

Answers to referee #1

General Comments

The paper by O. Conrad et al. presents general structure and capabilities of the opensource GIS, SAGA. This software has become an important contribution to a health and ever growing free and open-source software ecosystem for geographic information analysis. A paper summarizing SAGA's structure and features has therefore been overdue and is likely to be cited very often.

Specific Comments

R: "While the paper's description of software history, structure and philosophy and the general overview of its capabilities is very welcome, I feel that the review of SAGA applications in section 3 could be substantially shortened. To showcase the diversity of applications in which SAGA has been used, perhaps one or two (page-filling) tables and a brief textual summary would prove more useful."

Answer: we followed your suggestion and added a table that gives an overview to the references categorized by the addressed research fields; this coincides also with the suggestion of referee #2 to provide a '*visualization of the fields*', which currently make use of SAGA. We also agree that section 3 looks a bit lengthy, especially when compared to the following sections. However, we refrain from shortening its content substantially. The software SAGA evolved within scientific projects and as also highlighted by referee #2 the development was largely driven by science. Therefore, we think the science behind is an important aspect of SAGA and the various studies better reflect the wide scope and applicability than just a presentation of the functionality.

Other aspects, however, that would add to the relevance of this paper, are currently missing. In particular, a general comparison of SAGA's capabilities and features to other commercial as well as open-source GIS would give the reader a better idea as to what to expect from this software, and it would help to situate SAGA within the opensource GIS ecosystem. This could again partly be presented in tabular form, and/or it could involve references in the text to comparable (or not so comparable) features in well-known software, e.g. SAGA tool chains seem to be similar to ArcGIS ModelBuilder, and Python geoprocessing in ArcGIS is comparable to Python or R scripting with SAGA (is it?). These comparisons would (likely) reveal sets of GIS functions that are currently not available in SAGA tools (e.g. address geocoding or vehicle routing?), inspiring the reader to consider contributing to SAGA development.

For comparison with other open source GIS references are now given in the introduction.

During the last ten to fifteen years Free and Open Source Software (FOSS) became a recognized counterpart to commercial solutions in the field of geographic information systems and science. Steiniger and Bocher (2009) give an overview to free and open source Geographic Information System (GIS) software with a focus on desktop solutions. More recently, Bivand (2014) discusses FOSS for geocomputation. The System for Automated Geoscientific Analyses (SAGA) (<http://saga-gis.org>), subject of this paper, is one of the recognized developments in this field.

Reference to ArcGIS/QGIS model builder was added:

Tool chains are comparable to the models created with ArcGIS ModelBuilder (ESRI, 2015) or QGIS Processing Modeler (QGIS Development Team, 2014), but unlike these, SAGA does not yet include a graphical tool chain designer.

we added some text to the scripting chapter to outline interrelations between SAGA and the '*GIS ecosystem*'. Scripting and integration with other systems

The SAGA command line interpreter (CLI) is used to execute SAGA tools from a command line environment without any visualization or data management facilities. Therefore, the file paths for all input and output data have to be specified within the command. The CLI enables the creation of batch or shell script files with subsequent calls of SAGA tools to automate complex work flows and automatically apply them to similar data sets. Furthermore, the CLI allows calling SAGA tools from external programs in an easy way. This feature is used by the RSAGA package, which integrates SAGA tools with the R scripting environment (Brenning, 2008). Likewise, the Sistema EXTremo de ANálisis TERRitorial (SEXTANTE) makes SAGA tools accessible for various Java based GIS programs (gvSIG, OpenJUMP). In 2013 SEXTANTE was ported to Python to become a functional addition to QGIS (QGIS Development Team, 2014), another popular free and open source GIS software, thus spreading SAGA tools amongst many more GIS users. Alternatively to CLI based scripting, the SAGA API can also be accessed

directly from Python. This connection is generated by means of the Simplified Wrapper and Interface Generator SWIG (<http://www.swig.org>) and provides access to almost the complete API. While this allows higher level scripting, the CLI remains easier to use for most purposes.

Another option of integrating SAGA is direct linkage of the API. A very recent development is the integration of SAGA by the ZOO-Project (<http://zoo-project.org/>), which is a framework for setting up Web Processing Services (Fenoy et al., 2013). MicroCity (<http://microcity.sourceforge.net>) is a branch of SAGA, which adds support for the script programming language LUA, and has been used for city road network analyses (Sun, 2015). Laserdata LiS is proprietary software, mainly a toolset extension for the work with massive point data from LiDAR prospection (<http://www.laserdata.at>).

Table 1 summarizes the third party software mentioned above and underlines that SAGA is recognized first of all as geoprocessing engine. Only MicroCity and LiS make at least partly use of SAGA's GUI capabilities.

[Table 1: Software utilizing SAGA.]

Software	Interface	Remarks
QGIS	CLI	Processing Modeler
gvSIG	CLI	SEXTANTE
OpenJUMP	CLI	SEXTANTE
R	CLI	RSAGA
ZOO	API	Web Processing Service

Overall, I believe that this publication will be a valuable contribution to documenting the current state of free and open-source geographic information analysis, but I recommend major modifications based on the above comments.

Additional detailed comments and editorial changes:

P2272L8 "modular organized" - omit "organized"

done

P2272L10 "easily approachable" - change to "user-friendly"

done

P2272L11 "scripting and low level programming languages like R and Python" - neither of these is "low level", and instead of "scripting language", "interpreted language" would be more accurate; omit "scripting and low level"

done

P2272L21 Provide some context on free and open-source software for the geosciences / geography / geographic data analysis before focusing on SAGA.

we added the following paragraph to give a context

During the last ten to fifteen years Free and Open Source Software (FOSS) became a recognized counterpart to commercial solutions in the field of geographic information systems and science. Steiniger and Bocher (2009) give an overview to free and open source Geographic Information System (GIS) software with a focus on desktop solutions. More recently, Bivand (2014) discusses FOSS for geocomputation. The System for Automated Geoscientific Analyses (SAGA) (<http://saga-gis.org>), subject of this paper, is one of the recognized developments in this field.

P2272L5 change "in behalf" to "on behalf"

done

Much of the current Introduction should better be placed in a separate section giving a brief history of SAGA; I noticed some overlap with the current section 2

We feel that a brief history should be part of the introduction.

First paragraph of the current introduction is too long. In general throughout the manuscript, paragraphs tend to be rather long - consider splitting them into shorter paragraphs

done

P2273L21 "SAGA got a growing global user community" - rephrase: "SAGA's global user community has been growing" according to referee #2, we will replace 'got' with 'built-up'

P2273L28 "raised" - change to "rose"

done

P2274L7 "by a review of" - change to "by reviewing"

done

P2274 SAGA as FOSS - Free software and open-source software are overlapping concepts with different philosophical motivations. My feeling is that SAGA is "free" rather than (just) "open-source". Use proper academic reference when introducing the concepts of free and open-source software.

yes, we agree; academic reference will be added

P2274L24 "base" - change to "basis"

done

P2275L2 "discussion" - change to "comments"

done

P2275L4 "widespread and effective" seems redundant

we will remove 'and effective'

P2276 and elsewhere: change "meta data" to "metadata", "data base" to "database"

done

P2277L24 Is there any academic reference that could be used when referring to GDAL?

yes, we referred to Bivand (2014) GeoComputation and Open-Source Software (In: Abrahart & See, GeoComputation)

Within this group a toolset interfacing the Geospatial Data Abstraction Library (GDAL) should be highlighted (<http://www.gdal.org>) (Bivand, 2014).

P2279L11 "Summarizing" - change to "In summary,"

done

P2279 Section 2.4 Perhaps a small table would be suitable for summarizing which software uses SAGA modules or API and how

done

Section 3 - Much of this could be summarized in one or two (large, page-filling) table in order to make the text more readable and the breadth of applications more accessible to the reader. E.g. the long paragraph that makes up most of section 3.1.4 is very difficult to digest by the reader, and most other subsections of section 3 follow a similar style of briefly mentioning numerous studies that used SAGA

done, also see our above answer in the specific comments section

Answers to referee #2

General Comments

This paper nicely outlines the progression of SAGA from a specialized digital terrain analysis software to a full GIS platform which seems to rival the capabilities of other GIS software. By having the development be guided by current research, SAGA has become very broad in scope and, as described in the paper, is being used and developed in a wide range of fields. Much of the success of the software seems to be due to the creation of an API which has enabled developers to add their own methods. Having an interface to R and Python has no doubt increased the power of the software. While the paper briefly describes some of the features and architecture of SAGA, I found these descriptions to be sparse, i.e., this is a non-technical review. Rather, the main focus of this paper is to highlight the research being done using SAGA and thus demonstrates its usability over a wide variety of subject areas. The paper also makes it clear that it is this research that is driving SAGA's development. This paper is of high quality and upon some minor revisions will make a very useful contribution to the literature and help introduce potential users to the software.

Specific Comments

Introduction Is it possible to provide a breakdown of the various files/research areas these 700 modules occur in? I'm thinking a pie diagram or something that would show which fields are really driving the development.

Yes, we added a pie chart showing the number of tools falling into categories like terrain analysis, spatial and geostatistics, or image analysis and some subcategories (e.g. terrain analysis related to hydrology or topoclimate).

Figure 4 gives a rough overview to the different fields of data analysis and management addressed by the SAGA toolset. The categories have been derived from the menu structure, which might not reflect accurately the usability of all tools, e.g. in the case of multipurpose tools. But it can be seen that there is a quite comprehensive set of general tools for raster as well as vector data analysis and management and also that terrain analysis still can be seen as a strength of SAGA..

Further on in the paper a wide variety of references are given and it would be nice to have a visualization of the fields which are currently using the software.

Following a suggestion of referee #1 we added a table that gives an overview of the references categorized by the addressed research fields.

The System A good overview of the various components of the software is provided and gives the reader an idea of these components fit together and how development of modules works. How do these features compare with other software available, such as QGIS? I do not have a ton of experience using GIS open-source software but am eager to know what sets SAGA apart from the others.

Similar has been suggested by referee #1 too; For comparision with other open source GIS references are now given in the introduction.

During the last ten to fifteen years Free and Open Source Software (FOSS) became a recognized counterpart to commercial solutions in the field of geographic information systems and science. Steiniger and Bocher (2009) give an overview to free and open source Geographic Information System (GIS) software with a focus on desktop solutions. More recently, Bivand (2014) discusses FOSS for geocomputation. The System for Automated Geoscientific Analyses (SAGA) (<http://saga-gis.org>), subject of this paper, is one of the recognized developments in this field.

we added some text to the scripting chapter to outline interrelations between SAGA and the 'GIS ecosystem'. Scripting and integration with other systems

Scripting and integration with other systems

The SAGA command line interpreter (CLI) is used to execute SAGA tools from a command line environment without any visualization or data management facilities. Therefore, the file paths for all input and output data have to be specified within the command. The CLI enables the creation of batch or shell script files with subsequent calls of SAGA tools to automate complex work flows and automatically apply them to similar data sets. Furthermore, the CLI allows calling SAGA tools from external programs in an easy way. This feature is used by the RSAGA package, which integrates SAGA tools with the R scripting environment (Brenning, 2008). Likewise, the Sistema EXTremeño

de ANálisis TERRitorial (SEXTANTE) makes SAGA tools accessible for various Java based GIS programs (gvSIG, OpenJUMP). In 2013 SEXTANTE was ported to Python to become a functional addition to QGIS (QGIS Development Team, 2014), another popular free and open source GIS software, thus spreading SAGA tools amongst many more GIS users. Alternatively to CLI based scripting, the SAGA API can also be accessed directly from Python. This connection is generated by means of the Simplified Wrapper and Interface Generator SWIG (<http://www.swig.org>) and provides access to almost the complete API. While this allows higher level scripting, the CLI remains easier to use for most purposes.

Another option of integrating SAGA is direct linkage of the API. A very recent development is the integration of SAGA by the ZOO-Project (<http://zoo-project.org/>), which is a framework for setting up Web Processing Services (Fenoy et al., 2013). MicroCity (<http://microcity.sourceforge.net>) is a branch of SAGA, which adds support for the script programming language LUA, and has been used for city road network analyses (Sun, 2015). Laserdata LiS is proprietary software, mainly a toolset extension for the work with massive point data from LiDAR prospection (<http://www.laserdata.at>).

Table 1 summarizes the third party software mentioned above and underlines that SAGA is recognized first of all as geoprocessing engine. Only MicroCity and LiS make at least partly use of SAGA's GUI capabilities.

[Table 1: Software utilizing SAGA.]

Software	Interface	Remarks
QGIS	CLI	Processing Modeler
gvSIG	CLI	SEXTANTE
OpenJUMP	CLI	SEXTANTE
R	CLI	RSAGA
ZOO	API	Web Processing Service

Review of SAGA related studies and applications Again, I think a visualization of the 'broad spectrum of geoscientific analysis and modeling applications . . .' would be insightful.

see above

Minor Details

P2273 L2-3. Remove comma following 'both' and 'up' following 'data'.

done

L9. Remove 'e.g.'

done

L14. Change 'skills' to 'features'.

done

L21. Change 'got' to 'attained' or 'built up'.

done

P2274 L.21. Replace 'has been' with 'was'. This occurred at a single point in the past, so it is over and you should use 'was'. There are a few points in this article where this change needs to occur.

done

P2277 L10-11. Not sure I understand the meaning of this sentence.

Changed to:

Furthermore, this possibility of executing any loaded tool is used for the processing of tool chains. Tool chains are comparable to the models created with ArcGIS ModelBuilder (ESRI, 2015) or QGIS Processing Modeler (QGIS Development Team, 2014), but unlike these, SAGA does not yet include a graphical tool chain designer. Tool chains are defined in a simple XML based code that is interpreted by the tool chain class, another variant of the general tool class.

P2280 L16. Change to 'has remained' a major focus?

done

P2281 L8. Remove 'for instance'.

done

P2284 L1. 'The integration of new tools, . . .'

done

P2292 L18. Please fully spell out 'bio- resp.' I'm not sure what this is.

(resp. = respectively), changed to '...biogeography and particularly vegetation geography.'

biogeography and particularly plant geography

P2294 L11-13. Unclear. This sentence needs rephrasing around the ' . . . but likewise the outcome, . . .' part.

we wanted to point out that open source codes are the ideal complement for a scientific publication, because it gives full insight to a method's implementation

SAGA is not only a research supporting tool but likewise its outcome, which complements related scientific publications with the ultimate documentation of used methodologies in the form of source codes

1 **System for Automated Geoscientific Analyses (SAGA) v.**

2 **2.1.4**

3 **O. Conrad¹, B. Bechtel^{1,*}, M. Bock^{1,2}, H. Dietrich¹, E. Fischer¹, L. Gerlitz¹, J.**
4 **Wehberg¹, V. Wichmann^{3,4} and J. Böhner¹**

5 [1]{Institute of Geography, University of Hamburg, Bundesstr. 55, 20146 Hamburg,
6 Germany}

7 [2]{scilands GmbH, Goetheallee 11, 37073 Göttingen, Germany}

8 [3]{LASERDATA GmbH, Technikerstr. 21a, 6020 Innsbruck, Austria}

9 [4]{alpS – Center for Climate Change Adaptation, Grabenweg 68, 6020 Innsbruck, Austria}

10 [*] Correspondence to: B. Bechtel (benjamin.bechtel@uni-hamburg.de)

1 Abstract: The System for Automated Geoscientific Analyses (SAGA) is an
2 open-source Geographic Information System (GIS), mainly licensed under the
3 GNU General Public License. Since its first release in 2004, SAGA has rapidly
4 developed from a specialized tool for digital terrain analysis to a
5 comprehensive and globally established GIS platform for scientific analysis
6 and modeling. SAGA is coded in C++ in an object oriented design and runs
7 under several operating systems including Windows and Linux. Key functional
8 features of the modular software architecture comprise an application
9 programming interface for the development and implementation of new
10 geoscientific methods, an user friendly graphical user interface with many
11 visualization options, a command line interpreter, and interfaces to interpreted
12 languages like R and Python. The current version 2.1.4 offers more than 600
13 tools, which are implemented in dynamically loadable libraries or shared
14 objects and represent the broad scopes of SAGA in numerous fields of
15 geoscientific endeavor and beyond. In this paper, we inform about the
16 system's architecture, functionality, and its current state of development and
17 implementation. Further, we highlight the wide spectrum of scientific
18 applications of SAGA in a review of published studies with special emphasis
19 on the core application areas digital terrain analysis, geomorphology, soil
20 science, climatology and meteorology, as well as remote sensing.

Gelöscht: organized

Gelöscht: easily approachable

Gelöscht: scripting and low level
programming

Gelöscht: 700

1 **1 Introduction**

2 During the last ten to fifteen years Free and Open Source Software (FOSS) became a
3 recognized counterpart to commercial solutions in the field of geographic information
4 systems and science. Steiniger and Bocher (2009) give an overview to free and open source
5 Geographic Information System (GIS) software with a focus on desktop solutions. More
6 recently, Bivand (2014) discusses FOSS for geocomputation. The System for Automated
7 Geoscientific Analyses (SAGA) (<http://saga-gis.org>), subject of this paper, is one of the
8 recognized developments in this field.

9 SAGA has been designed for an easy and effective implementation of spatial algorithms and
10 hence serves as a framework for the development and implementation of geoscientific
11 methods and models (Conrad, 2007). Today, this modular organized programmable GIS
12 software offers more than 600 methods comprising the entire spectrum of contemporary GIS
13 from multiple file operations, referencing and projection routines over a range of topological
14 and geometric analysis of both raster and vector data up to comprehensive modeling
15 applications for various geoscientific fields.

Gelöscht: The System for Automated
Geoscientific Analyses (SAGA)
(<http://saga-gis.org>)

Gelöscht: Geographic Information
System (GIS)

Gelöscht: 700

Gelöscht: ,

Gelöscht: ,

Gelöscht:

Gelöscht: in

Gelöscht: e.g.

Gelöscht: skills

Gelöscht: .

16 The idea for the development of SAGA evolved in the late 1990s during the work on several
17 research and development projects at the Dept. for Physical Geography, Göttingen, carried
18 out on behalf of federal and state environmental authorities. In view of the specific needs for
19 high quality and spatially explicit environmental information of the cooperating agencies, the
20 original research focus was the analysis of raster data, particularly of Digital Elevation
21 Models (DEM), which have been used to predict soil properties, terrain controlled process
22 dynamics as well as climate parameters at high spatial resolution. The development and
23 implementation of apparently new methods for spatial analysis and modeling resulted in the
24 design of three applications for digital terrain analysis, namely SARA (System zur
25 Automatischen Reliefanalyse), SADO (System für Automatische Diskretisierung von
26 Oberflächen) and DiGeM (Programm für Digitale Gelände-Modellierung), each with specific
27 features but distinctly different architectures.

28 Due to the heterogeneity of the applied operating systems and tools in the working group a
29 cross operating system platform with integrated support for geodata analysis seemed
30 necessary for further development and implementation of geoscientific methods. Due to the
31 lack of a satisfying development platform at that time, SAGA has been created as a common
32 developer basis and was first published as Free Open Source Software in 2004 in order to

1 share its advantageous capabilities with geoscientists worldwide. Since then SAGA built up a
2 growing global user community (Figure 1), which also led to many contributions from outside
3 the developer core team and moreover fostered the foundation of the SAGA User Group
4 Association in 2005, aiming to support a sustainable long-term development covering the
5 whole range of user interests. Since 2007 the core development group of SAGA is situated at
6 the University of Hamburg, coordinating and actively driving the development process.

7

8 [Figure 1. Total downloads by Country (2004-2014, source: SourceForge.net 2014).]

9

10 The momentum and dynamics of the SAGA development in the past 10 years is mirrored in
11 both, the increasing number of methods and tools (Figure 2) which rose from 119 tools in
12 2005 (version 1.2) up to more than 600 tools in the present version 2.1.4., and, particularly, in
13 the fast growing user community. With about 100.000 downloads annually in the last three
14 years (Figure 3), SAGA today is an internationally renowned GIS developer platform for
15 geodata analysis and geoscientific modeling. Figure 4 gives a rough overview to the different
16 fields of data analysis and management addressed by the SAGA toolset. The categories have
17 been derived from the menu structure, which might not reflect accurately the usability of all
18 tools, e.g. in the case of multipurpose tools. But it can be seen that there is a quite
19 comprehensive set of general tools for raster as well as vector data analysis and management
20 and also that terrain analysis still can be seen as a strength of SAGA..

21

22 [Figure 2. Number of tools between 2005 (v1.2) and 2014 (v2.1.4).]

23 [Figure 3. Average monthly downloads per year (source: SourceForge.net 2014).]

24 [Figure 4. Number of tools by category. Subcategories are shown for the three largest groups

25 grid tools, shapes tools, and terrain analysis.]

26

27 This paper aims to respond to the frequent user requests for a review article. In the first
28 section, we introduce the architecture of the SAGA framework, the state of development and
29 implementation and highlight basic functionalities. Thereafter, we demonstrate its utility in
30 various geoscientific disciplines by reviewing important methods as well as publications in

Gelöscht: got

Gelöscht: raised
Gelöscht: modules
Gelöscht: 700
Gelöscht: modules

Gelöscht: ¶
[Figure 2. Left: Average monthly
downloads per year (source:
SourceForge.net 2014); Right: number of
tools between 2005 (v1.2) and 2014
(v2.1.4).]

Gelöscht: a review of

1 the core fields of digital terrain analysis and geomorphology, digital soil mapping,
2 climatology and meteorology, remote sensing and image processing.

3

4 **2 The System**

5 The initial motivation for the SAGA development was to establish a framework that supports
6 an easy and effective implementation of algorithms or methods for spatial data analyses.
7 Furthermore, the integration of such implementations in more complex work flows for certain
8 applications and the immediate accessibility in a user friendly way was one major concern.
9 Thus, instead of creating one monolithic program, we designed a modular system with an
10 Application Programming Interface (API) at its base, method implementations, in the
11 following referred to as tools, organized in separate program or tool libraries and a Graphical
12 User Interface (GUI) as a standard front end (Figure 5). A command line interpreter as well as
13 additional scripting environments were integrated as alternative front ends to run SAGA tools.

14

15 [Figure 5; System architecture]

Gelöscht: Figure 3

16

17 In 2004, SAGA was firstly published as free software. Except for the API, source codes are
18 licensed under the terms of the GNU General Public License (GPL) (Free Software
19 Foundation, 2015). The API utilizes the Lesser GPL (LGPL) which also allows developing
20 proprietary tools on its basis. The SAGA project is hosted at SourceForge
21 (<http://sourceforge.net>), a web host for FOSS projects providing various additional services
22 like version control systems, code trackers, forums and newsgroups. Although many details
23 changed since its first version, the general system architecture remained the same. The
24 following comments refer to the most recent SAGA version 2.1.4.

Gelöscht: has been
Gelöscht: Free and Open Source Software (FOSS)
Gelöscht: (fsf.org)

Gelöscht: base

Gelöscht: ¶

Gelöscht: discussion refers

Gelöscht: and effective

25 The system is programmed in the widespread C++ language (Stroustrup, 2014). Besides its
26 support for object oriented programming, one of its advantages is the availability of numerous
27 additional GPL libraries and code snippets. Apart from the C++ standard library SAGA's core
28 system solely depends on the cross platform GUI library wxWidgets (Smart et al., 2005).
29 Especially the GUI extensively accesses the classes and functions of wxWidgets, but also the
30 API employs the library, amongst others for string manipulation, platform independent file
31 access, dynamic library management and XML (eXtensible Markup Language) formatted

1 input and output. Several SAGA tool libraries link to other third party libraries of which some
2 are discussed later more explicitly. Due to the implementation of the wxWidgets library,
3 SAGA compiles and runs on MS Windows and most Unix like operating systems including
4 FreeBSD and with some limitations regarding the GUI MacOSX. Makefiles and projects are
5 provided for gcc and VisualC++ compilers with support for parallel processing based on the
6 OpenMP library (<http://openmp.org>).

7 **2.1 Application Programming Interface**

8 The main purposes of SAGA's API are the provision of data structures, particularly for
9 geodata handling, and the definition of tool interfaces. Central instances to store and request
10 any data and tools loaded by the system are the Data Manager and the Tool Manager.

11 Besides these core components, the API offers various additional classes and functions related
12 to geodata management and analysis as well as general computational tasks, comprising tools
13 for memory allocation, string manipulation, file access, formula parsing, index creation,
14 vector algebra and matrix operations, and geometric and statistical analysis. In order to
15 support tool developers, an API-documentation is generated by means of the Doxygen help
16 file generator (<http://www.doxygen.org>) and published at the SAGA homepage
17 (http://www.saga-gis.org/saga_api_doc/html).

18 All classes related to geodata share a common base class that provides general information
19 and functionality such as the data set name, the associated file path, and other specific

20 metadata (Figure 6). The supported data types currently comprise raster (grids) and tables
21 with or without a geometry attribute, e.g. vector data representing either point, multipoint,
22 polyline or polygon geometries (shapes). Specific vector data structures are provided by point
23 cloud and TIN classes. The point cloud class is a container for storing mass point data as
24 generated for instance by LiDAR scans. The TIN class creates a Triangular Irregular Network
25 for a given set of points providing topological information concerning point neighborhoods.
26 Each data type supports a generic built-in file format. Raster data use a SAGA specific binary
27 format with an accompanying header. Table data use either tabbed text, comma separated
28 values, or the DBase format. The latter is also applied for storing vector data attributes with
29 the ESRI shapefile format. In order to enhance read and write performance, point clouds also
30 employ a SAGA specific binary file format. Besides, each stored data file is accompanied by
31 a metadata file providing additional information such as map projection and original data

Gelöscht: meta data

Gelöscht: Figure 4

Gelöscht: meta data

1 source. Additionally, the [metadata](#) contain a data set history, which assembles information
2 about all tools and settings that have been involved to create the data set.

Gelöscht: meta data

3

4 [\[Figure 6: Data object hierarchy\]](#)

Gelöscht: Figure 4

5

6 SAGA tools are implemented in dynamically loadable libraries or shared objects, thus
7 supporting the concept of modular plug-ins. Each SAGA tool is derived from a tool base
8 class, which is specified in the API and defines the standard interface and functionality. In
9 this class, the tool specific input and output data of various data types as well as tool options
10 are declared in a parameter list. At least two functions of the base class have to be
11 implemented by each tool. The constructor defines the tool's interface with its name, a
12 description about its usage and methodology, and the list of tool specific parameters. Its
13 parameter list is automatically evaluated by the system's frame work prior to the execution of
14 a tool. The execution itself is started by a call to the second compulsory function, which
15 implements the tool's functionality.

16 Specialized variants of the tool base class are available for enhanced processing of single
17 raster systems or for interaction of the tool with the GUI (i.e. [to respond to mouse events](#)
18 [occurring in a map](#)). The API uses a callback system to support communication with the front
19 end, e.g. giving a message of progress, error notification, or to force immediate update of a
20 data set's graphical representation. The tool manager loads the DLLs and makes them
21 accessible for the front ends. The tool manager also facilitates the call of existing tools, e.g. to
22 run a tool out of another one. The GUI uses this feature e.g. to read data file formats that are
23 not generically supported by SAGA, for projecting geographic coordinate grids to be
24 displayed in a map view, and to access and manipulate data through a [database](#) management
25 system. Furthermore, [this possibility of executing any loaded tool is used for the processing of](#)
26 [tool chains. Tool chains are comparable to the models created with ArcGIS ModelBuilder](#)
27 [\(ESRI, 2015\) or QGIS Processing Modeler \(QGIS Development Team, 2014\), but unlike](#)
28 [these, SAGA does not yet include a graphical tool chain designer.](#) Tool chains are defined in a
29 simple XML based code that is interpreted by the tool chain class, [another variant of the](#)
30 [general tool class](#). This code has two major sections. The first part comprises the definition of
31 the tool interface, e.g. the tool's name, description and a list of input, output and optional
32 parameters. The second is a listing of the tools in the desired execution order. Tool chains are

Gelöscht: to response to mouse click in a map at a certain position

Gelöscht: data base

Gelöscht: it is a core mechanism for the tool chain class

1 an efficient way to create new tools based on existing ones and perform exactly like hard
2 coded tools. Since it is possible to create a tool chain directly from a data set history, a
3 complex workflow can be developed interactively and then be automated for the analysis of
4 further data sets.

5 **2.2 General purpose tools**

6 Besides more specific geoscientific methods, SAGA provides a wide range of general purpose
7 tools. Since SAGA has a limited generic support for data file formats, the group of data
8 import and export tools is an important feature to read and write data from various sources
9 and store them to specific file formats supported by other software. Within this group a toolset
10 interfacing the Geospatial Data Abstraction Library (GDAL) should be highlighted
11 (<http://www.gdal.org>) ([Bivand, 2014](#)). The GDAL itself provides drivers for more than 200
12 different raster and vector formats, and therefore the SAGA API's data manager automatically
13 loads unknown file formats through the GDAL by default.

14 A powerful alternative to file based data storage is [provided by database](#) management systems
15 (DBMS), which offer the possibility of querying user defined subset selections. Various
16 DBMS can be addressed with a toolset based on the Oracle, ODBC and DB2-CLI Template
17 Library (OTL, <http://otl.sourceforge.net>). A second toolset allows accessing PostgreSQL
18 [databases](#) (<http://www.postgresql.org>) and supports direct read and write access for vector and
19 raster data, as provided by the PostGIS extension for spatial and geographic objects
20 (<http://postgis.net>).

Gelöscht: offered
Gelöscht: data base

21 Tools related to georeferencing and coordinate systems are indispensable for the work with
22 spatial data. Particularly the coordinate transformation tools make use of two alternative
23 projection libraries, the Geographic Translator GEOTRANS (<http://earthinfo.nga.mil/GandG/geotrans>), and the Cartographic Projections Library PROJ.4
24 (<http://trac.osgeo.org/proj/>).

Gelöscht: data bases

26 Due to SAGA's original focus on raster data analysis, numerous tools are available addressing
27 this field, comprising tools for map algebra, resampling, and mosaicking. Nevertheless, the
28 toolsets related to vector data also cover common operations such as overlays, buffers, spatial
29 joins, and selections based on attributes or location. Overlay operations like intersection,
30 difference, and union utilize the functions provided by the polygon clipping and offsetting
31 library Clipper (<http://sourceforge.net/projects/polyclipping>). Besides, various methods for

1 raster-vector and vector-raster conversions are available including contour line derivation and
2 interpolation of scattered point data.

3 **2.3 Graphical user interface**

4 In order to apply SAGA tools for geoprocessing, a front end program is needed, which
5 controls tools and data management. SAGA's GUI allows an intuitive approach to the
6 management, analysis, and visualization of spatial data (Figure 7). It interactively gives
7 access to the data and tools management and is complemented by a map management
8 component. General commands can be executed through a menu and a tool bar. More specific
9 commands for all managed elements, i.e. tools, data, and maps, are available through context
10 menus. The properties of the selected element are shown in a separate control. While the
11 number and type of properties depend on the respective element, a group of settings and a
12 description are common to all managed elements. In case of a tool for instance, the settings
13 give control to input and output data selection as well as to further tool specific options, while
14 in case of a data set it provides several options for visualization in maps. Maps are the
15 standard way of geodata display and offer various additional features, including scale bars,
16 graticules, printing, and clipboard copying. Supplementary data visualization tools comprise
17 histograms, charts, scatter plots, and 3D views. Tools can be executed either from the tools
18 manager or through the main menu's geoprocessing subgroup, where by default all tools can
19 be found following submenu categories. Due to the large number of tools a find and run
20 command is a supplementary option to conveniently access all tools. In summary the GUI is a
21 good choice for interactive work on a single data selection with immediate visualization.
22 However, if complex work flows are applied repeatedly to numerous data sets, alternative
23 front ends with scripting support are certainly more suitable.

Gelöscht: Figure 4

Gelöscht: Summarizing,

24
25 [Figure 7; Graphical user interface]

Gelöscht: Figure 5

26
27 **2.4 Scripting and integration with other systems**

28 The SAGA command line interpreter (CLI) is used to execute SAGA tools from a command
29 line environment without any visualization or data management facilities. Therefore, the file
30 paths for all input and output data have to be specified within the command. The CLI enables

1 the creation of batch or shell script files with subsequent calls of SAGA tools to automate
2 complex work flows and automatically apply them to similar data sets. Furthermore, the CLI
3 allows calling SAGA tools from external programs in an easy way. This feature is used by the
4 RSAGA package, which integrates SAGA tools with the R scripting environment (Brenning,
5 2008). Likewise, the Sistema EXTremeno de ANálisis TErritorial (SEXTANTE) makes
6 SAGA tools accessible for various Java based GIS programs (gvSIG, OpenJUMP). In 2013
7 SEXTANTE was ported to Python to become a functional addition to QGIS (QGIS
8 Development Team, 2014), another popular free and open source GIS software, thus
9 spreading SAGA tools amongst many more GIS users. Alternatively to CLI based scripting,
10 the SAGA API can also be accessed directly from Python. This connection is generated by
11 means of the Simplified Wrapper and Interface Generator SWIG (<http://www.swig.org>) and
12 provides access to almost the complete API. While this allows higher level scripting, the CLI
13 remains easier to use for most purposes.

Gelöscht: has been

14 Another option of integrating SAGA is direct linkage of the API. A very recent development
15 is the integration of SAGA by the ZOO-Project (<http://zoo-project.org/>), which is a
16 framework for setting up Web Processing Services (Fenoy et al., 2013). MicroCity
17 (<http://microcity.sourceforge.net>) is a branch of SAGA, which adds support for the script
18 programming language LUA, and has been used for city road network analyses (Sun, 2015).
19 Laserdata LiS is proprietary software, mainly a toolset extension for the work with massive
20 point data from LiDAR prospection (<http://www.laserdata.at>).

21 Table 1 summarizes the third party software mentioned above and underlines that SAGA is
22 recognized first of all as geoprocessing engine. Only MicroCity and LiS make at least partly
23 use of SAGA's GUI capabilities.

24 [Table 1: Software utilizing SAGA.]

<u>Software</u>	<u>Interface</u>	<u>Remarks</u>
<u>QGIS</u>	<u>CLI</u>	<u>Processing Modeler</u>
<u>gvSIG</u>	<u>CLI</u>	<u>SEXTANTE</u>
<u>OpenJUMP</u>	<u>CLI</u>	<u>SEXTANTE</u>
<u>R</u>	<u>CLI</u>	<u>RSAGA</u>
<u>ZOO</u>	<u>API</u>	<u>Web Processing Service</u>

<u>MicroCity</u>	<u>API</u>	<u>LUA Extension</u>
<u>Laserdata LiS</u>	<u>API</u>	<u>Proprietary software</u>

1

2 **3 Review of SAGA related studies and applications**

3 Due to its plethora of tools, covering a broad spectrum of geoscientific analysis and modeling
 4 applications and its user friendly environment, SAGA has been increasingly utilized for the
 5 processing of geodata, the implementation and calibration of statistical and process based
 6 models in various fields, and the visualization of results. The following chapter provides an
 7 overview of studies using SAGA in selected geoscientific fields, which were identified as
 8 major applications of the software. However, due to the vast number of studies this chapter
 9 only gives an outline without any claim to comprehensiveness. An overview is given in Table
 10 2.

Gelöscht: modules

11 [Table 2: Studies utilizing SAGA in various research areas.]

<u>Research area</u>	<u>Studies</u>
<u>Digital Terrain Analysis and Geomorphology</u>	
<u>DEM preprocessing (SRTM, ASTER, LiDAR)</u>	<u>Wichmann et al., 2008; Köthe and Bock, 2009; Peters-Walker et al., 2012</u>
<u>Debris flow analysis and modelling</u>	<u>Wichmann and Becht, 2005; Wichmann, 2006</u>
<u>Glacier mapping</u>	<u>Bolch, 2006; Bolch and Kamp, 2006</u>
<u>Fluvial sediment transport</u>	<u>Haas, 2008; Haas et al., 2011; Morche et al., 2012; Sass et al., 2012</u>
<u>Rockfall analysis and modelling</u>	<u>Wichmann and Becht, 2005; Wichmann, 2006; Wichmann and Becht, 2006; Fey et al., 2011; Haas et al., 2012; Heckmann et al., 2012</u>
<u>Landslide analysis and modelling</u>	<u>Günther, 2003; Günther et al., 2004; Varga et al., 2006; Brenning, 2008; Mantovani et al., 2010; Muenchow et al., 2012; Jansen, 2014</u>
<u>Avalanche analysis and modelling</u>	<u>Heckmann et al., 2005; Heckmann, 2006; Heckmann</u>

1

	and Becht, 2006
Geomorphographic mapping	Köthe et al., 1996; Bock et al., 2007; Wehberg et al., 2013
Topographic indices	Grabs et al., 2010
Digital soil mapping	
Predictor variables	Böhner et al., 2002
Prediction of continuous soil properties	Bock and Köthe, 2008; Böhner and Köthe, 2003; Kidd and Viscarra Rossel, 2011; Kühn et al., 2009; Lado et al., 2008; Russ and Riek, 2011; Schauppenlehner, 2008
Prediction of soil classes	Bock, Michael et al., 2007; Roecker et al., 2010; Willer et al., 2009
Soil erosion (water)	Böhner and Selige, 2006; Enea et al., 2012; Milevski, 2008; Milevski et al., 2007; Patriche et al., 2012; Setiawan, 2012
Soil erosion (wind)	Böhner et al., 2002
Landslide	Brenning, 2008
Landscape modelling	Bock et al., 2011
Climatology and Meteorology	
Local deterministic interpolation	Fader et al., 2012;
Geo-statistical interpolation	Böhner, 2006, 2005, 2004; Gerlitz et al., 2014b; Kessler et al., 2007; Soria-Auza et al., 2010
Global interpolation techniques	Böhner and Antonic, 2009; Soria-Auza et al., 2010; Bolch, 2006; Dietrich and Böhner, 2008; Kessler et al., 2007; Lehrling, 2006; and Stötter and Sailer, 2012;
Statistical downscaling	Böhner, 2006, 2005, 2004; Weinzierl et al., 2013; Böhner, 2006; Gerlitz et al., 2014a; Klinge et al., 2014; .
Numerical modelling	Nothdurft et al., 2012.; Böhner et al., 2013; Gerlitz, 2014;

<u>Remote Sensing and image processing</u>	
<u>Remote sensing of forest cover and individual trees</u>	<u>Bechtel et al., 2008, Kamlisa et al., 2012; Phua et al., 2008</u>
<u>Vegetation mapping</u>	<u>Jürgens et al., 2013</u>
<u>Detection of glaciers and flow structures</u>	<u>Brenning, 2009, Bolch, 2006, 2007, Brenning et al., 2012</u>
<u>Roughness parameterisation</u>	<u>Bechtel et al., 2011</u>
<u>Annual Cycle in surface temperatures</u>	<u>Bechtel, 2015; Bechtel et al., 2012a; Bechtel and Schmidt, 2011</u>
<u>Urban climate modelling</u>	<u>Bechtel et al., 2012a; Bechtel and Schmidt, 2011</u>
<u>Classification of local climate zones</u>	<u>Bechtel, 2011; Bechtel et al., 2012b, 2015; Bechtel and Daneke, 2012</u>
<u>Downscaling-schemes of land surface temperature</u>	<u>Bechtel et al., 2012c; Bechtel et al., 2013</u>
<u>Estimation of air temperatures</u>	<u>Bechtel et al., 2014</u>
<u>Delineation of rock forming minerals in thin sections</u>	<u>Asmussen, 2014</u>
<u>Miscellaneous</u>	
<u>Vegetation-geography</u>	<u>Marini et al. 2007, Marini et al. 2009, Vanselow and Samimi 2011</u>
<u>Environmental studies</u>	<u>Böhner et al., 2002 Heinrich and Conrad 2008, Liersch and Volk 2008</u>
<u>Archaeology</u>	<u>Bock and Köthe, 2008; Böhner and Köthe, 2003; Kidd and Viscarra Rossel, 2011; Kühn et al., 2009; Lado et al., 2008; Russ and Riek, 2011; Schauppenlehner, 2008</u> <u>Bernardini et al. 2013, Kaye 2013, Leopold et al. 2011</u>
<u>Miscellaneous</u>	<u>Bock, Michael et al., 2007; Roecker et al., 2010; Willer et al., 2009</u>

1

2 **3.1 Digital Terrain Analysis and Geomorphology**

3 SAGA is a successor of three applications that were designed for digital terrain analysis,
 4 namely SARA, SADO, and DiGeM and up to today, the analysis of DEMs has remained a
 5 major focus. SAGA provides a comprehensive set of tools ranging from the preprocessing of

1 DEMs (e.g. filtering and filling procedures) through the generation of simple first and second
2 order terrain derivatives, such as slope and curvature, to more sophisticated and process
3 oriented terrain parameters, e.g. the altitude above the channel network, the relative slope
4 position or the SAGA-wetness index. The strong focus of SAGA in this particular field is
5 distinctly reflected by its frequent utilization. This section gives a brief overview of available
6 methods, applications, and studies with a special focus on the preprocessing of raw data, the
7 derivation of terrain based predictor variables for statistical modeling approaches, the
8 classification of distinct geomorphographic units and the implementation of suitable tools for
9 specific investigations. For further information on principles and applications in terrain
10 analysis including some of the methods that are implemented in SAGA, we refer to Wilson
11 and Gallant (2000). Olaya and Conrad (2009) provided an introduction to geomorphometry in
12 SAGA.

13 3.1.1 Preprocessing of raster data

Gelöscht: :

14 Filtering of bare ground from radar interferometry or laser scanning datasets is a pre-requisite
15 for many applications. In order to make these datasets applicable for geomorphic and
16 hydrologic analyses, SAGA offers tools to reduce elevation of forest canopies in radar based
17 DEMs (SRTM) and to identify and eliminate man-made terrain features in lasercanning
18 based datasets (Köthe and Bock 2009). Wichmann et al. (2008) created Digital Terrain
19 Models (DTM) from airborne LiDAR data in different grid-cell sizes and investigated the
20 effect on the simulation results of a debris flow model. DTM preparation included several
21 processing steps such as morphological filtering and surface depression filling. The
22 implementation of the debris flow model used in this study was described in Wichmann and
23 Becht (2005) and Wichmann (2006). Peters-Walker et al. (2012) used SAGA and the
24 Laserdata Information System, a software extending SAGA's point cloud data management
25 and analysis capabilities (Petrini-Montferri et al., 2009; Rieg et al., 2014), to derive a high-
26 resolution DTM from LiDAR data. SAGA was subsequently applied to prepare all relevant
27 catchment and channel network information to finally model discharge and bedload transport
28 with the hydrologic model SimAlp/HQsim. In order to investigate climate and glacier changes
29 from DEM and imagery data, Bolch (2006) and Bolch and Kamp (2006) proposed methods
30 on glacier mapping from SRTM, ASTER and LANDSAT data. SAGA was used for DEM
31 pre-processing, including import, projection and merging of data, as well as gap filling,
32 curvature calculation and cluster analysis. Sediment transport in a proglacial river was

Gelöscht: for instance

1 investigated by Morche et al. (2012). The authors measured suspended sediment load and bed
2 load along the river and quantified surface changes of sediment sources by comparison of
3 multi-temporal terrestrial and airborne laser scanning data. LiDAR data, both airborne and
4 terrestrial, were investigated by Haas et al. (2012) to quantify and analyze a rockfall event in
5 the Western Dolomites. Volume, axial ratio and run-out length of single boulders were
6 derived from the point clouds and statistically analyzed. Furthermore, the surface roughness
7 in the run-out zone of the rockfall was estimated based on point cloud data. The authors also
8 proposed approaches on how to use the derived surface roughness with a rockfall simulation
9 model and compared the simulation results for different rock radii and both airborne and
10 terrestrial laser scanning derived surface roughness datasets.

11 [3.1.2 Using terrain analysis for the derivation of predictor variables](#)

Gelöscht: :

12 Assuming that topographic characteristics are important drivers of various regional and local
13 scale geodynamic processes, derivational terrain parameters are frequently utilized as
14 predictor variables in statistical modeling applications. The close cooperation of the SAGA
15 developer team with varying research projects resulted in the implementation of distinct
16 terrain parameters, particularly suitable for specific investigations.

17 Targeting on the derivation of a spatial map of landslide risk, Varga et al. (2006) used a
18 certainty-factor analysis including datasets of slope, curvature, land use, geology and primary
19 dipping. Mantovani et al.(2010) proposed a new approach for landslide geomorphological
20 mapping, using SAGA for tasks like DTM interpolation, slope and aspect calculations and the
21 delineation of watersheds and stream network. Heckmann et al. (2005) and Heckmann (2006)
22 investigated the sediment transport by avalanches in alpine catchments. Besides quantitative
23 field measurements, SAGA was utilized to implement a spatial model of geomorphic
24 avalanche activity. Potential initiation sites were delineated with a Certainty-Factor model
25 (Heckmann and Becht, 2006). Process pathways were modelled by a random walk model,
26 while run-out distance was calculated with a 2-parameter friction model. The simulation
27 results (flow height, flow velocity and slope) and field measurements were finally used in a
28 discriminant analysis to establish an empirical relationship. As an example of statistical
29 geocomputing combining R and SAGA in the RSAGA package, Brenning (2008) presented a
30 landslide susceptibility analysis with generalized additive models. It was shown that several
31 local as well as catchment-related morphometric attributes are important, mostly non-linear,
32 predictors of landslide occurrence. In a later study (Muenchow et al., 2012), RSAGA was

1 employed to estimate geomorphic process rates of landslides along a humidity gradient in the
2 tropical Andes.

3 **3.1.3** **Terrain Classification**

Gelöscht: :

4 The usage of terrain (or landform) units allows providing soil scientists with conceptual
5 spatial entities that are useful for mapping. The border lines of landform units highlight
6 changing landform conditions that are frequently used to explain changing soil conditions.
7 The classification concept of geomorphographic maps (Köthe et al., 1996) utilized DTM
8 derivatives generated with SAGA. Locally adjusted thresholds of terrain parameters such as
9 the SAGA wetness index, altitude above channel network, slope, relative slope position and
10 terrain classification index for lowlands (Bock et al., 2007) divide a DTM in main classes
11 along a gradient from the relative bottom (bottom areas mostly corresponding with valley
12 floors) to the relative top (summit areas corresponding with crests, peaks and ridges) of the
13 terrain, with slopes and terraces as intermediate classes. This semi-automated terrain-based
14 landscape structure classification is also useful for the analysis of physical and ecological
15 settings. Wehberg et al. (2013) derived geomorphographic units (GMUs) as discrete terrain
16 entities on the basis of a SRTM digital elevation model with SAGA based terrain analysis. It
17 was found that the GMUs reproduced the physiogeographic settings of the Okavango
18 catchment appropriately and provided a basis for further mappings of vegetation or soil data.
19 Brenning et al. (2012) investigated the detection of rock glacier flow structures by Gabor
20 filters and IKONOS imagery. The authors used SAGA to calculate morphometric features
21 like local slope, upslope contributing area, catchment slope, and catchment height. Also the
22 all-year potential incoming solar radiation was computed. These terrain attributes were then
23 used in combination with texture attributes for classification.

24 **3.1.4** **Implementation of specific tools**

Gelöscht: :

25 The open source and modular architecture of SAGA easily enables the integration of new
26 tools, if requested already available tools can be integrated. Thus several working groups
27 utilize SAGA as a framework for specific analyses and modeling applications.

Gelöscht: modules

28 Grabs et al. (2010) proposed a new algorithm to compute side-separated contributions along
29 stream networks for the differentiation of the riparian zone and adjacent upland lateral
30 contributions on each side of a stream. They implemented a new method SIDE (Stream Index
31 Division Equations) in SAGA, which determines the orientation of flow lines relative to the

1 stream flow direction and allows distinguishing between stream left and right sides. Haas
2 (2008) and Haas et al. (2011) used a rule-based statistical model for the estimation of fluvial
3 sediment transport rates from hillslopes and small hillslope channels. They introduced the
4 concept of a “sediment contributing area”, derived by terrain analysis, and implemented the
5 algorithm in SAGA. The index was finally used in a regression model to derive sediment
6 transport rates. The same model was applied in a later study concerning the impact of forest
7 fires on geomorphic processes (Sass et al., 2012). Studying alpine sediment cascades,
8 Wichmann and Becht (2005) and Wichmann (2006) implemented a rockfall model in SAGA.
9 The model can be used to delineate the process area of rockfalls and for geomorphic process
10 and natural hazard zonation by combining a random walk path finding algorithm with several
11 friction models. Wichmann and Becht (2006) reviewed several rockfall models, implemented
12 in SAGA. Three different methods for run-out distance calculation, an empirical model and
13 two process-based models were compared in greater detail regarding their applicability for
14 natural hazard zonation and the analysis of geomorphic activity. Fey et al. (2011) applied an
15 empirical rockfall model (including the modeling of process pathway and run-out distance)
16 for the back calculations of medium-scale rockfalls. Heckmann et al. (2012) integrated a
17 modification of the rockfall model by Wichmann (2006) in order to re-calculate a rockfall
18 event. Wichmann and Becht (2004) described the development of a model for torrent bed type
19 debris flow, including the delineation of debris flow initiation sites, process pathway, as well
20 as erosion and deposition zones. Potential process initiation sites were derived from channel
21 slope, upslope contributing area, and the sediment contributing area. Pathway and run-out
22 distance were modeled by combining a grid-based random walk model with a 2-parameter
23 friction model. Zones of erosion and deposition were derived by threshold functions of
24 channel gradient and modeled velocity. The model was validated with field measurements
25 after a high magnitude rainstorm event. Recently, in an analytical study of the susceptibility
26 of geological discontinuities for gravitational mass movements, Jansen (2014) applied
27 geological engineering methods implemented in SAGA. The existing methodology (Günther,
28 2003; Günther et al., 2004) was thereby enhanced by interpolation routines available in
29 SAGA which resulted in an increase of plausibility of the results.

30 **3.2 Digital soil mapping**

31 Digital soil mapping is one of the major applications in SAGA, which still reflects the initial
32 focus of the software on developing terrain analysis methods for soil science. Due to its tool

1 diversity, SAGA became a standard software package in the field, which is underlined by
2 citations in relevant reviews and textbooks (Behrens and Scholten, 2006; Boettinger, 2010;
3 Hartemink et al., 2008; Hengl and Reuter, 2009; Lal and Stewart, 2014).

4 According to McBratney et al. (2003) digital soil mapping generally is understood as a
5 collection of methods for the estimation of spatial information on soils. These estimates can
6 comprise specific soil properties (continuous data), entire soil types respectively soil
7 associations (classified data), or the susceptibility of soil against certain soil threats. Based on
8 existing point measurements and/or spatial data from other origin, so called predictor
9 variables (sometimes referred to as covariates), digital soil mapping techniques can be applied
10 in order to generate extensive soil information. The most important SAGA-specific predictor
11 in the field of digital soil mapping is the SAGA wetness index (Böhner et al., 2002), which is
12 derived from a DTM and reflects the theoretical distribution of lateral water accumulation.

13 Several studies determine a correlation between one or more soil properties and spatial
14 predictor variables. Russ and Riek (2011) derived groundwater depths from SAGA covariates
15 with the help of pedo-transfer functions. Other authors used statistical methods to model soil
16 parameters, e.g. to apply a multiple regression model for the derivation of groundwater depths
17 (Bock and Köthe, 2008). A more sophisticated regression model was developed by Kühn et
18 al. (2009), who explained the spatial distribution of several soil parameters, such as soil
19 organic carbon or carbonate content, by means of interpolated apparent electrical conductivity
20 data and DEM covariates.

21 A number of studies refer to SAGA implemented geostatistical methods in order to derive soil
22 parameters. Böhner and Köthe (2003) combined geostatistical regionalization (Kriging) of
23 grain size fractions with pedo-transfer functions to develop a whole set of physical soil
24 properties. Schauppenlehner (2008) and Lado et al. (2008) used regression Kriging to
25 estimate the distribution of heavy metals in surface soils at European scale. Schauppenlehner
26 (2008) compared different geostatistical methods for spatial estimation of soil quality values
27 (Ackerzahl) while Kidd and Viscarra Rossel (2011) tested numerous derivatives from DEM
28 and remote sensing data as covariates for the geostatistical modeling of soil properties.
29 Further, SAGA based predictor variables can be used to directly model the distribution of
30 classified data of soil types or soil associations by (external) machine learning algorithms
31 such as Random Forest (Roecker et al., 2010) or Classification Tree (Willer et al., 2009).
32 Besides, SAGA offers internal classification routines, such as the statistical cluster analysis,

1 which was applied to combine DEM covariates to serve as a conceptual soil map (Bock et al.,
2 2007).

3 Extensive work has been done to model the spatial distribution of soil threats. In addition to
4 the mentioned study on heavy metal distribution in European soils (Lado et al., 2008), several
5 studies estimated soil degradation caused by erosion using SAGA routines. Besides the
6 attempt to record existing soil degradation from erosion with the help of covariates (Milevski,
7 2008; Milevski et al., 2007), a particular focus is the evaluation of soil erosion risk using the
8 SAGA revised slope length factor (Böhner and Selige, 2006) based on the empirical universal
9 soil loss equation (Wischmeier and Smith, 1978). Patriche et al. (2012) and Enea et al. (2012)
10 are further examples for studies dealing with this issue. Recently, SAGA was extended by a
11 process-based soil erosion model (Setiawan, 2012). The model WEELS allows wind erosion
12 modeling based on SAGA routines (Böhner et al., 2002). The vulnerability towards landslides
13 was modelled using a combination of SAGA and the statistical package R (Brenning, 2008;
14 Goetz et al., 2011).

15 The SAGA landscape evolution model (SALEM) is rather between the disciplines of
16 Geomorphology and Soil Sciences. The SALEM (Bock et al., 2012) was designed for
17 simulating processes that comprise the *critical zone* (National Research Council, 2001) and
18 depicts the landscape elements in a process-oriented and time-dynamical way.

19 **3.3 Climatology and Meteorology**

20 Historically, climatology and meteorology are probably the natural science disciplines where
21 most of the epistemological progress was based on the spatially explicit analysis of local
22 observations. Indeed, the ingenious inventions of climate measuring instruments since the late
23 16th century by Galileo Galilei, Evangelista Torricelli, Otto von Guericke, and others would
24 have rarely contributed to this enormous scientific progress since the late 18th century, if
25 instrumental observations had not been taken from different locations, enabling a ‘synoptic’
26 analysis of spatial climate variations. Today, core functionalities of contemporary GIS, e.g. a
27 range of basic spatial analysis routines are well suited for this systematic examination of
28 climate variations over space, typically applied to infer spatially continuous (gridded) climate
29 layers from point source observations. Especially for this purpose of climate spatialization,
30 SAGA is equipped with numerous tools, ranging from interpolation methods (local, global

Gelöscht: and modules

1 and regression based regionalization) to complex surface parameterization techniques,
2 supporting both, statistical and numerical climate modeling.

3 **Interpolation methods:** Although SAGA provides an almost complete collection of local and
4 global interpolation techniques, comprising of deterministic (Inverse Distance Weighted,
5 Local Polynomial, Radial Basis Functions), and in particular geostatistical Kriging methods
6 and its derivatives (e.g. ordinary, universal, regression Kriging), interpolation techniques have
7 rarely been used as a standalone method in climate spatialization (Fader et al., 2012). Instead,
8 these methods were frequently combined with more complex statistical or numerical climate
9 modeling approaches, using e.g. ordinary Kriging, thin-plate spline or inverse distance
10 weighted for the interpolation of model residues, in order to obtain a correction layer for the
11 adjustment of modeling results (Böhner, 2006, 2005, 2004; Gerlitz et al., 2014b; Kessler et
12 al., 2007; Soria-Auza et al., 2010; Weinzierl et al., 2013).

13 **Regression based regionalization:** In topographically structured terrain and especially in high
14 mountain environments, where the often low density and non-representative distribution of
15 met-stations leads to unsatisfying interpolation results, statistical methods utilizing
16 explanatory fields (e.g. DEM elevation and its first and second order partial derivatives) as
17 statistical predictors are distinctly preferred in climate spatialization. In order to achieve a
18 proper estimation of the deterministic, topographically determined component of climate
19 variations, SAGA provides a set of DEM-parameters, explicitly constructed to represent
20 orographically induced topoclimatic effects. A comprehensive explanation and justification of
21 DEM-based measures for the parameterization of prominent topoclimatic phenomena, such as
22 the anisotropic heating and formation of warm zones at slopes, cold air flow and cold air
23 potentials, orographic effects on rainfall variations and wind velocities, and terrain
24 determined alterations of short- and longwave radiation fluxes, is given in Böhner and
25 Antonic (2009). Soria-Auza et al. (2010) conducted a systematic evaluation of SAGA based
26 climate spatialization results in comparison with Worldclim data (Hijmans et al., 2005),
27 highlighting the advantages of SAGA based surface parameterization methods and its added
28 values for ecological modeling applications. Further spatialization results from mountainous
29 modeling domains in Asia, Europe and South America are presented in Bolch (2006),
30 Dietrich and Böhner (2008), Kessler et al. (2007), Lehrling (2006) and Stötter and Sailer
31 (2012).

1 **Numerical and statistical modeling:** Fostered by advanced computational capacities on the
2 one hand, and increasingly free available topographic data sets on the other, regression based
3 techniques evolved to a common standard in climate spatialization since the 1990s. The
4 results, though often with high spatial resolution, however, are most commonly static
5 representations of mean (monthly, seasonal or annual) climate values. Whilst to date, the
6 temporal high resolution, dynamical representation of climate processes and values remains a
7 domain of high performance computing based climate modeling, rarely covered by GIS. To
8 overcome this disadvantage, Böhner (2006, 2005, 2004) introduced a SAGA-based climate
9 spatialization approach, which basically merges statistical downscaling and surface
10 parameterization techniques. Assuming the spatiotemporal variability of a climatic variable to
11 be predominantly controlled by both, tropospheric and terrain-forced processes, different
12 DEM parameters and monthly resolution tropospheric fields from NCAR-NCEP or ERA
13 interim reanalyses had been considered as statistical predictors, supporting a monthly
14 resolution estimation of climate variables for Germany (Böhner, 2004), the Okavango
15 catchment (Weinzierl et al., 2013) and different modeling domains in Central and High Asia
16 (Böhner, 2006; Gerlitz et al., 2014a; Klinge et al., 2014). In order to allow a dynamical
17 representation of numerical climate simulations via SAGA, most recently, an efficient climate
18 model interface has been realized, which enables to import and process even complex and
19 vast climate model outputs. Resulting options for climate spatialization and its advancements
20 in terms of applicability, precision and temporal resolution, using daily and sub-daily
21 resolution ERA-interim reanalysis as dynamic forcings for statistical downscaling are
22 presented in Böhner et al. (2013) and Gerlitz (2014). Daily resolution values of climate
23 variables for Baden-Württemberg on a 50 m x 50 m grid were derived by a SAGA based
24 downscaling approach, refining Regional Climate Model (RCM) simulations of present-day
25 climates and IPCC A1B and A2 climate scenarios, supporting the quantification of climate
26 change effects on forest site index for major tree species (Nothdurft et al., 2012).

27 Climate layers performed with SAGA, however, are seldom stand-alone results but mostly
28 considered as basic predictor variables or driving forcings for further environmental analysis
29 and modeling. Applications range from paleoclimate reconstructions (Aichner et al., 2010;
30 Böhner and Lehmkühl, 2005; Herzschuh et al., 2011, 2010; Wang et al., 2014) over
31 environmental resource assessment and regionalization (Böhner and Kickner, 2006; Böhner
32 and Langkamp, 2010; Kessler et al., 2007; Klinge et al., 2003; Lehmkühl et al., 2003; Miehe

1 et al., 2014; Soria-Auza, 2010) to climate impact assessment and soil erosion modeling
2 (Böhner, 2004; Böhner et al., 2003; Böhner and Köthe, 2003; Conrad et al., 2006).

3 **3.4 Remote Sensing and image processing**

4 SAGA offers a large number of scientific methods and tools for multispectral, hyperspectral
5 and thermal remote sensing, including geometrical preprocessing and spectral filtering
6 techniques, multispectral and Fourier-transformations, supervised and unsupervised
7 classification algorithms, change detection, as well as segmentation methods for object
8 oriented image analysis (Blaschke, 2010). The filtering techniques include standard linear
9 bandpass-filters (Gaussian, Laplacian, user defined), nonlinear filters (majority, rank, and the
10 morphological filters dilation, erosion, opening, closing, morphological gradient, top hat, and
11 black hat). Besides different vegetation indices, tasseled cap transformation, sharpening
12 techniques for multi-sensor data and principal component analysis for feature reduction are
13 implemented. Available classifiers comprise k-means (unsupervised), binary encoding,
14 parallelepiped, minimum and Mahalanobis distance, maximum likelihood, spectral angle
15 mapper, decision trees, random forest, support vector machines, artificial neural networks, as
16 well as ensemble based classifiers while region growing and watershed algorithms are
17 available for image segmentation. Besides, some tools are available for the processing of data
18 from specific sensors, like calibration to reflectance and generation of cloud masks for
19 Landsat data. Further, SAGA offers great possibilities to process LIDAR point data (c.f.
20 section 3.4). The code of the remote sensing and image processing tools is partly based on
21 free libraries and open source software including OpenCV (Open Source Computer Vision,
22 <http://opencv.org/>), ViGrA (Vision with Generic Algorithms, Köthe, 2000), LIBSVM (Chang
23 and Lin, 2011) and GRASS GIS (Geographical Resources Analysis Support System) (Neteler
24 et al., 2012).

Gelöscht: modules

25 A number of remote sensing based studies using SAGA have been published in different
26 fields. In forestry, multispectral remote sensing data from different times and sensors and
27 fragmentation models were used to examine deforestation and fragmentation of peat swamp
28 forest covers in Malaysia (Kamlisa et al., 2012; Phua et al., 2008). Bechtel et al. (2008)
29 applied different segmentation algorithms to identify individual tree crowns in very high
30 resolution imagery. Further, a new vegetation map of the Central Namib was produced by a
31 supervised classification of remote sensing data from MODIS and ETM+ 7 in combination
32 with other environmental parameters such as climatic and topographic data by Jürgens (2013).

1 In glaciology, SAGA remote sensing tools were used for the integration of different terrain
2 datasets into a combined topographical and multispectral classification of rock glaciers
3 (Brenning, 2009) to analyze the decrease in glacier cover in Kazakhstan (Bolch, 2007, 2006)
4 and to detect flow structures in IKONOS imagery (Brenning et al., 2012). Recently, several
5 remote sensing studies successfully applied SAGA to generate surface parameters for local
6 scale climatic mapping and analysis in urban areas. In (Bechtel et al., (2011) digital height
7 models from interferometric synthetic aperture radar data were established to derive
8 roughness parameters and anemometric characteristics of urban surfaces while the thermal
9 properties were investigated regarding the annual cycles of surface temperatures (Bechtel,
10 2015, 2012, 2011a). Further, the urban surface parameters were implemented for urban
11 climatic modeling applications (Bechtel et al., 2012b; Bechtel and Schmidt, 2011) and the
12 classification of local climate zones (Bechtel, 2011b; Bechtel et al., 2015, 2012a; Bechtel and
13 Daneke, 2012). Additionally, SAGA was utilized to develop downscaling-schemes for land
14 surface temperature from geostationary satellites to spatial resolutions of up to 100 m
15 (Bechtel et al., 2012c; Bechtel et al., 2013) and to estimate in situ air temperatures (Bechtel et
16 al., 2014).

Gelöscht: (Bechtel, 2012, 2011a)

17 The image processing capacities also rouse interest in other disciplines. Asmussen et al.
18 (2015) developed a workflow for petrographic thin section images, which comprises the
19 delineation of rock forming minerals and data acquisition of various fabric parameters. The
20 method is based on SAGA's seeded simple region growing algorithm to obtain flexible and
21 precise object detection for any occurring mineral type in weathered sub-arkose sandstone
22 material, and benefits from a reproducible and transparent GIS database.

Gelöscht: (2014)

23 3.5 Miscellaneous

24 Besides its core applications, such as terrain analysis, geomorphometry, soil mapping and
25 climate spatialization, SAGA has been used in numerous studies of very different fields and
26 wide scope. One physical geographic sub-discipline, which should be outlined separately due
27 to a series of recent publications, is biogeography and particularly plant geography. Marini et
28 al. (2007) e.g. studied the influence of local environmental factors on plant species richness in
29 the Alps. Different terrain attributes like elevation or slope were tested in statistical models
30 besides other climatic or nutrient parameters, in order to explain biodiversity patterns on
31 different alpine meadows. A similar approach was carried out by Marini et al. (2009) with
32 focus on the impact of farm size and terrain attributes on insect and plant diversity of

Gelöscht: bio- resp. vegetation-
geography

1 managed grasslands in the Alps. Another example of a bio-geographic relevant application
2 can be found in Vanselow and Samimi (2011), who preprocessed a DEM by means of the fill
3 sinks method and afterwards derived terrain attributes, e.g. altitude above channel network
4 and slope, in order to designate potential future pastures in Tajikistan. Other environmental
5 studies comprise Heinrich and Conrad (2008), who applied a cellular automate approach on
6 testing the simulation of flow and diffusion dynamics in shallow water bodies, and Czegka
7 and Junge (2008), who used SAGA as a mobile field tool in environmental geochemistry
8 research activities (GPS coupled navigation on lakes, in situ observation monitoring). Liersch
9 and Volk (2008) implemented a metric conceptual rainfall-runoff model including calibration
10 tools within the SAGA framework with the intention of flood risk prediction.

11 Besides geoscience, GIS products are increasingly utilized in various fields dealing with
12 spatially explicit data. For example in archaeology Bernardini et al. (2013) investigated
13 Airborne LiDAR derived images, in order to detect and to monitor hitherto unknown
14 anthropogenic structures and archaeological sites in the Trieste Karst landscape. Leopold et
15 al. (2011) likewise produced a DEM, based on LiDAR information, and subsequently derived
16 a high resolution cross section with the objective to reveal the location of a former production
17 site of bronze statues at the southern slope of the Acropolis of Athens. The approach was
18 compared to other methods of demarcating prehistoric surface structures (e.g. magnetometry,
19 electrical resistivity tomography, ground-penetration radar) and proved to be suitable as an
20 additional archaeological reconstruction tool. Kaye (2013) utilized SAGA based terrain
21 analysis, in particular the catchment water balance methodology and the implemented
22 hydrological tools. By means of the GIS based approach, the author reconstructed historical
23 water availability in South England as an important logistic factor for the Roman Army and
24 contributed to finding the location of Boudica's last battle in 60 or 61 AD.

25 Finally, two very specific examples for the utilization of SAGA should be highlighted, which
26 particularly indicate the wide scope of the software. Different spatial detection techniques of
27 radioactive matter being randomly dispersed on a free area, were tested for the purpose of
28 quantifying dose rates, surface activities, mass concentrations in aerosols and their temporal
29 and spatial distributions (Prouza et al., 2010). Most peculiar, the morphometric investigation
30 of chewing surfaces of animals should be emphasized, which was based on an automated
31 analysis using specific interpolation and segmentation approaches (Czech, 2010).

1 **4 Conclusions and outlook**

2 Since the first public release in 2004, SAGA has very rapidly developed from rather
3 specialized niche software for digital terrain analyses to a mature stage FOSS GIS platform,
4 offering the entire spectrum of geodata analysis, mapping and modeling applications of
5 contemporary GIS software. Right from the beginning, the multiple options of an object-
6 oriented programming environment and the consequently modular organized architecture
7 fostered the development of specific methods often distinctly beyond off-the-shelf GIS
8 products. In the present version 2.1.4, SAGA offers more than 600 tools, much of them
9 reflecting a leading paradigm in the SAGA development: Advancements in GIS development
10 are only to be achieved, if the development is closely embedded in research processes. Indeed,
11 in responding on scientific questions and needs, SAGA is not only a research supporting tool
12 but likewise its outcome, which complements related scientific publications with the ultimate
13 documentation of used methodologies in the form of source codes.

Gelöscht: 700

Gelöscht: modules

14 Today SAGA is maintained and enhanced at the Institute of Geography, Section Physical
15 Geography at Hamburg University, however, a fast growing user community and developers
16 all over the world contribute to the evolution by their specific needs and applications. For the
17 near future support for multidimensional raster, e.g. addressing volumes, time series and
18 hyperspectral data, as well as a stronger integration with DBMS like PostgreSQL/PostGIS are
19 envisaged to broaden the application of SAGA. A further challenging field of the coming
20 SAGA development will be the enhancement of tools and methods, supporting a scale-
21 crossing amalgamation of climate and environmental modeling applications. Already today,
22 SAGA enables an assimilation, dynamical representation and statistical downscaling of
23 climate model outputs, required to interlink dynamical climate forcings with process models
24 for case studies and climate impact analyses. By bridging both, spatial scales and scientific
25 disciplines, SAGA responds on the steadily increasing needs for high quality, spatially
26 explicit data and information, ultimately tracing GIS to its roots. Indeed, already in 1965,
27 Michael F. Ducey and Duane F. Marble stated in the probably first written document, which
28 used the term "Geographic Information System", that "the primary function of a Geographic
29 Information System is to make spatially oriented information available in a usable form."
30 Happy 50th birthday GIS!

Gelöscht: SAGA is not only a tool, which
supports research but likewise the outcome,
ultimately documented in source codes and
scientific publications.

31 **Acknowledgements**

1 The authors would like to thank all SAGA developers for their contributions to the code and
2 the documentation and numerous users for their valuable remarks. Further, we thank I.
3 Friedrich for editorial support with the manuscript. Eventually, we thank Michael F. Ducey
4 and Duane F. Marble for using the term “Geographic Information System” in their Technical
5 Note “Some Comments on Technical Aspects of Geographic Information Systems” from
6 1965.

7 **Code availability**

8 The SAGA source code repository is hosted at <http://sourceforge.net/projects/saga-gis/> using
9 an Apache-Subversion (SVN) server as versioning and revision control system. Read only
10 access is possible without login. A branch is provided for SAGA version 2.1.4, to which is
11 referred to in this paper (release-2-1-4, revision 2335). Alternatively the source code for this
12 version can be downloaded directly from the files section at <http://sourceforge.net/projects/saga-gis/>.

14 **References**

15 [Aichner, B., Herzschuh, U., Wilkes, H., Vieth, A., Böhner, J., 2010. δD values of n-alkanes in](#)
16 [Tibetan lake sediments and aquatic macrophytes – A surface sediment study and](#)
17 [application to a 16 ka record from Lake Koucha. Org. Geochem. 41, 779–790.](#)
18 [doi:10.1016/j.orggeochem.2010.05.010](#)

19 [Asmussen, P., Conrad, O., Günther, A., Kirsch, M., Riller, U., 2015. Semi-automatic](#)
20 [segmentation of petrographic thin section images using a “seeded-region growing](#)
21 [algorithm” with an application to characterize weathered subarkose sandstone.](#)
22 [Comput. Geosci. in press.](#)

23 [Bechtel, B., 2015. A New Global Climatology of Annual Land Surface Temperature. Remote](#)
24 [Sens. 7, 2850–2870. doi:10.3390/rs70302850](#)

25 [Bechtel, B., 2012. Robustness of Annual Cycle Parameters to Characterize the Urban Thermal](#)
26 [Landscapes. IEEE Geosci. Remote Sens. Lett. 9, 876 –880.](#)
27 [doi:10.1109/LGRS.2012.2185034](#)

28 [Bechtel, B., 2011a. Multitemporal Landsat data for urban heat island assessment and](#)
29 [classification of local climate zones, in: Urban Remote Sensing Event \(JURSE\), 2011](#)
30 [Joint. Presented at the Urban Remote Sensing Event \(JURSE\), 2011 Joint, IEEE, pp.](#)
31 [129–132. doi:10.1109/JURSE.2011.5764736](#)

32 [Bechtel, B., 2011b. Multisensorale Fernerkundungsdaten zur mikroklimatischen](#)
33 [Beschreibung und Klassifikation urbaner Strukturen. Photogramm.-Fernerkund.-](#)
34 [Geoinformation 2011, 325–338.](#)

35 [Bechtel, B., Alexander, P.J., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L.,](#)
36 [Stewart, I., 2015. Mapping Local Climate Zones for a Worldwide Database of the](#)
37 [Form and Function of Cities. ISPRS Int. J. Geo-Inf. 4, 199–219.](#)
38 [doi:10.3390/ijgi4010199](#)

1 [Bechtel, B., Böhner, J., Zakšek, K., Wiesner, S., 2013. Downscaling of diurnal land surface](#)
2 [temperature cycles for urban heat island monitoring, in: Urban Remote Sensing Event](#)
3 [\(JURSE\), 2013 Joint. Presented at the Urban Remote Sensing Event \(JURSE\), 2013](#)
4 [Joint, IEEE.](#)

5 [Bechtel, B., Daneke, C., 2012. Classification of Local Climate Zones Based on Multiple Earth](#)
6 [Observation Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 1191 –1202.](#)
7 [doi:10.1109/JSTARS.2012.2189873](#)

8 [Bechtel, B., Daneke, C., Langkamp, T., Oßenbrügge, J., Böhner, J., 2012a. Classification of](#)
9 [Local Climate Zones from multitemporal remote sensing data, in: Proceedings ICUC8](#)
10 [– 8th International Conference on Urban Climates. Presented at the 8th International](#)
11 [Conference on Urban Climates, 6th-10th August, 2012, UCD, Dublin Ireland.](#)

12 [Bechtel, B., Langkamp, T., Ament, F., Böhner, J., Daneke, C., Günzkofer, R., Leitl, B.,](#)
13 [Ossenbrügge, J., Ringeler, A., 2011. Towards an urban roughness parameterisation](#)
14 [using interferometric SAR data taking the Metropolitan Region of Hamburg as an](#)
15 [example. Meteorol. Z. 20, 29–37. doi:10.1127/0941-2948/2011/0496](#)

16 [Bechtel, B., Ringeler, A., Böhner, J., 2008. Segmentation for Object Extraction of Trees using](#)
17 [MATLAB and SAGA, in: SAGA – Seconds Out, Hamburger Beiträge Zur Physischen](#)
18 [Geographie Und Landschaftsökologie. Univ. Hamburg, Inst. für Geographie, pp. 1 –](#)
19 [12.](#)

20 [Bechtel, B., Schmidt, K.J., 2011. Floristic mapping data as a proxy for the mean urban heat](#)
21 [island. Clim. Res. 49, 45–58. doi:10.3354/cr01009](#)

22 [Bechtel, B., T. Langkamp, Böhner, J., Daneke, C., Oßenbrügge, J., Schempp, S., 2012b.](#)
23 [Classification and modelling of urban micro-climates using multitemporal remote](#)
24 [sensing data. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX-](#)
25 [B8, 463–468. doi:10.5194/isprsarchives-XXXIX-B8-463-2012](#)

26 [Bechtel, B., Wiesner, S., Zaksek, K., 2014. Estimation of Dense Time Series of Urban Air](#)
27 [Temperatures from Multitemporal Geostationary Satellite Data. IEEE J. Sel. Top.](#)
28 [Appl. Earth Obs. Remote Sens. 7, 4129–4137. doi:10.1109/JSTARS.2014.2322449](#)

29 [Bechtel, B., Zakšek, K., Hoshyaripour, G., 2012c. Downscaling Land Surface Temperature in](#)
30 [an Urban Area: A Case Study for Hamburg, Germany. Remote Sens. 4, 3184–3200.](#)
31 [doi:10.3390/rs4103184](#)

32 [Behrens, T., Scholten, T., 2006. Digital soil mapping in Germany—a review. J. Plant Nutr.](#)
33 [Soil Sci. 169, 434–443.](#)

34 [Bernardini, F., Sgambati, A., Montagnari Kokelj, M., Zaccaria, C., Micheli, R., Fragiacomo,](#)
35 [A., Tiussi, C., Dreossi, D., Tuniz, C., De Min, A., 2013. Airborne LiDAR application](#)
36 [to karstic areas: the example of Trieste province \(north-eastern Italy\) from prehistoric](#)
37 [sites to Roman forts. J. Archaeol. Sci. 40, 2152–2160. doi:10.1016/j.jas.2012.12.029](#)

38 [Bivand, R.S., 2014. 14 GeoComputation and Open-Source Software, in: GeoComputation.](#)
39 [CRC Press, p. 329.](#)

40 [Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm.](#)
41 [Remote Sens. 65, 2–16.](#)

42 [Bock, M., Böhner, J., Conrad, O., Köthe, R., Ringeler, A., 2007. Methods for creating](#)
43 [Functional Soil Databases and applying Digital Soil Mapping with SAGA GIS.](#)

1 [Bock, M., Günther, A., Ringeler, A., Baritz, R., Böhner, J., 2012. Assessment of soil parent](#)
2 [material formation in periglacial environments through medium scale landscape](#)
3 [evolution modelling, in: EGU General Assembly Conference Abstracts. p. 8796.](#)

4 [Bock, Michael, Böhner, Jürgen, Conrad, Olaf, Köthe, Rüdiger, Ringeler, Andre, 2007a. Methods for creating Functional Soil Databases and applying Digital Soil Mapping with SAGA GIS. JRC Sci. Tech. Rep. EUR 22646 EN.](#)

5 [Bock, Michael, Conrad, Olaf, Köthe, Rüdiger, Ringeler, Andre, 2007b. Methods for creating functional soil databases and applying digital soil mapping with SAGA GIS, in: Status](#)
6 [and Prospect of Soil Information in South-Eastern Europe: Soil Databases, Projects and Applications. European Communities, Luxembourg, pp. 149 – 162.](#)

7 [Bock, M., Köthe, R., 2008. Predicting the Depth of Hydromorphic Soil Characteristics Influenced by Ground Water.](#)

8 [Boettinger, J.L., 2010. Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Springer Science & Business Media.](#)

9 [Böhner, J., 2006. General climatic controls and topoclimatic variations in Central and High](#)
10 [Asia. BOREAS 35, 279–295. doi:doi:10.1080/03009480500456073](#)

11 [Böhner, J., 2005. Advancements and new approaches in climate spatial prediction and environmental modelling. Arbeitsberichte Geogr. Inst. HU Zu Berl. 109, 49–90.](#)

12 [Böhner, J., 2004. Regionalisierung bodenrelevanter Klimaparameter für das Niedersächsische Landes-amt für Bodenforschung \(NLfB\) und die Bundesanstalt für Geowissenschaften und Rohstoffe \(BGR\). Arbeitshefte Boden 4, 17–66.](#)

13 [Böhner, J., Antonic, O., 2009. Land surface parameters specific to topo-climatology. Geomorphometry-Concepts Softw. Appl. 195–226.](#)

14 [Böhner, J., Dietrich, H., Fraedrich, K., Kawohl, T., Kilian, M., Lucarini, V., Lunkeit, F., 2013. Development and Implementation of a Hierarchical Model Chain for Modelling Regional Climate Variability and Climate Change over Southern Amazonia. Interdiscip. Anal. Model. Carbon-Optim. Land Manag. Strateg. South. Amazon. 119–128.](#)

15 [Böhner, J., Kickner, S., 2006. Woher der Wind weht. GeoBit 5, 22–25.](#)

16 [Böhner, J., Köthe, R., 2003. Bodenregionalisierung und Prozeßmodellierung: Instrumente für den Bodenschutz. Peterm Geogr Mitt 147, 72–82.](#)

17 [Böhner, J., Köthe, R., Conrad, O., Gross, J., Ringeler, A., Selige, T., 2002. Soil regionalisation by means of terrain analysis and process parameterisation. Soil Classif., European Soil Bureau, Research Report 7, 213–222.](#)

18 [Böhner, J., Langkamp, T., 2010. Klimawandel und Landschaft – Regionalisierung, Rekonstruktion und Projektion des Klima- und Landschaftswandels Zentral- und Hochasiens. Hambg. Symp. Geogr. 2, 27–49.](#)

19 [Böhner, J., Lehmkühl, F., 2005. Climate and Environmental Change Modelling in Central and High Asia. BOREAS 34, 220–231.](#)

20 [Böhner, J., Schäfer, W., Conrad, O., Gross, J., Ringeler, A., 2003. The WEELS model: methods, results and limitations. Catena 52, 289–308.](#)

1 [Böhner, J., Selige, T., 2006. Spatial prediction of soil attributes using terrain analysis and](#)
2 [climate regionalisation, in: SAGA – Analysis and Modelling Applications, Göttinger](#)
3 [Geographische Abhandlungen, Göttingen, pp. 13 – 28.](#)

4 [Bolch, T., 2007. Climate change and glacier retreat in northern Tien Shan](#)
5 [\(Kazakhstan/Kyrgyzstan\) using remote sensing data. Glob. Planet. Change 56, 1–12,](#)
6 [doi:10.1016/j.gloplacha.2006.07.009](#)

7 [Bolch, T., 2006. GIS- und fernerkundungsgestützte Analyse und Visualisierung von Klima-](#)
8 [und Gletscheränderungen im nördlichen Tien Shan \(Kasachstan/Kyrgyzstan\): mit](#)
9 [einem Vergleich zur Bernina-Gruppe, Alpen. Dissertation, Faculty of Science of the](#)
10 [Friedrich-Alexander-Universität Erlangen-Nuernberg, Germany, 210 pp., 2006](#)

11 [Bolch, T., Kamp, U., 2006. Glacier Mapping in High Mountains Using DEMs, Landsat and](#)
12 [ASTER Data. Grazer Schriften Geogr. Raumforsch., Grazer Schriften der Geographie](#)
13 [und Raumforschung 41, 37–48.](#)

14 [Brenning, A., 2009. Benchmarking classifiers to optimally integrate terrain analysis and](#)
15 [multispectral remote sensing in automatic rock glacier detection. Remote Sens.](#)
16 [Environ. 113, 239–247.](#)

17 [Brenning, A., 2008. Statistical geocomputing combining R and SAGA: The example of](#)
18 [landslide susceptibility analysis with generalized additive models. SAGA–Seconds](#)
19 [Hamburg. Beitr. Zur Phys. Geogr. Landschaftsökologie 19, 23–32.](#)

20 [Brenning, A., Long, S., Fieguth, P., 2012. Detecting rock glacier flow structures using Gabor](#)
21 [filters and IKONOS imagery. Remote Sens. Environ. 125, 227–237.](#)

22 [Chang, C.-C., Lin, C.-J., 2011. LIBSVM: a library for support vector machines. ACM Trans.](#)
23 [Intell. Syst. Technol. TIST 2 \(3\), 1-27.](#)

24 [Conrad, O., 2007. SAGA - Entwurf, Funktionsumfang und Anwendung eines Systems für](#)
25 [Automatisierte Geowissenschaftliche Analysen. Dissertation, Faculties Natural](#)
26 [Sciences, Mathematics and Informatics \(Faculty of Geosciences and Geography\), 221](#)
27 [pp., 2007](#)

28 [Conrad, O., Jens-Peter, K., Michael, B., Gerhard, G., Bohner, J., 2006. Soil degradation risk](#)
29 [assessment integrating terrain analysis and soil spatial prediction methods. GEOOKO-](#)
30 [Bensh. 27, 165–174.](#)

31 [Czech, A., 2010. GIS-gestützte morphometrische Analyse von Okklusalflächen mit SAGA](#)
32 [GIS. Unpublished B. Sc. thesis. University of Hamburg - Faculty of Earth Sciences-](#)
33 [Institute of Geographie - Sect. Physical Geography. Hamburg.](#)

34 [Czegka, W., Junge, F.W., 2008. The use of SAGA as a mobile Field-Tool in the](#)
35 [environmental Geochemistry, in: SAGA – Seconds Out, Hamburger Beiträge Zur](#)
36 [Physischen Geographie Und Landschaftsökologie. Univ. Hamburg, Inst. für](#)
37 [Geographie, Hamburg, pp. 33 – 36.](#)

38 [Dietrich, H., Böhner, J., 2008. Cold Air Production and Flow in a Low Mountain Range](#)
39 [Landscape in Hessia \(Germany\), in: SAGA – Seconds Out, Hamburger Beiträge Zur](#)
40 [Physischen Geographie Und Landschaftsökologie. Univ. Hamburg, Inst. für](#)
41 [Geographie, Hamburg, pp. 37 – 48.](#)

42 [Enea, A., Romanescu, G., Stoleriu, C., 2012. Quantitative considerations concerning the](#)
43 [source-areas for the silting of the red lake \(Romania\) lacustrine basin, in: Water](#)
44 [Resources and Wetlands. Tulcea, Romania, pp. 14–16.](#)

1 [ESRI, 2015. The ArcGIS Platform \[WWW Document\]. URL
2 http://www.esri.com/software/arcgis \(accessed 6.5.15\).](http://www.esri.com/software/arcgis)

3 [Fader, M., Böhner, J., Gerold, G., 2012. Precipitation Variability and Landscape Degradation
4 in Rio Negro \(Argentina\). *Geo-Oko* 33, 5–33.](#)

5 [Fenoy, G., Bozon, N., Raghavan, V., 2013. ZOO-Project: the open WPS platform. *Appl.*
6 *Geomat.* 5, 19–24.](#)

7 [Fey, C., Zangerl, C., Wichmann, V., Prager, C., 2011. Back-Calculation of Medium-Scale
8 Rockfalls Using an Empirical GIS Model. *Int. Symp. Rock Slope Stab. Open Pit Min.*
9 *Civ. Eng. Vancouver Can.*](#)

10 [Free Software Foundation, 2015. Licenses \[WWW Document\]. URL
11 http://www.gnu.org/licenses/licenses.html \(accessed 6.4.15\).](#)

12 [Gerlitz, L., 2014. Using fuzzified regression trees for statistical downscaling and
13 regionalization of near surface temperatures in complex terrain. *Theor. Appl.*
14 *Climatol.* 118, 1–16. doi:10.1007/s00704-014-1285-x](#)

15 [Gerlitz, L., Conrad, O., Böhner, J., 2014a. Large scale atmospheric forcing and topographic
16 modification of precipitation rates over High Asia-a neural network based approach.
17 *Earth Syst. Dyn. Discuss.* 5, 1275–1317.](#)

18 [Gerlitz, L., Conrad, O., Thomas, A., Böhner, J., 2014b. Assessment of Warming Patterns for
19 the Tibetan Plateau and its adjacent Lowlands based on an elevation- and bias
20 corrected ERA-Interim Data Set. *Clim. Res.* 58, 235–246. doi:10.3354/cr01193](#)

21 [Goetz, J.N., Guthrie, R.H., Brenning, A., 2011. Integrating physical and empirical landslide
22 susceptibility models using generalized additive models. *Geomorphology* 129, 376–
23 386.](#)

24 [Grabs, T.J., Jencso, K.G., McGlynn, B.L., Seibert, J., 2010. Calculating terrain indices along
25 streams: A new method for separating stream sides. *Water Resour. Res.* 46, 12,
26 W12536. doi:10.1029/2010WR009296](#)

27 [Günther, A., 2003. SLOPEMAP: programs for automated mapping of geometrical and
28 kinematical properties of hard rock hill slopes. *Comput. Geosci.* 29, 865–875.](#)

29 [Günther, A., Carstensen, A., Pohl, W., others, 2004. Automated sliding susceptibility
30 mapping of rock slopes. *Nat. Hazards Earth Syst. Sci.* 4, 95–102.](#)

31 [Haas, F., 2008. *Fluviale Hangprozesse in alpinen Einzugsgebieten der nördlichen Kalkalpen: Quantifizierung und Modellierungsansätze*, Eichstätter Geographische Arbeiten. Profil-Verlag, München, Wien.](#)

32 [Haas, F., Heckmann, T., Wichmann, V., Becht, M., 2012. Runout analysis of a large rockfall
33 in the Dolomites/Italian Alps using LIDAR derived particle sizes and shapes. *Earth*
34 *Surf. Process. Landf.* 37, 1444–1455. doi:10.1002/esp.3295](#)

35 [Haas, F., Heckmann, T., Wichmann, V., Becht, M., 2011. Quantification and Modeling of
36 Fluvial Bedload Discharge from Hillslope Channels in two Alpine Catchments
37 \(Bavarian Alps, Germany\). *Z. Für Geomorphol. Suppl. Issues* 55, 147–168.
38 doi:10.1127/0372-8854/2011/0055S3-0056](#)

39 [Hartemink, A.E., McBratney, A.B., de Lourdes Mendon\cca-Santos, M., 2008. *Digital soil*
40 *mapping with limited data*. Springer.](#)

1 [Heckmann, T., 2006. Untersuchungen zum Sedimenttransport durch Grundlawinen in zwei](#)
2 [Einzugsgebieten der Nördlichen Kalkalpen: Quantifizierung, Analyse und Ansätze zur](#)
3 [Modellierung der geomorphologischen Aktivität, Eichstätter Geographische Arbeiten.](#)
4 [Profil-Verlag, München.](#)

5 [Heckmann, T., Becht, M., 2006. Statistical disposition modelling of mass movements, in:](#)
6 [SAGA – Analysis and Modelling Applications, Göttinger Geographische](#)
7 [Abhandlungen. Göttingen, pp. 61–74.](#)

8 [Heckmann, T., Bimböse, M., Krautblatter, M., Haas, F., Becht, M., Morche, D., 2012. From](#)
9 [geotechnical analysis to quantification and modelling using LiDAR data: a study on](#)
10 [rockfall in the Reintal catchment, Bavarian Alps, Germany. Earth Surf. Process.](#)
11 [Landf. 37, 119–133.](#)

12 [Heckmann, T., Wichmann, V., Becht, M., 2005. Sediment transport by avalanches in the](#)
13 [Bavarian Alps revisited - a perspective on modelling. Z. Für Geomorphol. Suppl.](#)
14 [Issues 138, 11–25.](#)

15 [Heinrich, R., Conrad, O., 2008. Diffusion, Flow and Concentration Gradient Simulation with](#)
16 [SAGA GIS using Cellular Automata Methods, in: SAGA – Seconds Out, Hamburger](#)
17 [Beiträge Zur Physischen Geographie Und Landschaftsökologie. Univ. Hamburg, Inst.](#)
18 [für Geographie, Hamburg, pp. 59 – 70.](#)

19 [Hengl, T., Reuter, H.I., 2009. Geomorphometry: Concepts, Software, Applications. Newnes.](#)

20 [Herzschuh, U., Birks, H.J.B., Mischke, S., Zhang, C., Böhner, J., 2010. A modern pollen-](#)
21 [climate calibration set based on lake sediments from the Tibetan Plateau and its](#)
22 [application to a Late Quaternary pollen record from the Qilian Mountains. J.](#)
23 [Biogeogr. 37, 752–766.](#)

24 [Herzschuh, U., Ni, J., Birks, H.J.B., Böhner, J., 2011. Driving forces of mid-Holocene](#)
25 [vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in](#)
26 [atmospheric CO₂ concentrations. Quat. Sci. Rev. 30, 1907–1917.](#)

27 [Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution](#)
28 [interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.](#)

29 [Jansen, P., 2014. Flächenhafte Berechnung der Hangkinematik und Stabilitätsmodellierung](#)
30 [im Bereich des Göttinger Waldes Unpublished M. Sc. thesis. University of Hamburg -](#)
31 [Faculty of Earth Sciences- Institute for Geology, Hamburg.](#)

32 [Jürgens, N., Oldeland, J., Hachfeld, B., Erb, E., Schultz, C., 2013. Ecology and spatial](#)
33 [patterns of large-scale vegetation units within the central Namib Desert. J. Arid](#)
34 [Environ. 93, 59–79. doi:10.1016/j.jaridenv.2012.09.009](#)

35 [Kamlisa, U.K., Mia How Goh, M.H.G., Stephen Teo, S.T., Satoshi Tsuyuki, S.T., Mui-How](#)
36 [Phua, M.-H.P., 2012. Monitoring of Deforestation and Fragmentation in Sarawak,](#)
37 [Malaysia between 1990 and 2009 using Landsat and SPOT Images. J. For. Sci. 28,](#)
38 [152–157.](#)

39 [Kaye, S., 2013. Finding the site of Boudica's last battle: Roman logistics empowered the](#)
40 [sword. \[WWW Document\]. bandaarcgeophysics. URL](#)
41 http://www.bandaarcgeophysics.co.uk/arch/boudica_logistics.pdf (accessed 12.3.14).

42 [Kessler, M., Böhner, J., Kluge, J., 2007. Modelling tree height to assess climatic conditions at](#)
43 [tree lines in the Bolivian Andes. Ecol. Model. 207, 223–233.](#)
44 [doi:10.1016/j.ecolmodel.2007.05.001](#)

1 [Kidd, D., Viscarra Rossel, R., 2011. ACLEP-Tasmanian Digital Soil Mapping Project - a](#)
2 [component of the Wealth from Water Land Suitability Project \[WWW Document\].](#)
3 [URL](#)
4 http://www.clw.csiro.au/aclep/documents/TAS_ACLEP_DSM_Project_Report.pdf

5 [Klinge, M., Böhner, J., Erasmi, S., 2014. Modelling forest lines and forest distribution](#)
6 [patterns with remote sensing data in a mountainous region of semi-arid Central Asia.](#)
7 [Biogeosciences Discuss 11, 14667–14698. doi:doi:10.5194/bgd-11-14667-2014](#)

8 [Klinge, M., Böhner, J., Lehmkühl, F., 2003. Climate Patterns, Snow- and Timberline in the](#)
9 [Altai Mountains, Central Asia. Erdkunde 57, 296–308.](#)

10 [Köthe, R., Bock, M., 2009. Preprocessing of Digital Elevation Models—derived from Laser](#)
11 [Scanning and Radar Interferometry—for Terrain Analysis in Geosciences. Proc.](#)
12 [Geomorphometry 2009, Proceedings of Geomorphometry 155 – 161.](#)

13 [Köthe, R., Gehrt, E., Böhner, J., 1996. Automatische Reliefanalyse für geowissenschaftliche](#)
14 [Kartierungen. Arbeitshefte Boden 1, 31–37.](#)

15 [Köthe, U., 2000. Generische Programmierung für die Bildverarbeitung. BoD—Books on](#)
16 [Demand.](#)

17 [Kühn, J., Brenning, A., Wehrhan, M., Koszinski, S., Sommer, M., 2009. Interpretation of](#)
18 [electrical conductivity patterns by soil properties and geological maps for precision](#)
19 [agriculture. Precis. Agric. 10, 490–507.](#)

20 [Lado, L.R., Hengl, T., Reuter, H.I., 2008. Heavy metals in European soils: a geostatistical](#)
21 [analysis of the FOREGS Geochemical database. Geoderma 148, 189–199.](#)

22 [Lal, R., Stewart, B.A., 2014. Soil Management of Smallholder Agriculture. CRC Press.](#)

23 [Lehmkühl, F., Böhner, J., Stauch, G., 2003. Geomorphologische Formungs- und](#)
24 [Prozessregionen in Zentralasien. Petermanns Geogr. Mitteilungen 147, 6–13.](#)

25 [Lehrling, M., 2006. Klimaentwicklung in Alaska: Eine GIS-gestützte Erfassung und Analyse](#)
26 [der raumzeitlichen Entwicklung von Temperatur und Niederschlag. ibidem-Verlag.](#)

27 [Leopold, M., Gannaway, E., Völkel, J., Haas, F., Becht, M., Heckmann, T., Westphal, M.,](#)
28 [Zimmer, G., 2011. Geophysical prospection of a bronze foundry on the southern slope](#)
29 [of the acropolis at athens, Greece. Archaeol. Prospect. 18, 27–41. doi:10.1002/arp.402](#)

30 [Liersch, S., Volk, M., 2008. A rainfall-runoff database to support flood risk assessment, in:](#)
31 [Proceedings of the iEMSs Fourth Biennial Meeting. Presented at the International](#)
32 [Congress on Environmental Modelling and Software, Barcelona, Catalonia, pp. 494–](#)
33 [502.](#)

34 [Mantovani, F., Gracia, F.J., Cosmo, P.D. de, Suma, A., 2010. A new approach to landslide](#)
35 [geomorphological mapping using the Open Source software in the Olvera area \(Cadiz,](#)
36 [Spain\). Landslides 7, 69–74. doi:10.1007/s10346-009-0181-4](#)

37 [Marini, L., Fontana, P., Klimek, S., Battisti, A., Gaston, K.J., 2009. Impact of farm size and](#)
38 [topography on plant and insect diversity of managed grasslands in the Alps. Biol.](#)
39 [Conserv. 142, 394–403. doi:10.1016/j.biocon.2008.10.034](#)

40 [Marini, L., Scotton, M., Klimek, S., Isselstein, J., Pecile, A., 2007. Effects of local factors on](#)
41 [plant species richness and composition of Alpine meadows. Agric. Ecosyst. Environ.](#)
42 [119, 281–288.](#)

1 [McBratney, A.B., Mendon\cca Santos, M. de L., Minasny, B., 2003. On digital soil mapping.](#)
2 [Geoderma 117, 3–52.](#)

3 [Miehe, G., Miehe, S., Böhner, J., Kaiser, K., Hensen, I., Madsen, D., Liu, J.Q., Opgenoorth,](#)
4 [L., 2014. How old is the human footprint in the world's largest alpine ecosystem? A](#)
5 [review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint.](#)
6 [Quat. Sci. Rev. 86, 190–209.](#)

7 [Milevski, I., 2008. ESTIMATION OF SOIL EROSION RISK IN THE UPPER PART OF](#)
8 [BREGALNICA WATERSHED-REPUBLIC OF MACEDONIA, BASED ON](#)
9 [DIGITAL ELEVATION MODEL AND SATELLITE IMAGERY. Proceedings from](#)
10 [the 5th International conference on geographic information systems, Fatih University,](#)
11 [Istanbul, 2008.](#)

12 [Milevski, I., Dragicevic, S., Kostadinov, S., 2007. Digital elevation model and satellite](#)
13 [images an assessment of soil erosion potential in the Peinja catchment. Glas. Srp.](#)
14 [Geogr. Drustva 87, 11–20. doi:10.2298/GSGD0702011M](#)

15 [Morche, D., Haas, F., Baewert, H., Heckmann, T., Schmidt, K.-H., Becht, M., 2012. Sediment](#)
16 [transport in the proglacial Fagge River \(Kaunertal/Austria\). Eros. Sediment Yields](#)
17 [Chang. Environ. IAHS Press Wallingford IAHS Publ. 356, 72–81.](#)

18 [Muenchow, J., Brenning, A., Richter, M., 2012. Geomorphic process rates of landslides along](#)
19 [a humidity gradient in the tropical Andes. Geomorphology 139–140, 271–284.](#)

20 [National Research Council \(Ed.\), 2001. Basic Research Opportunities in Earth Science.](#)
21 [Washington, D.C., National Academy Press, 154 pp.](#)

22 [Neteler, M., Bowman, M.H., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose open](#)
23 [source GIS. Environ. Model. Softw. 31, 124–130. doi:10.1016/j.envsoft.2011.11.014](#)

24 [Nothdurft, A., Wolf, T., Ringeler, A., Böhner, J., Saborowski, J., 2012. Spatio-temporal](#)
25 [prediction of site index based on forest inventories and climate change scenarios. For.](#)
26 [Ecol. Manag. 279, 97–111.](#)

27 [Olaya, V., Conrad, O., 2009. Chapter 12 Geomorphometry in SAGA, in: Tomislav Hengl and](#)
28 [Hannes I. Reuter \(Ed.\), Developments in Soil Science. Elsevier, pp. 293–308.](#)

29 [Patriche, C.V., PÎRN\uAU, R.G., RO\cSCA, B., STOICA, D.L., 2012. Assessment of Soil](#)
30 [Erosion and its Impact on Humus Spatial and Temporal Dynamics. Bull. Univ. Agric.](#)
31 [Sci. Vet. Med. Cluj-Napoca Agric. 69, pp. 185–194.](#)

32 [Peters-Walker, D., Krause, K.-H., Strelle, T., Kleindienst, H., Petrini-Monteferri, F.,](#)
33 [Wichmann, V., 2012. Modellierung von Abfluss und Geschiebetransport in alpinen](#)
34 [Wildbacheinzugsgebieten mit SimAlp/HQsim. Wildbach- Lawinenverbau 76, 154–](#)
35 [166.](#)

36 [Petrini-Montferri, F., Wichmann, V., Georges, C., Mantovani, D., Stötter, J., 2009.](#)
37 [Erweiterung der GIS Software SAGA zur Verarbeitung von Laserscanning-Daten der](#)
38 [Autonomen Provinz Bozen - Südtirol, in: Angewandte Geoinformatik. STROBL, J.,](#)
39 [BLASCHKE, T. & GRIESEBNER, G. \(Hrsg.\). Beiträge zum 21. AGIT-Symposium,](#)
40 [Salzburg, pp. 618 – 623.](#)

41 [Phua, M.-H., Conrad, O., Kamlun, K.U., Fischer, M., Böhner, J., 2008. Multitemporal](#)
42 [Fragmentation Analysis of Peat Swamp Forest in the Klias Peninsula, Sabah, Malaysia](#)
43 [using GIS and Remote Sensing Techniques, in: SAGA – Seconds Out, Hamburger](#)

1 [Beiträge Zur Physischen Geographie Und Landschaftsökologie. Univ. Hamburg, Inst.](#)
2 [für Geographie, Hamburg, pp. 81 – 90.](#)

3 [Prouza, Z., Beckova, V., Cespirova, I., Helebrant, J., Hulka, J., Kuca, P., Michalek, V., Rulik,](#)
4 [P., Skral, J., Hovorka, J., 2010. Field Tests Using Radioactive Matter. Radiat. Prot.](#)
5 [Dosimetry ncp299. doi:10.1093/rpd/ncp299](#)

6 [QGIS Development Team, 2014. QGIS Geographic Information System. Open Source](#)
7 [Geospatial Foundation Project.](#)

8 [Rieg, L., Wichmann, V., Rutzinger, M., Sailer, R., Geist, T., Stötter, J., 2014. Data](#)
9 [infrastructure for multitemporal airborne LiDAR point cloud analysis - Examples from](#)
10 [physical geography in high mountain environments. Computers, Environment and](#)
11 [Urban Systems 45, 137–146.](#)

12 [Roecker, S.M., Howell, D.W., Haydu-Houdeshell, C.A., Blinn, C., 2010. A Qualitative](#)
13 [Comparison of Conventional Soil Survey and Digital Soil Mapping Approaches, in:](#)
14 [Boettinger, D.J.L., Howell, D.W., Moore, A.C., Hartemink, P.D.A.E., Kienast-Brown,](#)
15 [S. \(Eds.\), Digital Soil Mapping, Progress in Soil Science. Springer Netherlands, pp.](#)
16 [369–384.](#)

17 [Russ, A., Riek, W., 2011. Methode zur Ableitung des Grundwasserflurabstandes aus Karten](#)
18 [der forstlichen Standortskartierung und digitalen Geländemodellen in Brandenburg.](#)
19 [In: Waldökologie, Landschaftsforschung und Naturschutz 12, 85-92, 2011.](#)

20 [Sass, O., Haas, F., Schimmer, C., Heel, M., Bremer, M., Stöger, F., Wetzel, K.-F., 2012.](#)
21 [Impact of Forest Fires on Geomorphic Processes in the Tyrolean Limestone Alps.](#)
22 [Geogr. Ann. Ser. Phys. Geogr. 94, 117–133. doi:10.1111/j.1468-0459.2012.00452.x](#)

23 [Schauppenlehner, T., 2008. Geostatistische Analysen zur Integration von Geländemodellen](#)
24 [und Bodenschätzungsdaten für verbesserte digitale Bodenkarten am Beispiel einer](#)
25 [alluvialen Landschaft \(Dissertation\). University of natural resources and life sciences,](#)
26 [133.](#)

27 [Setiawan, M.A., 2012. Integrated Soil Erosion Risk Management in the upper Serayu](#)
28 [Watershed, Wonosobo District, Central Java Province, Indonesia. Faculty of Geo- and](#)
29 [Atmospheric Sciences of the Universität Innsbruck, Innsbruck.](#)

30 [Smart, J., Csomor, S., others, 2005. Cross-platform GUI programming with wxWidgets.](#)
31 [Prentice Hall Professional.](#)

32 [Soria-Auza, R.W., 2010. Diversität und Biogeographie der Farne und Vögel Boliviens: Niche](#)
33 [Modellierung GIS Applicationen.](#)

34 [Soria-Auza, R.W., Kessler, M., Bach, K., Barajas-Barbosa, P.M., Lehnert, M., Herzog, S.K.,](#)
35 [Böhner, J., 2010. Impact of the quality of climate models for modelling species](#)
36 [occurrences in countries with poor climatic documentation: a case study from Bolivia.](#)
37 [Ecol. Model. 221, 1221–1229.](#)

38 [Steiniger, S., Bocher, E., 2009. An overview on current free and open source desktop GIS](#)
39 [developments. Int. J. Geogr. Inf. Sci. 23, 1345–1370.](#)
40 [doi:10.1080/13658810802634956](#)

41 [Stötter, J., Sailer, R., 2012. Permafrost in Südtirol, Innsbrucker Geographische Studien.](#)

42 [Stroustrup, B., 2014. Programming: principles and practice using C++. Pearson Education.](#)

1 [Sun, Z., 2015. MicroCity - A Spatial Analysis and Simulation Framework \[WWW
2 Document\].](#)

3 [Vanselow, K., Samimi, C., 2011. GIS und statistische Modelle im Weidemanagement: Ein
4 Beispiel anhand der Hochgebirgsweiden im Ostpamir \(Tadschikistan\). *Angew.
5 Geoinformatik* 23, 625–634.](#)

6 [Varga, K., Becht, M., Damm, B., 2006. Ansätze der GIS-gestützten räumlichen Modellierung
7 von Rutschgefahren in Buntsandsteingebieten Nordhessens und Südniedersachsens
8 \(BRD\), in: *Angewandte Geoinformatik*. Wichmann, Heidelberg, pp. 679–684.](#)

9 [Wang, Y., Herzschuh, U., Shumilovskikh, L.S., Mischke, S., Birks, H.J.B., Wischnewski, J.,
10 Böhner, J., Schlütz, F., Lehmkuhl, F., Diekmann, B., Wünnemann, B., Zhang, C.,
11 2014. Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau
12 since the Last Glacial Maximum – extending the concept of pollen source area to
13 pollen-based climate reconstructions from large lakes. *Clim Past* 10, 21–39.
14 doi:10.5194/cp-10-21-2014](#)

15 [Wehberg, J., Bock, M., Weinzierl, T., Conrad, O., Böhner, J., Stellmes, M., Landschreiber, L.,
16 2013. Terrain-based Landscape Structure Classification in Relation to Remote Sensing
17 Products and Soil Data for the Okavango Catchment. *Biodivers. Ecol.* 5, 221–233.](#)

18 [Weinzierl, T., Conrad, O., Böhner, J., Wehberg, J., 2013. Regionalization of baseline
19 climatologies and time series for the Okavango Catchment. *Biodivers. Ecol.* 5, 235–
20 245.](#)

21 [Wichmann, V., 2006. Modellierung geomorphologischer Prozesse in einem alpinen
22 Einzugsgebiet - Abgrenzung und Klassifizierung der Wirkungsräume von
23 Sturzprozessen und Muren mit einem GIS. *Eichstätt. Geogr. Arb.* 15, 231 pp.](#)

24 [Wichmann, V., Becht, M., 2006. Rockfall modelling: methods and model application in an
25 alpine basin \(Reintal, Germany\), in: *SAGA – Analysis and Modelling Applications*,
26 *Göttinger Geographische Abhandlungen*. Göttingen, pp. 105 – 116; 129–130.](#)

27 [Wichmann, V., Becht, M., 2005. Modelling Of Geomorphic Processes In An Alpine
28 Catchment. *GeoDynamics* 151–167.](#)

29 [Wichmann, V., Becht, M., 2004. Spatial modelling of debris flows in an alpine drainage
30 basin. *IAHS* 288, 370–376.](#)

31 [Wichmann, V., Rutzinger, M., Vetter, M., 2008. Digital Terrain Model Generation from
32 airborne Laser Scanning Point Data and the Effect of grid-cell size on the Simulation
33 Results of a Debris Flow Model, in: Böhner, J., Blaschke, T., Montanarella, L. \(Eds.\),
34 *Hamburger Beiträge Zur Physischen Geographie Und Landschaftsökologie \(SAGA -
35 Seconds Out\)*, *Hamburger Beiträge Zur Physischen Geographie Und
36 Landschaftsökologie*. Univ. Hamburg, Inst. für Geographie, pp. 103–113.](#)

37 [Willer, J., Baritz, R., Eberhardt, E., Milbert, G., Jahn, R., 2009. Projekt SIAM - Entwicklung
38 eines Boden-Landschaftsmodells zur Datenharmonisierung und Qualitätssicherung für
39 Bodenübersichtskarten \[WWW Document\]. URL <http://eprints.dbges.de/477/>
40 \(accessed 2.13.13\).](#)

41 [Wilson, J.P., Gallant, J.C., 2000. *Terrain analysis: principles and applications*. John Wiley &
42 Sons.](#)

43 [Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses-a guide to
44 conservation planning. *Agriculture Handbook* 537.](#)

Gelöscht: Aichner, B., Herzschuh, U., Wilkes, H., Vieth, A., Böhner, J., 2010. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes – A surface sediment study and application to a 16 ka record from Lake Koucha. *Org. Geochem.*, 41, 779–790. doi:10.1016/j.orggeochem.2010.05.010

Asmussen, P., 2014. Segmentation and further applications of sandstone thin section images in SAGA GIS. Unpublished M. Sc. thesis. University of Hamburg - Faculty of Earth Sciences- Institute for Geology. Hamburg.

Bechtel, B., 2012. Robustness of Annual Cycle Parameters to Characterize the Urban Thermal Landscapes. *IEEE Geosci. Remote Sens. Lett.* 9, 876–880. doi:10.1109/LGRS.2012.2185034

Bechtel, B., 2011a. Multitemporal Landsat data for urban heat island assessment and classification of local climate zones, in: Urban Remote Sensing Event (JURSE), 2011 Joint. Presented at the Urban Remote Sensing Event (JURSE), 2011 Joint, IEEE, pp. 129–132. doi:10.1109/JURSE.2011.5764736

Bechtel, B., 2011b. Multisensorale Fernerkundungsdaten zur mikroklimatischen Beschreibung und Klassifikation urbaner Strukturen. *Photogramm.-Fernerkund.-Geoinformation* 2011, 325–338.

Bechtel, B., Böhner, J., Zakšek, K., Wiesner, S., 2013. Downscaling of diurnal land surface temperature cycles for urban heat island monitoring, in: Urban Remote Sensing Event (JURSE), 2013 Joint. Presented at the Urban Remote Sensing Event (JURSE), 2013 Joint, IEEE.

Bechtel, B., Daneke, C., 2012. Classification of Local Climate Zones Based on Multiple Earth Observation Data. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* 5, 1191–1202. doi:10.1109/JSTARS.2012.2189873

Bechtel, B., Daneke, C., Langkamp, T., Oßenbrügge, J., Böhner, J., 2012a. Classification of Local Climate Zones from multitemporal remote sensing data, in: Proceedings ICUC8 – 8th International Conference on Urban Climates. Presented at the 8th International Conference on Urban Climates, 6th-10th August, 2012, UCD, Dublin Ireland.

Bechtel, B., Langkamp, T., Ament, F., Böhner, J., Daneke, C., Günzkofer, R., Leitl, B., Ossenbrügge, J., Ringeler, A., 2011. Towards an urban roughness parameterisation using interferometric SAR data taking the Metropolitan Region of Hamburg as an example. *Meteorol. Z.* 20, 29–37. doi:10.1127/0941-2948/2011/0496

Bechtel, B., Ringeler, A., Böhner, J., 2008. Segmentation for Object Extraction of Trees using MATLAB and SAGA, in: SAGA – Seconds Out, Hamburger Beiträge Zur Physischen Geographie Und Landschaftsökologie. Univ. Hamburg, Inst. für Geographie, pp. 1–12.

Bechtel, B., Schmidt, K.J., 2011. Floristic mapping data as a proxy for the mean urban heat island. *Clim. Res.* 49, 45–58. doi:10.3354/cr01009