | Bias     | Scatter | RMSD          | MAE     | NASH  |
| Alice Springs  | 23 Mar 2011 | -5.530   | 33.379  | 33.834        | 24.735  | 0.998 |
|                | 15 Apr 2011 | 13.560   | 28.838  | 31.867        | 19.104  | 0.956 |
|                | 23 Apr 2011 | 3.956    | 29.619  | 29.882        | 19.365  | 0.974 |
|                | 10 May 2011 | 1.817    | 20.403  | 20.483        | 13.407  | 0.979 |
|                | 24 May 2011 | -16.473  | 25.452  | 30.318        | 20.285  | 0.924 |
|                | 31 May 2011 | -13.523  | 21.885  | 25.726        | 17.083  | 0.996 |
|                | 18 Jun 2011 | -26.928  | 32.748  | 42.397        | 28.033  | 0.949 |
|                | 25 Jun 2011 | -35.779  | 39.466  | 53.270        | 35.838  | 0.993 |
|                | 18 Jul 2011 | -34.001  | 33.934  | 48.038        | 34.001  | 1.000 |
|                | 20 Aug 2011 | -48.375  | 40.444  | 63.055        | 48.375  | 0.975 |
|                | Average     | -19.480  | 62.362  | 67.825        | 46.286  | 0.974 |
| Calperum       | 24 Feb 2011 | 9.675    | 23.062  | 25.009        | 19.077  | 0.994 |
|                | 2 Mar 2011  | 8.408    | 22.628  | 24.139        | 18.314  | 0.979 |
|                | 31 Mar 2011 | 30.482   | 28.252  | 41.561        | 30.482  | 0.986 |
|                | 24 Apr 2011 | 41.932   | 33.666  | 53.775        | 41.932  | 0.975 |
|                | 22 Jul 2011 | -58.276  | 61.061  | 84.407        | 60.624  | 0.978 |
|                | 28 Jul 2011 | -67.865  | 71.010  | 98.224        | 70.950  | 0.974 |
|                | 28 Aug 2011 | -108.134 | 102.924 | 149.286       | 110.484 | 0.889 |
|                | 1 Dec 2011  | -110.334 | 75.487  | 133.685       | 112.586 | 0.899 |
|                | 23 Dec 2011 | -76.000  | 62.661  | 98.501        | 78.332  | 0.978 |
|                | 29 Dec 2011 | -74.103  | 62.080  | 96.670        | 76.348  | 0.991 |
|                | Average     | -40.421  | 80.911  | 90.446        | 61.913  | 0.964 |
| Howard Springs | 18 Apr 2011 | 18.241   | 20.763  | 27.637        | 18.784  | 0.975 |
|                | 23 Apr 2011 | 7.810    | 15.149  | 17.044        | 11.637  | 0.978 |
|                | 13 May 2011 | -0.928   | 20.238  | 20.259        | 15.108  | 0.989 |
|                | 27 May 2011 | 24.470   | 29.618  | 38.419        | 25.104  | 0.978 |
|                | 3 Jun 2011  | -8.373   | 34.642  | 35.640        | 27.598  | 0.935 |
|                | 14 Jun 2011 | -20.948  | 43.618  | 48.387        | 35.502  | 0.974 |
|                | 22 Jun 2011 | -15.483  | 42.380  | 45.120        | 33.863  | 0.976 |
|                | 22 Jul 2011 | -37.300  | 56.845  | 67.990        | 48.955  | 0.982 |
|                | 28 Jul 2011 | -63.827  | 69.493  | 94.356        | 67.300  | 0.989 |
|                | 27 Sep 2011 | -52.796  | 51.872  | 74.014        | 54.038  | 0.979 |
|                | Average     | -14.913  | 50.367  | 52.528        | 33.789  | 0.976 |
| US_MOZ         | 28 Jun 2011 | -48.127  | 51.404  | 70.417        | 59.862  | 0.976 |
|                | 1 Aug 2011  | -5.549   | 34.912  | 35.350        | 24.808  | 0.976 |
|                | 18 Aug 2011 | -2.574   | 35.531  | 35.625        | 27.927  | 0.991 |
|                | 31 Aug 2011 | 42.462   | 42.043  | 59.755        | 42.462  | 0.974 |
|                | 1 Sep 2011  | 34.475   | 30.616  | 46.107        | 34.475  | 0.978 |
|                | 7 Sep 2011  | 4.829    | 41.094  | 41.377        | 30.595  | 0.987 |
|                | 12 Sep 2011 | 16.178   | 33.508  | 37.209        | 24.666  | 0.969 |
|                | 30 Sep 2011 | 29.144   | 34.415  | 45.098        | 29.218  | 0.988 |
|                | 29 Sep 2011 | 42.099   | 34.044  | 54.142        | 42.099  | 0.978 |
|                | 11 Nov 2011 | 48.522   | 44.135  | 65.592        | 48.522  | 0.972 |
|                | Average     | 16.496   | 47.582  | 50.360        | 36.570  | 0.979 |

#### Table 3. Continued.

|          |               |          | Sta     | tistical Test | t       |       |
|----------|---------------|----------|---------|---------------|---------|-------|
| Locatio  | n Date        | Bias     | Scatter | RMSD          | MAE     | NASH  |
| US_IB1   | 1 30 May 2011 | -70.936  | 67.440  | 97.878        | 70.936  | 0.939 |
|          | 7 Jun 2011    | -64.456  | 68.097  | 93.764        | 65.039  | 0.898 |
|          | 28 Jun 2011   | -69.642  | 69.189  | 98.169        | 72.247  | 0.899 |
|          | 8 Jul 2011    | -55.803  | 74.499  | 93.081        | 67.981  | 0.937 |
|          | 24 Aug 2011   | 7.956    | 56.423  | 56.982        | 38.417  | 0.986 |
|          | 13 Sep 2011   | 12.639   | 43.928  | 45.710        | 31.172  | 0.978 |
|          | 15 Sep 2011   | -2.542   | 43.422  | 43.496        | 29.897  | 0.940 |
|          | 1 Oct 2011    | 13.797   | 42.181  | 44.380        | 27.308  | 0.977 |
|          | 15 Oct 2011   | 12.389   | 47.002  | 48.607        | 29.417  | 0.949 |
|          | 24 Oct 2011   | 15.150   | 45.931  | 48.365        | 28.506  | 0.997 |
|          | Average       | -20.145  | 68.202  | 71.114        | 46.092  | 0.950 |
| US_TO    | N 27 Feb 2011 | 39.369   | 24.889  | 46.577        | 39.682  | 0.961 |
|          | 17 Mar 2011   | -88.374  | 74.907  | 115.849       | 88.374  | 0.899 |
|          | 24 May 2011   | -77.275  | 51.048  | 92.614        | 77.275  | 0.961 |
|          | 24 Jun 2011   | -62.150  | 40.586  | 74.228        | 62.150  | 0.965 |
|          | 30 Jul 2011   | -10.444  | 17.099  | 20.036        | 15.339  | 0.973 |
|          | 7 Aug 2011    | -19.860  | 27.433  | 33.867        | 24.868  | 0.984 |
|          | 28 Aug 2011   | -1.790   | 19.710  | 19.791        | 14.832  | 0.991 |
|          | 15 Sep 2011   | 46.816   | 36.149  | 59.148        | 46.816  | 0.974 |
|          | 1 Nov 2011    | 66.774   | 55.125  | 86.588        | 66.774  | 0.925 |
|          | 16 Nov 2011   | 58.468   | 50.651  | 77.356        | 58.468  | 0.941 |
|          | Average       | -4.846   | 69.543  | 69.712        | 49.458  | 0.957 |
| US_WH    | HS 8 Feb 2011 | -119.413 | 122.286 | 170.919       | 119.474 | 0.899 |
|          | 16 Feb 2011   | -124.624 | 114.719 | 169.386       | 124.624 | 0.845 |
|          | 25 Mar 2011   | -141.666 | 114.856 | 182.376       | 141.666 | 0.880 |
|          | 22 Jun 2011   | -73.152  | 48.543  | 87.793        | 73.152  | 0.937 |
|          | 13 Jul 2011   | -77.116  | 63.048  | 99.609        | 78.604  | 0.913 |
|          | 2 Aug 2011    | -42.919  | 63.541  | 76.677        | 59.743  | 0.986 |
|          | 28 Aug 2011   | -21.540  | 47.973  | 52.587        | 41.999  | 0.983 |
|          | 3 Aug 2011    | -11.917  | 36.705  | 38.591        | 29.599  | 0.997 |
|          | 5 Oct 2011    | -1.315   | 35.017  | 35.041        | 24.874  | 0.985 |
|          | 20 Oct 2011   | 11.969   | 27.147  | 29.669        | 18.541  | 0.991 |
|          | Average       | -56.400  | 83.364  | 100.651       | 67.452  | 0.942 |
| All Site | s Average     | -19.480  | 62.362  | 67.825        | 46.424  | 0.963 |
|          |               |          |         |               |         |       |





**Table 4.** Daily simulation accuracy and average site simulation accuracy for  $R_{net}$  fluxes. Bias, scatter, RMSD and MAE are expressed in Wm<sup>-2</sup>. NASH index is unitless.

|                |             |         |         | Statistical | Test   |            |
|----------------|-------------|---------|---------|-------------|--------|------------|
| Location       | Date        | Bias    | Scatter | RMSD        | MAE    | NASH Index |
| Alice Springs  | 23 Mar 2011 | -47.837 | 39.660  | 62.140      | 49.882 | 0.989      |
|                | 15 Apr 2011 | 5.372   | 20.583  | 21.273      | 15.351 | 0.978      |
|                | 23 Apr 2011 | 5.824   | 20.028  | 20.858      | 15.026 | 0.982      |
|                | 10 May 2011 | 0.238   | 19.916  | 19.917      | 16.857 | 0.981      |
|                | 24 May 2011 | 15.020  | 14.517  | 20.889      | 17.071 | 0.968      |
|                | 31 May 2011 | -16.367 | 18.303  | 24.554      | 20.454 | 0.991      |
|                | 18 Jun 2011 | -32.891 | 21.068  | 39.061      | 34.370 | 0.974      |
|                | 25 Jun 2011 | -40.447 | 18.120  | 44.321      | 40.619 | 0.979      |
|                | 18 Jul 2011 | -17.876 | 11.168  | 21.078      | 18.283 | 0.998      |
|                | 20 Aug 2011 | -34.572 | 13.290  | 37.038      | 34.572 | 0.964      |
|                | Average     | -16.354 | 29.693  | 33.898      | 26.248 | 0.980      |
| Calperum       | 24 Feb 2011 | 28.310  | 33.371  | 43.762      | 38.932 | 0.979      |
|                | 2 Mar 2011  | 2.225   | 22.545  | 22.655      | 17.920 | 0.998      |
|                | 31 Mar 2011 | 10.283  | 26.718  | 28.628      | 24.488 | 0.982      |
|                | 24 Apr 2011 | 36.988  | 44.560  | 57.911      | 49.755 | 0.981      |
|                | 22 Jul 2011 | -62.631 | 39.682  | 74.143      | 62.631 | 0.968      |
|                | 28 Jul 2011 | -42.477 | 38.926  | 57.615      | 42.561 | 0.964      |
|                | 28 Aug 2011 | -76.722 | 58.516  | 96.490      | 76.722 | 0.945      |
|                | 1 Dec 2011  | -70.835 | 52.791  | 88.343      | 74.163 | 0.911      |
|                | 23 Dec 2011 | -18.274 | 33.556  | 38.209      | 26.074 | 0.965      |
|                | 29 Dec 2011 | -40.989 | 41.011  | 57.982      | 42.622 | 0.971      |
|                | Average     | -23.412 | 56.457  | 61.119      | 45.587 | 0.966      |
| Howard Springs | 18 Apr 2011 | 22.799  | 32.616  | 39.794      | 32.824 | 0.963      |
|                | 23 Apr 2011 | 17.030  | 30.418  | 34.861      | 28.659 | 0.944      |
|                | 13 May 2011 | 40.734  | 28.011  | 49.435      | 40.770 | 0.956      |
|                | 27 May 2011 | 54.627  | 44.721  | 70.598      | 56.139 | 0.939      |
|                | 3 Jun 2011  | 20.033  | 27.166  | 33.753      | 25.206 | 0.985      |
|                | 14 Jun 2011 | 16.257  | 33.676  | 37.394      | 29.818 | 0.985      |
|                | 22 Jun 2011 | 10.769  | 39.441  | 40.885      | 29.577 | 0.989      |
|                | 22 Jul 2011 | -0.606  | 34.490  | 34.496      | 26.795 | 0.967      |
|                | 28 Jul 2011 | -51.747 | 47.364  | 70.151      | 57.362 | 0.995      |
|                | 27 Sep 2011 | -26.446 | 29.775  | 39.824      | 30.196 | 0.997      |
|                | Average     | 10.345  | 45.894  | 47.046      | 35.735 | 0.972      |
| US_VAR         | 10 May 2011 | -32.459 | 19.863  | 38.054      | 32.459 | 0.974      |
|                | 23 Jun 2011 | -36.762 | 33.668  | 49.850      | 44.402 | 0.987      |
|                | 19 Jul 2011 | -10.809 | 34.629  | 36.277      | 31.926 | 0.989      |
|                | 30 Jul 2011 | -2.925  | 49.866  | 49.952      | 43.812 | 0.974      |
|                | 7 Aug 2011  | 4.385   | 40.179  | 40.418      | 32.472 | 0.911      |
|                | 27 Aug 2011 | 40.924  | 61.807  | /4.128      | 68.505 | 0.978      |
|                | 22 Sep 2011 | 43.978  | 65.161  | 78.613      | 72.562 | 0.946      |
|                | / Oct 2011  | -2.192  | 85.263  | 85.291      | 78.183 | 0.998      |
|                | 26 Nov 2011 | 3.421   | 61.113  | 61.209      | 54.674 | 0.996      |
|                | 19 Dec 2011 | -8.416  | 47.347  | 48.089      | 43.567 | 0.996      |
|                | Average     | -0.086  | 58.640  | 58.640      | 50.256 | 0.975      |

#### Table 4. Continued.

|              |               |          |         | Statistical "    | Test             |            |
|--------------|---------------|----------|---------|------------------|------------------|------------|
| Location     | Date          | Bias     | Scatter | RMSD             | MAE              | NASH Index |
| US_MOZ       | 28 Jun 2011   | -88.456  | 58.743  | 106.185          | 91.190           | 0.957      |
|              | 1 Aug 2011    | -8.963   | 31.829  | 33.067           | 23.318           | 0.984      |
|              | 18 Aug 2011   | -29.156  | 31.881  | 43.203           | 38.600           | 0.989      |
|              | 31 Aug 2011   | -7.511   | 36.159  | 36.931           | 31.741           | 0.969      |
|              | 1 Sep 2011    | 5.452    | 26.086  | 26.649           | 20.742           | 0.968      |
|              | 7 Sep 2011    | -26.395  | 51.749  | 58.092           | 43.978           | 0.964      |
|              | 12 Sep 2011   | -2.297   | 29.744  | 29.833           | 23.891           | 0.981      |
|              | 30 Sep 2011   | -17.849  | 46.086  | 49.421           | 37.056           | 0.991      |
|              | 29 Sep 2011   | 33.277   | 35.388  | 48.576           | 33.769           | 0.905      |
|              | Avorago       | 12 251   | 10 828  | 04.270<br>51.560 | 39.463           | 0.000      |
| 110 104      | Average       | -13.231  | 49.020  | 51.500           | 30.403           | 0.959      |
| US_IB1       | 30 May 2011   | -86.392  | /0.851  | 111./29          | 86.392           | 0.842      |
|              | 7 Jun 2011    | -35.433  | 40.050  | 53.474           | 40 500           | 0.986      |
|              | 20 Jul 2011   | -30.301  | 10.064  | 51.255           | 40.092           | 0.972      |
|              | 24 Aug 2011   | -52.017  | 54 202  | 57 511           | 11 642           | 0.976      |
|              | 13 Son 2011   | 15.225   | 54.046  | 56 159           | 41.042           | 0.940      |
|              | 15 Sep 2011   | -1.686   | 70 254  | 70 274           | 59 803           | 0.877      |
|              | 1 Oct 2011    | 15 906   | 58 936  | 61 045           | 45 117           | 0.000      |
|              | 15 Oct 2011   | 24 753   | 73 015  | 77 097           | 68 475           | 0.978      |
|              | 24 Oct 2011   | -28.900  | 73.818  | 79.274           | 71,183           | 0.996      |
|              | Average       | -16.787  | 67.536  | 69.591           | 55.173           | 0.956      |
| US_TON       | 27 Feb 2011   | -101.395 | 51.665  | 113.799          | 101.395          | 0.911      |
|              | 17 Mar 2011   | -88.306  | 35.392  | 95.134           | 88.306           | 0.913      |
|              | 24 May 2011   | -70.176  | 38.189  | 79.894           | 70.176           | 0.952      |
|              | 24 Jun 2011   | -83.358  | 42.987  | 93.789           | 83.358           | 0.962      |
|              | 30 Jul 2011   | -65.261  | 42.108  | 77.666           | 66.645           | 0.986      |
|              | 7 Aug 2011    | -53.888  | 54.313  | /6.511           | 58.276           | 0.965      |
|              | 28 Aug 2011   | -39.974  | 57.084  | 69.689           | 58.785           | 0.971      |
|              | 15 Sep 2011   | 2.418    | 38.270  | 38.346           | 30.944           | 0.966      |
|              | 16 Nov 2011   | 20.001   | 47.529  | 54.448           | 40.087           | 0.984      |
|              | Avorago       | 12.423   | 40.779  | 79 033           | 40.104           | 0.963      |
| 110 14/10    | Average       | -40.030  | 70,000  | 70.000           | 03.210           | 0.937      |
| US_WHS       | 8 Feb 2011    | -56.655  | /3.692  | 92.953           | 55.574           | 0.912      |
|              | 16 Feb 2011   | -/1.448  | 57.15Z  | 90.094           | 75.321           | 0.872      |
|              | 20 Ivial 2011 | -70.000  | 70 601  | 90.995           | 75.110<br>E0.7EE | 0.074      |
|              | 12 Jul 2011   | -55.369  | 27 270  | 20 446           | 22 791           | 0.929      |
|              | 2 Aug 2011    | -15 370  | 36 240  | 20.440           | 20.701           | 0.965      |
|              | 28 Aug 2011   | 5 330    | 26 535  | 27 065           | 18 491           | 0.996      |
|              | 3 Aug 2011    | -24.342  | 51.801  | 57.235           | 41.300           | 0.996      |
|              | 5 Oct 2011    | 48.880   | 27.232  | 55.954           | 48.880           | 0.968      |
|              | 20 Oct 2011   | 8.068    | 52,600  | 53.215           | 50.053           | 0.978      |
|              | Average       | -26.238  | 64.522  | 69.653           | 50.271           | 0.947      |
| All Sites Av | /erage        | -16.485  | 54.442  | 58.692           | 45.904           | 0.964      |



**Discussion** Paper **GMDD** 8, 2437-2495, 2015 Validating a 1-D SVAT model G. P. Petropoulos et al. **Discussion** Paper Title Page Abstract Introduction Conclusions References Tables Figures **Discussion** Paper I. ►I. Back Close Full Screen / Esc **Discussion** Paper Printer-friendly Version Interactive Discussion

**Table 5.** Daily simulation accuracy and average site simulation accuracy for LE fluxes. Bias, scatter, RMSD and MAE are expressed in  $Wm^{-2}$ . NASH index is unitless.

|                |             |         |         | Oraciania - 1 | Test   |              |
|----------------|-------------|---------|---------|---------------|--------|--------------|
| Leasting       | Dete        | Dies    | C       | Statistical   | Iest   | NACILIZATI   |
| LUCATION       | Date        | DidS    | Scaller | NIVIOD        | WAE    | INASH IIIUEX |
| Alice Springs  | 23 Mar 2011 | -23.748 | 45.451  | 51.281        | 36.845 | 0.997        |
|                | 15 Apr 2011 | -17.304 | 23.039  | 28.813        | 19.958 | 0.992        |
|                | 23 Apr 2011 | 2.759   | 23.883  | 24.042        | 14.129 | 0.989        |
|                | 10 May 2011 | 20.870  | 19.876  | 28.820        | 21.319 | 0.935        |
|                | 24 May 2011 | 4.588   | 4.682   | 6.556         | 5.443  | 0.969        |
|                | 31 May 2011 | 5.122   | 8.633   | 10.038        | 6.646  | 0.968        |
|                | 18 Jun 2011 | -0.340  | 8.606   | 8.612         | 6.997  | 0.979        |
|                | 25 Jun 2011 | 3.245   | 9.218   | 9.773         | 7.448  | 0.950        |
|                | 18 Jul 2011 | 12.900  | 13.326  | 18.547        | 13.416 | 0.914        |
|                | 20 Aug 2011 | 19.435  | 14.833  | 24.449        | 19.435 | 0.758        |
|                | Average     | 2.753   | 24.592  | 24.746        | 15.164 | 0.945        |
| Calperum       | 24 Feb 2011 | -9.768  | 31.404  | 32.888        | 23.057 | 0.995        |
|                | 2 Mar 2011  | -13.833 | 25.928  | 29.387        | 21.173 | 0.992        |
|                | 31 Mar 2011 | -8.476  | 18.346  | 20.210        | 13.190 | 0.994        |
|                | 24 Apr 2011 | -8.256  | 17.957  | 19.764        | 13.198 | 0.990        |
|                | 22 Jul 2011 | -7.970  | 15.525  | 17.452        | 10.971 | 0.979        |
|                | 28 Jul 2011 | -9.238  | 13.332  | 16.220        | 11.538 | 0.983        |
|                | 28 Aug 2011 | -17.687 | 24.638  | 30.329        | 19.448 | 0.979        |
|                | 1 Dec 2011  | -5.219  | 20.111  | 20.777        | 15.761 | 0.988        |
|                | 23 Dec 2011 | 24.569  | 39.140  | 46.212        | 31.747 | 0.993        |
|                | 29 Dec 2011 | -11.570 | 30.292  | 32.426        | 24.782 | 0.993        |
|                | Average     | -6.745  | 27.195  | 28.019        | 18.486 | 0.989        |
| Howard Springs | 18 Apr 2011 | -31.861 | 46.214  | 56.132        | 40.757 | 0.997        |
|                | 23 Apr 2011 | -17.902 | 77.002  | 79.055        | 46.292 | 0.998        |
|                | 13 May 2011 | -5.362  | 23.187  | 23.799        | 17.167 | 0.997        |
|                | 27 May 2011 | 35.698  | 44.908  | 57.368        | 39.407 | 0.970        |
|                | 3 Jun 2011  | 26.117  | 37.604  | 45.784        | 29.793 | 0.976        |
|                | 14 Jun 2011 | 7.114   | 16.137  | 17.636        | 12.012 | 0.984        |
|                | 22 Jun 2011 | 31.513  | 35.670  | 47.597        | 36.329 | 0.982        |
|                | 22 Jul 2011 | 13.300  | 29.131  | 32.023        | 20.232 | 0.993        |
|                | 28 Jul 2011 | -10.936 | 20.673  | 23.387        | 17.390 | 0.996        |
|                | 27 Sep 2011 | -25.350 | 70.484  | 74.904        | 39.027 | 0.965        |
|                | Average     | 2.233   | 50.064  | 50.114        | 29.841 | 0.986        |
| US_VAR         | 10 May 2011 | -9.006  | 13.063  | 15.867        | 12.657 | 0.968        |
|                | 23 Jun 2011 | 29.672  | 38.127  | 48.313        | 31.897 | 0.978        |
|                | 19 Jul 2011 | 23.914  | 29.524  | 37.994        | 25.480 | 0.928        |
|                | 30 Jul 2011 | 27.988  | 31.607  | 42.218        | 29.019 | 0.292        |
|                | 7 Aug 2011  | 22.118  | 25.558  | 33.800        | 22.975 | 0.654        |
|                | 27 Aug 2011 | 24.328  | 29.460  | 38.207        | 24.560 | 0.665        |
|                | 22 Sep 2011 | 17.852  | 21.536  | 27.973        | 17.852 | 0.414        |
|                | 7 Oct 2011  | 6.588   | 27.196  | 27.983        | 19.533 | 0.979        |
|                | 26 Nov 2011 | -2.671  | 13.199  | 13.467        | 8.576  | 0.992        |
|                | 19 Dec 2011 | -2.613  | 10.597  | 10.914        | 7.207  | 0.985        |
|                | Average     | 13.817  | 28.932  | 32.062        | 19.976 | 0.786        |

#### Table 5. Continued.

| -                 |             | Statistical Test |         |         |         |            |
|-------------------|-------------|------------------|---------|---------|---------|------------|
| Location          | Date        | Bias             | Scatter | RMSD    | MAE     | NASH Index |
| US_MOZ            | 28 Jun 2011 | -11.798          | 56.091  | 57.318  | 43.455  | 0.912      |
|                   | 1 Aug 2011  | 66.840           | 84.613  | 107.828 | 73.193  | 0.912      |
|                   | 18 Aug 2011 | 25.063           | 59.741  | 64.785  | 45.616  | 0.937      |
|                   | 31 Aug 2011 | 37.947           | 49.678  | 62.513  | 41.236  | 0.912      |
|                   | 1 Sep 2011  | 46.763           | 62.264  | 77.869  | 53.781  | 0.927      |
|                   | 7 Sep 2011  | 21.021           | 48.810  | 53.144  | 38.273  | 0.869      |
|                   | 12 Sep 2011 | 40.564           | 50.338  | 64.648  | 45.217  | 0.945      |
|                   | 30 Sep 2011 | 15.956           | 38.187  | 41.386  | 28.549  | 0.974      |
|                   | 29 Sep 2011 | 16.384           | 35.632  | 39.218  | 35.565  | 0.945      |
|                   | 11 Nov 2011 | 28.345           | 32.973  | 43.482  | 32.720  | 0.841      |
|                   | Average     | 25.653           | 55.918  | 61.522  | 42.019  | 0.917      |
| US_IB1            | 30 May 2011 | -28.883          | 61.843  | 68.255  | 54.172  | 0.899      |
|                   | 7 Jun 2011  | 40.289           | 71.267  | 81.867  | 65.317  | 0.927      |
|                   | 28 Jun 2011 | 32.156           | 51.861  | 61.020  | 49.594  | 0.982      |
|                   | 8 Jul 2011  | -35.322          | 28.667  | 45.491  | 35.356  | 0.947      |
|                   | 24 Aug 2011 | 1.744            | 37.107  | 37.148  | 31.067  | 0.972      |
|                   | 13 Sep 2011 | -1.044           | 50.497  | 50.508  | 43.883  | 0.821      |
|                   | 15 Sep 2011 | -6.303           | 15.446  | 16.682  | 13.247  | 0.998      |
|                   | 1 Oct 2011  | 0.797            | 37.226  | 37.235  | 28.781  | 0.964      |
|                   | 15 Oct 2011 | 38.306           | 53.743  | 65.997  | 52.644  | 0.979      |
|                   | 24 Oct 2011 | -14.133          | 17.310  | 22.347  | 18.556  | 0.978      |
|                   | Average     | 2.761            | 52.468  | 52.540  | 39.262  | 0.947      |
| US_TON            | 27 Feb 2011 | -5.845           | 22.864  | 23.599  | 17.434  | 0.981      |
|                   | 17 Mar 2011 | -16.497          | 43.055  | 46.107  | 32.990  | 0.969      |
|                   | 24 May 2011 | -56.284          | 73.754  | 92.777  | 62.516  | 0.899      |
|                   | 24 Jun 2011 | -3.138           | 35.440  | 35.579  | 27.232  | 0.948      |
|                   | 30 Jul 2011 | 6.049            | 29.060  | 29.683  | 20.932  | 0.969      |
|                   | 7 Aug 2011  | 2.088            | 20.960  | 21.064  | 16.994  | 0.990      |
|                   | 28 Aug 2011 | 0.902            | 16.514  | 16.539  | 11.705  | 0.985      |
|                   | 15 Sep 2011 | 7.753            | 22.493  | 23.791  | 14.024  | 0.983      |
|                   | 10 Nov 2011 | -2.224           | 14.102  | 14.276  | 7 4 5 4 | 0.991      |
|                   | 16 NOV 2011 | 4.304            | 20.074  | 10.978  | 7.151   | 0.987      |
|                   | Average     | -0.209           | 30.274  | 30.700  | 22.210  | 0.970      |
| US_WHS            | 8 Feb 2011  | 9.606            | 12.404  | 15.688  | 10.347  | 0.886      |
|                   | 16 Feb 2011 | 1.025            | 7.802   | 7.869   | 4.609   | 0.946      |
|                   | 25 Mar 2011 | -0.038           | 5.984   | 5.984   | 4.216   | 0.925      |
|                   | 22 JUN 2011 | -2.63/           | 6.020   | 6.5/2   | 4.470   | 0.913      |
|                   | 13 JUI 2011 | -5.690           | 21.219  | 21.968  | 16.753  | 0.956      |
|                   | 2 Aug 2011  | -43.529          | 36.735  | 56.958  | 44.832  | 0.975      |
|                   | 28 Aug 2011 | -39.800          | 37.5/1  | 54.732  | 41.242  | 0.979      |
|                   | 3 Aug 2011  | -12./16          | 15.9/0  | 20.414  | 15.108  | 0.986      |
|                   | 5 UCT 2011  | -13.010          | 17.251  | 21.606  | 13.878  | 0.973      |
|                   | 20 Oct 2011 | 0.184            | 7.565   | 1.56/   | 4.807   | 0.966      |
|                   | Average     | -11.494          | 20.516  | 27.980  | 10.360  | 0.951      |
| All Sites Average |             | 2.836            | 37.870  | 39.472  | 25.591  | 0.936      |



**Discussion** Paper **GMDD** 8, 2437-2495, 2015 Validating a 1-D SVAT model G. P. Petropoulos et al. **Discussion** Paper Title Page Abstract Introduction Conclusions References Tables Figures **Discussion** Paper I. ►I. Back Close Full Screen / Esc **Discussion** Paper Printer-friendly Version Interactive Discussion

**Table 6.** Daily simulation accuracy and average site simulation accuracy for *H* fluxes. Bias, scatter, RMSD and MAE are expressed in  $Wm^{-2}$ . NASH index is unitless.

|                |             |         | :       | Statistical | Test   |            |
|----------------|-------------|---------|---------|-------------|--------|------------|
| Location       | Date        | Bias    | Scatter | RMSD        | MAE    | NASH Index |
| Alice Springs  | 23 Mar 2011 | -24.283 | 61.353  | 65.984      | 56.395 | 0.996      |
|                | 15 Apr 2011 | 25.000  | 28.483  | 37.898      | 29.893 | 0.963      |
|                | 23 Apr 2011 | 2.379   | 42.434  | 42.501      | 32.463 | 0.965      |
|                | 10 May 2011 | -24.020 | 64.040  | 68.397      | 53.226 | 0.975      |
|                | 24 May 2011 | 9.203   | 27.768  | 29.253      | 24.611 | 0.921      |
|                | 31 May 2011 | -17.737 | 44.732  | 48.120      | 34.448 | 0.932      |
|                | 18 Jun 2011 | -16.026 | 37.981  | 41.224      | 28.271 | 0.983      |
|                | 25 Jun 2011 | -11.183 | 39.107  | 40.675      | 26.443 | 0.998      |
|                | 18 Jul 2011 | -7.949  | 28.681  | 29.762      | 22.792 | 0.999      |
|                | 20 Aug 2011 | -36.995 | 65.839  | 75.521      | 54.328 | 0.973      |
|                | Average     | -10.161 | 49.352  | 50.387      | 36.287 | 0.970      |
| Calperum       | 24 Feb 2011 | 58.725  | 62.785  | 85.968      | 69.624 | 0.981      |
|                | 2 Mar 2011  | 4.584   | 46.737  | 46.961      | 35.209 | 0.963      |
|                | 31 Mar 2011 | 8.700   | 42.428  | 43.311      | 30.601 | 0.899      |
|                | 24 Apr 2011 | 67.405  | 72.419  | 98.934      | 74.959 | 0.991      |
|                | 22 Jul 2011 | -19.027 | 34.435  | 39.342      | 25.536 | 0.997      |
|                | 28 Jul 2011 | -1.208  | 32.853  | 32.875      | 25.318 | 0.998      |
|                | 28 Aug 2011 | -14.368 | 31.473  | 34.598      | 22.865 | 0.998      |
|                | 1 Dec 2011  | -20.735 | 38.835  | 44.023      | 36.183 | 0.986      |
|                | 23 Dec 2011 | -15.690 | 33.459  | 36.955      | 30.297 | 0.951      |
|                | 29 Dec 2011 | -12.294 | 38.799  | 40.700      | 32.767 | 0.932      |
|                | Average     | 5.609   | 54.526  | 54.814      | 38.336 | 0.970      |
| Howard Springs | 18 Apr 2011 | 56.780  | 50.308  | 75.861      | 58.880 | 0.995      |
|                | 23 Apr 2011 | 24.083  | 34.731  | 42.264      | 29.461 | 0.996      |
|                | 13 May 2011 | 69.810  | 67.245  | 96.930      | 70.172 | 0.995      |
|                | 27 May 2011 | 12.165  | 32.135  | 34.360      | 24.116 | 0.973      |
|                | 3 Jun 2011  | 12.112  | 42.248  | 43.950      | 30.034 | 0.963      |
|                | 14 Jun 2011 | 19.126  | 46.531  | 50.309      | 34.010 | 0.932      |
|                | 22 Jun 2011 | -18.823 | 44.082  | 47.933      | 34.391 | 0.998      |
|                | 22 Jul 2011 | -9.049  | 26.807  | 28.293      | 19.520 | 0.937      |
|                | 28 Jul 2011 | -14.961 | 43.912  | 46.390      | 31.701 | 0.974      |
|                | 27 Sep 2011 | 3.942   | 39.003  | 39.202      | 29.467 | 0.912      |
|                | Average     | 15.519  | 51.921  | 54.191      | 36.175 | 0.967      |
| US_VAR         | 10 May 2011 | 37.638  | 40.409  | 55.222      | 41.198 | 0.889      |
|                | 23 Jun 2011 | -5.640  | 26.334  | 26.931      | 19.038 | 0.987      |
|                | 19 Jul 2011 | 10.046  | 25.859  | 27.742      | 22.156 | 0.931      |
|                | 30 Jul 2011 | -7.480  | 31.142  | 32.028      | 23.875 | 0.847      |
|                | 7 Aug 2011  | 11.298  | 24.187  | 26.695      | 21.235 | 0.869      |
|                | 27 Aug 2011 | 29.359  | 37.648  | 47.742      | 37.527 | 0.899      |
|                | 22 Sep 2011 | 34.803  | 28.526  | 45.000      | 38.054 | 0.899      |
|                | 7 Oct 2011  | 29.169  | 25.739  | 38.901      | 30.290 | 0.997      |
|                | 26 Nov 2011 | 28.168  | 32.328  | 42.878      | 30.923 | 0.984      |
|                | 19 Dec 2011 | 13.813  | 18.958  | 23.457      | 19.175 | 0.994      |
|                | Average     | 13.817  | 33.477  | 38.065      | 28.347 | 0.930      |

#### Table 6. Continued.

| -            |             |         |         | Statistical | Test             |            |
|--------------|-------------|---------|---------|-------------|------------------|------------|
| Location     | Date        | Bias    | Scatter | RMSD        | MAE              | NASH Index |
| US_MOZ       | 28 Jun 2011 | -9.389  | 35.765  | 36.977      | 26.095           | 0.943      |
|              | 1 Aug 2011  | -34.096 | 58.247  | 67.493      | 44.072           | 0.926      |
|              | 18 Aug 2011 | 18.999  | 35.006  | 39.830      | 29.074           | 0.911      |
|              | 31 Aug 2011 | -5.014  | 61.274  | 61.478      | 45.507           | 0.954      |
|              | 1 Sep 2011  | -14.392 | 60.862  | 62.541      | 47.645           | 0.938      |
|              | 7 Sep 2011  | -20.001 | 83.887  | 86.239      | 70.198           | 0.847      |
|              | 12 Sep 2011 | -1.372  | 45.672  | 45.692      | 36.452           | 0.970      |
|              | 30 Sep 2011 | -16.754 | 79.197  | 80.950      | 62.643           | 0.899      |
|              | 29 Sep 2011 | 31.913  | 47.114  | 56.905      | 40.828           | 0.964      |
|              | 11 Nov 2011 | 12.377  | 39.636  | 41.523      | 35.468           | 0.745      |
|              | Average     | 1.241   | 57.626  | 57.639      | 42.437           | 0.910      |
| US_IB1       | 30 May 2011 | 43.822  | 42.735  | 61.210      | 55.528           | 0.912      |
|              | 7 Jun 2011  | -26.181 | 35.346  | 43.986      | 35.864           | 0.938      |
|              | 28 Jun 2011 | -21.756 | 24.512  | 32.774      | 26.233           | 0.981      |
|              | 8 Jul 2011  | 27.469  | 13.964  | 30.815      | 27.469           | 0.987      |
|              | 24 Aug 2011 | 66.892  | 39.502  | 77.685      | 67.519           | 0.949      |
|              | 13 Sep 2011 | 40.239  | 33.828  | 52.569      | 43.639           | 0.945      |
|              | 15 Sep 2011 | 44.111  | 35.651  | 56./1/      | 44.872           | 0.974      |
|              | 1 Oct 2011  | 70.614  | 49.184  | 86.054      | 70.614           | 0.960      |
|              | 15 Oct 2011 | 20.106  | 36.150  | 41.365      | 31.272           | 0.958      |
|              | 24 OCI 2011 | 30.481  | 24.821  | 44.124      | 30.853           | 0.987      |
|              | Average     | 30.160  | 40.007  | 55.465      | 43.900           | 0.959      |
| US_TON       | 27 Feb 2011 | -31.491 | 54.124  | 62.619      | 48.243           | 0.974      |
|              | 17 Mar 2011 | -32.302 | 53.987  | 62.913      | 41.689           | 0.949      |
|              | 24 May 2011 | 20.698  | 66.336  | 69.490      | 50.301           | 0.891      |
|              | 24 Jun 2011 | -29.628 | 48.443  | 56.785      | 38.076           | 0.963      |
|              | 30 JUI 2011 | -26.672 | 65.907  | 71.099      | 49.319           | 0.964      |
|              | 7 Aug 2011  | -33.817 | 59.474  | 50.410      | 44 202           | 0.985      |
|              | 26 Aug 2011 | 10 700  | 47 117  | 50.000      | 44.203<br>26 EE0 | 0.901      |
|              | 1 Nov 2011  | 10.722  | 20 3/2  | 52.079      | 45 212           | 0.979      |
|              | 16 Nov 2011 | 26.486  | 29.342  | 38 824      | 28 004           | 0.034      |
|              | Average     | -4.374  | 59.770  | 59.930      | 43.386           | 0.954      |
|              | 9 Ech 2011  | 10.041  | 50.000  | 60 540      | 47.920           | 0.906      |
| 03_0013      | 16 Eob 2011 | 22 921  | 10 022  | 50,009      | 47.039           | 0.090      |
|              | 25 Mar 2011 | 27 279  | 29.950  | 47 470      | 29.025           | 0.021      |
|              | 22 Jun 2011 | 49 749  | 99 /1/  | 98.642      | 62 071           | 0.973      |
|              | 13 Jul 2011 | 11 172  | 38 210  | 39.810      | 26 232           | 0.934      |
|              | 2 Aug 2011  | 66 414  | 49 290  | 82 706      | 66 832           | 0.931      |
|              | 28 Aug 2011 | 68.220  | 63,929  | 93,493      | 70.735           | 0.929      |
|              | 3 Aug 2011  | 18.889  | 36.660  | 41,240      | 30.471           | 0.974      |
|              | 5 Oct 2011  | 77.509  | 66.785  | 102.312     | 77.807           | 0.969      |
|              | 20 Oct 2011 | 36,280  | 40.163  | 54.122      | 41.086           | 0.997      |
|              | Average     | 17.473  | 67.726  | 69.944      | 48.971           | 0.951      |
| All Sites Av | verage      | 8.663   | 52.619  | 55.057      | 40.140           | 0.951      |





**Table 7.** Daily simulation accuracy and average site simulation accuracy for  $T_{air}$  1.3 m. Bias, scatter, RMSD and MAE are expressed in Celsius. NASH index is unitless.

|                |             |        |         | Statistical | Test  |            |
|----------------|-------------|--------|---------|-------------|-------|------------|
| Location       | Date        | Bias   | Scatter | RMSD        | MAE   | NASH Index |
| Alice Springs  | 23 Mar 2011 | -1.193 | 1.806   | 2.164       | 1.873 | 0.822      |
|                | 15 Apr 2011 | 0.558  | 2.604   | 2.663       | 1.989 | 0.842      |
|                | 23 Apr 2011 | 3.698  | 1.867   | 4.142       | 3.717 | 0.839      |
|                | 10 May 2011 | -0.087 | 2.750   | 2.751       | 2.520 | 0.871      |
|                | 24 May 2011 | 2.969  | 3.481   | 4.575       | 3.059 | 0.850      |
|                | 31 May 2011 | -1.660 | 2.201   | 2.757       | 2.365 | 0.927      |
|                | 18 Jun 2011 | -0.067 | 2.407   | 2.408       | 2.154 | 0.911      |
|                | 25 Jun 2011 | -2.966 | 2.675   | 3.994       | 3.341 | 0.915      |
|                | 18 Jul 2011 | -1.249 | 1.916   | 2.287       | 2.083 | 0.911      |
|                | 20 Aug 2011 | -0.334 | 2.103   | 2.129       | 1.926 | 0.917      |
|                | Average     | -0.033 | 3.107   | 3.107       | 2.503 | 0.881      |
| Calperum       | 24 Feb 2011 | -3.281 | 2.677   | 4.235       | 3.686 | 0.874      |
|                | 2 Mar 2011  | 0.821  | 2.256   | 2.401       | 1.675 | 0.914      |
|                | 31 Mar 2011 | 1.010  | 3.313   | 3.463       | 2.654 | 0.886      |
|                | 24 Apr 2011 | -0.450 | 3.466   | 3.495       | 3.213 | 0.903      |
|                | 22 Jul 2011 | -2.557 | 1.582   | 3.007       | 2.607 | 0.904      |
|                | 28 Jul 2011 | -3.213 | 2.763   | 4.238       | 3.512 | 0.867      |
|                | 28 Aug 2011 | -7.921 | 3.432   | 8.633       | 7.977 | 0.791      |
|                | 1 Dec 2011  | -3.302 | 1.504   | 3.628       | 3.302 | 0.785      |
|                | 23 Dec 2011 | -5.545 | 2.908   | 6.262       | 5.642 | 0.833      |
|                | 29 Dec 2011 | -4.448 | 1.772   | 4.788       | 4.448 | 0.835      |
|                | Average     | -2.889 | 3.759   | 4.741       | 3.872 | 0.859      |
| Howard Springs | 18 Apr 2011 | 1.803  | 0.882   | 2.007       | 1.855 | 0.743      |
|                | 23 Apr 2011 | -0.026 | 0.780   | 0.781       | 0.678 | 0.915      |
|                | 13 May 2011 | 0.385  | 1.590   | 1.636       | 1.262 | 0.923      |
|                | 27 May 2011 | 2.138  | 2.008   | 2.933       | 2.602 | 0.813      |
|                | 3 Jun 2011  | 2.112  | 1.977   | 2.893       | 2.698 | 0.826      |
|                | 14 Jun 2011 | 1.267  | 2.407   | 2.721       | 2.473 | 0.794      |
|                | 22 Jun 2011 | -0.976 | 1.898   | 2.134       | 2.014 | 0.871      |
|                | 22 Jul 2011 | 0.166  | 2.140   | 2.146       | 1.816 | 0.888      |
|                | 28 Jul 2011 | -1.379 | 1.743   | 2.223       | 2.082 | 0.851      |
|                | 27 Sep 2011 | 0.073  | 1.095   | 1.098       | 0.949 | 0.910      |
|                | Average     | 0.556  | 2.095   | 2.168       | 1.843 | 0.853      |
| US_VAR         | 10 May 2011 | -3.704 | 2.787   | 4.635       | 3.911 | 0.862      |
|                | 23 Jun 2011 | 1.367  | 2.605   | 2.942       | 1.935 | 0.939      |
|                | 19 Jul 2011 | -0.694 | 2.342   | 2.443       | 2.161 | 0.927      |
|                | 30 Jul 2011 | 2.525  | 3.338   | 4.185       | 3.212 | 0.915      |
|                | 7 Aug 2011  | 0.551  | 2.848   | 2.901       | 2.265 | 0.933      |
|                | 27 Aug 2011 | -0.785 | 2.795   | 2.903       | 2.631 | 0.926      |
|                | 22 Sep 2011 | -3.777 | 2.988   | 4.816       | 4.144 | 0.884      |
|                | / Oct 2011  | 0.082  | 2.949   | 2.950       | 2.731 | 0.846      |
|                | 26 Nov 2011 | 1.927  | 1.489   | 2.436       | 1.994 | 0.863      |
|                | 19 Dec 2011 | 1.424  | 1.280   | 1.915       | 1.562 | 0.890      |
|                | Average     | -0.108 | 3.344   | 3.346       | 2.655 | 0.898      |

#### Table 7. Continued.

|                   |             |        | Statistical Test |       |       |            |  |
|-------------------|-------------|--------|------------------|-------|-------|------------|--|
| Location          | Date        | Bias   | Scatter          | RMSD  | MAE   | NASH Index |  |
| US_MOZ            | 28 Jun 2011 | -0.702 | 0.749            | 1.026 | 0.972 | 0.821      |  |
|                   | 1 Aug 2011  | 1.671  | 1.043            | 1.970 | 1.682 | 0.909      |  |
|                   | 18 Aug 2011 | -0.493 | 1.087            | 1.193 | 1.028 | 0.898      |  |
|                   | 31 Aug 2011 | -0.973 | 1.207            | 1.550 | 1.234 | 0.903      |  |
|                   | 1 Sep 2011  | 3.873  | 2.581            | 4.654 | 3.873 | 0.631      |  |
|                   | 7 Sep 2011  | 1.144  | 1.668            | 2.023 | 1.450 | 0.890      |  |
|                   | 12 Sep 2011 | 1.731  | 0.914            | 1.958 | 1.731 | 0.883      |  |
|                   | 30 Sep 2011 | 0.695  | 2.026            | 2.142 | 1.787 | 0.830      |  |
|                   | 29 Sep 2011 | -2.585 | 1.307            | 2.897 | 2.649 | 0.844      |  |
|                   | 11 Nov 2011 | -1.697 | 2.119            | 2./15 | 2.451 | 0.924      |  |
|                   | Average     | 0.226  | 2.373            | 2.383 | 1.844 | 0.853      |  |
| US_IB1            | 30 May 2011 | 1.808  | 1.821            | 2.566 | 1.808 | 0.753      |  |
|                   | 7 Jun 2011  | 0.494  | 1.188            | 1.287 | 1.011 | 0.923      |  |
|                   | 28 Jun 2011 | 3.817  | 2.171            | 4.391 | 3.817 | 0.585      |  |
|                   | 8 Jul 2011  | 0.883  | 3.715            | 3.818 | 3.044 | 0.782      |  |
|                   | 24 Aug 2011 | 4.181  | 1.665            | 4.500 | 4.181 | 0.752      |  |
|                   | 13 Sep 2011 | 8.397  | 4.442            | 9.500 | 8.397 | 0.625      |  |
|                   | 15 Sep 2011 | 2.828  | 2.956            | 4.091 | 2.961 | 0.768      |  |
|                   | 1 Oct 2011  | 2.175  | 0.930            | 2.365 | 2.192 | 0.710      |  |
|                   | 15 Oct 2011 | 4.075  | 1.408            | 4.311 | 4.075 | 0.272      |  |
|                   | 24 Oct 2011 | 0.981  | 2.669            | 2.844 | 2.492 | 0.850      |  |
|                   | Average     | 3.008  | 3.435            | 4.566 | 3.441 | 0.702      |  |
| US_TON            | 27 Feb 2011 | -1.681 | 0.938            | 1.925 | 1.713 | 0.833      |  |
|                   | 17 Mar 2011 | -1.680 | 2.128            | 2.711 | 2.327 | 0.837      |  |
|                   | 24 May 2011 | -0.692 | 1.344            | 1.512 | 1.183 | 0.922      |  |
|                   | 24 Jun 2011 | 1.506  | 1.355            | 2.025 | 1.789 | 0.906      |  |
|                   | 30 Jul 2011 | 1.470  | 2.030            | 2.507 | 1.856 | 0.923      |  |
|                   | 7 Aug 2011  | 3.114  | 2.781            | 4.175 | 3.114 | 0.875      |  |
|                   | 28 Aug 2011 | 2.084  | 2.423            | 3.196 | 2.115 | 0.919      |  |
|                   | 15 Sep 2011 | 4.263  | 3.146            | 5.298 | 4.289 | 0.788      |  |
|                   | 1 Nov 2011  | 1.272  | 2.138            | 2.488 | 2.266 | 0.873      |  |
|                   | 16 Nov 2011 | 0.385  | 0.955            | 1.030 | 0.824 | 0.919      |  |
|                   | Average     | 1.004  | 2.768            | 2.944 | 2.148 | 0.880      |  |
| US_WHS            | 8 Feb 2011  | -1.320 | 1.920            | 2.330 | 2.050 | 0.901      |  |
|                   | 16 Feb 2011 | 0.786  | 1.893            | 2.050 | 1.794 | 0.869      |  |
|                   | 25 Mar 2011 | -1.205 | 1.451            | 1.886 | 1.501 | 0.924      |  |
|                   | 22 Jun 2011 | -0.564 | 2.594            | 2.655 | 2.072 | 0.880      |  |
|                   | 13 Jul 2011 | 2.255  | 2.244            | 3.181 | 2.979 | 0.745      |  |
|                   | 2 Aug 2011  | 0.553  | 1.373            | 1.480 | 1.173 | 0.907      |  |
|                   | 28 Aug 2011 | 0.648  | 1.350            | 1.498 | 1.197 | 0.940      |  |
|                   | 3 Aug 2011  | 2.764  | 4.309            | 5.119 | 4.266 | 0.739      |  |
|                   | 5 Oct 2011  | 0.557  | 1.226            | 1.347 | 1.106 | 0.934      |  |
|                   | 20 Oct 2011 | -0.911 | 2.338            | 2.509 | 2.023 | 0.909      |  |
|                   | Average     | 0.492  | 2.562            | 2.609 | 1.994 | 0.875      |  |
| All Sites Average |             | 0.282  | 2.930            | 3.233 | 2.540 | 0.850      |  |



**Discussion** Paper **GMDD** 8, 2437-2495, 2015 Validating a 1-D SVAT model G. P. Petropoulos et al. **Discussion** Paper Title Page Abstract Introduction Conclusions References Tables Figures **Discussion** Paper I. Þ١ Back Close Full Screen / Esc **Discussion** Paper Printer-friendly Version Interactive Discussion

**Table 8.** Daily simulation accuracy and average site simulation accuracy for  $T_{air}$  50 m. Bias, scatter, RMSD and MAE are expressed in Celsius. NASH index is unitless.

|                | Statistical Test |        |         |       |       |            |
|----------------|------------------|--------|---------|-------|-------|------------|
| Location       | Date             | Bias   | Scatter | RMSD  | MAE   | NASH Index |
| Alice Springs  | 23 Mar 2011      | -2.140 | 2.229   | 3.090 | 2.548 | 0.758      |
|                | 15 Apr 2011      | -0.048 | 3.101   | 3.101 | 2.706 | 0.785      |
|                | 23 Apr 2011      | 3.492  | 2.908   | 4.544 | 3.492 | 0.849      |
|                | 10 May 2011      | -1.015 | 3.494   | 3.638 | 3.343 | 0.829      |
|                | 24 May 2011      | 1.894  | 4.153   | 4.564 | 3.367 | 0.835      |
|                | 31 May 2011      | -2.588 | 3.052   | 4.001 | 3.323 | 0.898      |
|                | 18 Jun 2011      | -0.870 | 3.144   | 3.262 | 2.922 | 0.880      |
|                | 25 Jun 2011      | -3.605 | 3.414   | 4.965 | 3.957 | 0.899      |
|                | 18 Jul 2011      | -2.276 | 2.493   | 3.376 | 2.874 | 0.877      |
|                | 20 Aug 2011      | -1.275 | 3.006   | 3.265 | 2.950 | 0.872      |
|                | Average          | -0.843 | 3.744   | 3.837 | 3.148 | 0.848      |
| Calperum       | 24 Feb 2011      | -4.351 | 3.875   | 5.826 | 4.912 | 0.833      |
|                | 2 Mar 2011       | 0.148  | 3.030   | 3.034 | 2.576 | 0.868      |
|                | 31 Mar 2011      | 0.783  | 4.356   | 4.426 | 3.770 | 0.837      |
|                | 24 Apr 2011      | -1.186 | 4.672   | 4.820 | 4.561 | 0.862      |
|                | 22 Jul 2011      | -2.085 | 2.807   | 3.497 | 2.726 | 0.900      |
|                | 28 Jul 2011      | -3.910 | 3.271   | 5.098 | 4.137 | 0.843      |
|                | 28 Aug 2011      | -8.457 | 4.515   | 9.587 | 8.763 | 0.771      |
|                | 1 Dec 2011       | -4.360 | 2.727   | 5.142 | 4.360 | 0.717      |
|                | 23 Dec 2011      | -6.684 | 3.535   | 7.561 | 6.780 | 0.800      |
|                | 29 Dec 2011      | -5.287 | 2.568   | 5.878 | 5.314 | 0.803      |
|                | Average          | -3.539 | 4.572   | 5.782 | 4.790 | 0.823      |
| Howard Springs | 18 Apr 2011      | 0.847  | 1.203   | 1.471 | 1.067 | 0.852      |
|                | 23 Apr 2011      | -0.701 | 1.458   | 1.618 | 1.371 | 0.828      |
|                | 13 May 2011      | -0.515 | 1.573   | 1.656 | 1.474 | 0.910      |
|                | 27 May 2011      | 2.135  | 1.186   | 2.442 | 2.151 | 0.845      |
|                | 3 Jun 2011       | 1.915  | 1.067   | 2.192 | 1.916 | 0.876      |
|                | 14 Jun 2011      | 0.817  | 1.070   | 1.347 | 1.201 | 0.900      |
|                | 22 Jun 2011      | -1.376 | 1.971   | 2.403 | 2.175 | 0.860      |
|                | 22 Jul 2011      | -0.386 | 2.240   | 2.274 | 1.932 | 0.881      |
|                | 28 Jul 2011      | -1.896 | 2.008   | 2.761 | 2.332 | 0.833      |
|                | 27 Sep 2011      | -0.299 | 1.651   | 1.678 | 1.442 | 0.863      |
|                | Average          | 0.054  | 2.036   | 2.037 | 1.706 | 0.865      |
| US_VAR         | 10 May 2011      | -4.690 | 3.778   | 6.023 | 5.167 | 0.818      |
|                | 23 Jun 2011      | 0.642  | 3.978   | 4.030 | 3.185 | 0.899      |
|                | 19 Jul 2011      | -1.894 | 3.444   | 3.931 | 3.458 | 0.884      |
|                | 30 Jul 2011      | 1.575  | 4.429   | 4.701 | 3.549 | 0.906      |
|                | 7 Aug 2011       | -0.429 | 4.004   | 4.027 | 3.422 | 0.898      |
|                | 27 Aug 2011      | -1.785 | 4.009   | 4.388 | 4.003 | 0.888      |
|                | 22 Sep 2011      | -4.330 | 4.062   | 5.937 | 4.891 | 0.863      |
|                | 7 Oct 2011       | -0.799 | 3.619   | 3.706 | 3.451 | 0.805      |
|                | 26 Nov 2011      | 1.655  | 2.408   | 2.922 | 2.447 | 0.831      |
|                | 19 Dec 2011      | 1.158  | 1.890   | 2.217 | 1.881 | 0.867      |
|                | Average          | -0.890 | 4.243   | 4.336 | 3.545 | 0.866      |

#### Table 8. Continued.

|                   |             | Statistical Test |         |                 |         |            |
|-------------------|-------------|------------------|---------|-----------------|---------|------------|
| Location          | Date        | Bias             | Scatter | RMSD            | MAE     | NASH Index |
| US_MOZ            | 28 Jun 2011 | -1.441           | 1.255   | 1.910           | 1.772   | 0.674      |
|                   | 1 Aug 2011  | 1.382            | 1.685   | 2.180           | 1.677   | 0.910      |
|                   | 18 Aug 2011 | -1.438           | 1.695   | 2.223           | 1.828   | 0.819      |
|                   | 31 Aug 2011 | -1.781           | 1.864   | 2.578           | 2.017   | 0.842      |
|                   | 1 Sep 2011  | 3.489            | 3.429   | 4.892           | 3.623   | 0.655      |
|                   | 7 Sep 2011  | 0.233            | 2.354   | 2.365           | 2.066   | 0.843      |
|                   | 12 Sep 2011 | 1.092            | 1.811   | 2.114           | 1.594   | 0.893      |
|                   | 30 Sep 2011 | 0.123            | 2.816   | 2.818           | 2.501   | 0.762      |
|                   | 29 Sep 2011 | -3.443           | 1.5//   | 3.787           | 3.443   | 0.798      |
|                   |             | -1.964           | 1.753   | 2.033           | 2.138   | 0.934      |
|                   | Average     | -0.458           | 2.809   | 2.846           | 2.219   | 0.813      |
| US_IB1            | 30 May 2011 | 1.231            | 2.410   | 2.706           | 1.831   | 0.750      |
|                   | 7 Jun 2011  | 0.428            | 2.349   | 2.388           | 2.094   | 0.840      |
|                   | 28 Jun 2011 | 3.081            | 3.136   | 4.396           | 3.119   | 0.661      |
|                   | 8 JUI 2011  | -0.192           | 4.092   | 4.096           | 3.608   | 0.741      |
|                   | 24 Aug 2011 | 4.358            | 3.287   | 5.459           | 4.358   | 0.741      |
|                   | 13 Sep 2011 | 8.203            | 5.501   | 9.877           | 8.203   | 0.491      |
|                   | 15 Sep 2011 | 1.800            | 3.835   | 4.260           | 3.317   | 0.740      |
|                   | 15 Oct 2011 | 1.701            | 1.500   | 2.313           | 1.701   | 0.767      |
|                   | 15 Oct 2011 | 4.103            | 2.343   | 9.100           | 4.103   | 0.207      |
|                   | 24 OCI 2011 | 2 515            | 3.171   | J. 100<br>/ 921 | 2.042   | 0.629      |
|                   | Average     | 2.313            | 4.113   | 4.021           | 0.024   | 0.000      |
| US_TON            | 27 Feb 2011 | -2.083           | 1.436   | 2.530           | 2.083   | 0.797      |
|                   | 17 Mar 2011 | -1.9//           | 2.839   | 3.459           | 2.930   | 0.795      |
|                   | 24 May 2011 | -1.411           | 2.128   | 2.553           | 2.309   | 0.844      |
|                   | 24 JUN 2011 | 0.808            | 2.508   | 2.030           | 0 5 1 0 | 0.897      |
|                   | 7 Aug 2011  | 2 452            | 4 012   | 4 702           | 2.010   | 0.895      |
|                   | 28 Aug 2011 | 1 173            | 3,618   | 3,803           | 2 915   | 0.870      |
|                   | 15 Sep 2011 | 3 4 1 3          | 4 206   | 5 417           | 3 632   | 0.821      |
|                   | 1 Nov 2011  | 0.531            | 2 687   | 2 739           | 2 512   | 0.859      |
|                   | 16 Nov 2011 | -0.126           | 1.572   | 1.577           | 1.489   | 0.853      |
|                   | Average     | 0.338            | 3.417   | 3.434           | 2.545   | 0.853      |
| US_WHS            | 8 Feb 2011  | -1.428           | 2.637   | 2.999           | 2.651   | 0.872      |
|                   | 16 Feb 2011 | 1.147            | 2.017   | 2.320           | 1.792   | 0.870      |
|                   | 25 Mar 2011 | -1.610           | 2.543   | 3.010           | 2.516   | 0.873      |
|                   | 22 Jun 2011 | -1.001           | 3.040   | 3.200           | 2.806   | 0.838      |
|                   | 13 Jul 2011 | 1.249            | 2.594   | 2.879           | 2.208   | 0.811      |
|                   | 2 Aug 2011  | -0.367           | 2.148   | 2.179           | 2.008   | 0.841      |
|                   | 28 Aug 2011 | -0.318           | 2.103   | 2.127           | 1.938   | 0.903      |
|                   | 3 Aug 2011  | 1.842            | 4.702   | 5.050           | 4.157   | 0.746      |
|                   | 5 Oct 2011  | -0.668           | 2.043   | 2.149           | 1.933   | 0.884      |
|                   | 20 Oct 2011 | -1.431           | 3.130   | 3.442           | 3.018   | 0.864      |
|                   | Average     | -0.185           | 3.030   | 3.035           | 2.505   | 0.850      |
| All Sites Average |             | -0.376           | 3.496   | 3.766           | 3.003   | 0.825      |





Figure 1. A simple representation of the SimSphere model architectural design.





Figure 2. Maps of site location taken from Google Earth.





Figure 3. Flowchart of the overall methodology followed.





**Figure 4.** Scatterplot comparison of SimSphere predicted and in situ  $R_{g}$  flux.





**Figure 5.** Scatterplot comparison of SimSphere predicted and in situ  $R_{net}$  flux.





Figure 6. Scatterplot comparison of SimSphere predicted and in situ LE flux.





Figure 7. Scatterplot comparison of SimSphere predicted and in situ H Flux.





**Figure 8.** Scatterplot comparison of SimSphere predicted and in situ  $T_{air1.3m}$ .

Interactive Discussion

Þ١



**Figure 9.** Scatterplot comparison of SimSphere predicted and in situ  $T_{air50m}$ .