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Abstract

This technical paper presents an efficient and performance-oriented method to model
reactive mass transport processes in environmental and geotechnical subsurface sys-
tems. The open source scientific software packages OpenGeoSys and IPhreeqc have
been coupled, to combine their individual strengths and features to simulate thermo-
hydro-mechanical-chemical coupled processes in porous and fractured media with si-
multaneous consideration of aqueous geochemical reactions. Furthermore, a flexible
parallelization scheme using MPI (Message Passing Interface) grouping techniques
has been implemented, which allows an optimized allocation of computer resources
for the node-wise calculation of chemical reactions on the one hand, and the underly-
ing processes such as for groundwater flow or solute transport on the other hand. The
coupling interface and parallelization scheme have been tested and verified in terms of
precision and performance.

1 Introduction

Reactive transport modeling is an important approach to better understand, quantify
and predict hydro-biogeochemical processes and their effects on subsurface environ-
ments. It is of growing interest among the fields of geotechnical engineering applica-
tions and environmental impact assessments and is used e.g. in contaminated site
remediation or water resources management, to predict the environmental fate of or-
ganic and inorganic substances and pollutants in soil or groundwater reservoirs (e.g.
Ballarini et al., 2014; Hammond et al., 2010, 2011, 2014; Henzler et al., 2014; Lichtner
et al., 2012; Molins et al., 2010; Riley et al., 2014; Yabusaki et al., 2011). Geotech-
nical applications employ reactive transport simulations e.g. to quantify geochemical
processes in geological nuclear waste repositories (e.g. Kosakowski and Watanabe,
2013; Shao et al., 2009; Xie et al., 2006) or to evaluate CO, geological sequestration
(e.g. Beyer et al.,, 2012; Li et al., 2014; Pau et al., 2010; Xu et al., 2004, 2006).

2370

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/2369/2015/gmdd-8-2369-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2369/2015/gmdd-8-2369-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

In the last decades, much effort has been invested to develop practical tools for re-
active transport modeling (Steefel et al., 2014), such as PHREEQC (Parkhurst and
Appelo, 1999, 2013), OpenGeoSys (OGS) (Kolditz et al., 2012), HYTEC (van der Lee
et al., 2003), ORCHESTRA (Meeussen, 2003), TOUGHREACT (Xu and Pruess, 2001;
Xu et al., 2006, 2011), eSTOMP (Yabusaki et al., 2011), HYDROGEOCHEM (Yeh and
Tripathi, 1990), CrunchFlow (Steefel et al., 2014), MIN3P (Mayer et al., 2002) or PFLO-
TRAN (Lichtner et al., 2015). Since each code has its own strengths and limitations,
coupling of different codes, i.e. one software applies another and/or vice versa, is an
indispensable choice and a straightforward solution to make use of combined capa-
bilities of different codes. Existing approaches, which apply tool coupling methods to
simulate reactive transport processes are e.g. HYDRUS and PHREEQC (Jacques and
Simtinek 2005; Sim(inek et al., 2006); COMSOL and PHREEQC (Nardi et al., 2014;
Nasir et al., 2014; Wissmeier and Barry, 2011); OGS-GEMs (Kosakowski and Watan-
abe, 2013; Shao et al., 2009); OGS-BRNS (Centler et al., 2010); OGS-ChemApp (Li
etal., 2014); OGS-PHREEQC (Xie et al., 2006; de Lucia et al., 2012); MODFLOW-UFZ
and RT3D (Bailey et al., 2013), or MODFLOW-MT3DMS, i.e. PHT3D (Morway et al.,
2013).

Due to the complexity of physical, geochemical, and biological processes involved,
the development of a reactive transport simulator, which has comprehensive numer-
ical modeling capabilities, is a challenging task. The robustness and computational
efficiency of a numerical simulator are of vital importance, because reactive transport
modeling is often accompanied with other challenges such as numerical precision and
stability (de Dieuleveult and Erhel, 2010; Kosakowski and Watanabe, 2013; Wissmeier
and Barry, 2011) or expensive computational time.

Especially for realistic reactive transport simulations at larger scales, i.e. from field
scales to catchment or reservoir scale, high complexities of hydrogeological and geo-
chemical systems as well as high spatial-temporal resolution of reactive zones are
required to ensure plausible and accurate model results. In these cases, iterative sim-
ulations of different scenarios or setups e.g. for model calibration and parameter sensi-
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tivity analysis becomes extremely difficult and time-consuming on desktop computers
with limited computational resources (Hammond et al., 2014; Kollet et al., 2010; Licht-
ner et al., 2012; Yabusaki et al., 2011).

Parallelization is an established approach to improve computational performance
and with the additional benefit from continuous innovation of modern hardware and
software development (Hanappe et al., 2011; Wang et al., 2014). PFLOTRAN, a paral-
lel multiscale and multiphysics code for subsurface multiphase flow and reactive trans-
port (Hammond et al., 2012, 2014; Lichtner et al., 2012), or TOUGH-MP, the parallel
version of TOUGH2 (Zhang et al., 2008; Hubschwerlen et al., 2012), apply domain
decomposition (DDC) methods for their parallel framework. Yabusaki et al. (2011)
implemented a one-sided communication and global shared memory programming
paradigm in eSTOMP.

An elaborated code concept and development can help to reduce the time needed
for solution procedures and data communication. Consequently in terms of coupled
reactive transport modeling, process simulation and interaction should be closely tied
to enable shared data structures and reduce data exchange procedures.

In the current work, OGS has been coupled with the new C++ module of PHREEQC,
called IPhreeqc. In this operator splitting approach, chemical reactions are calculated
locally on each finite element node, whereas processes such as groundwater flow
and mass transport are calculated globally. OGS is an open source FEM simulator
for multi-dimensional thermo-hydro-mechanical-chemical (THMC) coupled processes
in porous and fractured media (Kolditz et al., 2012). In other words, OGS is able to
simulate e.g. water and/or gas flow together with heat and mass transport processes
in fully and partly saturated media. IPhreeqc on the other hand, inherits all the func-
tionalities of PHREEQQC, i.e. it is capable of modelling aqueous, mineral, gas, surface,
ion-exchange, solid-solution equilibria and kinetic reactions, but also provides a well-
defined set of methods for data transfer and management additionally (Charlton and
Parkhurst, 2011). Both codes are open source, i.e. the technical coupling could be
realized directly on the code level.
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The optimum amount of the required computer resources for DDC related processes
(global process) and chemical reactions can be quite different. If a DDC approach, e.g.
for flow and transport, is applied for the attached reactions system as well, then choos-
ing the most suitable number of compute cores will lead always to a certain trade-off.
Hence, a new parallelization scheme based on MPI grouping techniques is developed
for the OGS#IPhreeqc interface to enable a flexible distribution of different amount of
computer resources for DDC related processes and geochemical reactions, thus to al-
locate optimum number of compute cores for both types of processes simultaneously.
Global processes will be paralleled based on DDC method, whereas the parallelization
of geochemical reactions is completely independent from global processes in terms
of number of compute cores employed and the way to group finite element nodes for
different compute cores.

This technical paper describes in the following the coupling interface of
OGS#IPhreeqc and evaluates the performance of the new parallelization scheme to
provide detailed information for modelers and developers to apply reactive transport
simulation on high performance computer infrastructures.

2 Codes and methods

After a brief description of both codes the coupling interface is introduced and verified
on the basis of two benchmark examples. After that the technical implementation as
well as verification of the proposed parallelization scheme is described (Sect. 3).

2.1 OpenGeoSys

Based on object-oriented concepts for numerical solution of coupled processes, OGS
provides plenty of possibilities to simulate a broad spectrum of processes related to
reactive transport modeling (Kolditz et al., 2012). For example, OGS can be applied
to simulate different kind of flow processes such as incompressible and compress-
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ible groundwater flow, overland flow, density-driven flow, unsaturated flow, two phase
as well as multiphase flow. In OGS, transport of components in fluid phases is simu-
lated based on the advection—dispersion equation, while geochemical reactions can be
modeled by using internal libraries (e.g. the KinReact module for kinetically controlled
biogeochemical-reactions; Ballarini et al., 2014) or external couplings with geochemi-
cal solvers (e.g. Xie et al., 2006; Shao et al., 2009; Kosakowski and Watanabe, 2013;
Centler et al., 2010; Beyer et al., 2012; Li et al., 2014). The code has already been
parallelized using MPI (Wang et al., 2009; Ballarini et al., 2014) and PETSc (Wang
et al., 2014). More detailed information relating to OGS development concept, code
resources, benchmarking, etc. can be found at http://www.opengeosys.org/.

2.2 PHREEQC and IPhreeqc

PHREEQC is one of the most widely used open source geochemical solvers. It pro-
vides a variety of geochemical reaction capabilities (Parkhurst and Appelo, 1999,
2013). Beside batch reaction simulations, its current capabilities include inverse and
one-dimensional reactive transport modeling. IPhreeqc is a C++ module of PHREEQC
which is specially designed for the coupling of PHREEQC with other codes. It pro-
vides a well-defined series of methods to interact with a client program (Charlton and
Parkhurst, 2011). For example, PHREEQC simulation input data can be prepared as
a file or a character string in the client program and executed by PHREEQC with dif-
ferent methods such as RunFile or RunString. Besides writing selected output results
into a file, individual data items at a certain position of the result array can be accessed
and returned to the client program by using the GetSelectedOutputValue method. More
detailed information on IPhreeqc and its data manipulation methods can be found in
Charlton and Parkhurst (2011).
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2.3 OGSt#lIPhreeqc interface

In the current study, both source codes, OGS and IPhreeqc are statically linked to
allow accesses of all the functionalities of both codes (open source concept). The
OGS#IPhreeqc interface is well encapsulated into a general framework for reactive
transport modeling in OGS, which has already been described in detail by Beyer
et al. (2012). Unlike the previously existing coupling scheme between OGS and
PHREEQC presented by Xie et al. (2006), in which the PHREEQC is called externally
through a system call to a PHREEQC binary executable, in the new coupling presented
here, a call to PHREEQC can be realized directly by accessing functions provided by
the IPhreeqc module. The source code of PHREEQC however is not changed, which
allows the merging of new releases from both codes rather conveniently. This develop-
ment concept allows the user to benefit continuously from the code development from
both sides. The sequential non-iterative (SNIA) approach for operator splitting is ap-
plied in the coupling procedure. Figure 1 illustrates the general procedure for reactive
transport modeling with OGS#IPhreeqc, which is described in the following.

In the first development step, a file-based approach for data exchange between OGS
and IPhreeqc is applied. Before entering the time stepping loop, initial values of the
system state such as component concentrations and temperatures on each finite el-
ement node will be passed to IPhreeqc to initialize the geochemical system. During
each time step, after OGS has calculated the flow field by simulating different flow pro-
cesses mass transport of each mobile chemical component will be calculated. Then
on each node, concentration values of each component as well as other state vari-
ables such as pressure and temperature will be forwarded to the coupling interface, in
which an input file for IPhreeqc will be prepared. The call to IPhreeqc will be realized
by using the IPhreeqc functions: CreatelPhreeqc to create a new instance of IPhreeqc,
LoadDatabase to load the thermodynamic database for the geochemical system, and
RunfFile to run the specific PHREEQC input files. After execution of IPhreeqc, an output
file will be generated by IPhreeqc, which will be read by the interface during the reac-
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tion post-processing. Based on the updated chemical species concentrations, several
feedback functions can be applied to update the porosity, permeability, saturation as
well as density for flow, heat and mass transport processes. For example, in the case
of mineral dissolution or precipitation, the porosity and permeability changes can be
evaluated.

2.4 \Verification of the coupling interface

The coupling between OGS and IPhreeqc was tested and verified by using several
benchmarks for reactive transport problem types such as ion exchange (example 11
of Parkhurst and Appelo, 1999), carbonate mineral precipitation and dissolution (En-
gesgaard and Kipp, 1992; Beyer et al., 2012), and isotope fractionation (van Breukelen
et al., 2005). The latter two benchmarks will be shortly introduced here.

The first presented test example is the Engesgaard benchmark. It describes the
phenomenon occurs when a 0.5m long 1-D calcite column is flushed with a solution
containing magnesium: calcite dissolves continuously as the solution moves towards
the downstream direction, whereas dolomite precipitates temporarily at the calcite dis-
solution front. Calcite dissolution/precipitation are simulated as equilibrium reactions,
whereas that of the dolomite is modelled as kinetic reactions using the rate parameters
from Palandri and Kharaka (2004). The material properties of the column as well as the
initial and boundary conditions are given in Tables 1 and 2, respectively. The compari-
son of the simulation results between OGS#IPhreeqc and OGS-Chemapp (from Beyer
et al., 2012) shows a very good agreement as illustrated in Fig. 2.

The second benchmark is based on the 1-D multistep isotope fractionation model
from van Breukelen et al. (2005), which simulates the sequential reductive dechlorina-
tion of tetrachloroethene (PCE) to ethane (ETH) in a 876 m long aquifer over a period
of 20 years. The model domain, aquifer properties as well as initial and boundary con-
ditions are illustrated in Fig. 3.
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The intermediate products during the degradation include tri- and dichloroethylene
(TCE, DCE), vinyl chloride (VC). The whole sequential reductive dechlorination chain
is illustrated as follows: PCE — TCE — DCE — VC — ETH.

The '¥C and *C isotopes of each chlorinated hydrocarbons (CHCs) are modeled
as separate species. Totally there are 11 chemical species including chloride as tracer,
which is produced in each dechlorination reaction. During degradation the kinetic iso-
tope fractionation of each compound is assumed to be constant. More detailed infor-
mation regarding to the kinetic rate expressions and relevant parameters can be found
in van Breukelen et al. (2005).

The simulated concentration profile of the light CHC isotopes and relevant 5'3c
[%o] isotope signatures along the model domain are compared with those simulated
using a standalone version of PHREEQC (Fig. 4), showing a good agreement for both
concentration profiles of the light CHC isotopes and corresponding isotope signatures.

3 Parallelization of OGS#IPhreeqc

In this section we describe the parallelization method for the numerical simulation of re-
active transport processes with OGS#IPhreeqc. For the parallelization of groundwater
flow and mass transport, the OGS internal DDC scheme (see Sect. 2.1) is employed.
For the parallelization of geochemical reactions a loop parallelization is applied. All
cores take part in solving the geochemical reaction system, while only certain cores
are used to solve the DDC related processes.

3.1 Parallelization scheme

Figures 5 and 6 illustrate the general idea of the parallelization scheme. The two dif-
ferent MPI groups, i.e. MPI_Group1 and MPI_Group2 and related intra-communicators
are created by using MPI functions MPI_Group_incl and MPI_Comm_create. The com-
pute cores which belong to MPI_Group1 will run most part of the OGS code including

2377

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/2369/2015/gmdd-8-2369-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2369/2015/gmdd-8-2369-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

all DDC related processes (groundwater flow, mass and heat transport) and geochem-
ical reactions, whereas those of MPI_Group2 will only run a small part of code related
to geochemical simulation.

A “for” loop for MPI_Group?2 is created directly in the main function of the OGS
code. In each time step, after the calculation of global flow and mass transport pro-
cess, PHREEQC input files for all compute cores will be created by compute cores of
MPI_Group1. Then MPI_Group1 will send a signal to MPI_Group2, which will invoke
the calls to IPhreeqc for compute cores in MPI_Group2. After PHREEQC calculations
are complete in both MPI groups, flow and mass transport processes will start again
with the next time step in MPI_Group1, while compute cores of MPI_Group2 will wait
for the signal from MPI_Group1 (using blocking receive MPI_Receive) to restart the
calls to IPhreeqc. After compute cores of MPI_Group1 have run through the complete
time stepping loop reaching the end of the simulation, another signal will be sent to
MPI_Group2, which will force its compute cores to jump out of the chemical reac-
tion loops. Then MPI_Finalize will be executed to terminate the MPI environment. As
a special case, when the number of subdomains equals that of the compute cores,
MPI_Group2 will not be created. In this case, no communication between the two MPI
groups is required. This corresponds to the parallelization scheme for reactive transport
simulations applied in Ballarini et al. (2014).

As mentioned above, file-based data transfer is applied to exchange concentration
values between mass transport and geochemical reaction simulations. In each time
step, after the simulation of mass transport, concentration values of all components
in all finite element nodes will be stored in a global concentration vector. For each
compute core a node list vector will be generated through which finite element nodes
are allocated to the respective compute core, and their concentration values can be
accessed from the global concentration data structure by using this vector. Since the
generation of the node list vector is completely independent from the domain decompo-
sition, flexible groupings of finite element nodes can be realized to ensure an optimum
load balance of compute cores for the calculation of geochemical reactions. During the
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execution of geochemical reactions, each compute core will execute IPhreeqc by using
a specific input file. A relevant PHREEQC results file will then be generated. After all
compute cores finish their calls to IPhreeqc, compute cores of MPI_Group1 will read all
the result files and store the concentration values of all components in respective local
buffers. The values of all local buffers will then be transferred to a global concentration
vector by applying the MPI_Allgather method, before the updated concentrations of
different components are sent back to mass transport process again.

3.2 Computational platforms

The correctness and efficiency of the proposed scheme were tested on two different
computational platforms. The first platform is a multi-core Linux machine called “EN-
VINF”. It contains 40 “Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz” CPU cores and
has a shared memory of approximately 500 GB RAM among these 40 cores. A maxi-
mum of 20 cores can be used by a single user at a time. The second platform is a Linux
based (CentOS 6 as the operating system) cluster, in the following called “EVE”. It con-
sists of 1008 (Intel XEON X5650 @ 2.6 GHz) CPU cores and 5.5 TB of RAM. Computer
nodes are connected with 40 GBits™' QDR Infiniband network interconnect. The peak
performance is 10 TFlop s

In order to make the results comparable by using both platforms, for all tests in the
EVE cluster, job requests were made to guarantee the use of compute nodes with 20
free slots when submitting to the job queue. Of course jobs can also be submitted
without this constrain, however, since in this case the MPI jobs may be distributed to
more compute nodes than necessary in order to allow an earlier execution, more inter-
compute node communications may have to be made over the network, which would
worsen the performance of the parallelization scheme.
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3.3 Verification of the parallelization scheme

The 1-D benchmark of isotope fractionation is extended to 2-D and 3-D to apply the
proposed parallelization scheme. Figure 7a and b show the concentration distribution
of the light isotope VC along the 2-D model domain and the 3-D model domain at the
end of the simulation, respectively. All test results on both parallel computing platforms
show very good agreements with serial simulation results.

4 Performance tests and analysis

In this section, the performance of the parallelization scheme is tested by using two
examples differing by dimension and problem size. The model size of the first 2-D
example is relatively small compared to the second 3-D test. Hence, the influence of
the problem size on the parallel performance can be shown.

4.1 Isotope fractionation 2-D

As the first test example, the 1-D PHREEQC model of van Breukelen et al. (2005) is
extended to 2-D (876 m x 100m, see Fig. 7a). The finite element mesh consists of 1331
nodes and 1200 uniform rectangular elements (120 x 10). With a single core on the
ENVINF machine (see Sect. 3.3) the simulation time is 578 s. Chemical reaction is the
most time-consuming part of the simulation, which takes 92.2 % of the total simulation
time.

The performance of the current parallelization scheme is demonstrated in Fig. 8. In
Fig. 8a the relative speedup in comparison to a single core simulation is illustrated as
a function of number of DDCs and total compute cores. If we fix the number of DDCs
at a specific value and vary the total number of compute cores from 4 to 20, we can
observe a continuous increase of relative speedup for all DDCs with growth of the num-
ber of compute cores. The speedup of DDC = 8 is generally much better than that of
DDC = 4. Above DDC = 12 there is no big difference between the speedup behavior for
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different DDCs anymore. Curve AB in Fig. 8a represents relative speedups for combi-
nations in which the number of compute cores equals the number of DDCs. In Fig. 8b
curve AB is once again illustrated (“total”’) together with the speedup of chemical reac-
tions and speedup of “other” processes which are mainly global processes like ground-
water flow and mass transport. We can observe that the speedup of “other” processes
reaches its maximum when the number of compute cores exceeds 12. As shown by
Wang et al. (2009), adding of sub-domains will increase communication between sub-
domain border nodes. As a consequence, the parallel efficiency for calculation of DDC
related processes will reduce when number of border nodes becomes comparable with
the total number of finite element nodes. The speedup of reaction however is generally
much better and increases continuously as more compute cores are provided. In the
operator splitting approach chemical reactions are solved locally on each finite element
node, hence no direct communication among different nodes is necessary.

Figure 8c and d show the breakdown of time for different processes with a DDC = 4
and a DDC = 12. It is clearly shown that chemical reaction is the most time-consuming
part of the simulation in both cases. With a DDC = 4 reactions take up to 90 % of
the total time when only 4 compute cores are applied, and drops to around 70 % if
20 compute cores are applied; whereas for a DDC = 12 it becomes 83 % of the total
time for 12 compute cores, and goes down to around 77 % for 20 compute cores. In
both cases time of “other” processes stays almost unchanged for different number of
compute cores because the number of DDCs is fixed. The time for interface mainly
includes preparing input files for IPhreeqc, communication among different compute
cores, reading output files from IPhreeqc. As shown in Fig. 8c and d, this part of time
stays also nearly unchanged and relatively low compared to other processes. Gener-
ally, the way of coupling and parallelization is shown to be efficient already for small
sized reactive transport problems in a shared memory system such as ENVINF.
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4.2 Isotope fractionation 3-D

The second test case is a 3-D extension (876 m x 100m x 10 m, see Fig. 7b) of the 2-D
test example which consists of 134 431 nodes and 120 000 hexahedral finite elements
(120 x 100 x 10). The simulation time with 2 compute cores with 2 DDCs on ENVINF is
37.5h.

Similar to the 2-D test example (Sect. 4.1), for the 3-D test case the relative speedup
on the EVE cluster is illustrated as a function of number of DDCs and total compute
cores in Fig. 9a; Fig. 9b shows a breakdown of curve AB into speedups of global pro-
cesses and chemical reactions. If we use the same number of compute cores and
DDCs, a nearly linear speedup with the increase of the compute cores can be ob-
served. By using 80 compute cores simulation time can be reduced to around 45 min.
As problem size increases, the speedup effects of both DDC related processes as
well as chemical reactions become stronger. Similar to the results of the 2-D example,
in the 3-D example geochemical reaction shows a much better speedup than global
processes.

However, if we fix the number of DDCs at a specific value and increase the total
compute cores further, there is not much speedup observed for almost all DDCs (see
Fig. 9a). This behavior is quite different from what we have observed in the 2-D exam-
ple.

The reason behind lies mainly in the fact, that the ratio between the time consumption
for reactions and mass transport (flow) are different in these two examples. In the 2-D
example, the time consumption for calculation of flow and mass transport is rather low
comparing with that of reactions. In the 3-D example, the time consumption for flow
and mass transport is on the same magnitude as that of reactions (see Fig. 10a and
b). As a consequence, the saving of time in the calculation of reactions alone, which is
obtained by increasing compute cores, cannot bring a significant speedup for the entire
simulation. Hence, to achieve a better speedup for a large problem, it is important to
reduce the time consumption for flow and mass transport as well by using more DDCs.
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In the current scheme the writing and the reading of files on the EVE cluster is re-
alized by using the general parallel file system (GPFS). As we can observe in the
Fig. 10c, for a large problem file writing and reading through the GPFS is a time-
consuming procedure. Figure 10d shows that other time consumption in the coupling
interface is relatively small, which mainly consists of blocking communication (e.g.
MPI_Barrier) between different compute cores. However, this part of time can also
increase when working load for calculation of reactions, file writing and reading are
unbalanced among different compute cores.

5 Conclusions and outlook

This technical paper introduced the coupling interface OGS#IPhreeqc and a paralleliza-
tion scheme developed for the interface. Furthermore, the parallel performance of the
scheme was analyzed.

The OGS#IPhreeqc interface presented in the current study is a sustainable way
of coupling, which can continuously benefit from the code development and updating
from two open source communities. The parallelization scheme is adjustable to different
hardware architectures, and suitable for different types of high performance computing
(HPC) platforms such as shared-memory machines or clusters.

The parallelization scheme provides more flexibility to arrange compute resources
for different computational tasks by using the MPI grouping concept. The appropri-
ate setting of DDCs and total compute cores is problem dependent. If calculation of
geochemical reaction dominates the total simulation time, e.g. for small sized prob-
lems with simple hydrogeological but complex geochemical system, then using more
compute cores brings more significant speedup than simply increasing the number of
DDCs; if the time consumption of flow and mass transport is in the same magnitude as
geochemical reactions, to increase the number of compute cores and DDCs simulta-
neously is most efficient.
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The current parallelization scheme will be especially useful for problems, in which
a further increase of the number of DDCs above the optimum will lead to a strong
degradation of parallel performance for flow or mass transport (as a consequence of
e.g. increasing inter-compute-node communication or number of linear iterations). In
this case, better speedup may still be obtained by fixing the number of DDCs at the
optimum while increasing the number of compute cores to accelerate the calculation of
chemical reactions.

Even though the current parallelization scheme has shown good parallel perfor-
mance in shared- and distributed-memory systems, there is still space for improve-
ment to reduce the time consumption for communication and data transfer between
OGS and IPhreeqc.

Blocking communication techniques, like MPI_Barrier were applied to ensure the cor-
rect sequence of process coupling. An unbalanced work load distribution for chemical
reactions, like in heterogeneous problems with sharp transient reactive fronts or reac-
tion hot spots, could affect the parallel performance as well. Hence, more intelligent
ways to ensure efficient load balance still remain as an important task.

File writing and reading through the GPFS of a cluster system is time-consuming,
especially when increasing problem size. As the next step, a character string-based
data exchange strategy will be implemented, in order to minimize the time consumption
for data exchange.

Recently, the SeS Bench (Subsurface Environmental Simulation Benchmarking)
benchmarking initiative has started a project to test the parallel performance of dif-
ferent reactive transport modeling tools. In the near future, more complex benchmarks
and real-world applications will be tested in the framework of this project to improve the
parallel performance of the current scheme for reactive transport modeling at larger
scales.
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Table 1. Material properties of the 1-D calcite column.

Parameter Value Unit
Effective porosity 0.32 -

Bulk density 1.80x10°  kgm™
Longitudinal dispersivity 6.70 x 102 m
Flow rate 3.00x10% ms™
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Figure 2. Comparison of calcite and dolomite precipitation/dissolution simulation with OGS-
Chemapp and OGS#IPhreeqc.
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876m
Figure 3. Model domain, material properties, initial and boundary conditions of the isotope

fractionation benchmark. K, n and v denotes hydraulic conductivity, porosity and groundwater
velocity of the aquifer, respectively (basic units are: m — meter, d — days).
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for (ranks of MPI_Groupl)//MPI_Groupl will run following code
{
read OG5 input data;
while (the current time is smaller than the end time) //time stepping loop
{
compute flow processes;
compute heat and mass transport process;
prepare the input files for PHREEQC;
send signals to MPI_ Group2;
//inform MPI_Group2 that the input files for IPhreeq are prepared;
calculate chemical reactions with IPhreeqgc;
waiting for signals from MPI_Group2;
read output files from IPhreeqc;
}
output results; //if needed
send MPI_Group2 a kill signal;
//inform MPI_Group2 the time stepping loop is over
terminate MPI environment;

for (ranks of MPI Group2)//MPI Group2 will run fellowing code
{
for () //reaction loop
{
waiting for signal from MPI_Groupl;
if the =signal is a kill signal
Jump out of the reaction loop;
else
calculate chemical reactions with IPhreeqgc;
send signals to MPI_Groupl:
//inform MPI_Groupl that calculation of reaction is done
}

terminate MPI environment;

Figure 6. Pseudo code for schematic presentation of the parallelization scheme.
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