
Author’s Response 
 
J. J. Guerrette1 and D. K. Henze1 
 
1Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, 
USA 
 
 
General comments: 

(1) After replacing Figure 1 with Table 1, all of the figure numbers are reduced in the 
new manuscript.  The old figure numbers are used in the discussion. 

(2) During the discussion period, the authors identified an error in the aircraft 
observation operator described in the manuscript Section 5.1.2.  The SP2 
observations are reported at 1013 hPa, 273K, but the original observation 
operator did not account for the temperature and pressure conversion.  This error 
has since been corrected in WRFPLUS-Chem.  Figures 7-12 (old manuscript 
figure numbers) have been updated accordingly.  The discussion for Figs. 11 and 
12 is also adjusted, including text in the abstract and conclusions. 

 
The remainder of the document is organized as follows: 

(1) Reply to M. Krol 
(2) Reply to Anonymous Referee #2 
(3) latexdiff output showing manuscript changes 
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We are thankful for all of the constructive comments and questions by M. Krol. The
corresponding responses and manuscript changes are given below.

1 Responses to specific comments

1. In the introduction, no reference is made to the pioneering work of Elbern
et al. with the EURAD model, who worked on 4D-VAR chemical data assim-
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ilation for more than two decades.

The introduction to this paper focused on literature describing data assimilation
methods that either utilized an online model or were for aerosols. Bocquet at al.
(2014) review existing online and offline chemical data assimilation capabilities in
more detail. As such, we have modified page 2315, line 25-26 as follows:

To address this, chemical data assimilation can be used to improve
short-term forecasts. Bocquet at al. (2014) review existing methods
and previous applications of chemical data assimilation in CTMs and
NWP-chemistry models.

2. In general, it would be interesting to compare the approach described here
to other approaches. For instance, some 4DVAR approaches (e.g. Bergam-
aschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling,
S., et al. (2009). Inverse modeling of global and regional CH 4emissions
using SCIAMACHY satellite retrievals. Journal of Geophysical Research,
114(D22), D22301. doi:10.1029/2009JD012287) use a two-step inversion.
Observations that are not fitted within 3� after the first optimization are
left out with an argument that the model is not able to reproduce these ob-
servations. In the current study, some of the high aircraft observations may
be due to specific layered outflow from a specific convection event, which
is not (and might never be) adequately resolved by the model. Neverthe-
less, the advanced estimation of model error with the different settings in
WRF is impressive. Without a true inversion, however, it is not possible to
assess how well the observations finally will be matched. My main point
here is that a discussion of this work in the context of existing techniques
would be of added value.

We agree that the online data assimilation method will need to be compared
against existing CTM 4D-Var systems, especially to evaluate the benefits of in-
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cluding online physics. Still, the purpose of this paper is to describe development
of a chemical adjoint with online meteorology, which is the first step toward en-
abling the online 4D-Var system in WRFDA-Chem. The WRFDA-Chem platform
is not at a state where a comparison might be made between online and offline
approaches.

Additionally, the weighting scheme presented here cannot be compared to some
other observation filtering method outside the context of a 4D-Var inversion. As
stated on pp. 2339-2340, we introduce the weighting scheme, but do not ex-
haustively test it. You are correct that future 4D-Var studies will require distinction
between residual error due to emission inventory and physical parameterization
errors. As you mention, Bergamaschi et al. (2009) remove observations outside
3� after an initial 4D-Var optimization that includes four outer loop iterations. An-
alyzing residual errors after an inversion is very useful to determine where model
descriptions are weak. As such, we have amended the paragraph starting on
page 2337, line 13 as follows:

Observations with significant model bias would require the largest per-
turbation in control variables to alleviate, and would seem to inform the
inversion process the greatest. However, they must also have low to-
tal variance to contribute to an inversion. Figure 9 shows the surface
and aircraft SD plotted versus residual error. Also plotted in that fig-
ure are one and two SD zones, as well as lines of constant �⇤

k,o

for all
w

k

= 1. Any residual falling outside the 2� zone has a combined model
and observation SD that is small enough to determine with 95 % con-
fidence (p < 0.05) that the residual error deviates from zero (i.e., the
model and observation disagree). These statistically significant model
errors indicate that some kind of inversion is worthwhile. In their multi-
cycle 4D-Var approach, Bergamaschi et al. (2009) eliminate observa-
tions outside three SD’s after an initial 4D-Var cycle, with the thought
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that incorrect model physics prevent those residual errors from being
fixed with 4D-Var. Thus, while statistically significant residuals are im-
portant to driving a 4D-Var inversion, that they remain afterward is a
strong indication of errors in the model description that cannot be fixed
through adjustments to emissions. Figure 9 shows that the relative
contributions of observation and model variances is in general propor-
tional to the relative magnitudes of observed and modeled concentra-
tion. Specifically, model (observation) variation contributes to a large
fraction of uncertainty in positive (negative) residuals.

3. I do not see why the summation is split in eq. 2a and does not simply run
to n. Please explain.

The summation is split to distinguish the inner loop control variable increment,
~�x. We have changed Eqs. (2a) and (2b) to the following:

J
b

= 1
2

h
~�x +

P
n�1
i=1 (~xi � ~xi�1)

i>
B�1

h
~�x +

P
n�1
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i
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o
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K
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k
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4. Page 2321, line 2: “earliest emission time”: up to now “x” was a general
variable, that is now linked suddenly to emissions. Please explain this bet-
ter.

Indeed, this sentence should be kept more general. We will replace “the earliest
emission time” with “earlier simulation times”.

5. Page 2321, line 17: “nonlinear to a quadratic form”. I see what you mean,
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but strictly speaking quadratic is also nonlinear.

This sentence was incorrectly paraphrased. Page 2321, lines 16-17 will be cor-
rected to: “The purpose of the two-level optimization is that approximating M with
M simplifies the full problem to a quadratic problem, and guarantees a unique so-
lution to the minimization...”

6. Page 2325: “some cost function at location p and time step f with”. Up to
now, the cost function was introduced as a global variable (eq. 1). Defining
it here as a space and time dependent variable is confusing.

In order to make the new definition less confusing, we have explicitly stated the
new definition instead of only implying it. We have changed the text on page 2325
from lines 4 to 13 as follows:

... We define a new cost function equal to a single predicted state
variable, locally defined in grid cell p and at the end of time step f ,
J = SV

p,f

. We use the TLM, ADM, and a centered finite difference
approximation from the FWM to evaluate derivatives �

p,q

= @J

@xq,0
, with

respect to some CV at location q and the initial time, 0. The finite dif-
ference derivatives are calculated from �NL

p,q

⇡ J(xq,0+�x)�J(xq,0��x)
2�x

,
where each evaluation of J results from a FWM simulation with some
perturbed value of x

q,0. �x varies between 0.1 and 10% of the value of
x

q,0. The adjoint and tangent linear derivatives are found by forcing the
model gradient fields, �⇤ and �, at J and x

q

, respectively. ...

7. Page 2325: Comparing the results of eqs. 5 and 6 is known as the gra-
dient test (see e.g. ECMWF documentation). Normally, you take dx that
approaches zero and the finite difference gradient will approach the true
gradient until numerical rounding errors become important. To my expe-
rience, for double precision calculations, derivatives can be approximated

C805

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/C801/2015/gmdd-8-C801-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015-discussion.html
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015.pdf
http://creativecommons.org/licenses/by/3.0/


GMDD
8, C801–C819, 2015

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

within 10�7 before rounding errors kick in. In my applications there is con-
vergence until dx is about 10�6. I do not see why one has to fiddle around
with different values of dx (0.1, 1, 10%, i.e. relatively large values) to see
what value performs best.
We appreciate the referee pointing out that the gradient test is not specific to any
modeling system, and have corrected the sentence beginning page 2325, line 3
to be: “Here we use an alternative verification approach based on Taylor series
derivative approximations, and similar to that used by, e.g., Henze et al. (2007),
to verify WRFPLUS-Chem.”
The referee is right that continuous model equations should lead to finite differ-
ence approximations becoming more accurate as step size is decreased, which
is a benefit to using them to approximate derivatives for nonlinear systems. In
their Fig. 4, Henze et al. (2007) showed that this is not the case for discontinu-
ous numerical algorithms, where larger perturbations may lead to smaller errors.
This phenomena is described by Thuburn and Haine (2001), and it likely arises
in WRFPLUS-Chem due to flux limiters in the 5th order, monotonic, horizontal
tracer advection.

8. In the paper (page 2326) it is written: “A range of finite difference perturba-
tions dx is used for U , T , and Q

v

control variables in order to find a value
of �

NL

with the best compromise between truncation and roundoff error.”
Another problem might be that perturbations to U in the forward model
perturb the physics (atmospheric flow is normally defined in vorticity and
divergence), and that this violates some mass-conservation constraints.
This might be the reason for the strange behavior presented later in figure
5, which look rather suspect in my opinion. The sensitivities for something
linear as emissions (figure 5, first panel) look perfectly fine and what would
be expected.
In response to your questioning perturbations in U , the standard WRFPLUS ver-
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ification test described by Zhang et al. (2013) perturbs U , T , and Q
v

, but does so
across the entire domain simultaneously. Their approach results in a decrease of
error as the domain-wide perturbation is reduced, however it likely averages out
any discontinuities introduced at specific perturbation locations. To be clear, the
T used in the model is actually the perturbation potential temperature. Thus we
have changed T to �⇥ in the paper.

We agree that the finite difference results in Fig. 5 reflect substantial nonlinear
responses. As such, we repeated the test with new source code and post pro-
cessing. Unfortunately, we were unable to determine the initial locations, q, that
we used previously due to a data loss. However, we repeated these tests in lo-
cations likely to be equivalent; a revised version of Fig. 5 is shown below. We
think that the resulting derivatives are within the tangent linear regime expected
in an online model. Also note that the derivatives with respect to U and Q

v

are
evaluated very near the coastline, which could be a source of additional advective
discontinuities (as discussed in response 7 above).

We have also modified the text starting on page 2329, line 3 until the end of that
paragraph as follows:

However, the TLM has inflection points at the same times as the fi-
nite difference approximations, including during fast transient periods,
such as for @U

@U

and @U

@Qv
. The duration over which the tangent linear as-

sumption is valid for chemical responses to U and Q
v

depends on the
size of the perturbation and on the local regime of meteorology. For
instance, the test location shown is very near the California coast, but
better agreement was found for an inland response location, p. Further
testing of the coupled derivatives will be necessary to determine over
what time period they are suitable for inverse modeling, and under what
conditions the model nonlinearities cease to be a limiting factor. Future
inversions with coupled physics and chemistry will need to verify that

C807

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/C801/2015/gmdd-8-C801-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015-discussion.html
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015.pdf
http://creativecommons.org/licenses/by/3.0/


GMDD
8, C801–C819, 2015

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

@J

@↵

has a near linear response over the time frame considered. The
behaviors noted here are similar or improved across the other thirteen
pairs of q and p.

9. Page 2326: The adjoint test presented is figure 2 was compromised by
some errors, as mentioned later in the paper (page 2328). So it seems logi-
cal to replace figure 2 by a corrected one.
The improved agreement between the ADM and TLM described on page 2328
resulted from changing single precision variable definitions to double precision in
the TL version of the dry deposition velocity calculation. This changed the TLM
derivatives in the 8th digit and beyond. There would be no perceptible change
to Fig. 2, other than the Max Rel. Err. result. Because running these verifica-
tion tests would take several weeks to repeat, and the ADM/TLM agreement is
already within the bounds of a single precision calculation in Fig. 2, we believe it
is unnecessary to repeat the verification.

10. Page 2326, line 5: Q
v

has not been introduced in the paper.
The sentence starting on page 2326, line 4 has been corrected to: “The CVs
include initial conditions for BC1, zonal wind (U ), temperature (T ), and water
vapor mixing ratio (Q

v

), and also BC emission scaling factors (↵
BC

).”

11. Page 2328, line 26: “BC concentrations respond linearly to a 1% perturba-
tion of emissions for at least 48 h”. Is there any reason that a non-linear
response can be expected when coupling with BC and radiation is turned
off?
Since the emission and transport processes are linear, we did not expect nonlin-
earities. However, it was not known whether discontinuities in the advection would
introduce non-physical nonlinearities. We believe it is important to state this was
not the case, at least for these tests. We modified the sentence beginning on
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page 2328, line 25 as follows: “Most importantly for multi-day 4D-Var emissions
inversions, and as would be expected, BC concentrations respond linearly to ...”

12. Page 2331, line 28: reference missing

We have fixed the reference in the manuscript.

13. Page 2332: I am a bit worried that you use two different measurement tech-
niques for BC. BC is particularly tricky to measure and LAC and TOR might
have different biases. For sure, BC and EC cannot be compared directly, be-
cause they are defined differently. Using ARCTAS and IMPROVE data in the
same inversion might have to deal with a bias of one method to the other.
Maybe it is important to highlight how comparable the data are. There is a
wealth of literature available on bias correction of particular data streams
(e.g. satellite data).

This comment is important, because it calls upon the relatively few comparisons
that have been made between the many BC/EC measurement techniques. This
is an important point to consider for any model-observation comparison, espe-
cially when utilizing multiple in-situ measurement approaches. Yelverton et al.
(2014) compared SP2 BC and IMPROVE EC from TOR, in addition to eight other
BC or EC measurement protocols, for a single concentration of carbonaceous
particles. Those authors found that time-averaged mass concentrations of SP2
BC and IMPROVE EC agree within 7%, with the EC values being larger, and the
two averages being within 2�. Although we have not applied any correction to
either observation set, the experiment performed here is meant as a demonstra-
tion. A 7% change in concentrations from either device would not change our
qualitative conclusions. For future work, we will be sure to apply the correction.
Additionally, refractory coatings in aged aerosol or near biomass burning sources
may introduce additional measurement bias. In light of this discussion, we added
the following text to the paragraph ending on page 2331:
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While we use IMPROVE elemental carbon (EC) and SP2 absorbing
carbon as equivalents herein, Yelverton et al. (2014) found that the for-
mer is approximately 7% higher than the latter, but that their error bars
overlap. For the qualitative analysis performed in this demonstration,
bias correction would not change any of the final conclusions.

14. Page 2335, eq. 16: Sure you divide by L2?. Anyhow, it would be better to
have the non-summed part before the summation sign for clarity. Also for
eqs. 17, 20, 24.

The variance of the mean observation is Var(ȳ
k

) = V ar
⇣

1
Lk

P
Lk
l=1 y

k

⌘

= 1
L

2
k
V ar

⇣P
Lk
l=1 y

lk

⌘
. The variance of the sum of any two variables, X and Y is

(e.g., http://en.wikipedia.org/wiki/Variance#Basic_properties) Var(X + Y ) =
V ar (X) + V ar (Y ) + 2Cov (X,Y ) . Since in our case, the observations are in-
dependent, the variance of the mean is then the sum of the variances, divided by
the number of observations squared: Var(ȳ

k

) = 1
L

2
k

P
Lk
l=1 V ar (y

lk
)

= 1
L

2
k

P
Lk
l=1 �2

lk
.

In order to improve clarity, we moved the non-summed denominators before the
summation symbol for Eqs. 14, 16, 17, 19, 20, and 24.

15. Page 2338. In the discussion of the model-data mismatches and associated
adjoint forcings, I miss a discussion of the role of the adjoint model. The
HT operator projects the mismatches to dJ

dck
and indicates how sensitive a

particular observation is for a particular emission change. By only discus-
sion the adjoint forcings and their magnitudes, I cannot see how you can
defend the need for a w

k

scaling in the covariance matrix. In my opinion,
the need of this scaling only appears after a full inversion, and I would like
to hear the authors’ opinion about this.
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We agree that the paragraph on page 2338 is unclear as to the justification for ap-
plying w

k

. We devised the weighting scheme based on past experience with 4D-
Var, and from considering how the H> operator informs the optimization. When
the adjoint forcing, �⇤

k,o

, increases in magnitude, there is greater potential for the
adjoint operator, H>, to generate large sensitivities (positive or negative). Con-
sider Fig. 9, where we show that for positive residuals, the model uncertainty
dominates, while for negative residuals, the observation uncertainty dominates.
This is a result of each uncertainty being proportional to the respective concen-
tration.

The rest of the justification is given below, and replaces the paragraph on page
2338 starting with “There are several outlier negative...”:

When both the observed and modeled concentrations are small, the to-
tal variance decreases to the minimum possible value, governed by the
MML and MDL. This generally happens in remote regions, where small
concentrations result from some combination of small nearby sources
and transport from many distant sources. If the total variance is small
enough relative to the residual error, �⇤

k,o

will be very large, often larger
than in cases with larger residual errors (see Fig. 10a). The adjoint
model propagates a relatively large forcing from a small residual back-
ward, resulting in large sensitivities to emission scaling factors. These
sensitivities then translate to large emission perturbations in the opti-
mization process.
The residual errors in remote locations are likely within combined
model and observation uncertainty, but the model variance at these
locations is unrealistically small. The ensemble will underestimate vari-
ance at observations near low-biased prior sources due to the absence
of tracer mass. The opposite may be true for a high-biased prior. The
challenge then is to define the concentration uncertainty introduced by
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the model physics, independent of the magnitude of emissions, which
we attempt to do with a weighting scheme. The weights are used only
to inflate variance, which when very low is thought to misinform the ad-
joint about concentration errors. Variance reduction may be necessary
for observations near high-biased sources. Also, while we apply the
weights to the total variance, they could be applied to only the model
portion. Here we are developing a philosophy for scaling the variances,
of which the following description is but one example.

To clarify the impact of adding the weights, we also will add the following sen-
tences after line 13 on page 2340: “This is a considerable change from the unity
weights where |�⇤

k,o

| was as large as 200 µg�1m3 in the region between the 1�
and 2� zones.”

16. Page 2341, discussion figure 11. Figure is unclear to me. Results are shown
for anthropogenic (red?) and biomass burning (blue?) BC emissions. I un-
derstand that the black markers highlight boxes with biomass burning, but
how do I see where the anthropogenic emissions are and how this relates
to the blue and red colors?

We see where there might be some confusion. We have changed the legend to
make it the figure more clear (see below). Hopefully the changes are sufficient,
and you are able to understand the following. The color bar on the right indi-
cates the magnitude of the sensitivities, whereas the shapes indicate the type
of emissions. The squares apply to anthropogenic emissions, and the circles
are for biomass burning sources. Black of either shape indicates a sensitivity
near zero, as shown in the color bar. Because the grid cells with the largest
anthropogenic and fire sources are not collocated, showing the largest magni-
tude normalized sensitivity in each surface grid cell does not obscure any critical
information. Please indicate if any of these points are unclear.
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17. Page 2343, line 21. The authors write: “The increased burning sensitiv-
ity magnitude indicate the weighting scheme is successful at generating a
cost function that is more robustly sensitive to emission perturbations.” I
think this is not a valid reasoning. It is not surprising that the inversion
is somewhat sensitive to the settings of the physical model parameters,
simply because the boundary layer scheme determines how emissions are
transported in the atmosphere and how the simulated observations look
like. By using a different weighting these sensitivities become more alike,
but this is not a proof that the new weighting scheme is better or worse:
it simply gives different results because outliers receive more weight com-
pared to better simulated observations. Like stated before: it is unclear
why the authors felt the need to deviate from Bayesian statistics. Only after
a true inversion and calculation of the associated statistics (e.g. �2 val-
ues) one might conclude that the weighting scheme gives more favorable
results.

The inclusion of a weighting term does not deviate from Bayesian statistics, but
instead potentially introduces a non-Gaussian distribution of observation error.
Alternatively, and as described in the response to comment 13 above, the statis-
tics may still be Gaussian if we are inflating variance where it is not fully captured
by the model ensemble. Still, we have reworded Page 2339, beginning on line
17, as follows:

However, care must be taken when selecting �, �, and r̃
k

to ensure
convergence in 4D-Var. Use of these weights may imply that residual
errors do not fit a Gaussian distribution.

Page 2343, line 21 does not state the results are more favorable and we agree
that such an assessment cannot be made until after a true inversion. As robust
may be a strong word choice, we have made the following changes:
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Abstract, page 2314, starting on line 11: “A cost function weighting scheme
was devised to increase adjoint sensitivity consistency in future inverse modeling
studies.”

Page 2343, starting on line 21: “The increased burning sensitivity magnitudes
indicate the weighting scheme is successful at generating a cost function that
is more consistently sensitive to emission perturbations across multiple model
configurations.”

Page 2345, starting on line 10: “Results indicate that the weighting scheme is
effective at generating consistent sensitivities of the cost function to emissions
across multiple model configurations.”

We believe adjoint sensitivity consistency is demonstrated. In the forward model
simulation, both the SLAB and PX LSM schemes result in a net negative model
bias. Because the anthropogenic sensitivities are net positive in both cases, and
we assume the emissions are the only source of bias in the demonstration, then
the burning emissions must be under-predicted. Without the weighting scheme,
the two configurations disagree about the sign of burning emission perturbations
that would reduce model bias. With the weights, the sensitivities between SLAB
and PX LSM schemes agree that burning emissions should be increased. An
inversion using the weighting scheme would not necessarily result in more cor-
rect emissions, but such an assessment could be made after respective 4D-Var
inversions.

2 References

• P. Bergamaschi, C. Frankenberg, J. F. Meirink, M. Krol, M. G. Villani, S. Houwel-
ing, F. Dentener, E. J. Dlugokencky, J. B. Miller, L. V. Gatti, A. Engel, and I. Levin,
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Fig. 1. Fully normalized time variant sensitivities calculated with the TLM with second order
checkpointing and with multiple finite difference perturbation sizes. Each plot is for a single pair
of source and receptor locations, q and p.
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Fig. 2. Normalized sensitivities ( @lnJ
@lnEi,j,d

) of the 4D-Var cost function (for surface and aircraft
observations) with respect to anthropogenic and burning emission scaling factors overlaid on
MODIS Aqua true color images for six days during the simulation. Anthropogenic sensitivi-
ties with magnitudes less than 1 % of the maximum anthropogenic sensitivity magnitude are
removed. There is a marker for all grid cells with non-zero burning emissions.C817
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Fig. 3. Fully normalized time variant sensitivities calculated with the TLM with second order
checkpointing and with multiple finite difference perturbation sizes. Each plot is for a single pair
of source an

C818

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/C801/2015/gmdd-8-C801-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015-discussion.html
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015.pdf
http://creativecommons.org/licenses/by/3.0/


GMDD
8, C801–C819, 2015

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

 33.0° N

 36.0° N

 39.0° N

 42.0° N

 

 

[a] FRI, June 20

[b] SUN, June 22

 

 

[c] MON, June 23

[d] TUE, June 24

124.0° W 120.0° W 116.0° W 112.0° W

 33.0° N

 36.0° N

 39.0° N

 42.0° N

[e] WED, June 25

124.0° W 120.0° W 116.0° W 112.0° W

[f] THU, June 26

124.0° W 120.0° W 116.0° W 112.0° W

Anthropogenic
Biomass Burning

∂ ln J

∂ ln E i , j , d

x 10−3

 < −5

   −4

   −3

   −2

   −1

    0

    1

    2

    3

    4

 >  5
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burning emi
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Thank you to the anonymous referee for their comments and questions. We edited the
manuscript and have additional responses below.

1 Responses to specific comments

1. Page 2316, line 28: WRF-4-DVar -> WRF-4D-Var

This error is corrected.
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2. Page 2318, line 8: WRF is spelled out here, but it appeared earlier in text.
Some other abbreviations and symbols (e.g. FWM, Qv, ⇠) are not spelled
out or explained.

We rephrased the sentence starting on page 2315, line 15 to read: “Grell et
al. (2004) used the Weather Research and Forecasting Model with chemistry
(WRF-Chem) (Skamarock et al., 2008; Grell et al., 2005) to show that vertical
mass transport...”

Later citations and locations where “Weather Research and Forecasting Model”
appears have been similarly adjusted.

FWM: FWM first appeared on page 2316, line 29 of the original manuscript, as
referencing “forward model”.

Q

v

: The sentence starting on page 2326, line 4 is corrected to: “The CVs include
initial conditions for BC1, zonal wind (U ), temperature (T ), and water vapor mixing
ratio (Q

v

), and also BC emission scaling factors (↵
BC

).”

Tilde (⇠): If the referee is referring to the tilde used for r̃

k

, this notation was
described on page 2339 of the original manuscript. The tilde simply means that
some form of residual error must be chosen by the user. For instance, it may be
the mean or median of model ensembles for a particular observation location, if
that information is available to the user.

3. Page 2327, lines 1-5: Please specify how many 3-D state variables are there
for the example that requires 1.46 GB per core on 64 cores.

The sentence starting on page 2327, line 3 is modified as follows: “For an illus-
trative domain, ..., 42 levels, a 5 cell boundary width, and twenty-eight 3-D state
variables, the trajectory ...”

4. Page 2331, line 29: Missing reference in“()”.

We have fixed the reference in the manuscript.
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5. Page 2336: Equation (19) and L

max

= 9 seems pretty arbitrary. The authors
need to justify their choices here. In addition, this is not how representative
errors are defined.

L

max

= 9 is the result of comparing 10 s frequency observations to model vari-
ables available each 90 s time step. The DC-8 aircraft flight speed (150 to 200
m s�1) coincides with traversing an 18 km model column edge in 90 to 120 s.
Thus we bin every 9 observations, centered around each model time step, and
compare their average to the model concentration in the nearest model grid cell
to the average location of those 9 observations. This method is described in the
first paragraph on page 2332.

The representative error is mislabeled in Eq. 20, which is actually a description of
the average instrument error. The quantity in Eq. 19 is the representative error,
because it captures the variability of measured concentrations within the model
grid cell. For sure, the observations along an aircraft transect may not represent
the full variability within the grid cell, but we do not know that information. We
made an attempt to account for missing information by scaling the instrument
error in Eq. 20. We have relabeled the variance definitions and adjusted the
related text for Eqs. 18, 19, and 20.the following equations:

6. Page 2343: Apparently, Eq.(30) does not hold for the weekday/weekend an-
thropogenic emissions, which d=1,...,7 does not apply.

Thank you for catching this mistake. The text and equation are modified to apply
to a general number of days, n

d

, so as to apply to weekday/weekend emission
populations.

7. Figure 1: A table would be more appropriate for this.

Refer to the new Table 1 in the resubmitted manuscript which replaces Fig. 1.
Note that the remaining figures will have their numbers reduced by one.
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8. Figure 3: Please specify the meaning of "m" (slope) in caption.

We added the following sentence at the end of the Figure 3 caption: “The slope
(m) and R

2 statistic for the linear fit are shown for each CV.”

9. Figure 5: Can plots be arranged in a way that the same row/column repre-
sents the same J/x ? The case [J=BC1,x=U] looks really bad.

The arrangement of plots puts J =BC1 in the first row. Then derivatives of mete-
orological variables with respect to x = Q

v

and x = U are in the second and third
rows, respectively. Since only BC1 has a nontrivial dependence on emissions
(without radiative coupling), it prevents a different arrangement without showing
another control variable. J = [U, Q

v

, T ] were tested across x = [Q
v

, U ] specif-
ically because the cases [J =BC1,x = Q

v

] and [J =BC1,x = U ] looked bad.
Please see our response to M. Krol, comment #8, for additional discussion of
revisions to Fig. 5.

10. Figure 5: Will smaller perturbations (�x <1%) generate better results? Are
the authors confident that there are no mistakes made in this calculation?
For instance, the adjoint boundary conditions could be wrong.

Smaller perturbations will not necessarily generate improved finite difference ap-
proximations, if the nonlinear models is discontinuous. We discussed this behav-
ior in the reply to M. Krol, and repeat the explanation here:

The referee is right that continuous model equations should lead to fi-
nite difference approximations becoming more accurate as step size is
decreased, which is a benefit to using them to approximate derivatives
for nonlinear systems. In their Fig. 4, Henze et al. (2007) showed that
this is not the case for discontinuous model equations, where larger
perturbations may lead to smaller errors. This phenomena is described
by Thuburn and Haine (2001), and likely arises in WRFPLUS-Chem

C823

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/C820/2015/gmdd-8-C820-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015-discussion.html
http://www.geosci-model-dev-discuss.net/8/2313/2015/gmdd-8-2313-2015.pdf
http://creativecommons.org/licenses/by/3.0/


GMDD
8, C820–C826, 2015

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

due to flux limiters in the 5th order, monotonic, horizontal tracer advec-
tion.

We are confident that the ADM and TLM are calculating exact derivatives. First,
this is a comparison between tangent linear and nonlinear models, not the adjoint.
We have ensured that state variables (e.g., U , V , T , Q

v

, BC1) in both models are
identical in all time steps. This is not a big challenge in the TLM since it integrates
forward in time. Boundary conditions, initial conditions, and emissions are not
sources of error, because those were checked first, and are necessary to get the
state variables matching.

On a related note, we found that there was one mistake in the caption and labels
in Fig. 5. All of the derivatives are fully normalized, so that their magnitudes are
comparable. Refer to the new Fig. 5 caption for the correction.

2 References

• D. K. Henze, A. Hakami, J. H. Seinfeld, and others, “Development of the adjoint
of GEOS-Chem,” Atmospheric Chemistry and Physics, vol. 7, no. 9, pp. 2413–
2433, 2007.

• J. Thuburn and T. W. N. Haine, “Adjoints of Nonoscillatory Advection Schemes,”
Journal of Computational Physics, vol. 171, no. 2, pp. 616 – 631, 2001.
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Fig. 1. Fully normalized time variant sensitivities calculated with the TLM with second order
checkpointing and with multiple finite difference perturbation sizes. Each plot is for a single pair
of source and receptor locations, q and p.
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Fig. 2. Fully normalized time variant sensitivities calculated with the TLM with second order
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Abstract

Here we present the online meteorology and chemistry adjoint and tangent linear model,
WRFPLUS-Chem, which incorporates modules to treat boundary layer mixing, emission,
aging, dry deposition, and advection of black carbon aerosol. We also develop land surface
and surface layer adjoints to account for coupling between radiation and vertical mixing.
Model performance is verified against finite difference derivative approximations. A second5

order checkpointing scheme is created to reduce computational costs and enable simula-
tions longer than six hours. The adjoint is coupled to WRFDA-Chem, in order to conduct
a sensitivity study of anthropogenic and biomass burning sources throughout California dur-
ing the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satel-
lites (ARCTAS) field campaign. A cost function weighting scheme was devised to increase10

adjoint sensitivity robustness
:::::::
reduce

:::
the

:::::::
impact

:::
of

::::::::::
statistically

::::::::::::
insignificant

::::::::
residual

::::::
errors

in future inverse modeling studies. Results of the sensitivity study show that, for this do-
main and time period, anthropogenic emissions are over predicted, while wildfire emissions
are under predicted

:::::::::
emission

:::::
error

::::::
signs

::::
vary

:::::::::
spatially. We consider the diurnal variation

in emission sensitivities to determine at what time sources should be scaled up or down.15

Also, adjoint sensitivities for two choices of land surface model indicate that emission in-
version results would be sensitive to forward model configuration. The tools described here
are the first step in conducting four-dimensional variational data assimilation in a coupled
meteorology-chemistry model, which will potentially provide new constraints on aerosol pre-
cursor emissions and their distributions. Such analyses will be invaluable to assessments20

of particulate matter health and climate impacts.

1 Introduction

Fine particulate matter impacts human health (Schwartz et al., 2007; Krewski et al., 2009)
and climate (Myhre et al., 2013). Atmospheric climate forcing from aerosols is potentially
large, but also highly uncertain owing to a complex spatial-temporal distribution of con-25
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centration, mixing state, and particle size for multiple species, each emitted from varying
precursor sources, both anthropogenic and natural (Textor et al., 2006; Schulz et al., 2006).
Depending on the species and quality of records, a nation’s annual aerosol precursor and
primary emissions have uncertainties anywhere between 7% and a factor of four, with larger
variation on seasonal to diurnal scales for particular sectors (Streets et al., 2003; Suutari
et al., 2001). Over these shorter time scales, aerosols impact meteorology through the5

semi-direct (Hansen et al., 1997; Koch and Del Genio, 2010) and indirect (Twomey, 1977;
Lohmann and Feichter, 2005) cloud effects, which are both dependent on aerosol vertical
profiles (e.g., Samset et al., 2013) governed by mixing.

Atmospheric models are used to improve our understanding of aerosol sources, distribu-
tions, and processes. Online numerical weather prediction and chemistry (NWP-chemistry)10

models integrate dynamic and chemical equations simultaneously, whereas offline chemical
transport models (CTMs) interpolate meteorological fields from 3 to 6 h reanalyses. Grell
et al. (2004) showed

:::::
used

:::
the

:::::::::
Weather

::::::::::
Research

::::
and

:::::::::::
Forecasting

:::::::
Model

::::
with

::::::::::
chemistry

::::::::::::
(WRF-Chem)

:
(Skamarock et al., 2008; Grell et al., 2005)

::
to

:::::
show

:
that vertical mass trans-

port of chemical tracers is highly sensitive to the choice of online vs.
::::::
versus

:
offline model-15

ing methodologies due to variations in boundary layer mixing strength. Additionally, NWP-
chemistry models account for moisture and temperature perturbations to dynamics due to
aerosol microphysics and radiative forcing, while CTMs can not account for these feed-
backs.

There are numerous online models with aerosol-meteorology feedbacks (e.g., WRF-20

Chem, COSMO-ART (Vogel et al., 2009), GEM-AQ (Kaminski et al., 2008), and IFS-
MOZART (Kinnison et al., 2007; Flemming et al., 2009; Morcrette et al., 2009)). Better
descriptions of sources, loss mechanisms, and vertical transport in coupled models are
needed to increase accuracies in short-term climate modeling (Baklanov et al., 2014). To
address this, chemical data assimilation can be used to improve short-term forecasts. Boc-25

quet et al. (2014)
::::::
review

::::::::
methods

::::
and

::::::::::::
applications

::
of

:::::::::
chemical

:::::
data

::::::::::::
assimilation

::
in

::::::
CTMs

:::
and

::::::::::::::::
NWP-chemistry

::::::::
models. In WRF, three-dimensional variational data assimilation (3D-

Var) (Pagowski et al., 2010; Liu et al., 2011; Schwartz et al., 2012; Saide et al., 2012,

3
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2013), ensemble Kalman filter (EnKF) (Pagowski and Grell, 2012), and hybrid approaches
(Schwartz et al., 2014) have all been used to improve chemical initial conditions. The limi-
tation of these studies, using sequential methods, has been the decay of chemical concen-
trations back to the emissions-driven values following the characteristic loss rate of each
species, necessitating periodic reinitialization with new observations. Using data assim-
ilation solely to perturb initial conditions leaves behind underlying deficiencies in model5

description, emissions, or other input parameters.
In contrast to 3-D approaches, 4-D data assimilation attempts to minimize the discrep-

ancy between model predicted values and observations at the same time observations are
acquired. Variational 4-D data assimilation (4D-Var) requires an adjoint, which calculates
the sensitivity of a model metric to all input parameters, such as resolved aerosol precursor10

emissions. Several offline CTMs already have adjoints for constraining aerosol and aerosol
precursor emissions, including GEOS-Chem (Henze et al., 2007), STEM (Sandu et al.,
2005; Hakami et al., 2005), CMAQ (Turner et al., 2015), GOCART (Dubovik et al., 2008),
and LMDz (Huneeus et al., 2009). Inverse modeling has been used to constrain aerosol
emissions with 4D-Var, but only in offline models (e.g., Hakami et al., 2005; Dubovik et al.,15

2008; Henze et al., 2009; Wang et al., 2012). In addition to inverse modeling, derivatives
calculated from CTM adjoints have been used to analyze sensitivities of model estimates to
emissions (e.g., Turner et al., 2012). Online chemical 4-D variational data assimilation (4D-
Var) has been performed with the global IFS-MOZART model, although without two-way
coupling, to improve aerosol (Benedetti et al., 2009) and gas-phase (Inness et al., 2013)20

initial conditions. To our knowledge, 4D-Var still has not been used in a regional NWP-
chemistry model with online coupling to constrain aerosol precursor emissions or other
important model parameters, such as vertical mixing coefficients.

Here we present the first such system, building on existing capabilities of the WRF data
assimilation (WRFDA) framework. WRFDA includes both 3D-Var (Barker et al., 2004) and25

incremental 4D-Var (Barker et al., 2005; Huang et al., 2009) algorithms, which are designed
for constraining meteorological initial conditions (e.g., wind fields, temperature, moisture).
For WRFDA v3.2 and later, WRF-4-DVar

:::::::::::
WRF-4DVar

:
requires calling the WRFPLUS for-

4
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ward (FWM), tangent linear (TLM) and adjoint (ADM) models. These models include adia-
batic WRF dynamics, along with simplified surface friction (i.e., boundary layer), cumulus,
and microphysics packages (Zhang et al., 2013). Here we integrate aerosol chemistry and
vertical mixing from WRF-Chem into WRFPLUS, including complementary TLM and ADM
components. While existing CTMs are capable of aerosol emission inversions, this develop-5

ment promises to introduce new insights into meteorology-chemistry couplings. We apply
this system to black carbon (BC) aerosol, because of its important implications for climate
(Bond et al., 2013) and health (Grahame et al., 2014). Additionally, the widespread use and
development of WRF furthers the potential for continued model improvement and a com-
munity of future users.10

BC is emitted from incomplete combustion of fuels. Major anthropogenic sources in-
clude residential cookstoves in developing countries, open crop burning, diesel transporta-
tion, and coal power plants with poor emission controls. Wildfires, or biomass burning,
are the largest natural source. The major limitations to devising accurate bottom-up emis-
sions inventories are poor activity data in developing countries and difficulty parameteriz-15

ing complex biomass burning sources. Even in developed countries, changing economic
landscapes affect real year-to-year emissions. Black carbon (BC )

:::
BC

:
is unique among at-

mospheric aerosols as being radiatively absorptive, relatively inert, primary emitted, and
having potentially complex cloud interactions. BC is possibly the second most important
human emitted pollutant in terms of climate forcing in the present-day atmosphere, with20

a net forcing of +1.1Wm�2, but with 90% uncertainty (+0.17 to +2.1Wm�2) (Bond et al.,
2013). Also, reductions in BC emissions have been shown to reduce fine particulate health
impacts (e.g., Anenberg et al., 2011).

The new TLM and ADM – referred to collectively herein as “AD/TL models” – aerosol
treatments lay the groundwork for constraining aerosol precursor emissions using 4D-Var25

in a NWP-chemistry model. In Sect. 2, we describe the WRFPLUS-Chem and WRFDA-
Chem model architectures. In Sect. 3, we describe the construction and verification of the
AD/TL models of specific WRF-Chem forward model components. In Sect. 4, we describe
a special checkpointing scheme that enables adjoint and tangent linear simulations longer

5
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than 6 h which are required for accumulating sensitivities of sparse chemical observations
with respect to emissions. In Sect. 5, we demonstrate the capability of the adjoint model to
calculate sensitivities of BC observation errors in WRFDA-Chem. Finally, we discuss future5

developments for WRFPLUS-Chem and WRFDA-Chem.

2 Methods

Creating the foundation for WRFDA-Chem required managing relationships between five
related, but separate models. These include the (1) Weather Research and Forecast
Model (WRF)

::::
WRF, (2) its “-Chem” variant, and the (3, 4) WRFPLUS AD/TL models. Fi-10

nally, (5) WRFDA 4D-Var requires communication of critical namelist and state variables
to the FWM, TLM, and ADM. Figure ?? shows the relationships between these different
models, including all

::::
Table

::
1
:::::
lists

:::
the

::::::::::::
WRF-Chem

::::::::::::
components

::::
that

::::::::::
previously

::::
had

:
AD/TL

code that was previously developed , and code that we have added, modified, or plan to
add

::::::::::::
descriptions

::
in

:::::::::::
WRFPLUS,

::::::
those

::::
with

:::::
new

:::::
code

::::::::::
developed

:::
for

::::::::::::::::::
WRFPLUS-Chem,

::::
and15

:::::
those

::::
that

:::::
need

::::::
future

:::::::::::::
development

::
to

:::::::
enable

::::
fully

::::::::
coupled

:::::::::
chemical

:::::::
4D-Var.

2.1 Forward model

For this work, we use WRF version 3.6. The WRFPLUS-Chem code repository (https://
svn-wrf-model.cgd.ucar.edu/branches/WRFPLUSV3-Chem) contains the most current ver-
sion. Interested users can contact NCAR to request user

::
or

:::
the

::::::::
authors

:::
for

:
access to the20

code. WRF contains multiple non-hydrostatic dynamic cores and parameterization options
for modeling unresolved physical processes. The FWM is identical in WRF and WRFPLUS,
though typically only very simple .

:::::
The

:::::::::
simplified

:::::::::::
treatments

:::
for

:
unresolved physics are

applied in WRFPLUS
:::::::
typically

::::
only

:::::
used

:::
in

:::
the

:::::::
AD/TL

:::::::
models. In addition, WRF-Chem sim-

ulates the emission, deposition, transport, turbulent and cumulus mixing, wet scavenging,25

cloud interactions, and chemical transformation of trace gasses and aerosols. All of these
processes are modeled at the same spatial and temporal resolution, which enables coupling
WRF radiation and microphysics calculations directly with chemical processes.

6

https://svn-wrf-model.cgd.ucar.edu/branches/WRFPLUSV3-Chem
https://svn-wrf-model.cgd.ucar.edu/branches/WRFPLUSV3-Chem
https://svn-wrf-model.cgd.ucar.edu/branches/WRFPLUSV3-Chem
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The forward model configuration for which we have developed the corresponding TLM
and ADM will be referred to as the “adjoint model configuration,” because we use the same
settings when running the adjoint. We use GOCART aerosols (chem_opt= 300), wherein
the chem array has 19 aerosol (e.g., SO

2

, sulfate, black carbon, dust, sea salt) and zero
gas-phase members. This option includes bulk mass sulfate chemistry and black carbon ox-5

idative aging. We employ combined local and non-local ACM2 PBL mixing (Pleim, 2007b,
a), with surface interactions handled by the Pleim-Xiu (PX) LSM (Xiu and Pleim, 2001;
Pleim and Xiu, 2003; Pleim and Gilliam, 2009) and surface layer (Pleim, 2006) mecha-
nisms (all options seven). Soil moisture and temperature nudging are not used within the
PXLSM. Prior to version 3.6, the WRF-Chem vertical mixing scheme solely carried out PBL10

mixing and dry deposition for chemical species. That vertical mixing depended on a (local)
turbulent eddy mixing coefficient from a user-selected PBL scheme and a dry deposition ve-
locity. There is new capability to calculate tracer turbulent mixing and dry deposition within
the ACM2 subroutine itself, enabling non-local mixing. Trace gas and particle deposition
velocities are calculated using characteristic resistances found using methods from Wesely15

(1989). Microphysics and radiation AD/TL models with aerosol feedbacks have not been
incorporated into WRFPLUS-Chem yet. These crucial components will be partially adapted
from previous work (e.g. Saide et al., 2012, 2013), while others still need to be developed.
Both microphysics and radiation are turned off for Sect. 3.3 verification simulations. In order
to ensure appropriate radiative fluxes at the land-air boundary, the GSFCSW and Goddard20

LW radiation compute ground-incident radiation for the Sect. 5 adjoint sensitivity demon-
stration. However, online coupling between radiation and chemical species is deactivated.

2.2 Incremental 4D-Var

WRFDA uses an incremental 4D-Var method (Courtier et al., 1994) for finding the minimum
of the cost function, J , by adjusting control variables (CV), x. As described by Huang et al.
(2009), the WRFDA cost function has three terms

J = J
b

+ J
o

+ J
c

, (1)
5

7
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where J
b

, J
o

, and J
c

are the background, observation, and balancing cost functions, re-
spectively. J

c

is not relevant to the current work. The background and observation cost
functions are

J
b

=
1

2

"
(n�n�1)�x+
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x

i�x
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H

k

M
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(n�x� n�1)�d

k

�
. (2b)

The background cost function is a penalty term, which ensures the departure of the poste-
rior, xn, from the prior, x0 = x

b, remains within the bounds justified by the background error
covariance, B. The observation cost function measures the distance between the 4D-Var20

model solution, xn, and the observations, y. M and H are the nonlinear model and obser-
vation operators, while M and H are their linearized forms, or tangent linear operators, used
to propagate analysis increments �x= x

n�x

n�1 from the earliest emission time
::::::
earlier

:::::::::
simulation

::::::
times

:
to the kth observation. R is the observation error covariance matrix. The

innovation,

d

k

= y

k

�H
k

⇥
M

k

�
x

n�1

�⇤
, (3)

8
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is the residual error between the real and modeled observations k at the end of 4D-Var
iteration n� 1. This notation slightly differs from Huang et al. (2009), who employed K5

observation windows, each containing multiple observations.
For each iteration of incremental 4D-Var, the model is linearized about a trajectory, which

is a collection of stored values of all model state variables at all time steps within the assim-
ilation window. This trajectory enables propagation of sensitivities forward and backward in
time within the TLM and ADM. Each of these models are called in an inner loop to calculate10

the gradient of the observation cost function, r
x

J
o

. An optimization algorithm uses the gra-
dients to calculate optimal analysis increments to the CVs, which minimize the observation
cost function. If the CVs, xn, depart too much from the initial guess for the current outer
loop iteration, xn�1, the model must be relinearized about the new state, xn, using M .
The purpose of the two-level optimization is that approximating M with M transforms the15

cost function from a nonlinear
::::::::
simplifies

::::
the

:::
full

::::::::
problem

:
to a quadratic form

:::::::
problem, and

guarantees a unique solution x

⇤ to the minimization (Courtier et al., 1994). Refer to Huang
et al. (2009) for more details on the WRFDA incremental method, including a full expression
for r

x

J given by Eq. (7) of that article. The main purpose of this work is to introduce the
AD/TL model components of WRFPLUS-Chem.20

3 Tangent linear and adjoint model construction and verification

We have developed and tested adjoint and tangent linear code to represent aerosol-relevant
processes in WRFPLUS-Chem. This development required a four step process:

1. Automatically differentiate specific WRF-Chem modules using TAPENADE (Hascoët
and Pascual, 2013) version 3.6.

2. Verify standalone TLM and ADM derivatives against finite difference approximations;
debug as necessary.

3. Incorporate code manually into WRFPLUS.
9
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4. Repeat step 2 for fully integrated WRFPLUS-Chem model.5

TAPENADE takes discrete Fortran or C source code as input, then generates either TLM
or ADM code using a user-generated list of independent and dependent parameters. In
addition to creating the differential code, TAPENADE reduces adjoint computational cost by
eliminating unnecessary lines of code. Similar to Xiao et al. (2008) and Zhang et al. (2013),
integrating the automatically differentiated adjoint code into WRFPLUS required significant10

manual intervention and debugging. Methods for constructing discrete adjoints are well-
documented (Giering and Kaminski, 1998; Hascoët and Pascual, 2013). For the remainder
of this section, we discuss the particular mechanisms for which we have created AD/TL
models, and then we provide verification results for WRFPLUS-Chem.

3.1 Transport mechanisms15

PBL physics and dry deposition in a column are handled by ACM2. The simple surface
friction previously developed for WRFPLUS does not perform vertical mixing of tracers,
which is a minimum requirement of any PBL scheme used in WRFPLUS-Chem. The ACM2
PBL depends on ground-atmosphere interactions that necessitate additional surface layer
and land surface model (LSM) AD/TL code. For example, the ACM2 PBL scheme de-20

pends on the friction velocity
:
,
:
U⇤

:
,
:
calculated in a surface layer scheme, which itself de-

pends on wind speed, and the state variables u and v. ACM2 also depends on surface
heat (HFX) and moisture (QFX) fluxes, which can be calculated within the surface layer or
LSM code, but also depend on U⇤. The dependence of HFX and QFX on ground-incident
shortwave radiation (GSW) is calculated in the LSM. GSW is calculated in the radiation25

scheme, and depends on the aerosol composition and atmospheric moisture phase and
distribution. Because we have not developed radiation AD/TL code, this coupling is not
represented in WRFPLUS-Chem yet. The dependencies themselves are illustrative of how
ACM2, and indeed most any other PBL scheme available in WRF, is appropriate for rep-
resenting chemistry-meteorology interactions critical to understanding short-term climate
impacts from aerosols. ACM2 is compatible with the Monin-Obukhov and PX (options 91

10
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and 7) surface layer options, as well as the SLAB and PX (options 1 and 7) LSM options.
TLM and ADM code is developed for all of these choices, and have been tested in stan-5

dalone verification tests. In the interest of brevity, complete model verification in Sect. 3.3
has been limited to the two PX options.

Advection of inert tracers was added to WRFPLUS by X. Zhang (2012, personal com-
munication). The same treatment has been applied to the “chem” array, with additional
checkpointing and parallel communications. We generated standalone TLM and ADM code10

for deep cumulus convection as handled by the Grell–Freitas cumulus scheme (Grell and
Freitas, 2014). One of the major benefits of this cumulus scheme is the ability to use online
calculated cloud condensation nuclei (CCN) to account for the effect of aerosols on liquid
and vapor water mass fractions. These parameters directly impact convection, including
tracer transport. The ability of the standalone AD/TL codes to produce the relevant mem-15

bers of the Jacobian has been verified for a single set of column conditions using similar
methods as described in Sect. 3.3. However, the FWM, TLM, and ADM do not yet account
for vertical transport of chemical tracers, and thus have not been integrated into WRFPLUS-
Chem.

3.2 Aerosol-specific components20

GOCART is a bulk aerosol scheme that treats reactive species (BC, OC, sulphate) using
a total mass approach and divides non-reactive species (dust, sea salt) into multiple size
bins (Chin et al., 2000). Oxidative aging for both BC and OC is handled by a first-order
decay from hydrophobic to hydrophilic forms using a time constant of 2.5 days. Sulphate
(SO2�

4

) is produced from SO
2

and dimethyl sulfide precursor gases in GOCART. Sulphate25

chemistry also requires offline-calculated values for nitrate and OH radical, which are taken
from climatologies available from the PREP-CHEM-SRC preprocessor (Freitas et al., 2011).
WRFPLUS-Chem includes both the carbon and sulfate chemistry AD/TL codes, but only
the BC component is tested and applied here.

Emissions of aerosol precursors in WRF-Chem is a linear process corresponding to spe-
cific chemistry and emission inventory options. Emission magnitudes are calculated, then

11
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distributed spatially and temporally, in offline preprocessors. Typically, emissions are read5

in hourly following some diurnal pattern. In order to make the emissions code easily differ-
entiable, scaling factors are added to the emissions such that

E
c,isc =↵

c,iscẼc

. (4)

At any simulation time, Ẽ
c

are the emissions most recently read in from file for chemical10

species c. ↵
c,isc and E

c,isc are the emission scaling factors and effective emissions, respec-
tively, during scaling period isc. For emission inversions, the CVs, x, are spatial-temporal
resolved emission scaling factors. At the beginning of 4D-Var or during an adjoint sensitiv-
ity study, the scaling factors are set to unity. The scaling factors are applied in the FWM if
environment option WRFPLUS== 1 is set during compilation.15

Dry deposition velocities are calculated in WRF-Chem within the dry deposition driver.
In order to ease adjoint code construction and reduce checkpointing requirements, the dry
deposition velocity calculation is moved to immediately precede the PBL driver as depicted
in Fig. ??. The new source code is similar to the dry deposition driver, except that only
code corresponding to the GOCART aerosol option remains. The dry deposition AD/TL20

code accounts for dependencies of the dry deposition velocity on physical parameters (e.g.,
temperature, water vapor, U⇤). As mentioned previously, the chemical concentrations are
sensitive to dry deposition velocity within the PBL scheme.

3.3 Verification and linearity test

WRFPLUS FWM, TLM, and ADM performance were previously verified by Zhang et al.25

(2013). Here we use an alternative verification approach
::::::::
approach

:::::::
based

:::
on

::::::
Taylor

::::::
series

:::::::::
derivative

:::::::::::::::
approximations,

::::
and

:
similar to that used by

:
,
:::::
e.g., Henze et al. (2007). We

:
,
::
to

:::::
verify

::::::::::::::::::
WRFPLUS-Chem.

::::
We

::::::
define

::
a

::::
new

:::::
cost

::::::::
function

::::::
equal

::
to

::
a
::::::
single

::::::::::
predicted

:::::
state

::::::::
variable,

::::::
locally

::::::::
defined

::
in
:::::

grid
::::
cell

::
p

::::
and

:::
at

:::
the

:::::
end

::
of

:::::
time

:::::
step

::
f ,

:::::::::::
J = SV

p,f

.
::::
We

:
use

the TLM, ADM, and a centered finite difference approximation from the FWM to evaluate5

12
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derivatives

�
p,q

=
@J

p,f

@x
q,0

@J

@x
q,0

:::::

, (5)

of some cost function at location p and time step f with respect to some CV at location q
and the initial time,

:
0. The finite difference derivatives are calculated from10

�NL
p,q

⇡
J
p,f

(x
q,0

+ �x)� J
p

,f (x
q,0

� �x)

2�x

J (x
q,0

+ �x)� J (x
q,0

� �x)

2�x::::::::::::::::::::::::::

, (6)

where each evaluation of J results from a FWM evaluation
::::::::::
simulation with some perturbed

value of x
q,0

. �x varies between 0.1 and 10% of the value of x
q,0

. The adjoint and tangent
linear derivatives are found by forcing the model gradient fields, �⇤ and �, at J

p ::
J and x

q

,15

respectively. The tangent linear gradient and adjoint gradient variables are analogous to
state variables in the FWM. We force gradients of 1.0, indicating a 100% perturbation of the
variable, and the resulting derivatives are retrieved from the model output gradient fields,
such that

�TL
p,q

= �
p,f

=M(�
q,0

) (7)20

and

�AD
p,q

= �⇤
q,0

=M>��⇤
p,f

�
, (8)

where M> is the adjoint operator.25

In order to evaluate our additions to WRFPLUS-Chem, we test cost functions equal
to hydrophobic (BC

1

) and hydrophilic (BC
2

) black carbon concentrations in 100 different
grid cells. We evaluate derivatives with respect to five state variables

::::
CVs

:
at three ini-

tial locations for each of those 200 cost functions. The CVs include
:::
BC

:::::::::
emission

:::::::
scaling

::::::
factors

::::::
(↵BC)

::::
and

:
initial conditions for BC

1

,
:::::
zonal

:::::
wind

:
(U , T , and

::
),

::::::::::::
perturbation

::::::::
potential

13
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:::::::::::
temperature

::::::
(�⇥),

::::
and

:::::
water

::::::
vapor

:::::::
mixing

::::
ratio

::
(Q

v

, and also BC emission scaling factors,
↵BC). All sensitivities apply over a 3 h duration for a domain covering the southwest United
States. For a full domain and model setup description refer to Sect. 5.1.1. Figure 1 shows
that the maximum relative error between the TLM and ADM is in the 8th significant digit.5

Thus we only need to compare the nonlinear model to the TLM to verify both the TLM and
ADM. Those results are given in Fig. 2. The slope and R2 statistic for a linear fit of those
comparisons are very nearly unity for all CVs tested. Each of the plots in Figs. 1 and 2
depicts 600 derivative evaluations. A range of finite difference perturbations �x is used for
U , T

::
�⇥, and Q

v

control variables in order to find a value of �NL with the best compromise10

between truncation and roundoff error. We test derivatives with respect to meteorological
variables in order to show the AD/TL models will be functional in a setting with coupled
chemistry and physics. In such a system, the emissions will impact meteorology, which in
turn impacts concentrations. These results illustrate the capability of the AD/TL models to
represent the latter part of that relationship. All of the verification results apply to a three15

hour simulation period, but longer simulations are needed to calculate the average influence
of emissions on the modeled state-space.

4 Second order checkpointing

As discussed in Sect. 2.2, the nonlinear model trajectory is an integral component for propa-
gating gradients in the AD/TL models. As one might imagine, the trajectory contains a large20

amount of information. WRFPLUS stores the entire double precision trajectory in memory
in order to eliminate expensive I/O time. This is very helpful with regards to storage, but
presents a challenge in terms of memory. The system is designed for 6 h operational as-
similation windows. In a typical WRFPLUS-Chem simulation there are at least twenty-eight
3-dimensional state variables (8 physical, 1 to 3 moisture, and 19 GOCART species), and25

numerous other 2- and 1-dimensional state variables that must be included in the trajectory.
For an illustrative domain, simulating 3 h with a 90 s time step (18 km resolution), 79⇥ 79
columns, 42 levels, and a 5 cell boundary width,

:::
and

::::
28

::::
3-D

:::::
state

::::::::::
variables,

:
the trajec-

14
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tory would require 1.46 GB per core on 64 cores. This final cost per core includes a 50%
storage growth per doubling of the number of cores. Because the trajectory is stored for
all time steps, required memory scales linearly with simulation duration and the number of
simulated chemical species. For multi-day and multi-week inversions, as is typical in non-5

operational chemical data assimilation, the memory requirements become impractical for
most cluster computing systems.

To solve this problem we implement a second order checkpointing scheme that shares
the storage burden between the hard disks and memory. In a standard WRFPLUS adjoint
simulation, the FWM is called first in order to calculate the trajectory. The FWM integrates10

the nonlinear equations from the initial to the final time, and stores the model trajectory
at each time step. The ADM integrates the transpose of the linearized model equations
backward in time, and at each time step reads the trajectory previously stored by the FWM.
This process is depicted as “1st-order checkpoint” in Fig. 3. Since the storage limitation is
driven by the duration of a simulation, we break the simulation into smaller segments, while15

maintaining continuity in the adjoint derivatives. The checkpointed adjoint simulation begins
with a full FWM simulation beginning at the initial time, t

0

, and ending at the final time, t
f

.
WRF restart files are written at time intervals equal to the checkpoint interval, �t

c

. Once the
simulation is completed, the FWM is restarted at initial time equal to t

f

��t
c

. During that
simulation, the trajectory is stored in memory. The trajectory is then recalled in an adjoint20

simulation that proceeds backward toward the current initial time. The checkpoint system
alternately calls the FWM and ADM until returning to t

0

. The major hurdle to integrating
this second order checkpointing system into WRF-4-DVar is that the trajectory is no longer
readily available to WRFDA for calculating modeled observations, H

k

⇥
M

k

�
x

n

�⇤
, between

the calls to the forward and adjoint models. Instead, these values must be calculated during25

either the full FWM (Step 1) or checkpoint FWM (Steps 2, 4, 6, etc.) simulations. We take
the former approach. A similar checkpointing system is also implemented for the TLM in
order to enable long duration incremental 4D-Var.

In order to ensure the checkpointing method delivers consistent derivatives to the non-
checkpointed version, we again compare AD/TL derivatives to finite difference approxima-

15
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tions. Because of the wall time required to calculate derivatives across extended time peri-
ods, we limit our tests to fourteen pairs of initial and final locations, q and p. For all of the J
and x pairs tested in Sect. 3.3, the ADM and TLM agree to 13 or more digits over a 9 h test.5

The improved performance relative to the previous 3 h test came about after a few minor
bug fixes

::::::::::
increasing

:::
the

:::::::::
precision

::
of

:::::::
several

:::::::::
variables

::
in
::::
the

:::::
TLM

:::
dry

::::::::::
deposition

:::::::::::
subroutine.

Because of this machine precision AD/TL agreement, we only compare the finite difference
approximations to the TLM. For these checkpointed simulations, we analyze the derivative
of a time variant cost function with respect to multiple control variables10

�
p,q

(t) =
@J

p

(t)

@x
q,0

. (9)

Doing so ensures that the derivatives are continuous across multiple checkpoint intervals
and we are able to see the transient behavior of multiple finite difference perturbation sizes
at times when there are large discrepancies with the TLM. The finite difference approxima-15

tions of derivatives of BC with respect to the physical variables grow more unstable with
time. Thus, we calculate those derivatives only for a 6 h period, while we test derivatives
with respect to emissions for 48 h. Here we also include derivatives of U , T

::
�⇥

:
and Q

v

with respect to U and Q
v

to ensure that those relationships are represented properly in the
surface layer, LSM, and PBL AD/TL schemes, so that they may be used in a meteorological20

4D-Var setting.
Figure 4 shows the resulting derivatives for nine different pairs of J and x for a single pair

of q and p. Most importantly for multi-day 4D-Var emissions inversions,
::::
and

:::
as

::::::
would

:::
be

:::::::::
expected, BC concentrations respond linearly to a 1% perturbation of emissions for at least
48 h. Next, it becomes apparent why derivatives with respect to U and Q

v

require multiple25

finite difference perturbation sizes to ensure one of them matches the TLM at a particular
cost function evaluation time. There are times when either the smallest, largest, or no value
for �x agrees with the TLM. However, the TLM has inflection points at the same times as the
finite difference approximations, including during periods of intense oscillation

::::
fast

::::::::
transient

:::::::
periods, such as for @U

@U

and @U

@Q

v

. The chemical concentrations respond nonlinearly to all

16
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:::::::
duration

:::::
over

:::::::
which

:::
the

::::::::
tangent

::::::
linear

::::::::::::
assumption

::
is

:::::
valid

:::
for

:::::::::
chemical

:::::::::::
responses

::
to

:
U

and Q
v

perturbation sizes for periods longer than 1in the plots shown, and longer than5

3for all test scenarios considered
::::::::
depends

:::
on

:::
the

:::::
size

::
of

::::
the

:::::::::::
perturbation

:::::
and

:::
on

:::
the

:::::
local

::::::::::::::
meteorological

:::::::
regime.

:::
For

:::::::::
instance,

::::
the

::::
test

::::::
results

:::::::
shown

::::
here

::::
are

:::
for

:
a
:::::::::
response

::::::::
location

::::
very

:::::
near

:::
the

::::::::::
California

::::::
coast,

:::
but

::::::
better

:::::::::::
agreement

::::
was

::::::
found

::::::
farther

::::::
inland. Further test-

ing of these
:::
the coupled derivatives will be necessary to determine over what time period

they are suitable for inverse modeling, and under what conditions the model nonlinearities10

cease to be a limiting factor. Future emission inversion work
:::::::::
inversions with coupled physics

and chemistry will need to verify that @J

@↵

has a near linear response over the time frame
considered. The behaviors noted here are consistent

::::::
similar

::
or

:::::::::
improved

:
across the other

thirteen pairs of q and p.

5 Sensitivities to BC emissions in California15

Here we demonstrate the new WRFPLUS-Chem capabilities in an adjoint sensitivity study.
For the present example, the 4D-Var cost function is the model response metric and the
biomass burning, and weekday and weekend anthropogenic emissions are the model pa-
rameters of interest. This framework is used to analyze where and when these parameters
most impact the model performance and are thus in need of improvement.20

5.1 Approach

For this demonstration, we calculate the sensitivity of the 4D-Var cost function in the first
iteration. The background term is zero and there has been no prior CV increment (i.e.,
�x= 0). Therefore, the cost function, Eq. (1), simplifies to

J =
1

2

KX

k=1

{H
k

[M
k

(x
b

)]�y

k

}>R�1

k

{H
k

[M
k

(x
b

)]�y

k

}. (10)
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All off-diagonal covariances in R are assumed to be zero in order to enable timely matrix
inversion.5

5.1.1 Model configuration

The model domain encompasses California and other southwest US states from 20 June
2008, 00:00:00UTC to 27 June 2008, 09:00:00UTC. We generated chemical initial con-
ditions by running WRF-Chem for five days prior to the adjoint time period. We used the
default WRF-Chem boundary condition for BC concentration of 0.02 µg kg�1. This is con-10

sistent with a single upwind Pacific ocean transect taken during the 22 June flight. Meteoro-
logical initial and boundary conditions are interpolated from 3 h, 32 km North American Re-
gional Reanalysis (NARR) fields. The horizontal resolution is 18 km throughout, and there
are 42 vertical levels between the surface and model top at 100 hPa. The eta levels are
1.000, 0.997, 0.993, 0.987, 0.977, 0.967, 0.957, 0.946, 0.934, 0.921, 0.908, 0.894, 0.880,15

0.860, 0.840, 0.820, 0.800, 0.780, 0.750, 0.720, 0.690, 0.660, 0.620, 0.570, 0.520, 0.470,
0.430, 0.390, 0.350, 0.310, 0.270, 0.230, 0.190, 0.150, 0.115, 0.090 , 0.07 , 0.052, 0.035,
0.020, 0.010, and 0.000. For a column where the ground is at sea level, there are 13 levels
below 1 km and an additional 5 levels below 2 km. The subgrid physics options used are
described in Sect. 2.1.20

Anthropogenic emissions are taken from the US EPA’s 2005 National Emissions Inven-
tory (NEI2005). Fire emissions are provided by the Fire INventory from NCAR (FINN Ver-
sion 1) (Wiedinmyer et al., 2011, 2006). FINN uses Moderate Resolution Imaging Spectro-
radiometer (MODIS) active fire locations and radiative power from NASA Terra and Aqua
satellites, as well as speciated emission factors for four vegetation types, to calculate daily25

total 1 km resolution emissions. Burned areas are scaled to the combined fractional cov-
erage of each 1 km2 fire pixel by tree and herbaceous vegetation types assigned by the
MODIS Vegetation Continuous Fields product (Hansen et al., 2003). Repeated fire detec-
tions in a single fire pixel are removed according to Al-Saadi et al. (2008). Plume rise injec-
tion heights are calculated in WRF-Chem by an embedded one-dimensional cloud-resolving
model (Freitas et al., 2007, 2010; Grell et al., 2011).

18
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5.1.2 Model-observation comparison

We compare the model to observations in individual time steps, which differs from pre-5

vious data assimilation approaches with WRF. In the standard WRFDA 4D-Var architec-
ture, observations are binned over intervals, or windows, typically of one hour or longer
duration. Whereas WRFDA typically has k observation windows, here WRFDA-Chem and
WRFPLUS-Chem handle k observations possibly each at a different time

:::::::::::
observation

::::
time

::::::
steps,

:::::
each

::
of

::::::
which

:::::
might

:::::
have

::::::::
multiple

::::::::::::::
measurements

:::::::::
available. In order to reduce mem-10

ory requirements, the adjoint forcing is stored in a column array, instead of the 2-D and
3-D arrays that were required for each state variable for each window, k in WRFDA. Also,
while WRFDA includes meteorological observation operators to be called offline, a

:::
the

::::
new

fine temporal resolution observation operator must be
:
is

:
called directly within WRFPLUS.

The traditional approach made communication between WRFDA and WRFPLUS less cum-15

bersome, but also limited the ability to use dynamic observations recorded across broad
temporal scales in an inversion.

In-situ observations were collected throughout California during the June 2008 portion
of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites
field campaign in collaboration with the California Air Resources Board (ARCTAS-CARB)20

(Jacob et al., 2009). Instruments aboard the DC-8 aircraft measured trace gas and aerosol
concentrations over four days, including elemental carbon (EC)

:::::::::
absorbing

::::::::::::::
carbonaceous

:::::::
aerosol from the single particle soot photometer (SP2) at 10 s intervals (Sahu et al., 2012).
Additionally, 41 Interagency Monitoring of Protected Visual Environments (IMPROVE) sites
measured daily average surface light absorbing carbon (LAC) on 20, 23, and 26 June by25

thermal/optical reflectance (TOR) analysis of quartz filters (Malm et al., 1994). Surface and
aircraft observation locations during the campaign are indicated in Figs. 5 and 6. The aircraft
trajectories are overlaid on MODIS Aqua true color images (Gumley, 2008), and locations
of MODIS active fires (NASA , 2014).

:::::
While

:::
we

::::
use

::::::::::
IMPROVE

::::::::::
elemental

:::::::
carbon

:::::
(EC)

::::
and

::::
SP2

::::::::::
absorbing

::::::
carbon

:::
as

:::::::::::
equivalents

:::::::
herein,

:
Yelverton et al. (2014)

:::::
found

::::
that

::::
the

::::::
former

::
is

:::::::::::::
approximately

::
7%

::::::
higher

::::
than

::::
the

::::::
latter,

:::
but

::::
that

:::::
their

:::::
error

::::
bars

::::::::
overlap.

::::
For

:::
the

::::::::::
qualitative

19
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::::::::
analysis

::::::::::
performed

::
in

::::
this

::::::::::::::
demonstration,

::::
bias

::::::::::
correction

::::::
would

::::
not

:::::::
change

::::
any

::
of

::::
the

::::
final

:::::::::::
conclusions.

:

The observation operators for aircraft and surface observations require temporal aver-5

aging. The 10 s resolution ARCTAS observations of BC concentration, pressure, latitude,
and longitude are averaged to the 90 s model time step, which is approximately the time the
DC-8 would take to traverse a single 18km⇥ 18 km column. However, the 10 s resolution
ARCTAS BC concentrations are revision 2 (R2), while a later revision 3 (R3) product was re-
leased at 60 s resolution only. The later revision includes additional mass in the 50–900 nm10

size range as a result of applying a lognormal fit. In order to utilize this improved product, as
well as leverage the finer resolution observations, the 10 s BC mass is scaled by the mass
ratio between the 60 s R3 and the 60 s average R2 datasets. The scaled 90 s average ob-
servations are compared directly with the nearest model grid cell so that the model values
are not interpolated. The pressure measurements are compared to online model pressures15

to determine the model level of each observation. For 24 h average surface measurements
from IMPROVE, the observation operator averages the nearest model surface grid cell con-
centration over all time steps within the observation period. For the few surface sites that
have two air samplers simultaneously measuring, they are averaged together to prevent
nonzero correlation in the cost function (i.e., off-diagonal terms in R). After all averaging,20

there are 995 aircraft observations and 107 surface observations.
As depicted in Fig. 7, the WRF-Chem simulation is, on average, biased low for both the

surface and aircraft observations. The lowest biased aircraft observations tend to be at
higher altitudes, although this is not true in all cases. There are many high biased obser-
vations, and they tend to be at lower altitudes and to occur earlier in the simulation period25

when anthropogenic emissions dominate. Both surface and aircraft model predictions ex-
hibit a wide spread of positive and negative errors. In order to determine potential causes
for bias in specific locations, we consider the model residual errors, or simply “residuals,”

r
k

=H
k

[M
k

(x
b

)]�y

k

, (11)
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for each aircraft observation k. Figure 6 shows the statistically significant (p < 0.32) resid-
uals for observations above and below the top of the model PBL. Section 5.1.3 describes
relevant measures of observation variance and statistical significance.

Negative residuals, and hence low model bias, are most prevalent in northern California5

on 22 and 26 June, most likely due to under prediction of biomass burning sources. There
is also low bias above the PBL in the southern San Joaquin Valley on 20 June and be-
low the PBL inland from San Diego on 24 June. Although neither case has visual smoke
in the MODIS images, there were fires detected within 300 km. The largest positive resid-
ual occurs in Palmdale, CA close to landing on 24 June. It could be indicative of either10

an emission error or the coarse horizontal resolution that collocates the airport with other
significant nearby sources. Other notable high model biases aloft occur near cities during
the flights on 20, 22, and 24 June. Similarly, surface site biases are higher near cities, and
along the coast. As might be expected, proximity to sources is a strong indicator of er-
ror magnitude, as that is where the highest concentrations occur. The error sign appears15

to be consistent above and below the PBL where such observations are collocated. Still,

:::
and

:::::::::::
magnitude

:::
on

:::
24

:::::
June

:::::::
differs

::
in

::::
the

::::
PBL

:::::
and

::::
free

::::::::::::
troposphere.

:::::
That

:::::
and the spatial

error pattern could reflect some combination of meteorology and emissions deficiencies.
For the positive residuals off the coast of Los Angeles on 22 and 24 June, there could be
errors in predicting vertical mixing associated with the land-sea circulation or predominant20

near-surface wind direction. Discerning errors caused by emissions from those caused by
meteorological mechanisms would require a separate in-depth study.

5.1.3 Variance and residual error significance

When R is assumed to be diagonal, each residual in the 4D-Var cost function is weighted
inversely proportional to the observation error variance. The form of the cost function is25

based in Bayesian statistics, with an aim of converging on posterior control variables in
a maximum-likelihood sense. However, using the variance alone to weight the residuals may
result in very large cost function terms for relatively small residual errors. As our interest in
this study is to determine how errors in emission estimates may be leading to model bias,
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we wish to ensure the largest residuals have the greatest weight, while also accounting for
differences in statistical significance of particular errors. Thus we define the diagonal terms
of R as5

R
k,k

=
w
k

�2

k,k

, (12)

where w
k

is an additional weighting term and �2

k,k

is the variance.
The variance is comprised of components due to both observation and model uncertainty

as10

�2

k,k

= �2

k

= �2

k,m

+�2

k,o

. (13)

The model variance at each observation location is found from an ensemble of N
c

=
156WRF-Chem configurations during the modeling period. Each ensemble member, c,
uses a different combination of PBL, surface layer, LSM, and longwave and shortwave radia-15

tion options. Also, there are configurations both with and without microphysics and cumulus
convection. From the ensemble, we use the population of residuals at each observation, k,
to calculate the model variance

�2

k,m

= MAX

0

@ 1

N
c

� 1
::::::

N

cX

c=1

(r
k,c

)2

N
c

� 1
r2
k,c

:::
,MML2

1

A , (14)

20

where MML is the minimum model limit. The minimum possible modeled BC concentration
is limited by the boundary condition, which fills the entire model domain during the five day
warm-up simulation. The MML is simply taken as the minimum model concentration for all
observation locations and all model configurations, and is found to be 0.01 and 0.02 µgm�3

for aircraft and surface measurements, respectively, after rounding to the observation pre-
cision.

The IMPROVE instrument variance combines both relative and absolute uncertainties,
the latter of which arises due to the minimum detection limit (MDL) (UC-Davis, 2002). For5
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a single filter analysis, the variance (in µg2m�6) is

�2

l

k

,inst. =

2

4

q
342+ [(1000)(0.07)y

l

k

]2

1000

3

5

2

. (15)

The sub-observation index l
k

is useful at sites with more than one air sampler. When a site
has data from multiple instruments in a single day, we take their average and combine their10

instrument variances as

�2

k,o

=
1

L2

k::

L

kX

l

k

�2

l

k

,inst.

L2

k

�2

l

k

,inst.
::::::

, (16)

where L
k

is the observation count. We assume the IMPROVE measurements
::::
each

:::::::::
IMPROVE

::::::::::::::
measurement

:
fully represent the encompassing grid cell, since all sites are in15

remote locations and the samples are averaged over a 24 h period.
In contrast, the aircraft variance must capture the representativeness uncertainty asso-

ciated with comparing the average of an entire model grid cell with an average of multiple
short duration segments of a sparse aircraft transect. According to commercial literature for
the SP2 device, it has an MDL of 0.01 µgm�3, which we assume applies over the 10 s ob-20

servation interval used during the ARCTAS campaign. The observations available through
the NASA ARCTAS data archive have a BC mass concentration uncertainty of ±30%. Al-
though Sahu et al. (2012) report ±10% BC mass uncertainty, that range is given by Kondo
et al. (2011), who state their results are applicable in regions not impacted by refractory
organic compounds, such as from biomass burning sources. Because there are significant25

burning sources in this domain, we adopt the more conservative range. We utilize the in-
strument uncertainties in a definition for total observation variance with components due to
both averaging and representativeness, such that for each average aircraft measurement,

ȳ
k

=
1

L
k::

L

kX

l

k

=1

y
l

k

L
k

y
l

k::
, (17)
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5

the total variance is

�2

k,o

= MDL2+�2

k,avg. +�2

k,rep.. (18)

Adding the minimum variance associated with the MDL prevents the total variance from
trending toward zero for any particular observation. This is important when using the vari-10

ance in the cost function to ensure that near zero observations – which have low variances
– with small residuals do not dominate the inversion. The averaging

:::::::::::::
representative variance

is the variance of the y
l

k

’s that makeup ȳ
k

, which is an attempt to capture the spread of true
concentrations in a model grid cell. In the case that there is only a single observation, the
averaging

:::::::::::::
representative uncertainty is taken as double the instrument uncertainty. Thus,15

�2

k,avg.rep.::
=

8
<

:

1

L

k

�1

::::

P
L

k

l

k

=1

(y
l

k

�ȳ

k

)2

L

k

�1

✓
y
l

k

�
::::

ȳ
k:

◆
2 if L

k

> 1;

(2�
k,inst.)

2 if L
k

= 1

(19)

For any time step where L
k

< Lmax = 9, there is an additional variance penalty proportional
to the sum of the individual instrument variances,

�2

k,rep.inst.::
=

r
Lmax �L

k

Lmax

1

L2

k::

L

kX

l

k

=1

�2

l

k

,inst.

L2

k

�2

l

k

,inst.
::::::

, (20)20

where

�
l

k

,inst. = MAX(MDL,0.3 · y
l

k

) . (21)

::::
The

::::::
square

:::::
root

::::
term

::
in
::::
Eq.

::::
(20)

::::::::
inflates

:::
the

::::::::::
instrument

:::::
error

::
in

::::::
cases

::::::
when

:::::
there

::::
are

:::::
fewer25

::::
than

:::::
Lmax::::::::

samples
:::
in

:::
the

::::::
mean.

:

In order to motivate the weight, w
k

, applied to each residual model error, let us consider
the primary inputs to the adjoint simulation, which are the adjoint forcings

�⇤
k,m

=
@J

@c
k
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=H>
k

��2

k

{H
k

[M
k

(x
b

)]�y

k

}5

=H>
k

�⇤
k,o

. (22)

c
k

is any state variable on which H
k

depends and which M
k

(x
b

) predicts. For our purposes,
the state variables are modeled BC concentrations. The adjoint of the observation operator,
H>

k

transforms the forcing from observation space (�⇤
k,o

) back to model space (�⇤
k,m

). Thus,10

the forcing in observation space is

�⇤
k,o

=
r
k

�2

k

. (23)

Observations with significant model bias would require the largest perturbation in control
variables to alleviate, and would seem to inform the inversion process the greatest. How-15

ever, they must also have low total variance to contribute to an inversion. Figure 8 shows
the surface and aircraft SD plotted vs.

::::::
versus

:
residual error. Also plotted in that figure are

one and two SD zones, as well as lines of constant �⇤
k,o

for all w
k

= 1. Any residual falling
outside the 2� zone is one where the

:::
has

::
a
:
combined model and observation SD

::::
that

:
is

small enough to say
::::::::::
determine with 95% confidence (p < 0.05) that the residual error de-20

viates from zero (i.e., the model and observation disagree). These statistically significant
model errors indicate that some kind of inversion is worthwhile. The

:
In

:::::
their

:::::::::::
multi-cycle

::::::
4D-Var

:::::::::::
approach,

:
Bergamaschi et al. (2009)

:::::::::
eliminate

:::::::::::::
observations

:::::::
outside

::::::
three

:::::
SD’s

::::
after

:::
an

::::::
initial

:::::::
4D-Var

::::::
cycle,

::::
with

::::
the

::::::::
thought

::::
that

:::::::::
incorrect

::::::
model

::::::::
physics

::::::::
prevents

::::::
those

:::::::
residual

:::::::
errors

::::
from

::::::
being

:::::
fixed

:::::
with

::::::::
4D-Var.

::::::
Thus,

:::::
while

:::::::::::
statistically

::::::::::
significant

:::::::::
residuals25

:::
are

:::::::::
important

:::
to

::::::
driving

::
a

:::::::
4D-Var

:::::::::
inversion,

::::
that

:::::
they

:::::::
remain

:::::::::
afterward

::
is

:
a
:::::::
strong

:::::::::
indication

::
of

::::::
errors

::
in

::::
the

::::::
model

:::::::::::
description

::::
that

:::::::
cannot

:::
be

:::::
fixed

::::::::
through

::::::::::::
adjustments

:::
to

::::::::::
emissions.

::::::
Figure

::
8

:::::::
shows

::::
that

::::
the

:
relative contributions of observation and model variances is in

general proportional to the relative magnitudes of observed and modeled concentration.
Thus

::::::::::
Specifically, model (observation) variation contributes to a large fraction of uncertainty

in positive (negative) residuals.
There are several outlier negative residuals with magnitudes much larger than the

remainder of the population. A large portion of these have large enough uncertainty that
25
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their adjoint forcing is much less than that of other lower magnitude residuals.Consider the5

region where |r
k

|< 0.5and �
k

< 0.3
::::::
When

::::
both

::::
the

:::::::::
observed

::::
and

:::::::::
modeled

::::::::::::::
concentrations

:::
are

::::::
small,

::::
the

:::::
total

::::::::
variance

:::::::::::
decreases

::
to

::::
the

:::::::::
minimum

:::::::::
possible

::::::
value,

:::::::::
governed

:::
by

::::
the

:::::
MML

::::
and

::::::
MDL.

:::::
This

:::::::::
generally

:::::::::
happens

:::
in

:::::::
remote

::::::::
regions,

:::::::
where

::::::
small

::::::::::::::
concentrations

:::::
result

:::::
from

::::::
some

::::::::::::
combination

:::
of

:::::
small

::::::::
nearby

::::::::
sources

::::
and

:::::::::
transport

:::::
from

::::::
many

:::::::
distant

::::::::
sources.

::
If

:::
the

:::::
total

::::::::
variance

::
is

::::::
small

:::::::
enough

::::::::
relative

::
to

:::
the

::::::::
residual

::::::
error,

::::
�⇤
k,o::::

will
:::
be

::::
very10

:::::
large,

:::::
often

::::::
larger

:::::
than

::
in

::::::
cases

::::
with

:::::
larger

::::::::
residual

::::::
errors

:::::
(see

::::
Fig.

::::
10a). The adjoint forcing

magnitude is between 10 and 200, varying the mean forcing magnitude to the maximum for
any observation in the whole population.

:::::
model

:::::::::::
propagates

::
a
:::::::::
relatively

:::::
large

:::::::
forcing

::::
from

::
a

:::::
small

::::::::
residual

::::::::::
backward,

:::::::::
resulting

::
in

:::::
large

::::::::::::
sensitivities

::
to

:::::::::
emission

:::::::
scaling

::::::::
factors.

::::::
These

:::::::::::
sensitivities

::::
then

:::::::::
translate

::
to

:::::
large

:::::::::
emission

:::::::::::::
perturbations

::
in

::::
the

:::::::::::
optimization

:::::::::
process.15

The residual errors within the 1� and 2� zones are not statistically significant, yet they
might have larger adjoint forcing than observations with larger residual error at higher
significance levels. Applying these adjoint forcings as-is could drive the inversion to fitting
data points with smallabsolute residual error. This adjoint forcing imbalance between high
and low significance observations can be alleviated by a counteracting

:
in

:::::::
remote

:::::::::
locations20

:::
are

::::::
likely

::::::
within

::::::::::
combined

:::::::
model

::::
and

::::::::::::
observation

::::::::::::
uncertainty,

::::
but

::::
the

::::::
model

:::::::::
variance

::
at

::::::
these

:::::::::
locations

::
is
::::::::::::::

unrealistically
::::::
small.

:::::
The

::::::::::
ensemble

:::
will

:::::::::::::::
underestimate

::::::::
variance

:::
at

::::::::::::
observations

::::
near

:::::::::::
low-biased

::::
prior

::::::::
sources

::::
due

::
to

::::
the

::::::::
absence

::
of

::::::
tracer

::::::
mass.

::::
The

::::::::
opposite

::::
may

:::
be

:::::
true

:::
for

::
a
::::::::::::
high-biased

::::::
prior.

::::
The

::::::::::
challenge

:::::
then

::
is
:::

to
:::::::
define

::::
the

:::::::::::::
concentration

::::::::::
uncertainty

:::::::::::
introduced

:::
by

:::
the

::::::
model

:::::::::
physics,

::::::::::::
independent

::
of

::::
the

::::::::::
magnitude

:::
of

::::::::::
emissions,25

:::::
which

::::
we

:::::::
attempt

:::
to

:::
do

:::::
with

:
a
:

weighting scheme. In order to devise such a scheme, we
consider which forms of statistical significance are important to this inverse problem.

::::
The

:::::::
weights

::::
are

:::::
used

::::
only

:::
to

::::::
inflate

:::::::::
variance,

::::::
which

:::::
when

:::::
very

::::
low

::
is

::::::::
thought

::
to

::::::::::
misinform

:::
the

::::::
adjoint

::::::
about

:::::::::::::
concentration

:::::::
errors.

:::::::::
Variance

:::::::::
reduction

::::
may

:::
be

:::::::::::
necessary

:::
for

::::::::::::
observations

::::
near

:::::::::::
high-biased

:::::::::
sources.

:::::
Also,

:::::
while

:::
we

::::::
apply

:::
the

::::::::
weights

::
to

::::
the

::::
total

:::::::::
variance,

:::::
they

:::::
could

::
be

::::::::
applied

::
to

:::::
only

:::
the

::::::
model

::::::::
portion.

:::::
Here

::::
we

:::
are

:::::::::::
developing

::
a

::::::::::
philosophy

:::
for

::::::::
scaling

:::
the5

:::::::::
variances,

:::
of

::::::
which

:::
the

:::::::::
following

::::::::::
description

::
is
::::
but

::::
one

:::::::::
example.

26
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Because our goal in an emission inversion is to reduce model bias by perturbing emis-
sions, model bias is itself an important characteristic. We use the ensemble of model con-
figurations to calculate the variance in all residual errors, that is

�2

r

=
1

N
c

K � 1
::::::::

N

cX

c=1

KX

k=1

r2
k,c

N
c

K � 1
r2
k,c

:::
. (24)10

The residual SD, �
r

, are 0.69 and 0.29 µgm�3 for surface and aircraft observation popu-
lations, respectively. After confirming that the residual errors are approximately normally
distributed, the significance of the bias of a single observation relative to the entire popula-
tion is15

fPOP,k = erf

 
|r̃
k

|p
2�2

r

!
. (25)

In statistics, the ratio of |r̃
k

|
�

r

is called the z value, and denotes the number of SD between
r̃
k

and the expected value of zero. The variable r̃
k

indicates the user must select a specific
form of residual error. Two examples are the mean or median of r

k

. A third approach, and20

the one taken here is to use the residual found in the first 4D-Var iteration, r
k,n=0

. fPOP,k
is a continuously variable p value, or the percentage of the population of all r

k,c

that is less
significant than r̃

k

. Another measure of significance is visualized in the � zones of Fig. 8,
and was discussed previously. That is, for an individual residual error and variance, what is
the probability that there will always be mismatch between the model and observation? The25

individual error significance is

fIND,k = erf

0

@ |r̃
k

|q
2�2

k

1

A . (26)
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The population and individual error significances are combined to derive the adjoint forcing
weight,

w
k

=
h�
fPOP,k

�
�

(fIND,k)
1��

i
�

. (27)
5

The weighting scheme can be tuned for a specific application using the � and � param-
eters to reshape the adjoint forcing contours. However, care must be taken when selecting
�, �, and r̃

k

to ensure convergence in 4D-Varto the mean of the Gaussian distribution of
residual errors

:
.
::::
Use

::
of

::::::
these

::::::::
weights

::::
may

::::::
imply

::::
that

::::::::
residual

::::::
errors

:::
do

::::
not

::
fit

::
a

:::::::::
Gaussian

::::::::::
distribution. Here we only introduce the weighting scheme and use it in a demonstration, but10

do not verify its validity. We use � = 0.5 to provide some balance between the two measures
of significance and � = 2 to ensure the weighting has a large impact. After calculating the
w
k

’s according to Eq. (27), the new effective adjoint forcings are compared to the original
values in Fig. 9. The weighting scheme is successful at reducing the impact of observation
errors with low significance on the cost function.15

After applying the new weighting scheme, the �⇤
k,o

contours no longer converge on the y
axis as depicted in Fig. 8. Instead, they exit radially from the origin in all directions. As both
the population and individual z values approach zero, the adjoint forcing converges toward

�⇤
k,o

⇡ r
k

�2

k

 
0.8

|r̃
k

|
��

r

�1��

k

!
�

= 0.64
r
k

r̃2
k

�
r

�3

k

. (28)
20

For our specific values of �
r

, all residual errors within the 2� zone satisfy |�⇤
k,o

|. 5 µg�1m3

for surface, and |�⇤
k,o

|. 10 µg�1m3 for aircraft observations.
::::
This

:::
is

:
a
:::::::::::::
considerable

:::::::
change

::::
from

::::
the

:::::
unity

:::::::
weights

:::::::
where

:::::
|�⇤

k,o

|
::::
was

:::
as

:::::
large

:::
as

::::
200 µg�1m3

:
in

::::
the

::::::
region

:::::::::
between

:::
the

::
1�

::::
and

:::
2�

:::::::
zones.

:

5.2 Results and discussion25

With the weighting function applied, we calculate sensitivities of the 4D-Var cost function
with respect to emissions for determining potential sources of model bias. The weights

28
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reduce the cost function from 5374 to 3784, which increases the normalized cost function
sensitivity to emission perturbations. Figure 10 shows fully normalized sensitivities,

@ln J

@ln E
i,j,d

=
24X

n=1

@ln J

@ln E
i,j,d,n

, (29)5

for six days of the simulation. The sensitivity in a particular grid cell is summed over the
local diurnal cycle for hours n= [1, . . .,24] on day d. For anthropogenic emissions, the lo-
cal time is calculated for discrete 15� time zones, whereas for biomass burning emissions,
local time corresponds to the continuous sun cycle. Undoubtedly, there are locations with10

positive and negative sensitivities at different times of day that will cancel, but this tempo-
rally aggregated sensitivity is an attempt to obtain average daily relationships across the
domain. Although the color bar has been saturated at ±5⇥ 10�3, the full range of sensi-
tivities are from �2.7⇥ 10�3 to +5.6⇥ 10�3 and �5.4⇥ 10�3 to +6.3⇥ 10�3

:::::::::::
�2.3⇥ 10�3

::
to

::::::::::::
+7.1⇥ 10�3

::::
and

::::::::::::
�4.9⇥ 10�3

:::
to

:::::::::::::
+11.3⇥ 10�3

:
for anthropogenic and biomass burning15

emissions, respectively.
The magnitude of a normalized sensitivity corresponds to the fractional response in the

cost function given a 100% perturbation of emissions in a grid cell. If the model were perfect,
the sensitivity magnitudes would be proportional to the difference between the background
emission estimate and the true value. Thus a negative sensitivity indicates a location where20

estimated sources are too low, and vice versa. Because the sensitivities themselves de-
pend on the emission magnitudes, they will change in each 4D-Var iteration, eventually
converging on a minimum of the cost function where the sensitivities are zero. We use the
sensitivities here as a qualitative indicator of emission errors, and not a quantitative conclu-
sion as might be provided with a complete inversion.25

The sensitivities exhibit a similar spatial-temporal pattern as the residual errors in Figs. 5
and 6, in general indicating that

::::
with

:::
the

::::::::::
exception

::
of

::::::::
sources

:::
far

::::::::
upwind

::
of

:::::::::::::
observations.

:::::
Near

:::::::::::::
observations,

:
estimated anthropogenic emissions are too high, and that estimated

fire emissions are too low. A more complex depiction of all BC emission errors arises in
the sensitivities than the residuals alone might reveal. While most

::::::
Indeed,

::::::
most

::
of

:::
the

:
non-
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negligible
:::
(not

::::::
black)

:
burning sensitivities are negative , emissions from the Los Padres

National Forest and northern redwoods on 23 Juneare potentially too high. The relative
contributions of those fire estimates and simultaneous anthropogenic sources to positive5

coastal surface residuals near L.A. on
::
on

:::
24

:::::
June

::::
and

::
25

::::::
June,

:::::
likely

::::
due

::
to

:::
the

::::::::::::
high-altitude

::::::::
negative

:::::::::
residuals

::
on

:::
26

::::::
June.

::::
The

:::::::
positive

:::::::
coastal

::::
fire

:::::::::::
sensitivities

:::
on

::
22

:::::
June

::::
and

:
23 June

are difficult to disentangle. However, the 24 June positive residuals from ARCTAS are more
likely due to the anthropogenic sources. That is because the model transports smoke
into the flight path of the DC-8 south of San Pedro, where BC concentrations are under10

predicted. Still, some anthropogenic source regions are under predicted as well.
::::::::::
attributable

::
to

::::::::
positive

:::::::
forcing

::
at

::::
the

:::::
Point

:::::::
Reyes

::::::::
National

::::::::::
Seashore

::::::::::
IMPROVE

::::
site

:::
on

::::
23

:::::
June

::::
and

:::::
along

::::
the

:::::
DC-8

::::::
flight

:::::
track

:::
on

:::
24

::::::
June.

::::
The

::::::::::
influence

::
of

::::::
those

:::::
fires

:::
on

::::
Los

::::::::
Angeles

::::
BC

::::::::::::::
concentrations

:::
24

::::::
hours

::
or

::::::
more

::::
after

::::
the

:::::::::
emission

::::
was

::::::::::::
determined

:::::::
through

::
a
::::::::::
sensitivity

:::
test

:::::::
where

::
a
::::::::::
perturbed

::::::::
residual

::::::
error

::::
and

:::::::
adjoint

:::::::
forcing

:::
on

::::
24

:::::
June

::::::
were

:::::::::::
propagated15

:::::::
through

::::
the

:::::::
adjoint.

The spatial variations in sensitivities are indicative of
::::::
reveal two phenomena. First, ap-

preciable sensitivities will only arise in emissions that influence the particular observations
available. Thus, full observation coverage is imperative to a successful inversion. Second,
emission errors are heterogeneous in space and time. For biomass burning sources

:::
the20

:::::
FINN

:::::::::
inventory, heterogeneity arises due to missed detections in the MODIS active fire

product, as well as potential errors in vegetation classification or attribution of a particular
vegetation class to one of four land cover typesused in FINN. Anthropogenic source error
heterogeneity could be due to a static inventory from 2005 being used to describe emis-
sions in 2008, or to spatial variations in BC emission factors for a particular source sector.25

Comparative adjoint sensitivities are calculated using the SLAB
::
All

:::
of

:::
the

::::::::::::
conclusions

:::
that

::::::
might

::::
be

::::::
drawn

:::::
from

::::
the

::::::::::
sensitivity

::::::
maps

::::::
about

:::::::::
emission

::::::
errors

::::
are

::::::::
subject

::
to

::::
the

:::::::::::
assumption

::::
that

::::
the

::::::::::
transport

::
is

::::::::
correct

::
in
:::::

this
:::::::
model

:::::::::::::
configuration.

:::::
The

:::::::
SLAM

:
LSM

scheme (option 1)
:
is

:::::
used

:
in place of the PX option . In these results , the same positive

coastal sensitivities are even more pronounced and widespread on
::
to

::::::::
calculate

::::::::::::
comparative

::::::
adjoint

::::::::::::
sensitivities.

::::::::
Relative

::
to

::::
the

:::
PX

:::::::
option,

::::::
these

:::::::
results

::::::
exhibit

::::::::::::::
non-negligible

::::::::
negative
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:::::::::::
sensitivities

::
to

::::
fires

:::
in

:::
the

:::::::::::::
Shasta-Trinity

::::::::
National

:::::::
Forest

:::
on 23and 24

:::::
June,

::::
but

:::::
much

::::::
larger

:::::::
positive

:::::::::::
sensitivities

:::
to

::::::
those

:::::
same

:::::
fires

:::
on

:::
22 June. Negative sensitivities to

:::::::::::
Sensitivities

::::
with

:::::::
respect

::
to

:::::::
coastal

:
fires in the Sequoia and Inyo National Forests are larger in magnitude5

than those in the Sierras on 23 June, but the
:::
Los

:::::::
Padres

:::::::::
National

::::::
Forest

:::::
also

::::::::
increase

:::
on

::
22

::::::
June.

::::
The

:
spatial sensitivity patterns between SLAB and PX options are consistent on

25 June. The differences are presumably due to changes in the residual error between
the two configurations, since the weights and variances used are identical. r̃

k

was not
recalculated for the SLAB case.

:
. The differing spatial sensitivity patterns indicate that the10

surface heat and moisture fluxes calculated by each LSM scheme contributes non-negligibly
to the vertical mixing of BC to aircraft measurement altitudes.

We also consider temporal sensitivity patterns to compare the two LSM schemes. Fig-
ure 11 shows the diurnal distribution of biomass burning, and weekday and weekend an-
thropogenic BC emission sensitivities for both of the LSM configurations, and for unity15

weights, w
k

= 1 and w
k

from Eq. (27). Each bar in that plot represents a summation of sen-
sitivities across the whole domain from 20 June, 00:00:00UTC to 26 June, 23:00:00UTC
(d= [1, . . .,7]

::::::::::::
d= [1, . . .,n

d

]) within a particular local hour, n, such that

@ln J

@ln E
n

=
n

xX

i=1

n

yX

j=1

7n

d:X

d=1

@ln J

@ln E
i,j,d,n

. (30)
20

The signs and magnitudes of sensitivities fit the previous description for the spatially dis-
tributed temporal aggregation. The time period of emissions to which an observation is
most sensitive depends on the altitude of that observation and the flow mechanisms that
transport emitted aerosol mass to that observation. Thus, any conclusions drawn could be
biased if observations do not have full temporal coverage, especially near sources. Since25

normalized sensitivities are proportional to emissions, it is to be expected that sensitivities
at peak emission hours are magnified. Also, each hour of sensitivity is a sum of many di-
verse source locations. So while the net sensitivity in a single hour may be positive, the
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spatial distribution of sensitivities is much more varied, as was previously discussed.
::::::
shown

::
in

::::
Fig.

:::
10.

:

The FINN biomass burning inventory applies an identical diurnal emission apportionment
for all fires, regardless of vegetation, shading due to slopes, wind speed, or relative humidity.5

This scaling is applied in preprocessing. Both the PX and SLAB LSM setups seem to agree
that the timing of the FINN burning emissions peak is correct within ±1and that the peak
should be sharper

:::
fire

::::::::::
emissions

:::::::::
between

::::::
10:00

::::
and

::::::
18:00

:::::
local

:::::
time

:::
are

:::::
over

::::::::::
predicted.

Without the weighting scheme, the PX configuration indicates that burning emissions are
too low in peak hours

:::
the

:::::
peak

::::::
should

:::
be

::::::::::
smoothed

::::
out, while the SLAB configuration con-10

cludes that burning emissions are too high in
:::
the

:::::
peak

:::::::
should

:::
be

:::::
made

::::::::
sharper

:::
by

::::::::
reducing

off-peak hours
:::::::::
emissions. With the weighting scheme applied, both configurations agree

that fire emissions need to be increased to reduce the cost function. The increased burning
sensitivity magnitudes indicate the weighting scheme is successful at generating a cost
function that is more robustly sensitive to emission perturbations

:::
the

:::::
peak

::
is

:::::
timed

:::::::::
correctly.15

:::::
While

::::
the

::::
two

:::::::
setups

:::::::::
disagree

::::::
about

:::
the

:::::::::::
magnitude

::
of

::::
fire

:::::::::
emission

::::::::::
correction

:::::::::
required,

::::
their

:::::::::::
differences

:::
are

::::::
small

::
in

::::::::::::
comparison

::
to

::::
the

:::::::
implied

::::::::::::::
anthropogenic

::::::::::
correction. The rel-

ative disagreement in
:::::::
burning

:
sensitivity magnitude between the two LSM configurations

is attributable to differences in residual errors, r
k

, and the resulting adjoint forcings, �⇤
k,o

.
Both configurations seem to agree that the timing of emissions is correct, and in fact the20

midday peak should be sharpened. However, the normalized sensitivities are proportional
to emissions, meaning an emission peak should correspond to a sensitivity peak. Some
work still needs to be done to interpret diurnal sensitivity patterns for use in a full inversion.

In contrast to FINN, NEI applies a variety of diurnal patterns to point, area, and traffic
sources. The weekend and weekday emission profiles shown in Fig. 11 are the emission25

weighted averages for the entire domain. Individual sources may have a profile closer to
flat, or alternatively zero overnight, and flat during daylight hours. The weighted average
profile shown is close to the one used for commercial diesel traffic, since that is the largest
BC source within the domain. Attributing sensitivities, or errors, to specific sectors is not
straight-forward and doing so may require a smaller horizontal grid spacing to reduce the

32



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

number of sectors per grid cell. Results for the weighted and unweighted cost functions are
very similar. In general, anthropogenic emissions are too high throughout all times of the
day on both weekdays and weekends. Both LSM configurations indicate the weekday profile5

peak should be sharper near 14:00LT, and not at 16:00LT, but also that emissions from
06:00 to 16:00LT should be closer to the late evening and early morning magnitudes. The
weekend sensitivities indicate the evening and morning emissions are too high, and that
the daytime peak is timed about right, with the exception of the 18:00LT spike. However,
the relatively small magnitude of weekend sensitivities could also indicate there were not10

enough observations of anthropogenic sources on 21 June (SAT) and 22 (SUN) to draw
definitive conclusions about emission timing.

Results for the two LSM options reveal the potential for model configuration to introduce
bias in a 4D-Var inversion. For these particular observations, the posterior emissions from
the PX option would likely be higher than those from the SLAB option, because of their rela-15

tive sensitivity values. Model variability must be taken into consideration in 4D-Var sensitivity
studies of high resolution emissions, because model variation represents a large fractional
contribution to observation error variance for positive residuals, as shown in Fig. 8.

6 Conclusions

We have implemented, verified, and demonstrated the WRFPLUS-Chem coupled meteo-20

rology and chemical adjoint and tangent linear models for PBL mixing, emission, aging, dry
deposition, and advection of BC aerosol. A second order checkpointing scheme enables
tangent linear and adjoint model runs longer than six hours. The adjoint was used in the
first iteration of a 4D-Var inversion within WRFDA-Chem, where model-observation residual
errors are compared for low- and high-temporal resolution IMPROVE surface and ARCTAS-25

CARB aircraft observations during one week of June 2008. A novel cost function weighting
scheme was devised to increase

::::::
reduce

:
the impact of high significance

:::::::::::::::
low-significance

observations in future 4D-Var inversions. Results indicate that the weighting scheme is
effective at generating robust sensitivities of the cost function to emissions. The adjoint
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sensitivities also indicate that anthropogenic emissions are over predicted and
::::::
biases

::
in

burning emissions are under predicted for the domain and time period considered
:::::::
spatially

:::
and

:::::::::::
temporally

:::::::::::::
heterogenous. The diurnal sensitivities would seem to indicate that burning5

emission profiles should be steeper midday, while anthropogenic emission profiles should
be flattened on weekdays and sharpened on weekends. A full inversion is necessary to
quantify the magnitude of the errors in the emissions. Additionally, adjoint sensitivities found
using two different LSM options indicate that the results of such inversions will be sensitive
to the choice of model configuration.10

The next steps are as follows. We intend to incorporate tangent linear and adjoint obser-
vation operators for useful remote sensing products (e.g., aerosol optical depth (Saide et al.,
2013) and absorbing aerosol optical depth). This addition will enable WRFDA-Chem to be
applied to a wider range of domains and time periods and operationally. The WRFDA-Chem
optimization algorithm still needs to be applied to control variables for chemical species15

initial conditions and emission scaling factors. Future development and incorporation of ra-
diation and microphysics adjoints (e.g. Saide et al., 2012) will provide coupling between
aerosols and meteorology, and provide new insights into sensitivities of direct, indirect, and
semi-direct radiative forcing to emission sectors and locations. In addition to the aerosol
applications discussed, WRFDA-Chem 4D-Var will also be suited to emission inversions for20

green house gases and other chemical tracers.

7
:::::
Code

::::::::::::
availability

::::::::
Although

::::
an

:::::::
annual

::::::
code

::::::::
release

:::::
may

::::
be

:::::::::
available

:::
in

::::
the

:::::::
future,

::::::::::::::::::
WRFPLUS-Chem

:::
and

:::::::::::::::
WRFDA-Chem

::::
are

:::::::::::
continually

::::::
being

:::::::::::
developed.

::
A

::::::
static

:::::::
version

:::::::
would

::::
not

:::::::
include

:::
the

::::::
most

::::::
recent

:::::
bug

::::::
fixes.

::::::::::
Interested

:::::::
users

::::
can

:::::::
obtain

::::
the

::::::
code

:::::
as-is

:::
by

:::::::::::
contacting25

:::
the

:::::::::
authors:

:::
J.

::::
J.

::::::::::
Guerrette

::::::::::::::::::::::::::::::::::
(jonathan.guerrette@colorado.edu)

:::::
and

::::
D.

:::
K.

::::::::
Henze

::::::::::::::::::::::::::::
(daven.henze@colorado.edu).

:::::::::
Potential

::::::::::
developers

:::::
may

:::::
also

:::::::
contact

:::::::::
National

:::::::
Center

:::
for

::::::::::::
Atmospheric

::::::::::
Research

::::::::
(NCAR)

:::::::::
scientist,

:::
H.

:::
C.

::::
Lin

:::::::::::::::::
(hclin@ucar.edu)

:::
for

:::::::
access

:::
to

::::
the

::::::::::::::::
WRFPLUS-Chem

:::::::::::
repository.

::::
Any

:::::::::
questions

:::::::
should

:::
be

::::::::
directed

::
to

::::
the

::::::::
authors.
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The Supplement related to this article is available online at5

doi:10.5194/gmdd-0-1-2015-supplement.
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Radiation X
SFCLAY (options 91 & 7)

:
X

LSM (options 1 & 7)
:
X

Dry dep. velocity only
:
X

PBL (NEW: option 7 w/ dry dep)
:
X

:
X

Cumulus convection
:
X X

Advection
:
X

Microphysics (need aerosols)
:
X X

ch
em

_d
riv

er

Emissions
:
X

Aerosol optical obs. operators X
Dry dep. velocity and vertical mixing
Cumulus convection of chem. species X
Gas chem. (sulfate precursors)

:
X

Aerosol chem. (GOCART)
:
X

Sum PM
:
X

Table 1.
::::::
Status

::
of

::::::
AD/TL

:::::::::::
development

:::
for

::::::::::
WRF-Chem

::::::::::
processes.

Dependencies between WRF, WRF-Chem, WRFPLUS AD/TL, and WRFDA. AD/TL
development status is also noted.
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Figure 1. Comparison of ADM to TLM evaluations of @[BC
1

]

@x

and @[BC
2

]

@x

for 300 derivatives for each
denominator variable.
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Figure 2. Comparison of nonlinear finite difference approximations to TLM evaluations of @[BC
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]
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and
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for 300 derivatives for each denominator variable. The different markers for x= [U,T,Q
v

]
indicate the �x percentage that yielded a finite difference derivative closest to the tangent linear
value.

:::
The

:::::
slope

:::
(m)

::::
and

:::
R2

:::::::
statistic

:::
for

:::
the

:::::
linear

::
fit

:::
are

::::::
shown

:::
for

:::::
each

:::
CV.
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Figure 3. Second order checkpointing scheme implemented in WRFPLUS-Chem.
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Figure 4. Time
::::
Fully

::::::::::
normalized
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time

:
variant sensitivities of cost function J

::::::::
calculated

:
with respect

to control variable x for multiple perturbations and the TLM with second order checkpointing
:::
and

:::
with

:::::::
multiple

:::::
finite

:::::::::
difference

::::::::::
perturbation

:::::
sizes.
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plot
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is

:::
for

:
a
::::::
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::
of

::::::
source

::::
and

:::::::
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::::::::
locations,

:
q
::::
and

::
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Figure 5. Surface site residual model error, r
k

, overlaid on MODIS Aqua true color images and
active fire retrievals. Observations with a bias less than one SD are also indicated.
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Figure 6. Aircraft residual model error, r
k

, with indication for the observation height relative to the
model PBL height overlaid on MODIS Aqua true color images and active fire retrievals. Observations
with a bias less than one SD are also indicated.
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:
)
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nation R2 for (a) IMPROVE surface and (b) ARCTAS-CARB aircraft observations colored by model
height above mean sea level (a.m.s.l.) and above ground level (a.g.l.).
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Figure 10. Normalized sensitivities ( @ln J

@ln Ei,j,d
) of the 4D-Var cost function (for surface and aircraft ob-

servations) with respect to anthropogenic and burning emission scaling factors overlaid on MODIS
Aqua true color images for six days during the simulation. Anthropogenic sensitivities with magni-
tudes less than 1% of the maximum anthropogenic sensitivity magnitude are removed. There is
a marker for all grid cells with non-zero burning emissions.
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Figure 11. Diurnal normalized sensitivities ( @ln J

@ln En
) of the 4D-Var cost function with respect to emis-

sions scaling factors for (a, b, and c) w
k

= 1 and (d, e, and f) w
k

from Eq. (27). Also plotted are
diurnal emission fractions. Sensitivities were calculated for two different WRF LSM options and are
shown separately for biomass burning, and weekend and weekday anthropogenic emissions.
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