
We would like to thank both Referees for their valuable comments and suggestions for 
improving our manuscript. Following Referees’ comments, we carefully revised our 
manuscript. Please find below the point-to-point responses (in black) to all referee comments 
and short comment (in blue). For your convenience, changes in the revised manuscript are 
highlighted with dark red. 

 

Referee #1 

General Comments 

This paper provides a description of revisions to the ORCHIDEE-HL (high latitude) land 
surface model intended to improve the simulation of Northern Hemisphere vegetation cover. 
The results are evaluated against several fractional land cover datasets and gridded 
observations of GPP, biomass and soil carbon. The authors claim “significant improvements” 
in simulated tree distributions and this appears to be justified. A particularly strength of the 
paper is that simulated PFT fractions are compared with multiple observational estimates, 
which takes into account the combined uncertainty in the source data and in the mapping from 
land cover classes to model PFTs. This allows the authors to place an informed emphasis on 
model errors and improvements in different regions. 

The manuscript is well-written throughout and the figures are clear and understandable. With 
only a couple of exceptions, details of the model description that were not provided explicitly 
in the manuscript were found easily in the references provided (e.g., Krinner et al, Gouttevin 
et al). 

Specific Comments 

1. Despite being well used, it’s not clear to me whether the 6-hourly CRU-NCEP forcing 
resolves the diurnal cycle adequately. In particular, the simulation of photosynthesis will 
depend strongly on the sub-daily representation of surface insolation. How are the forcing 
data downscaled from 6 hours to the 30 minute model time step? If these forcing fields are 
valid at the same UTC time rather than the same local solar time, is there any significant 
longitudinal variation in how well the diurnal cycles of insolation and GPP are represented? 

Response 

In ORCHIDEE, the meteorological fields of climate forcing are interpolated from their 
original time step to the half-hourly model time step. For fields other than downward solar 
radiation and precipitation, the 6-hourly data in CRU-NCEP are linearly interpolated to 
half-hourly resolution. For the short-wave radiation in particular, it is distributed as a function 
of solar angle, calculated based on longitude/latitude, the day of the year and the hour, 
according to the method used by GSWP (Dirmeyer, 2011; ORCHIDEE code see 
http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/db6/solar_8f90_source.html). The 
forcing fields and model outputs are valid at the same UTC time, for example at each time 
step, only half of the earth surface has solar radiation. The diurnal cycles of insolation and 

http://dods.ipsl.jussieu.fr/orchidee/DOXYGEN/webdoc/d1/db6/solar_8f90_source.html


GPP at different longitudes are thus corresponding to UTC time rather than their local time.  

 

Reference: 

Dirmeyer, P. A.: A history and review of the global soil wetness project (GSWP), J. Hydrometeorol., 
12, 729–749, 2011. 

 

2. The β diversity metric shows well the improvement in the high latitude tundra (Fig 5), but it 
doesn’t highlight the greatly improved tree PFT fractions in northern Europe and eastern 
Canada. I would have expected this improvement between simulations to be more apparent in 
the metric, especially in the mean given the agreement between the observational datasets in 
these regions (Fig 3). It is more visible in the skill score (Fig 6) so, are there model errors and 
improvements that we should not expect to be able to evaluate through the use of this metric? 

Response 

It is true that in Fig. 5, the most highlighted regions are arctic tundra, with large β values 
between OLD and observational datasets and substantial improvement (β reduction) in NEW. 
But it can also be seen from Fig. 5 that the β metric is reduced in eastern Canada (from ~0.7 
to ~0.3), and northern Europe and European Russia (from ~0.7 to ~0.4).  

Tundra regions are more apparent in Fig. 5, because the OLD simulation produced very high 
fraction (>0.9) of needleaf deciduous trees in these regions that in reality have high fraction of 
bare land (PFT1); according to the definition of β diversity, this “extreme” bias of 2 PFTs, 
compared with evenly distributed bias among all PFTs, will more enlarge the value of β 
diversity. By contrast, in eastern Canada and northern Europe, besides the dominant 
needleleaf evergreen trees, other PFTs including broadleaf trees, grass and bare land can 
account for ~0.3. This relatively evenly distribution in vegetation (compared to that in tundra 
regions) avoids very large values of β diversity, even though the OLD simulation highly 
overestimated broadleaf trees in these regions. Therefore, the significant improvement in 
eastern Canada and northern Europe as shown in Fig. 4 did not turn into very obvious 
decrease of β Fig. 5.  

The skill score (SV) in Fig. 6, however, presents more visible improvement in northern Europe 
and eastern Canada. This is consistent with the high agreement among observational datasets 
(i.e., small β for data vs. data) in these regions shown in Fig. 3, because SV is defined as β 
(data vs. data) divided by β (model vs. data) (Eq.9), and the small SV value for OLD, due to a 
small numerator, makes the difference between OLD and NEW more visible. SV highlights 
the improvement that is intuitionally shown in Fig. 3; in this sense, SV is a good metric to 
evaluate model performance in simulating vegetation distribution.  

3. The authors highlight that these metrics (β, D and S) provide a framework that could be 
used by other models, and this type of multi-dataset analysis should undoubtedly be done in 
other studies. But how resolution dependent are these metrics likely to be? This would be a 



tradeoff between the smoothing of coarser grids making it easier for a model to match 
observations, but also easier for observations to match each other. So would it be reasonable 
to compare models using significantly different grids? Could I calculate values for another 
model and compare them fairly with those in Table 3? 

Response 

Following this comment, we conducted two additional runs similar to OLD and NEW except 
for a 1°×1° resolution, in order to test the resolution dependency of these metrics. The figure 
below displays the new β value and skill score (SV), compared with Fig. 5 (bottom panel) and 
Fig. 6: 

As the figure shows, both β and SV have similar spatial pattern in 1°×1° runs as in previous 
2°×2° runs.  

The β metric (Northern Hemisphere (20-90°N) mean) between models and observational 
datasets, and average SV over different countries/regions are listed in the following tables: 

 
β 2°×2°  1°×1° 
 OLD NEW ESA GLC  OLD NEW ESA GLC 

ESA 0.58  0.56     0.70  0.62    
GLC 0.56  0.48  0.25     0.68  0.54  0.29   

 

 

β 

mean of OLD vs ESA/GLC/VCF mean of NEW vs ESA/GLC/VCF 

SV 

OLD NEW 

2°×2° 

1°×1° 

2°×2° 

1°×1° 

 



VCF 0.65  0.47  0.37  0.35   0.77  0.52  0.43  0.41  

 

SV Asian 
Russia 

European 
Russia Canada USA Europe China 

Northern 
Hemisphere 
(20°N-90°N) 

2°×2° 
OLD 0.68 0.63 0.53 0.66 0.62 0.57 0.60 
NEW 0.89 0.89 0.70 0.69 0.65 0.61 0.72 

1°×1° 
OLD 0.69 0.57 0.52 0.63 0.58 0.53 0.59 
NEW 0.87 0.91 0.71 0.73 0.67 0.66 0.74 

In the coarser 2°×2° runs, due to smoothing effect, the β values for both model vs. data and 
data vs. data are decreased by 9~18% compared with 1°×1° runs. For SV however, there is 
little difference between the two resolutions (relative differences are mostly within 5%), since 
the smoothing effect on both numerator and denominator partly offset each other. It indicates 
that the resolution at which the model runs has minor influence on the SV metrics, and is not 
supposed to change the ranking of different models. Therefore, it is reasonable to calculate the 
skill score for other DGVMs with different grids, and compare them with the results in this 
study, if they adopt the same simulation protocol.  

4. In the sensitivity experiments one piece of information that I couldn’t glean was how do 
variations in the “1850” forest cover and GPP owing to spin up methodology (e.g., 1901 vs 
1914, Fig 14) compare with the magnitude of 20th century change in the NEW and OLD 
simulations? Section 6.2 quotes 11.5% and 4.8% 20N-90N forest fraction increases with and 
without CO2 fertilisation, but it is difficult to compare these aggregate figures with the maps 
in Fig 14. This would provide some context for the warnings about spin up methodology. Also 
in section 6.3, the apparent motivation for the individual year simulations (“...recycled 
one-year climatic data are sometime used...”) appears near the end after the results. It would 
be clearer if this was mentioned earlier in the section. 

Response 

Sect. 6.3 focused on the spin up methodology in terms of climate forcing, and the vegetation 
distribution results shown in this sector corresponded to the last year of spin up, i.e., the initial 
state (1850) of the transient simulation. The EXP3 experiment used the 20-year average 
climatology as forcing file in spin up; compared to NEW, total forest area in EXP3 increase 
by 5.1 Mkm2 (22%), among which temperate trees (PFT4-6) increase by 2.7 Mkm2, boreal 
needleleaf evergreen (PFT7) and broadleaf deciduous (PFT8) trees increase by 6.3 Mkm2, and 
needleleaf deciduous tree (PFT9) decrease by 3.9 Mkm2. This large variation in the initial 
forest cover owing to different climate forcings in spin up brings a warning on spin up 
methodology. Accordingly, the following sentences were added at P2242,L26: “In EXP3, 
temperate trees (PFT4-6) can extend northward, taking up the boreal tree positions, while the 
distribution of boreal needleleaf evergreen (PFT7) and broadleaf deciduous (PFT8) trees is 
squeezed to the climatic range of needleleaf deciduous tree (PFT9). Compared with the initial 
state after spin up in NEW, total forest area in the studied region (20-90°N) in EXP3 increase 
by 5.1 Mkm2 (22%), among which PFT4-6 increase by 2.7 Mkm2, PFT 7 and 8 increase by 



6.3 Mkm2, and PFT9 decrease by 3.9 Mkm2.” 

To explain more clearly the motivation for the spin-up tests forced by individual year climate, 
the sentence “The large variance…” in P2242,L26 was replaced by “Apart from average 
climatology, recycled one single year climate is occasionally used in spin-up phase, which can 
also lead to large variance in initial vegetation distribution after spin-up due to interannual 
climate variability.” 

Technical Comments 

Title: “...northern...” is a bit too vague. “...Northern Hemisphere high latitude...” would be 
more informative (and would reflect the model version). 

Response 

The title was revised accordingly: “Improving the dynamics of Northern Hemisphere high 
latitude vegetation in the ORCHIDEE ecosystem model”. 

P2219,L20: The repository that “rev1322” corresponds to isn’t mentioned until Section 2.3. 

Response 

Since the original “Sect. 2.3 Code availability” was moved to the end (after “Sect. 7 
Conclusions”), the two sentences in P2219,L20 were revised as “The basic structure of 
ORC-HL used in this study is shown in Fig. S1 in the Supplement, in which different 
processes from Krinner et al. (2005) are highlighted with red.” 

P2220,L13-15: It’s not clear if V can be negative, e.g., though net biomass loss, which makes 
the range of possible MBG values unclear. 

Response 

Here V cannot be negative. To clarify it, the following sentence was added in the end of 
P2220,L15: “V equals to 0 in case of net annual biomass loss.” 

P2222,L21: “MSF (t)” should be “MSF (t, Tmin)”, if I’ve interpreted the model correctly. 

Response 

MSF(t) was revised as MSF(t,Tmin) accordingly.  

P2224,L8: Kuppel et al (2012) references a PhD thesis; can the same information be gleaned 
from Kuppel et al (2012), Biogeosciences, doi:10.5194/bg-9-3757-2012 ? If so, the latter 
reference is preferable. 

Response 

Kuppel et al (2012, Biogeosciences) presented a data assimilation system to optimize some 
ORCHIDEE parameters using measurements from temperate deciduous broadleaf forest sites, 
thus their results were only applied to PFT6 in ORCHIDEE; while in Kuppel’s PhD thesis 
(Kuppel, 2012), parameters of other PFTs were optimized using the same method. So we cited 



the PhD thesis (accessible from Internet) rather than the paper in Biogeosciences.  

P2224,L19-21: It’s not clear whether the leaf age dependency was switched off entirely or 
whether just very long time constant (acrit) was used. The values in Table 1 for evergreen 
needleleaf are unchanged from Krinner et al, so is acrit used elsewhere in the model? If not, 
why quote unused acrit values at all? 

Response 

Apart from the vcmax (or jmax) dependency on leaf age discussed in Sect. 2.2.3, acrit is also used 
to calculate leaf senescence in the turnover module in ORCHIDEE, so we still listed the acrit 
values for evergreen needleleaf (PFTs 4 and 7) in Table 1.  

The leaf age dependency of vcmax (or jmax) for PFTs 4 and 7 was switched off. This vcmax (or 
jmax)–leaf age relationship was introduced in Krinner et al. (2005) to account for the influence 
of seasonal variation in leaf age on photosynthetic activity for trees; and we removed this rule 
for needleleaf evergreen trees since they do not have such significant seasonal variation in 
leaf age as deciduous trees do. To clarify it, we added a sentence at the end of Table 1 notes: 
“acrit: critical leaf age for leaf senescence (days); the dependence of vcmax and jmax on leaf age 
for PFTs 4 and 7 was eliminated as described in Sect. 2.2.3.” 

P2230,L3 L9: (Equation pedantry) The sum should be from “k = 1” rather than just“k”. 
P2230,L19: Similarly, the sums are missing upper limits. 

Response 

Equation (7), (8) and (9) were revised accordingly.  

P2232,L26: Should be σO rather than σO.  
P2233,L1: Are there missing modulus symbols, i.e., |Xc,M − Xc,O| < σO? 
P2237,L7: “SG” should be “SG”. 

Response 

Revised accordingly. 

Fig 2: “Brighter colors...” is ambiguous wording, “Deeper colors...” would be better. Should 
“...relative fraction...” be just “...fraction. . .”, else it’s not clear what it’s relative to? 

Response 

Fig 2 caption was revised as: “…Color indicates the fraction of three PFT groups…Deeper 
colors represent higher fractional covers.” Similarly, the “relative” in Fig 4 caption was 
deleted.  

Fig 2 4: I find it difficult to determine how deep or pale these maps are relative to each other 
(e.g., OSIB vs IIASA). A limited scale (e.g., 25%,50%,75%,100%) for the pure RGB hues 
would be useful. 

Response 



A color scale was added in Fig. 2 and 4 accordingly.  

 

Reviewer #2 

Comment 

Authors attempt to improve and test the dynamic vegetation module of the ORCHIDEE 
model to primarily show that inclusion of new bioclimatic constraints that induce mortality 
lead to better simulation of fractional coverage of PFTs in mid- to high-latitude regions. 

The manuscript is reasonably written but as a reader I have some concerns, which if addressed 
will strengthen the manuscript significantly. In addition, I am attaching the scanned version of 
the annotated manuscript, as a supplement, on which I have made several comments. These 
are primarily minor comments. 

Major comments 

1. My first major concern is that there is no equation in the manuscript that will allow a reader 
to see how competition between PFTs is modelled. Scanning through the Krinner et al. (2005) 
GBC paper, I am unable to find an equation like the following ...  
df/dt = establishment + encroachment into inferior PFTs - mortality - take over by superior 
PFTs  
where f is the fractional coverage of a PFT and I assume is the primary variable of interest. 

Response 

The following equations were added after P2219,L25 accordingly: “…which simulates the 
dynamic area covered by each PFT as functions of bioclimatic limitation, competition, 
mortality and establishment. The basic equations to calculate fractional cover of each PFT are 
listed below: 
 

 

 
where V is fractional vegetation cover (dimensionless); CA is crown area of individual plant 
(m2); P is population density (m-2); E is establishment rate (m-2 d-1); M is mortality rate (100% 
d-1), including components described in Sect. 2.2.1.” 

2. Second, the paper fails to acknowledge that by including more and more bioclimatic 
constraints we are essentially turning DGVMs into biogeography models. We all realize that 
the current generation DGVMs use phenomenological approaches. If the physiological 
processes in the model were sufficiently process-based we would never need bioclimatic 
constraints to include mortality. Yet, as modellers, we keep digging empirical evidence to find 
more and more bioclimatic constraints. Consider the three additional constraints used in this 
manuscript - tree mortality during extremely cold days, broadleaf tree mortality caused by 
spring frost and growing-season temperature limits to tree extension - all of which are 

PME
dt
dP

PCAV

×−=

×=



temperature related in one form or another. 

In absence of a df/dt equation, and an overall large stress on mortality due to bioclimatic 
constraints, I am inclined to ask to what extent has ORCHIDEE become a biogeography 
model, in which the spatial distribution of PFTs is determined primarily by their bioclimatic 
constraints and not by the explicit competition between them. 

Response 

This is a very good remark, touching some general and fundamental discussions on the 
current issues in DGVMs. We agree that an ideal DGVM should contain sufficient 
physiological processes that enable the model to realistically simulate vegetation distribution, 
with the least empirical bioclimatic constraints. However, for now, many well-established 
DGVMs like LPJ, Sheffield-DGVM and ORCHIDEE still contain empirical 
extreme-temperature constraints that work on vegetation dynamics (Sitch et al., 2008).  

On one hand, forest mortality is a complex process, involving interactions between 
management, disturbances and direct climatic effects on tree physiology. The lack of 
fundamental understanding of mortality prevents mechanistic parameterization of mortality in 
DGVMs (Steinkamp et al., 2015; Wang et al., 2012). Thus, modelers have to choose among 
various logical yet unconfirmed algorithms to calculate mortality, including growth efficiency 
related mortality (as Eq. 1) and climate constraints (McDowell et al., 2011; Steinkamp et al., 
2015).  

On the other hand, temperature-related constraints indeed appear to be the most reasonable 
explanation of treeline locations at high latitudes and high elevations (Richardson et al., 2009; 
Körner et al., 2004). The physiological pathways of cold temperature remaining unresolved, 
we think it acceptable to adopt temperature constraints derived from large scale measurements 
(Körner et al., 2004).  

 

References: 

Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 
713–732, 2004. 

McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. a, Raffa, K. F. and Stitt, M.: The 
interdependence of mechanisms underlying climate-driven vegetation mortality., Trends Ecol. Evol., 
26, 523–32, 2011. 

Richardson, A. D. and Friedland, A. J.: A review of the theories to explain arctic and alpine treelines 
around the world, J. Sustain. For., 28, 218–242, 2009. 

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., 
Friedlingstein, P., Jones, C. D., Prentice, I. C. and Woodward, F. I.: Evaluation of the terrestrial carbon 
cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global 
vegetation models (dgvms), Glob. Chang. Biol., 14, 2015–2039, 2008. 



Steinkamp, J. and Hickler, T.: Is drought-induced forest dieback globally increasing?, J. Ecol., 103, 
31–43, 2015. 

Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R. and Luo, Z.: Drought-induced tree mortality: 
ecological consequences, causes, and modeling, Environ. Rev., 20, 109–121, 2012. 

 

3. As a reader, I found several of the new metrics difficult to appreciate. The beta metric used 
in equation (7) and (8) is essentially the square root of sum of square of difference between 
model and observations over all PFTs. I am unable to understand why is this limited between 
0 and square root of 2. If there is only one PFT in a grid cell covering 100% of the grid cell 
and model simulates its fractional coverage to be zero, maximum value of beta is obtained 
equal to 1. If there are two PFTs covering the grid cell say 50% each, and say the model again 
simulates zero fractional coverage then beta = sqrt( (0.5-0)ˆ2 + (0.5-0)ˆ2) = 0.70. 

Why not use the already established root mean square error (RMSE). Beta in essence is very 
similar to RMSE. Why unnecessarily confuse your reader? 

The SV metric used in equation (9) is okay, but would make more sense if it were based on 
RMSE rather than the beta metric. 

Finally, another metric D (absolute difference) is introduced when comparing PFT groups and 
although an argument is made at the bottom of page 2231 why beta is not used, I am unable to 
follow this argument. 

Note that, with all these new metrics, the manuscript still does not compare the good old mean 
fractional coverages of PFTs with observations. What is instead shown is the composite color 
map, which if I am not wrong shows relative abundances and not the absolute values. I realize 
that a composite map can show more PFTs but relative abundances is a derived quantity and 
that’s not what the model simulates. In my humble opinion, composite maps should be 
complementary to the usual maps of absolute fractional coverages, not something that 
replaces them. 

Response 

Beta diversity (β) was firstly proposed as a metric to estimate the variation in species 
composition among different sites (Legendre et al., 2005; Legendre et al., 2013). Poulter et al. 
(2011) use the β metric to assess the reclassification similarity of different PFT maps derived 
from remotely-sensed land-cover datasets. The β metric was calculated as the root of the sum 
of square error over all PFTs (Eq. 7 and 8). It is larger than or equal to zero, and can be 2  
at maximum, in the limit case a grid cell has 100% of one single PFT in one dataset and has 
100% of another PFT in the other dataset.  

The β metric is similar to root mean square error (RMSE) which is widely used in many fields. 
But if we use RMSE with the following equation, the value will be dependent on the number 
of PFTs in the model or dataset. Unlike the β metric which has a fixed range ([0, 2 ]), RMSE 
will have smaller maximum value as the total number of PFTs increase, making it 



incomparable between different models.  
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where Vk,c,M is fractional abundance for PFT k and for grid cell c, simulated by model; Vk,c,O is 
fractional abundance for PFT k and for grid cell c, from observational dataset i; and n is the 
number of PFTs. 

Another way to calculate RMSE is to use the following equation: 
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where S is the number of datasets.  

This method also has a shortcoming: it gives one value for each PFT, and taking the mean 
RMSE over all PFTs is not appropriate because the redundant PFTs in a grid cell may lead to 
too optimistic results, blurring the information about the major PFTs in this grid cell. 

Considering the shortcomings of RMSE and use of the β metric in assessment of dissimilarity 
in PFT maps (Poulter et al., 2011; Ottlé et al., 2013), we think it appropriate to adopt β rather 
than RMSE to evaluate the model results in vegetation distribution.  

As for PFT groups, β could be calculated for each group using Eq. 7 and 8, saying that there 
are only two PFTs in the equation. But we used dissimilarity index (D) instead of β because, 
take needleleaf deciduous trees (PFT9) as an example: they are mainly distributed in eastern 
Siberia; outside this region, models and observational datasets have ~0 of needleleaf 
deciduous and ~1 of non-needleleaf deciduous; thus, the Northern Hemisphere average of 
βneedleleaf-deciduous will be very small due to “high agreement” outside Siberia. Unlike D, in β 
calculation, we cannot simply exclude the grid cells where the corresponding group does not 
exist, since β, by definition, takes into account the case when both maps give “absence” of the 
corresponding group in the grid cell. Therefore, we chose D for PFT groups rather than β. The 
last sentence on P2231 was revised as: “…because in that case the average βgroup,M_O (or 
βgroup,O_O) for Northern Hemisphere (20-90°N) would be too optimistic, considering that many 
of the pixels will be equal to zero, due to the limited distribution range of the corresponding 
group.” 

Compared to the usual maps of fractional coverage for each PFT, we believe that a composite 
color map is more concise and captures the main information. Nevertheless, following the 
comment, we added a figure in the Supplement (Fig. S3), showing fractional coverage for 
each PFT simulated by both OLD and NEW to allow a comparison of the distribution of all 
PFTs. 

 

Reference: 

Legendre, P., Borcard, D. and Peres-Neto, P. R.: Analyzing beta diversity: partitioning the spatial 
variation of community composition data, Ecol. Monogr., 75, 435–450, 2005. 



Legendre, P. and De Cáceres, M.: Beta diversity as the variance of community data: dissimilarity 
coefficients and partitioning, Ecol. Lett., 16, 951–63, 2013. 

Ottlé, C., Lescure, J., Maignan, F., Poulter, B., Wang, T. and Delbart, N.: Use of various remote 
sensing land cover products for plant functional type mapping over siberia, Earth Syst. Sci. Data, 5, 
331–348, 2013. 

Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S. and Zimmermann, N. E.: 
Plant functional type mapping for earth system models, Geosci. Model Dev., 4, 993–1010, 2011. 

 

Minor comments  

P2215,L7: Reword. Because it hasn’t been updated doesn’t necessarily imply it yields 
unrealistic results. 

Response 

This sentence was revised as: “The vegetation dynamics module (ORC-VD) within the 
process-based ecosystem model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic 
Ecosystems) has not been updated and evaluated since many years and is known to produce 
unrealistic results.” 

P2215,L24: “…and the return frequency…” unclear, please reword. 

Response 

This sentence was revised as: “…and the effects of frequency and severity of extreme cold 
events during the spin-up phase of the model.” 

P2216,L6-8: “To simulate…” reword. 
P2216,L10-17: can be better written, somewhat weak at present. 

Response 

The sentences at P2216,L6-17 were revised as: “To simulate past and future changes on long 
time scales, Earth system models must represent how the distribution and structure of 
ecosystems respond to changes in climate, CO2 and land use. This need provides the 
motivation for the development of dynamic global vegetation models (DGVM). In DGVMs, 
vegetation distribution, carbon stocks and fluxes exchanged with the atmosphere are 
simulated through fast processes (canopy exchange, soil heat and moisture dynamics, 
photosynthesis), intermediate processes (vegetation phenology, carbon allocation and growth, 
soil carbon decomposition) and slow processes (vegetation dynamics, recovery from 
disturbances) (Sitch et al., 2003; Krinner et al., 2005). DGVMs have been used to study the 
response of ecosystems to recent climate change (e.g., Piao et al., 2006) and to project the 
evolution of the coupled carbon-climate system (e.g., Cox et al., 2000). The coupling of 
vegetation dynamics with a climate model allows for the inclusion of vegetation-atmosphere 
interactions related to ecosystem migration in global climate simulations (Quillet et al., 
2010).” 



P2216,L21-22: Are you sure about CO2 and soil? My understanding is that biogeography 
models just use climate info. 

Response 

The early biogeography models simulated the natural potential distribution of ecosystems as a 
function of climate and soil properties (Prentice et al., 1992; Neilson et al., 1992). Then the 
new generation of process-based, equilibrium biogeographic models (Neilson, 1995; 
Haxeltine and Prentice, 1996) incorporated physiological CO2 effect, allowing direct CO2 
effects on both productivity and water use efficiency. So we think it appropriate to write the 
sentence like this. 

 

Reference:  

Haxeltine, A. and Prentice, I. C.: Biome3: an equilibrium terrestrial biosphere model based on 
ecophysiological constraints, resource availability, and competition among plant functional types, 
Global Biogeochem. Cy., 10, 693–709, 1996. 

Neilson, R., King, G. and Koerper, G.: Toward a rule-based biome model, Landsc. Ecol., 7, 27–43, 
1992. 

Neilson, R. P.: A model for predicting continental-scale vegetation distribution and water balance, Ecol. 
Appl., 5, 362–385, 1995. 

Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: A 
global biome model based on plant physiology and dominance, soil properties and climate, J. 
Biogeogr., 19, 117–134, 1992. 

 

P2217,L9: “at the end of each time step”, at this point the reader doesn’t know the time step 
of your model. 

Response 

We deleted “at the end of each time step” in this sentence accordingly.  

P2217,L11-19: This discussion seems unnecessary and confusing without introducing the 
reader to “variable-trait” approach. 

Response 

We included this discussion about newly developed “variable trait” approach to provide 
readers with some recent developments in DGVMs. To avoid confusion, the sentences at 
P2217,L10-15 were revised as: “The competence of any PFT is dependent on the underlying 
plant traits that define this PFT. The traits for a given PFT are fixed in most DGVMs, but can 
also be variable within PFTs based on trait-climate relationships derived from trait database. 
For example, Verheijen et al. (2013) conducted a variable trait simulation with the JSBACH 
DGVM for three leaf traits (Specific Leaf Area, and the constants defining the maximum rate 



of photosynthesis, vcmax, jmax), showing significant difference in predicted dominant PFTs 
compared with fixed trait simulation. Higgins et al. (2014) however, pointed out…” 

P2217,L26: “…evaluated for static runs…” -> “for runs in which geographical distribution of 
PFTs is specified” 

Response 

This sentence was revised accordingly as: “These new parameterizations have been evaluated 
for static runs in which geographical distribution of PFTs is specified based on observed 
satellite land-cover information.” 

P2218,L2-4: without any reference to “updates” you can simply say ORC-VD produces 
unrealistic results. 

Response 

We mentioned “updates” because the dynamic vegetation module had reasonable results in its 
first version in Krinner et al. (2005), but did not work well after the later developments in 
ORCHIDEE physical and biogeochemical processes. This sentence was revised as follows to 
avoid the improper logic that “not updated” necessarily leads to “unrealistic results”: 
“ORC-VD has not been updated and evaluated since the Krinner et al. (2005) description, and 
it produces unrealistic results in dynamic runs.” 

P2218,L17: “Vcmax/Jmax” just say photosynthesis parameters. At this point reader doesn’t 
know what these mean. 

Response 

Revised accordingly. 

P2218,L18-20: already mentioned in previous para. 

Response 

We deleted the repetitious part in this sentence as: “The results of the original module 
(ORC-HL-OVD) and of the new parameterization (ORC-HL-NVD) are evaluated (Sects. 4 
and 5).” 

P2219,L21: “…in which different processes…” -> “…in which processes different…” 

Response 

Revised accordingly.  

P2220,L2: How is population density related to fractional cover? What is the state variable in 
the model, is it fractional coverage or something else. 

Response 

Fractional cover equals to the product of population density (unit: m-2) multiplied by crown 
area of individual plant (unit: m2) (Krinner et al., 2005, Eq.1). 



The main state variable in ORCHIDEE is fractional coverage, and all the carbon variables are 
defined on fractional coverage.  

P2220,L2 and L12: “Mortality is defined as the percentage reduction…” “…(d-1)” these are 
not same units. 

Response 

The sentence at P2220,L2 was revised as: “Mortality is defined as the reduction in population 
density during each time step (daily).” 

P2220,L19: mortality by itself doesn’t determine competition.  

Response 

This sentence was revised as: “The dynamic mortality formulation MBG takes into account the 
influence of growth efficiency on tree mortality, and thus can simulate the competitiveness of 
tree PFTs under various climates…”. 

P2221: Isn’t the new mortality also instantaneous, just that the rate increases as Tmin becomes 
greater than Tmin,crit 

Response 

The major difference here between ORC-HL-OVD and NVD is that, in the old version, the 
tree PFTs will be completely eliminated once the minimum temperature in a day drops below 
the PFT-dependent threshold, while in new version, we defined an extreme coldness-induced 
mortality as a function of daily minimum temperature. To clarify it, the first sentence on 
P2221 was revised as: “…the corresponding tree PFT was completely eliminated.”  

P2221,L19: Is this competition? No, this is biogeographic limitation 

Response 

We agree that this is an empirical biogeographic limitation, but mortality can also be regarded 
as part of the PFTs’ competiveness. The boreal needleleaf deciduous trees have higher 
tolerance to extreme cold climate than other trees, thus in the model they have smaller 
mortality in face of coldness, and win against other tree PFTs in eastern Siberia through 
indirect competition. 

P2223,L3: “warm season air temperature (TWS)” Define this. Is this the average of the 
temperature in a year? 

Response 

In fact, Eq.4 is the definition of TWS. It is not the annual average, but a (similarly) running 
mean of daily mean temperature (see Krinner et al., 2005, Eq.3). 

P2223,L3: “…to exclude trees…” which tree PFTs 

Response 



This sentences was revised as: “…to exclude all tree PFTs…”. 

P2223,L27: So do you replace TWS by TGS in eq(4) 

Response 

Eq.4 is the calculation method for TWS. The TWS criterion existed in Krinner et al. (2005) but 
not in ORC-HL-OVD. We re-introduced a criterion (TGS) to constrain tree expansion to Arctic 
regions, based on more recent literature results (Körner et al., 2004; Randin et al., 2013). 

P2224: “Code availability” seems more suitable info for an Appendix. 

Response 

This Sect. 2.3 Code availability was moved to the end of the manuscript.  

P2225,L20: “…from bare ground” -> “where fractional coverage of all PFTs are zero” 
P2225,L22: “…cycling CRU-NCEP…” -> “repeated using” 

Response 

Revised accordingly.  

P2226,L14: STAT1 & STAT2 are not listed in Table 2. 

Response 

The original “STAT” in Table 2 was separated into “STAT1” and “STAT2” accordingly.  

P2226,L24-29: Not clear what is the purpose of this comparison. 

Response 

Since fire is an important vegetation succession process in boreal regions, we did a test 
similar to NEW but deactivated the fire module. In current ORC-HL, the fire module is still 
the relatively simple one as described in Krinner et al. (2005), rather than the recently 
developed SPITFIRE that has been implemented in ORCHIDEE standard version. In order to 
justify the use of the old fire module, we conducted this comparison of burned area simulated 
by ORC-HL (old fire) and ORCHIDEE standard (SPITFIRE). 

P2228,L3: “In order to account for uncertainties of observations…” -> “In order to account 
for uncertainties in observation-based estimates” 

Response 

Revised accordingly.  

P2230: “beta diversity” Isn’t this similar to RMSE? Why the fancy name? 
“β is bound to the interval [0, 2 ]” Not obvious why? Is β forced to be in this interval?  

Response 

Please refer to the previous response to “Major comments 3” 



P2230,L16: “In order to derive a bounded score” What does bounded implies here. 

Response 

The metric for model skill at simulating vegetation distribution (SV) is defined as the mean β 
of data vs. data divided by the mean β of model vs. data (Eq.9). If SV for a grid cell is larger 
than 1 for both models, indicating that the uncertainties in the observation-based estimates are 
too large to be qualified for model evaluation, this grid cell is excluded in the calculation of 
regional average SV. Thus, SV ranges from 0 to 1 (i.e., bounded range). If we inverse the 
numerator and denominator, SV will range from 0 to infinity, with lower values representing 
better performance, which is counter-intuitive. To clarify it, the following sentence was added 
after P2230,L21: “If SV,c>1 for both models, indicating that the observation-based estimates 
have too large uncertainties to be qualified for model evaluation, then this grid cell c is left 
out.” 

P2232,L14: “discrepancies” -> “uncertainty”  

Response 

Revised accordingly. 

P2233,L1-4: Does this still allow to compare means over a given period? 

Response 

Yes, the skill score for GPP (SG) is intended for evaluation against mean values over years. In 
this study, we used 10-year average (1999-2008) of data-driven MTE GPP for evaluation. On 
the contrary, for the evaluation of time series of GPP, other metrics like IOA (index of 
agreement, Willmott et al., 2012) may be more suitable.  

 

Reference: 

Willmott, C. J., Robeson, S. M. and Matsuura, K.: A refined index of model performance, Int. J. 
Climatol., 32, 2088–2094, 2012. 

P2233,L26: “…observed land-cover uncertainty…” -> “uncertainty in observation-based 
estimates of land cover” 

Response 

Revised accordingly. 

P2237,L13: “or 25%” 25% of what? 25% seems large. 

Response 

In this sentence, “or 25%” was revised as “or 25% of their mean”. 25% itself may seem large, 
but after multiplying by delta fraction of corresponding PFTs, the relative difference of total 
GPP in the grids will usually be less than 10%. 



P2238,L13-14: This is not exactly true because so many processes in the model affect 
turnover. I believe you can’t just take the turnover number in years from the model and 
multiply it with NPP. 

Response 

We agree that turnover time in the model is affected by many processes, and biomass is not 
directly derived by multiplying turnover with NPP. The sentence in P2238,L13-14 was 
revised accordingly as: “Biomass at equilibrium is positively correlated with both NPP and 
turnover time of carbon in biomass pools.” 

P2238,L24: “This bias may be caused by non-modeled forest management in this region.” No 
need to speculate. 

Response 

This sentence was deleted accordingly. 

P2239,L22: “Given the large…climate-carbon feedbacks.” Seems redundant.  

Response 

This sentence was deleted accordingly.  

P2241,L1-9: What’s the overall message? 

Response 

This discussion is to explain why decrease in water availability when soil freezing is activated 
(Fig. 12b) leads to inconsistent changes in tree fractional cover (Fig. 12a). It is because 
fractional cover equals to population density multiplied by individual crown area, and 
decrease in WA affects these two variables contrarily. To clarify it, the following sentence was 
added at P2241,L9: “Therefore, reductions in WA may lead to inconsistent changes in tree 
fraction, depending on their relative effects on crown area and population density.” 

P2243,L4-8: Not essentially. It depends how models implement bioclimatic constraints.  

Response 

The sentence at P2243,L4-7 was revised as: “…it is notable that this may bias DGVMs to 
produce unrealistic or unstable results, if vegetation distribution is sensitive to extreme 
temperatures in the model.” 

P2244,L3-6: How would this help?  

Response 

The plant traits that describe the characteristics of each PFT define the behavior of PFTs in 
terms of distribution and vegetation carbon cycle. Using fixed traits, the terrestrial vegetation 
is represented by a limited number of PFTs; while using variable traits allows more variation 
in vegetation responses in the model. Verheijen et al. (2013) showed in their trait-variation 



simulation an improvement in resulted dominant vegetation types compared to fixed trait 
simulation, as well as enhanced climate-vegetation feedbacks when the DGVM was coupled 
to atmosphere model. Therefore, we think trait-variation might be an interesting direction in 
future development, especially to simulate vegetation acclimation to paleo or future climates.  

P2252: Why start at 2? 

Response 

PFT1 in ORCHIDEE represents bare land. To clarify it, PFT1 was added in Table 1. 

P2256: Why not include biomass densities in this table as well? Table 4 can be merged with 
this table as well.  

Response 

Forest biomass density can be readily calculated as total biomass in Table 5 divided by forest 
area in Table 4, so we did not include it.  

P2267: Bad choice of colors. Please use better color scale.  

Response 

The color scale of Fig. 11 was changed.  

P2268,2269: Tell your reader what + and - values mean rather than having them interpret it 
themselves.  

Response 

Variable names were added in each sub figure of Fig. 12 and 13. 

 

Short Comment by D. Lunt 

Comment 

Dear authors,  

In my role as Executive editor of GMD, I would like to bring to your attention our Editorial:  

http://www.geoscientific-model-development.net/gmd_journal_white_paper.pdf 

http://www.geosci-model-dev.net/6/1233/2013/gmd-6-1233-2013.html 

This highlights some requirements of papers published in GMD, which is also available on 
the GMD website in the ‘Manuscript Types’ section:  

http://www.geoscientific-model-development.net/submission/manuscript_types.html  

In particular, please note that for your paper, the following requirements have not been met in 
the Discussions paper – please correct this in your revised submission to GMD.  

“– The paper must be accompanied by the code, or means of accessing the code, for the 



purpose of peer-review. If the code is normally distributed in a way which could compromise 
the anonymity of the referees, then the code must be made available to the editor. The 
referee/editor is not required to review the code in any way, but they may do so if they so 
wish. “ 

“– All papers must include a section at the end of the paper entitled "Code availability". In 
this section, instructions for obtaining the code (e.g. from a supplement, or from a website) 
should be included; alternatively, contact information should be given where the code can be 
obtained on request, or the reasons why the code is not available should be clearly stated. ”  

Yours,  

Dan Lunt 

 

Response 

Dear Dan Lunt, 

Thank you for the comment.  

Following your comment, we carefully read these documents, and moved the original “Sect. 
2.3 Code availability” to the end of the paper, with minor changes (in red): “The ORCHIDEE 
model used as a starting point in this study is ORCHIDEE-MICT rev1322. The source code 
can be obtained at 
http://forge.ipsl.jussieu.fr/orchidee/browser/branches/ORCHIDEE-MICT/ORCHIDEE?rev=1
322. A detailed documentation and the forcing data needed to drive ORCHIDEE can be found 
at http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation and 
http://forge.ipsl.jussieu.fr/orchidee/wiki/Forcings. ORC-HL-NVD is derived from rev1322 
with the modifications presented in Sect. 2.2, the source code of which can be obtained upon 
request (http://labex.ipsl.fr/orchidee/index.php/contact). The modifications of ORC-HL-NVD 
from rev1322 are also implemented in ORCHIDEE standard version (trunk), recorded as the 
difference between rev2672 (source code: 
http://forge.ipsl.jussieu.fr/orchidee/browser/trunk/ORCHIDEE?rev=2672) and rev2658 
(source code: http://forge.ipsl.jussieu.fr/orchidee/browser/trunk/ORCHIDEE?rev=2658)” 
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Abstract 18 

Processes that describe the distribution of vegetation and ecosystem succession after 19 

disturbance are an important component of dynamic global vegetation models (DGVMs). The 20 

vegetation dynamics module (ORC-VD) within the process-based ecosystem model 21 

ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) has not been 22 

updated and evaluated since many years and does not match the progress in modeling the rest 23 

of the physical and biogeochemical processes. Therefore, ORC-VD is known to produce 24 

unrealistic results. This study presents a new parameterization of ORC-VD for mid-to-high 25 

latitude regions in the Northern Hemisphere, including processes that influence the existence, 26 

mortality and competition between tree functional types. A new set of metrics is also 27 

proposed to quantify the performance of ORC-VD, using up to five different datasets of 28 



 2 

satellite land cover, forest biomass from remote sensing and inventories, a data-driven 1 

estimate of gross primary productivity (GPP) and two gridded datasets of soil organic carbon 2 

content. The scoring of ORC-VD derived from these metrics integrates uncertainties in the 3 

observational datasets. This multi-dataset evaluation framework is a generic method that 4 

could be applied to the evaluation of other DGVM models. The results of the original ORC-5 

VD published in 2005 for mid-to-high latitudes and of the new parameterization are evaluated 6 

against the above-described datasets. Significant improvements were found in the modeling of 7 

the distribution of tree functional types north of 40°N. Three additional sensitivity runs were 8 

carried out to separate the impact of different processes or drivers on simulated vegetation 9 

distribution, including soil freezing which limits net primary production through soil moisture 10 

availability in the root zone, elevated CO2 concentration since 1850, and the effects of 11 

frequency and severity of extreme cold events during the spin-up phase of the model.the 12 

return frequency of cold climate extremes causing tree mortality during the spin-up phase of 13 

the model. 14 

 15 

1 Introduction 16 

The terrestrial biosphere plays an important role in the carbon (Schimel, 1995; Ciais et al., 17 

2013), water (Oki and Kanae, 2006) and energy balances of the Earth (Trenberth et al., 2009). 18 

Interactions between vegetation and the atmosphere involve complex biophysical and 19 

biogeochemical processes and feedbacks (Heimann and Reichstein, 2008; Foley et al., 2003). 20 

To simulate past and future changes on long time scales, Earth system models must represent 21 

how the distribution and structure of ecosystems respond to changes in climate, CO2 and land 22 

use. This need provides the motivation for the development of dynamic global vegetation 23 

models (DGVM). In DGVMs, vegetation distribution, carbon stocks and fluxes exchanged 24 

with the atmosphere are simulated through fast processes (canopy exchange, soil heat and 25 

moisture dynamics, photosynthesis), intermediate processes (vegetation phenology, carbon 26 

allocation and growth, soil carbon decomposition) and slow processes (vegetation dynamics, 27 

recovery from disturbances) (Sitch et al., 2003; Krinner et al., 2005). DGVMs have been used 28 

to study the response of ecosystems to recent climate change (e.g., Piao et al., 2006) and to 29 

project the evolution of the coupled carbon-climate system (e.g., Cox et al., 2000). The 30 

coupling of vegetation dynamics with a climate model allows for the inclusion of vegetation-31 

atmosphere interactions related to ecosystem migration in global climate simulations (Quillet 32 
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et al., 2010).To simulate past and future changes on long time scales, Earth system models 1 

must represent how the distribution of terrestrial ecosystems adjusts in response to changes in 2 

climate, CO2 and land use. This need provides the motivation for the development of dynamic 3 

global vegetation models (DGVM), which couple fast processes (canopy exchange, soil heat 4 

and moisture dynamics, photosynthesis), intermediate processes (vegetation phenology, 5 

carbon allocation and growth, soil carbon decomposition) and slow processes (vegetation 6 

dynamics, recovery from disturbances) to simulate the distribution of vegetation, its carbon 7 

stocks and the fluxes exchanged with the atmosphere (Sitch et al., 2003; Krinner et al., 2005). 8 

DGVMs have been used to study the response of ecosystems to recent climate change (e.g., 9 

Piao et al., 2006) and to project the evolution of the coupled carbon-climate system (e.g., Cox 10 

et al., 2000).  11 

The representation of vegetation structural dynamics in DGVMs builds on principles 12 

previously applied in biogeography models and “gap models” (Sitch et al., 2003). 13 

Biogeography models define the patterns of vegetation physiognomy based on plant 14 

functional types (PFT) driven by temperature, precipitation, CO2, climate-related disturbances, 15 

and soil properties (Prentice et al., 1992; Haxeltine and Prentice, 1996). Gap models on the 16 

other hand simulate forest dynamics at patch scale, including demographic processes 17 

(recruitment, growth, death), competition, and disturbance (Prentice and Leemans, 1990; 18 

Bugmann, 2001). The coupling of vegetation dynamics with a climate model allows for the 19 

inclusion of vegetation-atmosphere interactions related to ecosystem migration in global 20 

climate simulations (Quillet et al., 2010).  21 

Vegetation distribution largely depends on bioclimatic limits and competition between species, 22 

which are regrouped into PFTs in most DGVMs (Woodward, 1987; Sitch et al., 2003; Krinner 23 

et al., 2005). Bioclimatic limits consist of direct limiting factors (e.g., minimum temperature 24 

for survival) and indirect limitations that control primary productivity and in turn the 25 

competitive ability of a PFT (e.g., optimal temperature for photosynthesis, various 26 

temperature and moisture phenological controls of leaf-out and senescence). PFTs with a 27 

better tolerance to extreme climate conditions and higher growth efficiency during the 28 

growing season are more competitive than others, and their distribution will therefore expand 29 

at the end of each time step. The competence of any PFT is dependent on the underlying plant 30 

traits that define this PFT. The traits for a given PFT are fixed in most DGVMs, but can also 31 

be variable within PFTs based on trait-climate relationships derived from trait database. For 32 
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example, Verheijen et al. (2013) conducted a variable trait simulation with the JSBACH 1 

DGVM for three leaf traits (Specific Leaf Area, and the constants defining the maximum rate 2 

of photosynthesis, vcmax, jmax), showing significant difference in predicted dominant PFTs 3 

compared with fixed trait simulation. In most DGVMs, the traits for a given PFT are fixed, 4 

but Verheijen et al. (2013) conducted a variable trait simulation with the JSBACH model for 5 

three leaf traits (Specific Leaf Area, and the constants defining the maximum rate of 6 

photosynthesis, vcmax, jmax) based on observed trait-climate relationships, emphasizing the 7 

need for climate-dependent and regional trait-variation modeling. Higgins et al. (2014) 8 

however, pointed out the inherent limitations in Verheijen et al. (2013) using a statistical 9 

method to parameterize plant trait diversity, and proposed that the focus should not be on trait 10 

values, but rather on the trade-offs between traits (Scheiter et al., 2013). In this study, we will 11 

use a fixed trait approach to describe the characteristics of each PFT in ORCHIDEE (the 12 

PFTs are listed in Table 1). 13 

ORCHIDEE is the terrestrial surface component of the Institut Pierre Simon Laplace (IPSL) 14 

Earth system model. Since the first model description by Krinner et al. (2005), the 15 

representation of existing processes has been improved and new processes have been 16 

implemented, such as a physically-based multi-layer soil hydrology scheme (de Rosnay et al., 17 

2002), and a scheme describing soil freezing and its effects on root-zone soil moisture and 18 

soil thermodynamics (Gouttevin et al., 2012). These new parameterizations have been 19 

evaluated for static runs in which geographical distribution of PFTs is specified based on 20 

observed satellite land-cover informationPFT maps were prescribed based on observed 21 

satellite land-cover information. Yet, their influence on the simulated PFT distribution when 22 

the vegetation dynamics module is activated has not been addressed. The original vegetation 23 

dynamics module in ORCHIDEE (hereafter “ORC-VD”) described by Krinner et al. (2005) 24 

was adapted from the LPJ model (Sitch et al., 2003) with minor modifications. Unlike the rest 25 

of the model, ORC-VD has not been updated since the Krinner et al. (2005) description, and it 26 

produces unrealistic results in dynamic runs.which produces unrealistic results in dynamic 27 

runs. For example, Woillez et al. (2011) have shown that the boreal forest area is largely 28 

modeled as broadleaf deciduous, whereas in reality it is mainly comprised of needleleaf trees.  29 

The work described here improves ORC-VD, with a focus on Northern Hemisphere 30 

vegetation dynamics. Different sets of recent observations have been used to evaluate model 31 

performance using quantitative metrics, either related directly to the spatial distribution of 32 
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vegetation (satellite-observed land-cover and tree fraction) or resulting from it (data-driven 1 

spatial distribution of gross primary production (GPP), biomass and soil carbon stocks). The 2 

evaluation methodology developed here could be used for other DGVMs as well, and is thus 3 

of general interest for the DGVM modeling community.  4 

We present a new parameterization of vegetation dynamics in the ORCHIDEE High Latitude 5 

version (ORC-HL) described by Gouttevin et al. (2012), with modifications to the equations 6 

and parameters describing tree mortality, thermal constraints and a calibration of 7 

photosynthesis parameters (vcmax/jmax) (Sect. 2.2). The results of the original module (ORC-8 

HL-OVD) and of the new parameterization (ORC-HL-NVD) are evaluated against different 9 

satellite land-cover products, forest inventory data for forest area and biomass, and data-10 

driven GPP and soil carbon products (Sect. 4 and 5). Because the biogeochemical and 11 

physical processes that characterize high latitudes interact in a complex way with the 12 

processes that control vegetation structure, in Sect. 6 we performed and analyzed factorial 13 

model simulations changing one process or driver at a time, to isolate their impacts on 14 

vegetation distribution. In addition, because the initial distribution of the vegetation in 1850 is 15 

sensitive to pre-industrial climate conditions, we also tested the effect of the return frequency 16 

of cold extremes relating to tree mortality during the spin-up phase of the model and 17 

discussed its implications. 18 

 19 

2 Model description 20 

2.1 ORCHIDEE High Latitude 21 

ORCHIDEE consists of two main modules: SECHIBA (the surface-vegetation-atmosphere 22 

transfer scheme) which simulates energy and water exchanges between the atmosphere and 23 

land surface at a half-hourly time-step, as well as photosynthesis based on enzyme kinetics 24 

(Ducoudré et al., 1993; de Rosnay and Polcher, 1998), and STOMATE (Saclay Toulouse 25 

Orsay Model for the Analysis of Terrestrial Ecosystems, Viovy, 1997) which simulates 26 

carbon dynamics at a daily time-step, including carbon allocation, biomass accumulation, 27 

litter and soil carbon decomposition, and phenology. STOMATE includes a dynamic 28 

vegetation module with equations adapted from the LPJ model (Sitch et al., 2003) as 29 

described by Krinner et al. (2005). 30 
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ORCHIDEE High Latitude version (ORC-HL) is an evolution of ORCHIDEE including 1 

additional high latitude processes, described by Gouttevin et al. (2012). In particular, the 2 

simple 2-layer soil hydrology (Ducoudré et al., 1993) was replaced by an 11-layer diffusion 3 

scheme (de Rosnay et al., 2002), which describes water infiltration and diffusion through soil 4 

in a physically-based way. A soil-freezing scheme is implemented in the 11-layer model to 5 

calculate liquid and ice water fractions in each soil layer. This scheme has been shown to 6 

improve the representation of pan-Arctic river discharge and soil thermal regimes in 7 

permafrost regions (Gouttevin et al., 2012). The basic structure of ORC-HL used in this study 8 

is shown in Fig. S1 in the Supplement,The version number of the ORC-HL used in this study 9 

is ORCHIDEE rev1322. Its basic structure is shown in Fig. S1 in the Supplement, in which 10 

different processes different from Krinner et al. (2005) are marked red.  11 

2.2 Modifications to ORCHIDEE vegetation dynamics 12 

Figure 1 is a schematic of ORC-VD, which simulates the dynamic area covered by each PFT 13 
as functions of bioclimatic limitation, competition, mortality and establishment. The basic 14 
equations to calculate fractional cover of each PFT are listed below: 15 

PME
dt
dP

PCAV

×−=

×=
(1) 16 

where V is fractional vegetation cover (dimensionless); CA is crown area of individual plant 17 

(m2); P is population density (m-2); E is establishment rate (m-2 d-1); M is mortality rate (d-1), 18 

including components described in Sect. 2.2.1. The modifications made in this study are 19 

described in the following, shown red in Fig. 1. 20 

2.2.1 Tree mortality 21 

Mortality is defined as the percentage reduction in population density at the end of each 22 

dayduring each time step (daily). The overall tree mortality rate (maximum 1) is the 23 

summation of each component including background mortality (MBG), extreme coldness (MEC) 24 

and spring frost (MSF) related mortalities, fire-induced mortality, and light competition-25 

induced mortality. 26 

Background mortality 27 

In ORC-HL-OVD, the default calculation of mortality rate for tree PFTs was the inverse of a 28 

PFT-specific longevity parameter (30 years for tropical trees, 40 years for temperate trees, 80 29 
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years for boreal trees). An alternative calculation in ORC-HL-OVD was a dynamic mortality 1 

related to growth efficiency, inherited from LPJ (Sitch et al., 2003): 2 

365
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    (21) 3 

where MBG is the dynamic background mortality for tree PFTs (d-1); kBG is maximum 4 

background mortality rate (yr-1), set to 0.1 for all tree PFTs in ORC-HL-OVD; and V is vigor 5 

or growth efficiency, defined as the ratio of the net annual biomass increment to maximum 6 

LAI of the preceding year. V equals to 0 in case of net annual biomass loss. 7 

The default calculation defines a constant mortality for each PFT in all grid cells, without 8 

considering the variations in mortality of that PFT caused by adaptation to different climate 9 

conditions. The dynamic mortality formulation MBG takes into account the influence of 10 

growth efficiency on tree mortality, and thus can simulate the competitiveness of tree PFTs 11 

competition between tree PFTs under various climates, but it does not consider longevity 12 

differences between PFTs. In the new version, ORC-HL-NVD, the dynamic MBG formulation, 13 

Eq. (12), is again adopted, but kBG is set to different values for tropical (0.14), temperate (0.1) 14 

and boreal (0.05) tree PFTs, proportional to the inverse of their respective longevities in the 15 

original ORC-HL-OVD model code. 16 

Tree mortality during extremely cold days 17 

In ORC-HL-OVD, when instantaneous minimum temperature on each day (Tmin) drops below 18 

a PFT-dependent threshold (Tmin,crit , Table 1), the corresponding tree PFT was completely 19 

eliminated instantly. This assumption makes the vegetation distribution highly sensitive to the 20 

minimum temperature during a few extremely cold days, which varies from year to year. In 21 

reality, trees within a grid cell are unlikely to all die during a single extremely cold event, and 22 

moreover, at the resolution at which global models usually run (0.5° or coarser), a single 23 

minimum temperature cannot depict the heterogeneity within each grid cell. Therefore, we 24 

replaced the original threshold-based LPJ equation by a linearly increasing mortality rate as a 25 

function of daily minimum temperature, such that when Tmin < Tmin,crit 26 

)( minmin,critECEC TTkM −=     (23) 27 

where MEC is mortality caused by extreme coldness in winter (d-1); kEC =0.04, estimated by 28 

trial and error based on the return frequency of below-threshold Tmin both within and between 29 

years according to the CRU-NCEP climate forcing.  30 
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The PFT-specific Tmin,crit (Table 1) confines the distribution of each tree PFT to their 1 

adaptable temperature zones. Boreal needleleaf deciduous trees (PFT9) have no Tmin,crit value, 2 

meaning that they are insensitive to extreme coldness, and thus can prevail over other boreal 3 

tree PFTs in the model in regions with extreme winters such as eastern Siberia. 4 

Broadleaf tree mortality caused by spring frost 5 

Broadleaf species have the specific property of being vulnerable to freezing events that occur 6 

after the spring leaf-out. Spring frost can cause damage to leaf buds, developing shoots and 7 

flowers, leading to reproductive failure and reduced peak growing-season leaf area index. 8 

These effects may result in a natural selection of species with a higher frost resistance, and 9 

affect species distribution in the long term (Augspurger, 2009). Kollas et al. (2013) found that 10 

minimum temperature during bud-break was a better predictor of the climate space of seven 11 

broadleaf tree species in Europe than winter temperature or mean growing-season temperature.  12 

The change of temperature variability projected by climate models (Cohen et al., 2012; Screen, 13 

2014) may increase or alleviate the risk of spring frost damage. Warmer winters and springs 14 

and earlier leaf presence may lead to a greater exposure of mid-latitude broadleaf species to 15 

spring frost events (Bokhorst et al., 2009; Gu et al., 2007), while the severity of individual 16 

cold spells may also decrease because of a faster warming of the Arctic compared to mid-17 

latitudes (Screen, 2014). DGVMs must therefore represent spring frost induced mortality if 18 

they are to account for the response of broadleaf trees to altered climate variability.  19 

We added a frost damage limitation to the distribution of the two broadleaf deciduous tree 20 

PFTs (PFT6 and PFT8). After leaf-out in the model, if daily minimum temperature drops 21 

below a threshold of –3°C (Kollas et al., 2013), tree mortality is assumed to increase with 22 

decreasing temperature. This frost-induced mortality is multiplied by the period elapsed since 23 

leaf-out, because the more time that has elapsed, the larger the mass of vulnerable foliage. 24 

Thus, during the consecutive 40 days after leaf-out when, 25 

Tmin < TSF,crit and t – tleaf-out < 40 days 26 

MSF(t,Tmin), the spring frost induced mortality for broadleaf deciduous trees in PFT6 and PFT8 27 

(d-1), is given by: 28 
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where TSF,crit =–3°C; and tleaf-out is the day of the year when leaf-out was simulated in the 2 

model. 3 

2.2.2 Growing-season temperature limits to tree extension 4 

In the version of ORCHIDEE described by Krinner et al. (2005), a warm season air 5 

temperature (Tws) limit was set to exclude all trees PFTs from cold Arctic regions, with Tws 6 

being required to exceed 7°C for trees to become established or be able to stay at a grid point. 7 

Tws was calculated using a linear relaxation method (a substitute for the running mean method 8 

to reduce computer memory requirement) given by: 9 
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    (54) 10 

where ∆t = time-step, 1day; τ = relaxation time of 60 day; and Tdaily = daily mean air 11 

temperature. 12 

In ORC-HL-OVD, used as a starting point for this study, this Tws criterion had been removed. 13 

In ORC-HL-NVD, we re-introduced a growing-season temperature criterion to constrain tree 14 

extension to Arctic regions, but modified the original formulation using recent results. In their 15 

global study of temperature controls on high altitude treelines, Körner et al. (2004) found a 16 

growing-season mean soil temperature of 6.7±0.8°C to be the most consistent criterion to 17 

predict treelines across different climate zones. Other predictors tested (growing-season 18 

length, thermal sums and thermal extremes) were shown to have too large amplitudes and 19 

therefore be less suitable indicators of the altitudinal treeline position (Körner et al., 2004). 20 

We assumed that the cold limits of trees at both high altitude and high latitude are similar, 21 

which is supported by the recent study of Randin et al. (2013), and thus used the Körner et al. 22 

(2004) empirical results to re-define the thermal constraint on the existence of trees (treeline) 23 

in ORCHIDEE. 24 

Combining the same definition of growing season as Körner et al. (2004), i.e., the period 25 

during which 10 cm depth soil temperature exceeds 3.2°C, with their linear relationship 26 

between soil temperature in the root zone and canopy air temperature, we prescribe the large-27 

scale thermal limitation of trees in ORC-HL-NVD as follows: mean weekly air temperature 28 

during the growing season (TGS) must exceed 7°C, corresponding to TGS,root larger than 6.7°C; 29 
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the growing season is calculated as the period when weekly air temperature is greater than 1 

0°C, which corresponds closely to Troot above 3.2°C. The new TGS criterion shows more 2 

consistency with the current treeline positions than the earlier Tws criterion described by 3 

Krinner et al. (2005) (Fig. S2). 4 

2.2.3 Modifying vcmax and jmax 5 

The values of the maximum rate of Rubisco carboxylase (vcmax,opt) and maximum rate of 6 

photosynthetic electron transport (jmax,opt) for each PFT were revised using the results of the 7 

ORCHIDEE parameter optimization against flux tower measurements from Kuppel et al. 8 

(2012). Corresponding values are given in Table 1. In ORC-HL-OVD, vcmax (or jmax) is the 9 

product of vcmax,opt (or jmax,opt) and a leaf efficiency factor (erel), itself determined by relative 10 

leaf age (arel). arel is defined as the ratio of the calculated leaf age since leaf-out considering 11 

four leaf cohorts to a PFT-dependent leaf longevity (acrit in Table 1) (Krinner et al., 2005). As 12 

the value of arel increases with time since tleaf-out, erel increases from 0 to 1 quickly at the 13 

beginning of the growing season, and then gradually decreases if arel > 0.5 when leaves 14 

become senescent near the end of the growing season. This rule was originally implemented 15 

to simulate the influence of seasonal variation in leaf age on photosynthetic activity for all 16 

tree PFTs. However, unlike deciduous trees, temperate and boreal evergreen needleleaf trees 17 

can keep their needles for 4-6 consecutive years, or even longer for some species (Richardson 18 

et al., 2000), resulting in a rather constant leaf age. Thus, we removed the dependence of vcmax 19 

and jmax on leaf age for temperate and boreal evergreen needleleaf trees (PFTs 4 and 7) in 20 

ORC-HL-NVD. 21 

2.3 Code availability 22 

The ORCHIDEE model used as a starting point in this study is ORCHIDEE rev1322. The 23 

source code can be obtained at 24 

http://forge.ipsl.jussieu.fr/orchidee/browser/branches/ORCHIDEE-25 

MICT/ORCHIDEE?rev=1322. A detailed documentation and the forcing data needed to drive 26 

ORCHIDEE can be found at http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation and 27 

http://forge.ipsl.jussieu.fr/orchidee/wiki/Forcings. ORC-HL-NVD is derived from rev1322 28 

with the modifications presented in the Sect. 2.2, the source code of which can be obtained 29 

upon request. 30 

 31 
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3 Datasets and methods 1 

3.1 Simulation protocol 2 

Six different runs with ORC-HL (Table 2) were performed to test the impact of the new 3 

dynamic vegetation parameterizations and parameter calibrations. Since the modifications in 4 

vegetation dynamics module were mainly for temperate and boreal PFTs, the simulation 5 

domain is Northern Hemisphere from 20°N to 90°N. All runs were conducted at 2° resolution. 6 

The climate forcing files were from the 6-hourly CRU-NCEP dataset 7 

(http://dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2012/readme.htm), resampled from 8 

their original 0.5° data. CRU-NCEP is widely used as standard climate forcing in current 9 

offline terrestrial models, such as MsTMIP (Multi-scale synthesis and Terrestrial Model 10 

Intercomparison Project, Huntzinger et al., 2013) and TRENDY (Trends in net land-11 

atmosphere carbon exchange over the period 1980-2010). Tests with different resolutions 12 

were carried out, showing quite similar results in the simulated vegetation distribution and 13 

carbon fluxes and pools (results not shown), indicating that the results presented below do not 14 

depend significantly on the spatial resolution of input climate and soil property data within the 15 

tested resolution range [0.5°, 2°].  16 

Each simulation was preceded by a spin-up from bare ground (i.e., fractional cover of PFT1 17 

equals to 1 everywhere). For the standard run with the new vegetation dynamics 18 

parameterizations (NEW), in spin-up, ORC-HL-NVD was forced by cycling repeatedly using 19 

CRU-NCEP 1901–1920 climate data and constant pre-industrial CO2 concentration (285 ppm) 20 

for 250 years. Then the soil carbon sub-model was driven by the previous outputs for 1000 21 

years for the soil carbon pools to reach equilibrium; this was followed by another 50 years of 22 

ORC-HL-NVD to complete the spin-up. Each transient simulation from 1850 to 2010 was 23 

started from the last year of the spin-up, forced by historical CRU-NCEP climate and rising 24 

CO2 concentration. No climate data were available before 1901, so for that period, randomly 25 

selected years between 1901 and 1920 were used. The OLD run used the original vegetation 26 

dynamics equations from Krinner et al. (2005) in the ORC-HL version so that comparing 27 

NEW and OLD allows us to evaluate the improvements listed. The other four runs (EXP1–3, 28 

STAT) were similar to NEW except for one different setting for each run (Table 2). In EXP1, 29 

we deactivated soil freezing to test its impact on vegetation distribution. In EXP2, we used 30 

fixed CO2 concentration at 285 ppm to test the sensitivity of vegetation distribution to rising 31 

CO2. In EXP3, the model spin-up was forced by the CRU-NCEP 1901–1920 averaged 32 
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climatology instead of the 20-year cycle, in order to examine the impact of interannual 1 

climate variability on the initial PFT distribution after spin-up. In STAT runs, dynamic 2 

vegetation was deactivated and a fixed land-cover map was prescribed, in order to separate 3 

the effect of simulated versus observed PFT fractions on GPP, biomass and soil carbon. In 4 

STAT1 and STAT2, the PFT map was prescribed from ESA CCI land cover v1.1 (ESA, 5 

Bontemps et al., 2013, http://maps.elie.ucl.ac.be/CCI/viewer/index.php) and a synergetic 6 

land-cover product (SYNMAP, Jung et al., 2006), respectively.  7 

Fires play an important role in determining vegetation patterns by preventing trees from 8 

achieving their climate potentials of height, biomass and fractional cover (Bond et al., 2005). 9 

Fire occurrence in ORC-HL is formulated using the fire model of Thonicke et al. (2001), 10 

based on litter quantity and moisture (Krinner et al., 2005). In this study, the fire module was 11 

activated in all the runs. But in a separate test, ORC-HL-NVD was run without the fire 12 

module. Compared to NEW, this simulation showed a small increase (5%) in the total 13 

temperate and boreal forest area in Northern Hemisphere (20°N–90°N) without fire. In this 14 

study, we used the relatively simple Thonicke et al. (2001) fire module, but compared the 15 

results with those obtained with SPITFIRE (Thonicke et al., 2010), a more sophisticated fire 16 

model, which explicitly simulates natural and human ignition, fire propagation and fuel 17 

combustion (Yue et al., 2014). The average annual burned area during 1981–2010 simulated 18 

by the Thonicke et al. (2001) fire module (as implemented in ORC-HL) is 2.7 Mkm2 in 19 

Northern Hemisphere forests, similar to that simulated by SPITFIRE (2.1 Mkm2, 20 

implemented in ORCHIDEE standard version). 21 

In this study, agriculture is excluded from all the dynamic runs in order to simulate the 22 

potential vegetation distribution without croplands and pasture. The results were post-23 

processed for comparison with observed vegetation cover or carbon stocks. For vegetation 24 

cover, this is done by subtracting the observed cropland fraction from the simulated natural 25 

PFT fraction in each grid: 26 

)( ,,,, ccroporigckck VVV −×= 1     (56) 27 

where Vk,c,orig is the model simulated fractional vegetation cover for PFT k (except C3 and C4 28 

crops) and for grid cell c; Vk,c is the fraction of PFT k for grid cell c, after post-processing; and 29 

Vcrop,c is observed fraction of cropland for grid cell c, in this study we use croplands estimated 30 

from the ESA land-cover map. 31 
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For total GPP and soil carbon stocks, since ORCHIDEE outputs the values per unit PFT, 1 

which are multiplied by PFT fractions and summed up to derive the total amount, the results 2 

from dynamic runs were post-processed using the following equation (taking GPP as an 3 

example), to compare with observational data: 4 

∑ ×+×=
n

k ccropccropckckc VGPPVGPPGPP ,,,, )(     (76) 5 

where GPPk,c is GPP for natural PFT k and for grid cell c (g C m-2 yr-1 PFT-1), simulated by 6 

dynamic runs; GPPcrop,c is GPP for crops (including C3 and C4) for grid cell c (g C m-2 yr-1 7 

PFT-1), simulated by STAT1 (prescribed from the ESA map); GPPc is total GPP for grid cell 8 

c (g C m-2 yr-1), after post-processing; and n=11, the number of natural PFTs. 9 

3.2 Evaluation datasets 10 

We use satellite observations of land cover translated into the PFTs of ORCHIDEE to 11 

evaluate the simulated vegetation distribution. In order to account for uncertainties of 12 

observationsin observation-based estimates, we used three different land-cover maps: the 13 

ESA CCI land cover v1.1 for year 2010, GLC2000 (JRC, 2003) and ISLSCP II vegetation 14 

continuous field for 1992-1993 (Defries and Hansen, 2009). The first two land-cover products 15 

(hereafter “ESA” and “GLC”) were converted from their original classifications (22 16 

categories based on LCCS system) into PFT maps, using the cross-walking method of Poulter 17 

et al. (2011). The third product (hereafter “VCF”) provides the fractional cover of bare ground, 18 

herbaceous vegetation and forest (further split into evergreen or deciduous, and broadleaf or 19 

needleleaf), and was merged with climate zones of the Köppen-Geiger classification system 20 

to resolve to PFT classes, based on Poulter et al. (2011). For Siberia, two additional regional 21 

land-cover maps were used, the PFT map of Siberia at 1km scale from Ottlé et al. (2013) 22 

based on the GlobCover2005 product (Bicheron et al., 2006), hereafter “OSIB”, and the 23 

Russian land-cover dataset produced by International Institute for Applied Systems Analysis 24 

(Schepaschenko et al., 2011), hereafter “IIASA”, which was converted into PFT map using 25 

the cross-walking method of Poulter et al. (2011). Along with ESA, GLC and VCF, the five 26 

land-cover products were used to evaluate the model skill at simulating the vegetation 27 

distribution across Siberia. The PFT maps were aggregated at 2°×2°, matching the resolution 28 

run by ORCHIDEE in this study. Figure 2 displays an RGB composite-color map of the 29 

vegetation fractional cover partitioned between broadleaf (including evergreen and deciduous, 30 
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red), needleleaf evergreen (green), and needleleaf deciduous (blue) trees, from the five PFT 1 

maps. 2 

Simulated GPP was evaluated using the data-derived field obtained from FLUXNET data, 3 

satellite fAPAR and gridded climate and land-cover data using a model tree ensemble (Jung et 4 

al., 2011), hereafter “MTE”. A recent forest carbon density map (Thurner et al., 2013) for 5 

Northern Hemisphere boreal and temperate forests (30°N–80°N), derived from radar remote 6 

sensing of growing-stock volume (GSV), was used to evaluate modeled forest biomass. For 7 

soil carbon stocks, the simulated soil carbon density was compared with the Harmonized 8 

World Soil Database (HWSD, 0–1m depth, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and the 9 

Northern Circumpolar Soil Carbon Database (NCSCD, Hugelius et al., 2013). Since the 10 

model results for soil carbon are not fully comparable to NCSCD due to lack of peatland 11 

carbon accumulation and cryoturbation processes in ORC-HL, metrics were not applied to 12 

soil carbon for establishing a model score. All gridded observation-derived data were 13 

aggregated at 2°×2°. 14 

Apart from gridded data products based on satellite observations, independent forest 15 

inventory data at country/region level as compiled by Pan et al. (2011), including forest area 16 

and biomass, were also compared with model results. 17 

3.3 Metrics for model evaluation 18 

Different metrics can be used to quantify the agreement between model results and 19 

observations, including Pearson correlation, model-to-data deviation, mean error, root mean 20 

square error (see Kelley et al., 2013; Cadule et al., 2010). However, most of these metrics do 21 

not consider observational uncertainty. When there are multiple observations available and no 22 

particular dataset can be proved to be more accurate than others, which is the case for land 23 

cover, the choice of an observational dataset for model evaluation may have a large influence 24 

on the model performance score. In order to quantify the agreement between simulated and 25 

observed fields, as well as to integrate the uncertainty of observations, a metric normalized by 26 

observational uncertainty (Skill, S) was defined to evaluate model performances in terms of 27 

PFT fractional cover, GPP and forest biomass. For the following equations, M refers to the 28 

model results and O to observational data. 29 
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3.3.1 Metrics for PFT fractional abundance evaluation 1 

For PFT fractions, a beta diversity metric (β) was used to calculate the disagreement between 2 

two different PFT maps, defined as the Euclidian distance of PFT classes (Poulter et al., 2011; 3 

Ottlé et al., 2013). For every grid cell c, beta diversity between model and observational 4 

dataset i (βc,M_Oi) was calculated as: 5 

2
1
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k OickMckOiMc VVβ     (87) 6 

where Vk,c,M is fractional abundance for PFT k and for grid cell c, simulated by model; Vk,c,Oi is 7 

fractional abundance for PFT k and for grid cell c, from observational dataset i; and n=11, the 8 

number of natural PFTs. 9 

Similarly, the disagreement between two observations was quantified using βc,Oi_Oj , as: 10 
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where Vk,c,Oi and Vk,c,Oj are fractional abundances from different observations i and j separately. 12 

β is bound to the interval [0, 2 ], with higher values representing larger discrepancies 13 

between two PFT maps. To take into consideration uncertainties of the different satellite land-14 

cover products (Sect. 3.2), we use the mean OMc −,β of the model versus all datasets normalized 15 

by the mean OOc −,β of all combinations between different datasets. In order to derive a bounded 16 

score, with higher values representing better model performance, the metric for the model 17 

skill at simulating vegetation distribution in every grid cell (SV,c) was defined as: 18 
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where P is the number of all combinations between different datasets; Q is the number of 20 

datasets;. If SV,c>1 for both models, indicating that the observation-based estimates have too 21 

large uncertainties to be qualified for model evaluation, this grid cell c is left out. 22 

The SV,c of each grid cell was averaged over the Northern Hemisphere (20°N–90°N) to get an 23 

overall score (SV). In the calculation of SV, grid cells where mean βc,O_O is higher than mean 24 

βc,M_O for both models (SV,c>1) were excluded, because in these pixels the uncertainties in the 25 

observational data are too large to qualify them for model evaluation – the choice of dataset 26 

might significantly alter the model evaluation result. Grid cells where both model and datasets 27 

have 100% bare ground (Sahara Desert and Greenland), and grid cells with a crop fraction 28 

higher than 0.5, were masked out (18% of the total number of land points in that part of the 29 
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Northern Hemisphere included in the study). The same rules were also applied to the 1 

calculation of regional average βc,M_O and βc,O_O. 2 

To analyze the improvement of NEW over OLD for different PFTs, a dissimilarity index (D) 3 

was also calculated for groups of PFTs: broadleaf evergreen (PFT 2 and 5), broadleaf 4 

deciduous (PFT 3, 6 and 8), needleleaf evergreen (PFT 4 and 7), needleleaf deciduous (PFT 5 

9), total tree, and grass (PFT 10 and 11). For each PFT group and grid cell c, Dgroup,c was 6 

defined as the absolute bias in fractional cover between two maps: 7 

OicgroupMcgroupOiMcgroup VVD ,,,,,, −=
−  8 

OjcgroupOicgroupOjOicgroup VVD ,,,,,, −=
−      (110) 9 

where Vgroup,c,M is fractional abundance for PFT group and for grid cell c, simulated by the 10 

model; and Vgroup,c,Oi and Vgroup,c,Oj are fractional abundances from different observations i and 11 

j separately. 12 

The average Dgroup,M_O and Dgroup,O_O were calculated over the studied region, in which the 13 

grid cells where the corresponding group does not exist in any of the models or observations, 14 

were excluded. In practice, we set a threshold of 0.01 to determine the existence of each 15 

group. We did not use the β equation here after re-grouping PFTs (e.g., needleleaf deciduous 16 

versus non-needleleaf deciduous, so that there are only two PFTs in the β equation), because 17 

in that case the average βgroup,M_O (or βgroup,O_O) for Northern Hemisphere (20-90°N) Dgroup,M_O 18 

(or Dgroup,O_O) for the studied region would be too optimistic, considering that many of the 19 

pixels will be equal to zero, due to the limited distribution range of the corresponding group.  20 

Figure 3 shows the spatial pattern of β between the three observational datasets (ESA, GLC 21 

and VCF), and mean D among them for different PFT groups. The β between different 22 

datasets show a higher agreement for ESA versus GLC (an average β of 0.25) and lower 23 

agreement for VCF versus ESA or GLC (average β of 0.37 and 0.35 respectively). ESA and 24 

GLC legends are based on the FAO Land Cover Classification System (LCCS); while in VCF, 25 

the original 1 km continuous field data (DeFries et al., 2000), in which the forest fractional 26 

area is given for each grid cell instead of a discrete classification scheme, was aggregated to 27 

0.5 degree resolution for ISLSCP II under the guidance of IGBP (International Geosphere-28 

Biosphere Programme), by DeFries and Hansen (2009). LCCS uses a low threshold (15%) of 29 

tree cover for forest definition, whereas IGBP uses a threshold of 60% (Poulter et al., 2011), 30 

resulting in relatively lower tree cover in VCF than in either ESA or GLC land-cover maps.  31 
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For the PFT groups, higher D values were found for grassland, indicating significant 1 

discrepancies uncertainty in observed grassland fractions. The difference may come from 2 

uncertainties in the remotely sensed land-cover products, as well as from uncertainty in the 3 

reclassification of land-cover classes into PFT categories. The overlap of broadly defined 4 

arid-land classifications (i.e., grassland, shrubland, barren) of land-cover products can 5 

introduce errors in partitioning between trees, grass and bare land, in deserts and tundra 6 

regions (Poulter et al., 2011). 7 

3.3.2 Metrics for GPP and forest biomass evaluation 8 

GPP and forest biomass were evaluated using gridded observational data containing 9 

uncertainty estimates. The metric for model performances was defined as: 10 
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where SG,c/SB,c is model skill at simulating GPP or forest biomass for grid cell c; Xc,M is GPP 12 

or forest biomass for grid cell c, simulated by model; Xc,O is GPP or forest biomass for grid 13 

cell c, from observation; and σO is the standard deviation of the observation. 14 

In grid cells where |Xc,M – Xc,O| < σO, indicating a model-data difference within the uncertainty 15 

of the observational data, SG,c or SB,c is set to 1. The SG,c or SB,c of each grid cell were averaged 16 

over the Northern Hemisphere to get an overall score (SG or SB). 17 

4 Modeled and observed vegetation distribution 18 

4.1 Northern Hemisphere vegetation distribution 19 

The present-day vegetation distributions simulated by OLD and NEW are shown in Fig. 4 as 20 

RGB composite-color maps the same as Fig. 2. Fractional covers for each PFT are shown in 21 

Fig. S3. Compared with OLD, NEW introduces two major improvements to the results. First, 22 

the tree distribution in cold subarctic regions has a northern boundary consistent with 23 

observations, mostly due to the introduction of a growing season temperature constraint (Sect. 24 

2.2.2). Second, the observed dominance of needleleaf evergreen trees over broadleaf 25 

deciduous trees in northern Europe and North America is reproduced by NEW and not by 26 

OLD, an improvement mainly due to the introduction of the spring frost limitation for 27 

broadleaf deciduous trees (Eq. 43) and the removal of the vcmax (and jmax) leaf-age dependency 28 

for evergreen needleleaf trees (Sect. 2.2.3). 29 
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Figure 5 displays the spatial pattern of β index for OLD, NEW and different satellite land-1 

cover products. Compared with OLD, the NEW results significantly reduce β in the boreal 2 

forests of Canada, western Siberia and northern Europe, consistent with results shown in Fig. 3 

4. The disagreement is also reduced in pan-arctic tundra regions, after correction of the 4 

unrealistically high fraction of trees in these regions originally present in OLD. The average β 5 

over the Northern Hemisphere land surface (20°N–90°N, excluding bare ground and 6 

agricultural grid cells) for NEW versus ESA, GLC and VCF are 0.56, 0.48 and 0.47 7 

respectively, equivalent to a 3.5%, 13% and 28% reduction (i.e., improvement) compared 8 

with OLD. The large variation of β for different observations shows the importance of 9 

accounting for uncertainty in observation-based estimates of land coverobserved land-cover 10 

uncertainty in DGVM evaluations, because the arbitrary choice of a specific land-cover 11 

product may result in quite different scores.  12 

Accounting for uncertainty in observed PFT mapsdistributions, the model skill at simulating 13 

the vegetation distribution (SV) is shown in Fig. 6 for OLD and NEW. The average SV for the 14 

major Northern Hemisphere forested countries or regions are listed in Table 3, showing 15 

improvement in all countries/regions. Larger improvements of NEW over OLD are found in 16 

European Russia (42%), Asian Russia (29%) and Canada (33%). The overall SV for the 17 

Northern Hemisphere is 0.72 in NEW compared to 0.61 in OLD, equivalent to 18% 18 

improvement. In OLD, 13% of the land grid cells have a βc,M_O value less than the uncertainty 19 

between different satellite products (βc,O_O); in NEW, this fraction increases to 27%. 20 

The forest areas simulated by the dynamic simulations and estimated from the land-cover 21 

products were aggregated to country level and compared with independent forest area from 22 

national forest inventories (Pan et al., 2011) (Table 4). In OLD, forest areas are systematically 23 

overestimated, especially for Asian Russia and Canada. The bias is decreased in NEW, for 24 

which most of the differences are less than 30% except for an overestimation in Canada 25 

(50%). This overestimation is, however, within the differences between the three land-cover 26 

products and the forest inventory data at country scale (Table 4). Forest areas estimated by 27 

VCF are systematically lower than inventory data, due to the difference in forest definition 28 

mentioned previously. The largest underestimation of VCF occurs in Asian Russia, where the 29 

vast taiga-tundra transition zones with relatively sparse trees make the definition-related 30 

biases more prominent. 31 
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4.2 Distribution of specific groups of Plant Functional Types 1 

For the different PFT groups described in Sect. 3.3.1, the Northern Hemisphere average 2 

dissimilarity index (D) is plotted in Fig. 7 for OLD and NEW versus observations, as well as 3 

between different observational datasets. For the broadleaf evergreen group, D is small for 4 

both OLD and NEW, and similar to the uncertainty in the data, because the broadleaf 5 

evergreen fraction is smaller than other tree PFT groups in temperate and cold zones. For the 6 

broadleaf deciduous, needleleaf evergreen and needleleaf deciduous groups, the average D for 7 

NEW versus the three datasets is reduced (i.e., improved) by 53%, 13% and 67% respectively, 8 

compared with OLD. The OLD overestimation of broadleaf deciduous area in Canada, 9 

Scandinavia and European Russia is corrected in NEW (Fig. 8b). The large underestimation 10 

of needleleaf evergreen in OLD is partly corrected in NEW, but a significant underestimation 11 

of the needleleaf evergreen coverage still exists in southern Siberia and western Canada (Fig. 12 

8c). For needleleaf deciduous, the unrealistically high fractions in subarctic regions in OLD 13 

are corrected in NEW, but needleleaf deciduous fractions in southern Siberia and Canada are 14 

still higher than observations, at the cost of needleleaf evergreen (Fig. 8d).  15 

A strong disagreement between simulated and observed grassland fractions persists in NEW 16 

(average D of 0.35), but the data-data comparison also shows significant discrepancy (average 17 

D of 0.19) (Figs. 7 and 3). Since there are no specific shrubland and tundra PFTs in 18 

ORCHIDEE, the NEW simulation has high fractions of C3 grass (PFT10) in both arid and 19 

cold areas, including subarctic regions, the western USA and the middle of Eurasia (Fig. 8e). 20 

The average D for the grass fraction between OLD and observed land-cover maps is 0.27, 21 

lower than NEW, because the overestimations of tree cover in OLD decrease the distribution 22 

ranges of grassland, leading to a relatively higher agreement with observations for grassland 23 

cover than NEW. 24 

4.3 Case study for Siberia, using regional land-cover datasets 25 

For Siberia, the same metrics were calculated based on five observational datasets (ESA, 26 

GLC, VCF, OSIB and IIASA). As shown in Fig. 9a, the average β for NEW versus all 27 

datasets is significantly reduced compared to OLD along all longitudes, with a larger 28 

reduction (improvement) in central Siberia and the most eastern part of Russia. The average 29 

values of β over Siberia for NEW versus ESA, GLC, VCF, OSIB and IIASA are 0.59, 0.46, 30 

0.38, 0.35 and 0.41 respectively, equivalent to 0%, 10%, 51%, 45% and 26% reduction 31 
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compared with OLD, respectively. The average β between different datasets is 0.37, with 1 

larger β between ESA and VCF (0.50) and between GLC and VCF (0.47), and smaller β for 2 

GLC and IIASA (0.23), VCF and OSIB (0.28), ESA and GLC (0.29). OSIB and VCF both 3 

have lower fractions of tree PFTs than the other three maps. In particular, the needleleaf 4 

deciduous fractions in OSIB and VCF for the densest forest areas are less than 0.65, while 5 

other maps can reach 0.85. 6 

The model skill (SV) that integrates observational uncertainty for Siberia is shown in Fig. 9b 7 

(OLD) and 9C (NEW). The average SV for Siberia is 0.87 in NEW compared to 0.65 in OLD, 8 

equivalent to 32% improvement. In OLD, 11% of the Siberian grid cells have a βc,M_O value 9 

less than the uncertainty between different satellite products (βc,O_O); in NEW, this fraction 10 

increases to 40%. 11 

 12 

5 Modeled and observed carbon stocks and GPP 13 

5.1 Gross primary productivity 14 

The latitudinal pattern of annual gross primary productivity (GPP) averaged for 1999–2008 15 

from OLD and NEW is shown in Fig. 10, compared with STAT1 and STAT2 (prescribing 16 

ESA and SYNMAP land cover) and from the data-driven MTE GPP (Jung et al., 2011). For 17 

total GPP in the Northern Hemisphere (20°N–90°N), the 10-year average annual GPP 18 

simulated by NEW is 45.4 P g yr-1, close to OLD (42.6 P g yr-1) and MTE (42.2±2.4 P g yr-1). 19 

As for the static runs, total GPP in STAT1 is 35.9 P g yr-1, smaller than MTE. Since MTE by 20 

Jung et al. (2011) was based on SYNMAP land-cover data (Jung et al., 2006) to describe the 21 

vegetation at FLUXNET sites, STAT2 has a GPP (42.3 P g yr-1) closer to MTE. The 22 

difference between STAT1 and STAT2 shows that the choice of land-cover map makes a 23 

strong impact on modeled GPP. Compared with ESA, SYNMAP has a larger forest area (29 24 

versus 22 Mkm2) and similar grassland area (~11 Mkm2) for the northern hemisphere, 25 

explaining its larger GPP.  26 

The spatial patterns of GPP simulated by OLD and NEW are similar (Figs. 10 and 11a). 27 

Compared with MTE, both NEW and OLD overestimates GPP in eastern USA, western 28 

Europe and southern Asia, and underestimates GPP in middle and eastern Siberia (Fig. 11a), 29 

indicating that the similarity in total Northern Hemisphere GPP between NEW and MTE 30 

masks compensating regional biases. The STAT1 and STAT2 runs produce very similar 31 
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patterns of GPP to those from NEW (not shown), suggesting that the regional bias of GPP in 1 

ORCHIDEE is not related to the modeled PFT distribution, but to other non-modeled factors 2 

such as nitrogen interactions. 3 

The model skill at simulating annual GPP (SG) averaged over different countries is given in 4 

Table 3. The average SG for the Northern Hemisphere in OLD and NEW are similar (~0.6). 5 

The improvement in vegetation distribution in NEW does not lead to a significant 6 

improvement of GPP, probably because simulated GPP in the same grid cells for high 7 

latitudes has only a weak dependence on the modeled PFT. For example, in Canada and 8 

northern Europe needleleaf evergreen trees (PFT7) are dominant in NEW, but broadleaf 9 

deciduous trees (PFT8) are dominant in OLD, the GPP differences between these two PFTs 10 

are less than 1.5 g C m-2 yr-1 per PFT (or 25%), explaining why different modeled PFT 11 

fractions in this region do not result into large differences in GPP. This result means that GPP 12 

is not a discriminant variable for evaluating the performance of a vegetation dynamics module 13 

at high latitudes. 14 

5.2 Forest biomass 15 

The country-level forest biomass (above- and belowground) simulated by OLD, NEW and the 16 

two static runs with prescribed PFT maps were compared with forest inventory data from Pan 17 

et al. (2011) (Table 5). The satellite-based spatially explicit forest biomass estimates from 18 

Thurner et al. (2013) over temperate and boreal forests in 30°N–80°N were also aggregated to 19 

country level, showing generally good agreement with the data from Pan et al. The results in 20 

NEW are lower than the inventory for all countries, with the largest underestimation by 61% 21 

in Asian Russia. OLD gives a higher total forest biomass in Asian Russia, but the biomass 22 

density of OLD and NEW are similar (~2.4 kg C m-2 forest) and both lower than Pan et al. 23 

(4.1 kg C m-2 forest). The large overestimation of biomass in Canada by OLD is reduced in 24 

NEW, due to both reductions in forest area (Table 4, from 6.0 to 3.4 Mkm2) and in biomass 25 

density (from 5.6 to 3.8 kg C m-2 forest). Considering the 50% overestimation of forest area in 26 

Canada by NEW compared to the inventory data from Pan et al. (Table 4), the small 27 

underestimation (6%) in total biomass results from a negative bias in biomass density 28 

simulation in the model. It is notable, however, that the biomass density in Canada estimated 29 

by Thurner et al. (3.7 kg C m-2 forest) is also significantly lower than that given by Pan et al. 30 

(6.1 kg C m-2 forest).  31 
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In order to separate the bias of simulated biomass density from the bias of modeled tree cover, 1 

the spatial distributions of forest biomass per unit forest area (kg C m-2 forest) simulated by 2 

OLD and NEW are shown in Fig. 11b and compared with the satellite-based estimates by 3 

Thurner et al. (2013). The original overestimation in eastern Canada, northern Europe and 4 

European Russia by OLD is improved in NEW, although underestimation in western Canada 5 

and Siberia still exists in NEW. Biomass at equilibrium is positively correlated with both NPP 6 

and turnover time of carbon in biomass pools.defined by the product of woody-NPP 7 

multiplying the turnover time of carbon in biomass pools. Natural disturbances and forest 8 

management can thus lower biomass by reducing the turnover time (Jandl et al., 2007; Litton 9 

et al., 2004). Since older forests store more biomass carbon than younger forests (Wei et al., 10 

2013; Luyssaert et al., 2008), managed and frequently burned forests may not be able to reach 11 

their climate-dependent maximum biomass.  12 

In order to diagnose the possible causes of the biomass deviation from data, the ratio of forest 13 

biomass from NEW to that from Thurner et al., as well as the ratio of forest NPP (average 14 

during 2001–2010) from NEW to MODIS-NPP (NTSG), is plotted in Fig. S54. In eastern 15 

Canada, forest biomass is overestimated by NEW, while NPP is close to MODIS NPP, 16 

indicating an overestimation of biomass carbon turnover time in ORCHIDEE compared to 17 

reality. This bias may be caused by non-modeled forest management in this region. In western 18 

Canada and southern Siberia, the underestimation of biomass is attributable to 19 

underestimation of NPP.  20 

The model skill at simulating forest biomass (SB) averaged over different countries is given in 21 

Table 3. SB is improved in NEW for all countries compared to OLD, with the largest 22 

improvement found in Canada (66%). The overall SB for 30°N–80°N is 0.59 in NEW, 23 

compared to 0.46 in OLD, equivalent to 28% improvement. 24 

5.3 Soil carbon 25 

The spatial patterns of soil carbon density simulated by OLD and NEW (0–2m depth) are 26 

shown in Fig. 11c, compared with that from HWSD (0–1m depth, 27 

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and NCSCD (0–1m depth, Hugelius et al., 2013). 28 

Over the grid cells present in NCSCD, the total soil carbon is 285 Pg in HWSD, markedly 29 

lower than that in NCSCD (460 Pg C for the upper meter of soil), indicating large 30 

uncertainties in the empirical soil carbon data. Since the ORC-HL in this study does not 31 
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include processes of peatland and wetland carbon accumulation, whereas in NCSCD the peat 1 

deposits contain about 30% of the total soil organic carbon mass in the upper meter (Tarnocai 2 

et al., 2009), and wetland carbon stock is estimated to account for 20% of the total 1-m-deep 3 

soil organic carbon pool in Russia (Schepaschenko et al., 2013), the model results are not 4 

fully comparable to NCSCD. The spatial patterns of soil carbon from OLD and NEW are 5 

similar (Fig. 11c). Over the grid cells present in NCSCD, the total soil carbon simulated by 6 

OLD and NEW is 263 and 283 Pg C, respectively.  7 

A comparison of soil carbon simulations from several land surface models coupled with 8 

climate models in CMIP5 (Todd-Brown et al, 2013) suggested that most models cannot 9 

reproduce grid-scale variation in soil carbon; and that the substantial disagreement between 10 

the HWSD and NCSCD datasets and their lack of quantitative uncertainty estimates limit 11 

their ability for benchmarking land carbon models. Given the large carbon storage in northern 12 

high latitude soils, the ability to accurately simulate high latitude processes such as permafrost, 13 

wetland and peatland carbon accumulation, is a prerequisite for realistic projections of future 14 

climate-carbon feedbacks. 15 

 16 

6 Critical model processes influencing vegetation distribution 17 

6.1 Soil freezing 18 

The area of seasonally frozen ground covers 50% of the Northern Hemisphere land, or 48 19 

Mkm2 (Zhang et al., 2003). Soil freezing limits plant access to soil moisture, and thus impacts 20 

the simulated PFT distribution through a set of complex interactions between productivity, 21 

tree-grass competition, and soil water limitations. In permafrost regions, the limitation of 22 

growing-season water availablity due to soil freeze-thaw processes was shown to substantially 23 

contribute to the low vegetation carbon densities (Beer et al., 2007). In ORCHIDEE, a soil 24 

heat diffusion equation with latent heat (Gouttevin et al., 2012) is solved for each soil layer 25 

that impacts soil temperature and liquid water content. In this study, we tested the effects of 26 

soil freezing on the vegetation distribution by comparing NEW and EXP1 in which soil 27 

freezing processes were not activated (all other parameters being the same). In EXP1, soil 28 

temperature can drop below 0℃, but liquid water continues to be available in the root zone 29 

irrespective of soil temperature conditions. Figure 12 shows the difference in tree fraction and 30 

in water availability (WA) during the growing season (May-September) between NEW and 31 
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EXP1. In the model, soil moisture available to plants is defined by WA, the relative soil 1 

moisture in the root zone, weighted by PFT-specific root profiles. A value of WA = 0 defines 2 

the wilting point, and WA = 1 the field capacity. A stress factor is applied to stomatal 3 

conductance and canopy photosynthesis if WA drops below a critical value of 0.4, and this 4 

stress factor increases linearly for 0 < WA ≤ 0.4 (Krinner et al., 2005).  5 

When soil freezes in autumn and winter, the amount of liquid water in the root zone is 6 

reduced as water is immobilized as ice in soil pores. In the growing season, WA in NEW is 7 

also lower than that in EXP1 (Fig. 12b). This is consistent with previous results of model 8 

validation at site scale (Gouttevin et al., 2012), in which the upper layer (0–20 cm) soil 9 

moisture in summer was found to be more depleted if the soil freezing module was activated. 10 

In regions underlain by permafrost, there is a spring peak in runoff originating from meltwater 11 

which does not infiltrate into frozen soils (Gouttevin et al., 2012). If soil freezing is not 12 

modeled as in EXP1, meltwater will infiltrate into soil, leading to overestimated soil water 13 

content in the growing season. The reduction of tree fraction in the presence of freezing 14 

occurs where there is significant reduction of WA (Fig. 12a). In areas with a small reduction 15 

(less than 0.1) in WA, however, there is a slight increase in tree fraction. The tree fraction in 16 

the model is related toequals to population density and multiplied by individual crown area. 17 

On the one hand, as WA decreases, GPP, LAI and crown area are smaller; yet on the other 18 

hand, reduced LAI leads to increased available space for establishment, resulting in a 19 

subsequent increase in population density, compensating for the loss of crown area. Therefore, 20 

reductions in WA may lead to inconsistent changes in tree fraction, depending on their 21 

relative effects on crown area and population density.  22 

6.2 Changing CO2 since 1850 23 

Terrestrial plants respond to elevated atmospheric CO2 concentration by increasing 24 

assimilation rate and reducing diffusive stomatal conductance (Lammertsma et al., 2012), 25 

both processes are included in ORCHIDEE (Krinner et al., 2005). Under elevated CO2 26 

concentration, the enhanced photosynthetic capacity and thus increased NPP of forest (Norby 27 

et al., 2005; Hickler et al., 2008) leads to higher growth efficiency of trees and thus higher 28 

tree fractional coverage. In the model, tree PFTs are superior to grass PFTs in terms of light 29 

competition, i.e., when trees expand, grass PFTs will give way to trees. Therefore, tree cover 30 

is expected to increase at the cost of grasslands under elevated CO2. Here we conducted a 31 

sensitivity test (EXP2) with fixed pre-industrial CO2 concentration (285 ppm). Compared 32 
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with EXP2, the simulation NEW forced by historical CO2 concentration produces higher tree 1 

fractions (Fig. 13a) by 2010, the spatial pattern of which mirrors the pattern of tree NPP 2 

increase (Fig. 13b) in the model. In NEW, total temperate and boreal forest area in the studied 3 

region (20°N–90°N) are modeled to increase by 2.6 Mkm2 (11.5%) from 1850 to 2010. In 4 

EXP2 the increase is only 1.1 Mkm2 (4.8%) indicating that about 58% of the increase in forest 5 

area is attributable to the historical increase of CO2, the rest being attributable to climate 6 

warming (longer growing seasons) and changes in rainfall.  7 

Since the processes of CO2 uptake by photosynthesis and water loss by transpiration are 8 

tightly coupled, increasing CO2 concentration results in increased water use efficiency 9 

(Lammertsma et al., 2012; O’ishi et al., 2009). Figure 13c displays the difference of WA for 10 

trees between NEW and EXP2. Compared to the fixed-CO2 simulation, NEW produces higher 11 

WA by ~5% in mesic regions such as Europe, western Siberia and the eastern part of North 12 

America, and similar WA in drier regions such as middle and eastern Siberia and the western 13 

part of North America. 14 

6.3 Effects of the return frequency and severity of extreme cold events during 15 

the spin-up 16 

As mentioned in Sect. 2.2.1, the distribution range of tree PFTs in ORCHIDEE is influenced 17 

by extremely cold days in winter that varies from year to year. When the PFT-dependent 18 

threshold Tmin,crit (Table 1) is applied (Eq. 32), this mechanism results in a considerable 19 

difference in modeled tree fraction between the results of a spin-up forced by cycling multi-20 

year climatic data versus an average climatology. In EXP3, the model spin-up used the 21 

average climatology of the period 1901–1920 from CRU-NCEP, and was compared with 22 

NEW where interanually variable climate from years 1901–1920 was repeated in a loop. The 23 

minimum temperature in winter (Tmin) derived from the climatology is significantly higher 24 

than Tmin considering the 20 individual years (Fig. 14a). Since the intra-annual variations 25 

among different years are not synchronous, a low temperature of a day in one year is offset by 26 

a higher temperature of the same day during another year; this leads to a milder climate in the 27 

climatology.  28 

The vegetation distributions after spin-up are very different between NEW and EXP3 as 29 

shown in Fig. 14. In EXP3, temperate trees (PFT4-6)s can extend northward, taking up the 30 

boreal tree positions, while the distribution of boreal needleleaf evergreen (PFT7) and 31 
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broadleaf deciduous (PFT8) trees is squeezed to the climatic range of needleleaf deciduous 1 

tree (PFT9). Compared with the initial state after spin up in NEW, total forest area in the 2 

studied region (20-90°N) in EXP3 increase by 5.1 Mkm2 (22%), among which PFT4-6 3 

increase by 2.7 Mkm2, PFT7 and 8 increase by 6.3 Mkm2, and PFT9 decrease by 3.9 Mkm2. 4 

Apart from average climatology, recycled one single year climate is occasionally used in spin-5 

up phase, which can also lead to large variance in initial vegetation distribution after spin-up 6 

due to interannual climate variability.The large variance induced by interannual climate 7 

variability during the spin-up also holds if one single year is used instead of the multi-year 8 

average. Figure 14d shows the considerable difference in the fraction of PFT 7 and 8 between 9 

two spin-ups forced by two different single years arbitrarily chosen (1914 and 1901). Similar 10 

results were obtained when three sets of forcings (one-year, climatological mean, and cycling 11 

of the whole period 1960–1999) were used in the spin-up process of CLM-DGVM (Li et al., 12 

2011). Since climatology or recycled one-year climatic data are sometimes used in the spin-up 13 

of land surface models, it is notable that this may bias DGVMs to produce unrealistic or 14 

unstable results, if vegetation distribution is sensitive to extreme temperatures in the 15 

model.considering the sensitivity of vegetation distribution to extreme temperatures. Thus, it 16 

is more appropriate to cycle multi-year climatic data to force DGVMs in a spin-up. 17 

 18 

7 Conclusions 19 

This study has presented an improved parameterization and a calibration of Northern 20 

Hemisphere vegetation dynamics in the ORCHIDEE process-based ecosystem model, based 21 

on a version that includes frozen soil moisture and its impacts on plant productivity. Keeping 22 

the original model’s concept of plant functional types, we modified the processes that 23 

influence tree existence, mortality and competition. A new performance metric applicable for 24 

DGVM evaluation in terms of vegetation fractional cover was used to evaluate ORCHIDEE, 25 

which integrates uncertainties in different land-cover maps. The new version of the 26 

ORCHIDEE vegetation dynamics module shows marked improvement in the simulated PFT 27 

distribution compared to the previous version. A more realistic simulation of the northern tree 28 

limit is obtained, as well as of the distribution of evergreen and deciduous conifers in the 29 

boreal zone. The model still overestimates grass fraction in dry regions of central Asia and 30 

western North America, possibly because of the lack of a specific shrubland PFT. Grass 31 

fraction was also overestimated in the Arctic tundra. Considering the large coverage of 32 
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shrubland and tundra in northern middle and high latitudes, a proper representation of shrub 1 

and tundra plant functional types in DGVMs, as well as their biophysical and biogeochemical 2 

processes, should be a priority for future development. The better PFT distribution results in 3 

improvements in simulated forest biomass, while significant regional biases still remain for 4 

GPP, forest biomass and soil carbon distributions, indicating other structural biases in the 5 

carbon cycle parameterizations in the model. Incorporating PFT trait variation into DGVMs, 6 

which allows the functional properties to vary within PFTs based on trait-climate 7 

relationships, might be a promising method to simulate vegetation acclimation that impacts 8 

both vegetation competition and the carbon cycle, and be an interesting future development. 9 

 10 

Code availability 11 

The ORCHIDEE model used as a starting point in this study is ORCHIDEE rev1322. The 12 

source code can be obtained at 13 

http://forge.ipsl.jussieu.fr/orchidee/browser/branches/ORCHIDEE-14 

MICT/ORCHIDEE?rev=1322. A detailed documentation and the forcing data needed to drive 15 

ORCHIDEE can be found at http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation and 16 

http://forge.ipsl.jussieu.fr/orchidee/wiki/Forcings. ORC-HL-NVD is derived from rev1322 17 

with the modifications presented in the Sect. 2.2, the source code of which can be obtained 18 

upon request (http://labex.ipsl.fr/orchidee/index.php/contact). The modifications of ORC-HL-19 

NVD from rev1322 are also implemented in ORCHIDEE standard version (trunk), recorded 20 

as the difference between rev2672 (source code: 21 

http://forge.ipsl.jussieu.fr/orchidee/browser/trunk/ORCHIDEE?rev=2672) and rev2658 22 

(source code: http://forge.ipsl.jussieu.fr/orchidee/browser/trunk/ORCHIDEE?rev=2658). 23 
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Table 1. PFT-specific parameters in ORC-HL-NVD. 1 

PFT Tmin,crit kBG vcmax,opt jmax,opt acrit 

1: bare ground / / / / / 

2: tropical broadleaf evergreen trees 0 0.14 65 130 730 

3: tropical broadleaf dry-season deciduous trees 0 0.14 65 130 180 

4: temperate needleleaf evergreen trees -30 0.1 35 70 910 

5: temperate broadleaf evergreen trees -14 0.1 45 90 730 

6: temperate broadleaf summergreen trees -30 0.1 55 110 180 

7: boreal needleleaf evergreen trees -45 0.05 33 66 910 

8: boreal broadleaf summergreen trees -45 0.05 30 60 180 

9: boreal needleleaf summergreen trees / 0.05 35 70 180 

10: natural C3 grass / / 70 140 120 

11: natural C4 grass / / 70 140 120 

12: agricultural C3 grass / / 100 200 90 

13: agricultural C4 grass / / 100 200 90 

Tmin,crit : minimum temperature limitation (°C), below which the mortality rate will increase as 2 

Eq.(23). kBG : maximum background mortality rate (yr-1) for tree PFTs. vcmax,opt : optimal 3 

maximum rubisco-limited potential photosynthetic capacity (μmol m-2 s-1). jmax,opt : maximum 4 

rate of photosynthetic electron transport (μmol m-2 s-1). acrit : critical leaf age for leaf 5 

senescence (days); the dependence of vcmax and jmax on leaf age for PFTs 4 and 7 was 6 

eliminated as described in Sect. 2.2.3.. 7 

8 
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Table 2. Characteristics of each ORC-HL off-line runs. OLD follows the same simulation 1 

protocol as NEW. EXP1–3 and STAT is similar to NEW except for one different setting for 2 

each run. 3 

 4 

Name Model Module 
Spin-up Simulation (1850-2010) 

Climate forcing CO2 level Climate forcing CO2 level 

NEW ORC-HL-NVD 

Activate 
ORC-VD, soil 
freezing and 
fire schemes 

CRU-NCEP  
1901-1920 cycle 285ppm 

CRU-NCEP 
1901-2010 

(for 1850-1900: 
randomly select 
from 1901-1920) 

rising 

OLD ORC-HL-OVD / / / / / 

EXP1 ORC-HLNVD Deactivate 
soil freezing     

EXP2 ORC-HL-NVD / / / / fixed at 
285ppm 

EXP3 ORC-HL-NVD / 
CRU-NCEP 

1901-1920 average 
climatology 

/ /  

STAT1 ORC-HL-NVD 

Deactivate 
ORC-VD (PFT 
map prescribed 

from ESA) 
 

/ / / / 

STAT2 ORC-HL-NVD 
Deactivate 

ORC-VD (PFT 
map prescribed 

from SYNMAP) 

/ / / / 

 5 

6 
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Table 3. Model skills at simulating vegetation distribution (SV), GPP (SG) and forest biomass 1 

(SB), averaged over different countries/regions. STAT1 and STAT2 are static runs prescribing 2 

different PFT maps, ESA and SYNMAP. 3 

 4 

  Asian 
Russia 

European 
Russia Canada USA Europe China 

Northern 
Hemisphere 
(20°N-90°N) 

Vegetation 

distribution 

OLD 0.69 0.63 0.53 0.66 0.62 0.57 0.61 

NEW 0.89 0.89 0.70 0.69 0.65 0.61 0.72 

GPP 

OLD 0.53 0.70 0.59 0.63 0.60 0.57 0.63 

NEW 0.58 0.68 0.50 0.65 0.60 0.56 0.62 

STAT1 0.52 0.63 0.63 0.54 0.55 0.53 0.60 

STAT2 0.50 0.68 0.65 0.65 0.53 0.50 0.63 

Forest 

biomass 

OLD 0.52 0.54 0.37 0.49 0.49 0.56 0.46 

NEW 0.62 0.73 0.62 0.57 0.55 0.56 0.59 

STAT1 0.58 0.55 0.50 0.53 0.54 0.52 0.56 

STAT2 0.57 0.47 0.46 0.47 0.54 0.53 0.54 

 5 

6 
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Table 4. Forest areas (Mkm2) for different countries/regions simulated by models (OLD and 1 

NEW) and estimated from land cover products (ESA, GLC, VCF), in comparison with that 2 

from Pan et al. (2011). The relative differences compared to Pan et al. (2011) are given in 3 

parentheses. 4 

 5 

 
Asian 

Russia 

European 

Russia 
Canada USA Europe China 

Pan et al. 

(2011) 
6.77 1.69 2.30 2.57 2.05 1.56 

OLD 10.0 (48%) 1.96 (16%) 6.00 (160%) 3.33 (30%) 2.14 (5%) 2.80 (80%) 

NEW 5.00 (-26%) 1.80 (7%) 3.44 (50%) 2.61 (2%) 1.56 (-24%) 1.23 (-21%) 

ESA 6.54 (-3%) 1.58 (-6%) 3.64 (58%) 3.00 (17%) 1.81 (-12%) 2.19 (41%) 

GLC 8.42 (25%) 2.02 (20%) 4.50 (96%) 4.73 (84%) 2.40 (17%) 2.23 (43%) 

VCF 3.43 (-49%) 1.18 (-30%) 2.54 (10%) 2.00 (-22%) 1.19 (-42%) 1.10 (-30%) 

 6 

7 
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Table 5. Forest biomass (Pg C) for different countries/regions simulated by models (OLD, 1 

NEW and two static runs) and estimated from Thurner et al. (2013), in comparison with that 2 

from Pan et al. (2011). STAT1 and STAT2 prescribe different PFT maps, ESA and SYNMAP. 3 

The relative differences compared to Pan et al. (2011) are given in parentheses. 4 

 5 

 
Asian 

Russia 

European 

Russia 
Canada USA Europe China 

Pan et al. 

(2011) 
27.9 9.6 14.0 19.4 13.0 6.5 

Thurner et 

al. (2013) 
25.2 (-10%) 9.0 (-6%) 15.9 (14%) - 10.6 (-18%) - 

OLD 24.3 (-13%) 14.7 (53%) 33.4 (138%) 17.7 (-9%) 16.2 (27%) 8.1 (25%) 

NEW 11.0 (-61%) 7.6 (-21%) 13.2 (-6%) 12.0 (-38%) 8.3 (-36%) 3.5 (-47%) 

STAT1 6.9 (-75%) 10.8 (12%) 21.2 (52%) 8.7 (-55%) 8.0 (-39%) 3.6 (-44%) 

STAT2 13.7 (-51%) 15.5 (62%) 36.1 (158%) 17.9 (-8%) 13.8 (6%) 4.5 (-31%) 

 6 

 7 
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 3 

Figure 1. Schematic of ORCHIDEE vegetation dynamics module (ORC-VD). The 4 

modifications in this study are marked red. 5 

6 
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Figure 2. Composite-color map of the fractional vegetation cover in PFT maps converted 3 

from the five land-cover products based on Poulter et al. (2011). Color indicates the relative 4 

fraction of three PFT groups: broadleaf (including evergreen and deciduous, red), needleleaf 5 

evergreen (green), and needleleaf deciduous (blue) trees. Deeper Brighter colors represent 6 

higher fractional covers. 7 
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Figure 3. Beta diversity (β) between the three observational datasets (ESA, GLC and VCF) 3 

(left panel), and mean dissimilarity index (D) among them for different PFT groups (right 4 

panel). β ranges from 0 to 2 , and D ranges from 0 to 1, both with higher values representing 5 

larger disagreement. 6 
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Figure 4. Composite-color map of the fractional vegetation cover in OLD and NEW. Color 3 

indicates the relative fraction of three PFT groups: broadleaf (including evergreen and 4 

deciduous, red), needleleaf evergreen (green), and needleleaf deciduous (blue) trees. Deeper 5 

colors represent higher fractional covers. 6 
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Figure 5. Beta diversity (β) to quantify the disagreement in vegetation distribution between 3 

model and observational datasets. β ranges from 0 to 2 , with higher values representing 4 

larger disagreement. 5 
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Figure 6. Model skill at simulating vegetation distribution (SV, Eq. 910) for OLD and NEW. 3 

SV ranges from 0 to 1, with higher values representing better model performances, integrating 4 

observational uncertainty. Three kinds of grid cells are masked out (in gray): 1) the grid cells 5 

where SV >1 for both models, indicating that the observational data have too large 6 

uncertainties to be qualified for model evaluation (13% of the total land points for the studied 7 

region); 2) the grid cells where all models and datasets have 100% bare ground in Sahara 8 

Desert and Greenland (10%); and 3) the grid cells where crop fraction is higher than 0.5 (8%). 9 
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Figure 7. Dissimilarity index (D, Eq. 101) for fractional cover of PFT groups including total 3 

tree, grass, and four tree subtypes between model (OLD, blue, and NEW, red) and 4 

observations, and between different observations (black), averaged over Northern Hemisphere 5 

(20°N-90°N). D ranges from 0 to1, with higher values representing larger disagreement. 6 
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Figure 8. Difference in fractional cover of PFT groups between model (OLD and NEW) and 3 

observation-derived PFT map (VCF). Similar map for the difference between model and 4 

ESA/GLC is shown in Fig. S4. 5 
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Figure 9. (a) Longitudinal average beta diversity (β) between model (OLD, blue and NEW, 3 

red) and observational datasets (including ESA, GLC, VCF, OSIB and IIASA) and between 4 

different observations (black) in Siberia. β ranges from 0 to 2 , with higher values 5 

representing larger disagreement. (b) and (c): Model skill at simulating vegetation distribution 6 

(SV) for OLD and NEW in Sibera. SV ranges from 0 to 1, with higher values representing 7 

better model performances, integrating observational uncertainty. The pixels where SV >1 for 8 

both models, indicating that the observational data have too large uncertainties to be qualified 9 

for model evaluation (12% of the total land points in Siberia), were masked out (in gray). 10 
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Figure 10. Latitudinal mean annual GPP (2° bands) during 1999~2008 from OLD (blue) and 3 

NEW (red), compared with that from STAT (static run in which ORC-VD is deactivated, 4 

green dashed lines) and MTE (Jung et al., 2011, black). In STAT1 and STAT2, PFT map is 5 

prescribed from ESA and SYNMAP respectively. 6 
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Figure 11. Spatial pattern of (a) mean annual GPP (g C m-2 yr-1) during 1999~2008 from OLD, NEW, and MTE (Jung et al., 2011); (b) forest 3 

biomass density (per forest area, kg C m-2 forest) from OLD, NEW and Thurner et al. (2013); and (c) total soil carbon density (kg C m-2) 4 

simulated by OLD and NEW (0–2 m depth), and from HWSD (0–1 m depth) and NCSCD (0–1m depth). 5 
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Figure 12. Difference of tree fractional cover (a) and water availability (WA, b) between with 3 

and without soil freezing (NEW–EXP1). WA is averaged over the growing season (May–4 

September) and over tree PFTs (PFT 2–9) weighted by their fractions. 5 
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Figure 13. Difference of tree fractional cover (a), tree NPP (g C m-2 dyr-1, b) and water 3 

availability (WA, c) between with and without CO2 rising (NEW–EXP2). NPP is averaged 4 

over tree PFTs (PFT 2–9) weighted by their fractions. WA is averaged over the growing 5 

season (May–September) and over tree PFTs (PFT 2–9) weighted by their fractions. 6 
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Figure 14. (a) minimum temperature (Tmin) isotherms calculated from the 20-year average 3 

climatology (red lines) and the mean of the twenty Tmin for each year (green lines). The Tmin 4 

values are labeled on the lines, corresponding to the PFT-dependent Tmin,crit for temperate and 5 

boreal trees (see Table1). (b, c) difference of the vegetation fractional cover for the last year 6 

of spin-up between EXP3 (using 20-year climatology as forcing file in spinup) and NEW for 7 

temperate trees (PFT4–6, b) and boreal broadleaf deciduous / needleleaf evergreen trees 8 

(PFT7–8, c). (d) difference in fraction of PFT7–8 between spinup results forced by climatic 9 

data of two different single years (1914 and 1901). 10 
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