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Abstract. We present the application of interactive 3-D vi-
sualization of ensemble weather predictions to forecasting
warm conveyor belt situations during aircraft-based atmo-
spheric research campaigns. Motivated by forecast require-
ments of the T-NAWDEX-Falcon 2012 campaign, a method5

to predict 3-D probabilities of the spatial occurrence of warm
conveyor belts has been developed. Probabilities are derived
from Lagrangian particle trajectories computed on the fore-
cast wind fields of the ECMWF ensemble prediction system.
Integration of the method into the 3-D ensemble visualiza-10

tion tool Met.3D, introduced in the first part of this study,
facilitates interactive visualization of WCB features and de-
rived probabilities in the context of the ECMWF ensemble
forecast. We investigate the sensitivity of the method with
respect to trajectory seeding and grid spacing of the forecast15

wind field. Furthermore, we propose a visual analysis method
to quantitatively analyse the contribution of ensemble mem-
bers to a probability region and, thus, to assist the forecaster
in interpreting the obtained probabilities. A case study, re-
visiting a forecast case from T-NAWDEX-Falcon, illustrates20

the practical application of Met.3D and demonstrates the use
of 3-D and uncertainty visualization for weather forecasting
and for planning flight routes in the medium forecast range
(three to seven days before take-off).

1 Introduction25

Weather forecasting during aircraft-based field campaigns re-
quires the meteorologist to explore large amounts of numeri-
cal weather prediction (NWP) data in a short period of time.
Atmospheric features relevant to a research flight have to be
identified quickly, and findings have to be communicated to30

colleagues. Furthermore, assessing the forecast’s uncertainty

has become indispensable as flights frequently have to be
planned several days before take-off.

A challenging element in forecasting methodology is to
create clear and intuitive visualizations that allow the me-35

teorologist to perform these tasks in a timely manner. To
advance forecasting techniques for research flight planning,
this work presents a new approach using interactive three-
dimensional (3-D) visualization of ensemble weather pre-
dictions (the latter a major source of information on fore-40

cast uncertainty, Gneiting and Raftery, 2005; Leutbecher and
Palmer, 2008) to forecast warm conveyor belt (WCB) situa-
tions.

The article is the second part of a two-paper study. The
first part (Rautenhaus et al., 2015, hereafter “Part 1”) intro-45

duces Met.3D, a tool providing interactive 3-D techniques for
the visual exploration of ensemble weather prediction data.
This article focuses on the specific application case of fore-
casting WCBs: strong, ascending, and often rain producing
airstreams associated with extratropical cyclones. The term50

“WCB” was introduced by Harrold (1973) and Browning
(1971) and consolidated in a conceptual airstream model for
extratropical cyclones (also including the cold conveyor belt
and the dry airstream) by Carlson (1980). Example refer-
ences for WCBs include Browning (1990) for an overview,55

Eckhardt et al. (2004) and Madonna et al. (2014) for a clima-
tology, and Browning (1986) and Pfahl et al. (2014) for rele-
vance in large-scale precipitation. WCBs are an atmospheric
feature that has been in the focus of several aircraft-based
campaigns (e.g. Pomroy and Thorpe, 2000; Vaughan et al.,60

2003; Schäfler et al., 2014; Vaughan et al., 2015).
A recent campaign that targeted WCBs is T-NAWDEX-

Falcon 2012 (THORPEX – North Atlantic Waveguide and
Downstream Impact Experiment, hereafter TNF), which took
place in October 2012 in southern Germany. Schäfler et al.65
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(2014) describe the TNF flight planning process. WCBs
(as well as other atmospheric features targeted by research
flights) are of an inherently three-dimensional nature. How-
ever, although the atmosphere is three-dimensional, the fore-
casting and flight-planning tools employed during TNF re-70

lied on two-dimensional (2-D) visualization methods. This
is a common property not only of campaign tools (Flatøy
et al., 2000; Blakeslee et al., 2007; He et al., 2010; Rauten-
haus et al., 2012) but also of meteorological workstations in
general (e.g. Heizenrieder and Haucke, 2009; Russell et al.,75

2010). 3-D visualization methods are not commonly used in
forecasting. While 3-D techniques have been used in research
settings as early as in the 1980s (e.g. Grotjahn and Chervin,
1984; Hibbard, 1986; Hibbard et al., 1989; Wilhelmson et al.,
1990) and continue to be used in recent visualization tools80

(e.g. Hibbard, 2005; Norton and Clyne, 2012; Dyer and Am-
burn, 2010; Murray and McWhirter, 2007), only few reports
on approaches using 3-D techniques for forecasting have
been published in the past two decades (Treinish and Roth-
fusz, 1997; Koppert et al., 1998; McCaslin et al., 2000). Part85

1, Sect. 2, provides further details on the listed references and
on 3-D visualization in meteorology.

Similarly, while the use of ensemble predictions has
been reported for recent field campaigns (e.g. Wulfmeyer
et al., 2008; Elsberry and Harr, 2008; Ducrocq et al., 2014;90

Vaughan et al., 2015), they have, to the best of our knowl-
edge, not been used to create specific 3-D forecast products
for flight planning. However, in particular the possibility to
use ensembles to compute 3-D probability fields of the oc-
currence of features or events is valuable for flight planning.95

For the WCB case, a probability of WCB occurrence can be
used to plan flight routes in regions in which the probability
to encounter a WCB is at a maximum.

The work presented in this article is motivated by the ques-
tions of (1) how interactive 3-D visualization can be used to100

improve the exploration of 3-D features of interest to a flight
campaign, and (2) how ensemble forecasts (in particular de-
rived probabilities) can be used to improve research flight
planning in the medium forecast range (that is, three to seven
days before take-off). Our developments have been guided by105

a number of forecast questions that reflect the TNF require-
ments. They are repeated here from Part 1 for completeness:

– A: How will the large scale weather situation develop
over the next week, and will conditions occur that
favour WCB formation?110

– B: How uncertain are the weather predictions?

– C: Where and when, in the medium forecast range and
within the spatial range of the aircraft, is a WCB most
likely to occur?

– D: How meaningful is the forecast of WCB occurrence?115

– E: Where will the WCB be located relative to cyclonic
and dynamic features?

The technical basis for questions A and B is laid in Part 1.
This article addresses questions C to E and presents a case
study that demonstrates how the methods developed in both120

papers are applied to forecasting.
The paper is structured as follows. In Sect. 2, we propose

a technique to compute 3-D probabilities of WCB occur-
rence. Our approach is put into relation to previous work
in the field, and its integration into the Met.3D architec-125

ture is described. During TNF, we followed the approach
of Wernli and Davies (1997) and used Lagrangian particle
trajectories computed on the forecast wind field to objec-
tively detect WCB airstreams. Using wind forecasts from
the European Centre for Medium Range Weather Forecasts130

(ECMWF) Ensemble Prediction System (ENS; comprising
50 perturbed forecast runs and an unperturbed control run;
e.g. Buizza et al., 2006), trajectories were started from the
atmospheric boundary layer (ABL) for each ensemble mem-
ber. Those trajectories fulfilling a WCB criterion were grid-135

ded into 2-D grids and displayed as probability maps show-
ing the occurrence of either or all of WCB inflow, ascent, and
outflow. However, generalising this approach to three dimen-
sions poses challenges, as discussed in Sect. 2. We present
an adapted approach using domain-filling trajectories, which140

is more accurate, albeit computationally more expensive. In
order to find the best method that is still computationally
tractable in a forecast setting, both approaches are compared
in Sect. 3. We analyse their sensitivity to the grid spacing of
the forecast wind fields and to the number and locations of145

the trajectory seeding points.
To facilitate quantitative interpretation of the obtained

probabilities, we further propose a visual analysis method
for cases in which only low probabilities of the occurrence of
WCBs are encountered (Sect. 4). In such cases a flight often150

might not be planned due to the interpreted high uncertainty.
However, low probability can have two causes. Either indeed
only a small percentage of the ensemble members predict
a WCB feature, or large spatial variation of the features in the
individual ensemble members causes only marginal overlap155

and thus low probabilities. In the latter case the probability
that a WCB will occur is actually much larger than suggested
by the visualized probabilities. However, there is a large un-
certainty in where it will occur. To help the user distinguish
between these causes, we propose a method that identifies the160

contribution of individual members to a probability region.
After the introduction of all methods that are required to

explore a forecast to answer forecast questions A to E, Sect. 5
revisits the TNF forecast case of 19 October 2012. The case
study shows how the proposed 3-D ensemble visualization165

workflow is applied to campaign forecasting, and illustrates
the use and added value of the presented methods.

The paper is concluded with a summary and discussion in
Sect. 6.



M. Rautenhaus et al.: 3-D visualization of ensemble weather forecasts – Part 2: Warm conveyor belts 3

2 Probability of warm conveyor belt occurrence170

WCBs are Lagrangian airstreams in extratropical cyclones
(e.g. Harrold, 1973; Carlson, 1980; Browning, 1990). They
transport warm and moist air from the ABL in a cyclone’s
warm sector upward and poleward towards the tropopause.
The inflow region in the lower troposphere typically extends175

over several hundred kilometres in diameter. WCB airmasses
commonly ascend by about 500 to 600 hPa in 48 h, thereby
covering horizontal distances of up to 2000 km (e.g. Wernli
and Davies, 1997; Eckhardt et al., 2004). Due to the strong
ascent, condensation leads to strong latent heat release and180

the formation of clouds and precipitation (e.g. Browning,
1986). Therefore, WCBs are highly relevant for precipitation
extremes in the extratropics (e.g. Pfahl et al., 2014). Once the
airmasses reach jet level, an outflow region forms near the
tropopause. This region is characterised by cirrus clouds that185

extend over several thousand kilometres along the jet stream.
Readers interested in further detail are referred to Madonna
et al. (2014), who give a comprehensive introduction to the
field.

To plan a flight that allows aircraft measurements within190

a WCB, we are interested in the spatial and temporal distri-
bution of WCB features in the ensemble forecast. As a sum-
mary measure of the uncertainty information, the probabil-
ity of WCB occurrence, p(WCB), is of particular interest. It
provides for a given location in 3-D space at a given time195

the probability of encountering a WCB airmass. To compute
p(WCB) from an ensemble weather forecast, we first need to
detect WCB features in the individual ensemble members.

2.1 WCB detection based on objectively selected

Lagrangian particle trajectories200

In early studies of, for instance, Harrold (1973), Carlson
(1980) and Browning (1986), conveyor belt airstreams have
been identified by manual inspection of satellite imagery
or by isentropic analysis. Subsequent studies have used La-
grangian particle trajectories computed with wind fields from205

numerical model output to investigate case studies of extra-
tropical cyclones. For example, Whitaker et al. (1988) and
Hibbard et al. (1989) show the existence of three distinct
airstreams in a modelling case study of the 1979 “President’s
Day storm” and relate the airstreams to the conceptual model210

by Carlson (1980). Further case studies, including Kuo et al.
(1992), Schultz and Mass (1993), Mass and Schultz (1993),
and Reed et al. (1994), also interpret computed trajectories
in consideration of the Carlson (1980) model, however, note
that they are able to identify rather a continuum of flow paths215

than discrete airstreams.
In more recent studies (see discussion below), Lagrangian

particle trajectories are frequently used to objectively detect
WCB structures in numerical model output. For our work,
we are interested in the specific ways trajectories are used220

in the literature to detect WCBs. In particular, this includes

the employed objective detection criteria and the spatial and
temporal spacing of the trajectories as well as the employed
wind fields.

Wernli and Davies (1997) introduce objective criteria to225

extract what they call “coherent ensembles of trajectories”
(CET, a bundle of trajectories started at different locations;
not to be confused with the meaning of “ensemble” in
“ensemble forecasts”) from a set of trajectories covering
the entire domain of interest. They use wind fields from230

the ECMWF global atmospheric model, interpolated (from
a spectral truncation of T213) to a regular latitude/longitude
grid of 0.75◦× 0.75◦ with 31 levels in the vertical and a six-
hour time interval. Trajectories are started on every model
grid point below 800hPa (approx. 7 levels). Wernli and235

Davies show that nearly identical CETs are obtained by se-
lecting trajectories that experience either a moisture decrease
of 12 g kg−1 in 48 h or an ascent of more than 620hPa
in 48 h. The approach allows to focus on the dynamically
most relevant cores of an extratropical cyclone’s airstreams.240

In a subsequent article, Wernli (1997) applies the suggested
method to the case study of Browning and Roberts (1994)
and relates the obtained CETs to the WCB model. Unlike
the analysis of a continuum of airstreams in a cyclone this
method selects the strongest ascending airmasses within the245

WCB.
Stohl (2001) and Eckhardt et al. (2004) compute clima-

tologies of WCBs. Stohl (2001) seeds the trajectories on
a 1◦ × 1◦ grid in the horizontal and on two vertical levels
at 500 and 1500ma.s.l. (above sea level). He notes that the250

results of his climatology are sensitive to the WCB selection
criterion, and settles for the – as he writes – “somewhat arbi-
trary” criterion of 8000m in 48 h (the approximate time scale
at which air flows through a single synoptic system). Simi-
larly, Eckhardt et al. (2004) start trajectories on a 1◦×1◦ grid255

at 500ma.s.l. They note that “any criterion used for an au-
tomatic classification of WCBs is necessarily subjective”. In
their work, trajectories travelling more than 10◦ eastward and
5◦ northward and ascending more than 60 % of the average
tropopause height within 48 h are classified as WCB trajec-260

tories.
A number of studies use the trajectory model LA-

GRANTO (Sprenger and Wernli, 2015), originally intro-
duced by Wernli and Davies (1997). Spichtinger et al. (2005)
analyse ice supersaturation in the vicinity of a WCB’s out-265

flow region, Grams et al. (2011) present a case study of an
extratropical transition. Schäfler et al. (2011) analyse aircraft
measurements and Madonna et al. (2014) present a clima-
tology of WCBs. All four studies settle for a criterion of an
ascent of more than 600hPa in 48 h to select WCB trajec-270

tories. In terms of seeding, Schäfler et al. (2011) start their
trajectories on every model grid point between the surface
and 850 hPa of the deterministic ECMWF T799L91 forecast
(spectral truncation of T799, with 91 vertical levels), inter-
polated to a regular latitude/longitude grid of 0.25◦ × 0.25◦,275

and using the approximately 17 lowest levels. Madonna et al.
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(2014) seed their trajectories at 80 km distance in the hori-
zontal and at 20hPa vertical distance on levels between 1050
and 790 hPa. Their wind field is available at 1◦ × 1◦ grid
spacing.280

During TNF (Schäfler et al., 2014), LAGRANTO has been
used with wind fields from the ECMWF ensemble forecast
covering the North Atlantic and Europe. To keep the com-
putational demand tractable for the operational forecast set-
ting, the available ENS spectral resolution of T639 was inter-285

polated to 1◦ × 1◦ in latitude and longitude. In the vertical,
all available 62 levels were used. A six-hour time step was
used. Trajectories were started for each member at 1◦ hor-
izontal spacing at five levels constant in pressure between
1000 and 800 hPa. The selection criterion was set to an as-290

cent of 500 hPa in 48 h.
In summary, the reviewed studies have all restricted tra-

jectory seeding to lower atmospheric levels. The horizontal
distance between start points mostly corresponds to the grid
spacing of the driving wind fields. While the exact selection295

criterion for WCB trajectories varies, all studies use a cri-
terion that filters trajectories according to a given ascent in
a two day period.

2.2 Computation of p(WCB)

We follow the approach of Wernli and Davies (1997) and de-300

tect WCB features by selecting Lagrangian particle trajecto-
ries according to a given ascent ∆p in a given time period ∆t.
Trajectories are computed with LAGRANTO. We use the
same ECMWF ENS wind fields described in detail in Part 1,
Sect. 4.1. From the available spectral truncation of T639, the305

wind forecasts are horizontally interpolated by the ECMWF
Meteorological Archive and Retrieval System (MARS) to
a regular latitude/longitude grid of 1◦ × 1◦ (the same data
used during TNF) and (additionally) 0.25◦ × 0.25◦. In the
vertical, the ECMWF model uses hybrid sigma-pressure co-310

ordinates (Untch and Hortal, 2004, also cf. Fig. 9 in Part 1),
of which all available 62 model levels are used.

Once trajectories have been computed and selected, a grid-
ded field of p(WCB) can be derived by relating each ensem-
ble member’s trajectories to a binary grid, and by computing315

for each grid point the relative number of members that pre-
dict a WCB feature at that grid point. In a more formal way,
the method to compute p(WCB) at time t can be summarised
as follows:

1. For every ensemble member m and every available320

forecast time step t0 ∈ (t− 48h...t), integrate 3-D La-
grangian particle trajectories, started at a fixed set of
seeding points, from t0 forward in time for ∆t = 48 h.

2. Select those trajectories that fulfil a specified WCB cri-
terion (e.g. an ascent of ∆p = 600 hPa in ∆t = 48 h).325

3. For each member m, create a 3-D binary grid Bm that
for every grid point with indices k,j, i, Bm

kji, contains

a set bit (Bm
kji = 1) if the grid point is located “inside”

a WCB airmass at time t, where “inside” needs to be
determined from the trajectory positions at t.330

4. For each grid point compute the probability of WCB oc-
currence by counting the number of members with a set
bit for the point: p(WCB)kji = 1/M

∑
mBm

kji, where
M denotes the number of ensemble members.

For trajectories seeded approximately in the atmospheric335

boundary layer, we call this method an ABL-T method. Note
that the grid topology of B needs to be identical for each
member in order to avoid errors due to variations in grid
point positions, as is the case for probabilities derived from
ECMWF NWP output (cf. Sect. 5 in Part 1).340

The method poses several challenges. With respect to step
(1.), trajectory seeding needs to be sufficiently dense to spa-
tially sample the WCB features. The literature reviewed in
Sect. 2.1 indicates that grid spacings of 1◦ or less should
be sufficient. For step (2.), the WCB criterion must be care-345

fully chosen, as the ascent that a trajectory experiences may
depend on factors including seasonal variability or the hori-
zontal and vertical grid spacing of the employed wind fore-
casts. Also, interactivity must be considered to enable a user
to change ∆p and ∆t during forecasting to judge the sen-350

sitivity of p(WCB) on these parameters. Third, we need to
find a suitable gridding strategy that determines in step (3.)
whether a grid point is located inside a WCB airmass. The
simplest approach is to extract, for each member, the particle
positions of all WCB trajectories at time t, and to compute355

for each particle the grid cell Bm
kji in which it is contained.

During TNF, this simple approach was applied in 2-D to
compute p(WCB) for total grid columns, as well as for three
vertical intervals to distinguish inflow, ascent, and outflow. In
the horizontal, a regular grid with a spacing of 1◦×1◦ in lati-360

tude and longitude was used. However, with this approach no
physical assumptions are made about the air volume repre-
sented by each particle. The result is sensitive to both trajec-
tory seeding points and grid topology of B, and the positions
of the WCB particles are only captured with an accuracy on365

the order of the grid spacing of B. Also, due to the changing
area of the grid cells with latitude, the result is biased towards
lower probabilities close to the poles. Examples of the result-
ing total column p(WCB) field are shown in Fig. 1 and can
also been found in Schäfler et al. (2014, their Fig. 3). Due to370

the described issues, the results should only be interpreted in
a qualitative manner.

In 3-D, more complexity is added as the vertical extent
of the grid cells also has to be taken into account. To elim-
inate bias and sensitivity, one possibility is to assume an air375

parcel mass and geometry for the trajectory particles, as il-
lustrated in Fig. 2a. In the example, the particle is associ-
ated with a spherical air parcel. Given the required thermo-
dynamic variables at the particle position at start time t0 and
gridding time t, the volume and thus radius of the parcel at380

t can be computed and the overlapping grid points found.
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However, due to the large difference in vertical and horizon-
tal scale of our grids (on the order of 100 km in the hori-
zontal and 100m in the vertical), the usage of spherical ge-
ometry requires the computation of a very large number of385

trajectories. Yet, geometry that reflects the different scales
(for example ellipses, cylinders or simple rectangular boxes)
is difficult to motivate physically. Also, usage of large air
parcels neglects potential deformation of the parcels by the
wind field.390

An approach not requiring any such assumptions is to use
domain-filling trajectories (in the following referred to as
DF-T method). Here, we first specify the grid topology for
B. Next, as illustrated in Figs. 2b, c and 3, for every mem-
ber and each grid point Bm

kji, a trajectory starting on Bm
kji395

is computed. This way, we can be certain that each Bm
kji is

placed exactly on a trajectory and no assumptions about the
shape of the particle volume need to be made. After apply-
ing a WCB selection criterion to the trajectories, the bits of
the grid points from which WCB trajectories were started400

are set. However, the approach requires increased computa-
tional resources. Seeding points are now required on all tro-
pospheric layers and hence a larger number of trajectories is
required. Also, trajectories additionally have to be computed
backward in time to also capture those situations in which405

a WCB trajectory passes its seeding point in the ascent or
outflow phase. Step (1.) in the method description above is
hence extended to also integrate the trajectories backward in
time for ∆t hours from time t.

As an example, Fig. 3 shows results of selecting domain-410

filling trajectories that ascend more than 500hPa in 48 h
(Fig. 3a–c) and more than 600hPa in 48 h (Fig. 3d–f). Note
how the 30 % isosurface of p(WCB) over the English Chan-
nel almost vanishes with 600 hPa filtering (Fig. 3f).

In Sect. 3, we compare four DF-T and ABL-T setups with415

varying grid topology with respect to obtained p(WCB) and
to computational demand. The comparison allows to find
a setup well suited for usage in campaign forecasting.

2.3 Implementation

Trajectories computed with LAGRANTO are stored in420

NetCDF files. Trajectory selection and the computation of
p(WCB) take place in Met.3D and have been implemented in
a number of modules in the Met.3D data processing pipeline
described in Part 1, Sect. 4.2. Analogous to Fig. 10 in Part 1,
Figure 4 shows an example setup. Separate pipeline modules425

are responsible for reading trajectory data from disk, filter-
ing the data according to the selection criterion, gridding and
probability computation. This architecture allows modules to
be exchanged when, for example, data from a different tra-
jectory model should be read or a different selection criterion430

should be applied.
Hardware permitting, parts of the pipeline (for example,

trajectory selection) can be executed in parallel. Intermedi-
ate results in the pipeline are cached by a memory manager.

Both parallel execution and caching increase the interactivity435

of the system with respect to changing the selection param-
eters ∆p and ∆t. For further details on the Met.3D pipeline
architecture, we refer the reader to Part 1, Sect. 4.2.

To select trajectories according to the ascent criterion,
the maximum pressure change occurring within a trajectory440

over the time interval ∆t is required. For the grid spacings
used here, the data volume of the trajectories of all mem-
bers amounts to multiple GB per timestep if stored in binary
NetCDF format (approximately 2.4 GB for 1◦ horizontal grid
spacing if a vertical region of interest of 52 levels is selected,445

and approximately 38 GB if the horizontal grid spacing is de-
creased to 0.25◦). Reading the data from disk and perform-
ing the selection can hence be slow. We thus make use of the
fact that the only information required to compute the prob-
abilities is whether the trajectory started from a grid point450

fulfils the selection criterion. The data volume that needs to
be loaded can be largely reduced by precomputing the max-
imum pressure change ∆p for a range of time intervals ∆t.
Now, for a given ∆t, only the maximum ∆p for each trajec-
tory (= grid point) needs to be read. The selection process455

is reduced to comparing each trajectory’s ∆p to the given
threshold value. This way, we are able to provide an interac-
tively adjustable selection criterion to the user.

3 Choice of p(WCB) method and grid spacing for

forecasting460

To use a p(WCB) method for forecasting during a campaign,
a number of criteria need to be fulfilled:

a. The trajectories need to be computed in a short period of
time (for our application this is preferably less than one
hour), so that results are available soon after the fore-465

cast wind fields become available from ECMWF (with
“available” we mean that the retrieval of the forecast
data from MARS, yielding the interpolated wind fields
described in Part 1, Sect. 4.1, has finished),

b. the amount of trajectory data needs to be small enough470

to be handled interactively in Met.3D,

c. the grid spacing needs to be fine enough to capture the
important features that are present in a “best possible”
forecast.

3.1 Evaluated setups475

We evaluate four different setups with respect to the given
criteria:

S1. As the “best possible” p(WCB) forecast, we use a DF-
T setup with trajectories computed on the ECMWF
ENS wind fields at the highest available grid spacing480

(T639L62 spectral resolution, horizontally interpolated
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by MARS to a regular grid of 0.25◦ × 0.25◦ in lati-
tude and longitude, with 62 hybrid sigma-pressure lev-
els in the vertical). Care must be taken with respect to
the choice of the Bm and p(WCB) grids. A straight-485

forward choice is to use the ECMWF grid on which
the wind fields are available. However, the vertical po-
sition of the grid points on all but the uppermost hy-
brid sigma-pressure levels depends on the surface pres-
sure field (Untch and Hortal, 2004, also cf. Part 1,490

Sect. 4.1), which varies between ensemble members and
time steps. Hence, if for a given time step the individual
members’ wind grids are used for the Bm, the problem
described in Part 1, Sect. 5, arises: the grid points are lo-
cated at different vertical positions across the ensemble,495

and hence an error is introduced when computing the
probability. To avoid this problem while staying as close
as possible to the ECMWF grid, we use the grid defined
by the time step’s ensemble minimum surface pressure
for the Bm of all members. The minimum surface pres-500

sure is chosen to ensure that all grid points are located
above the surface (if the mean surface pressure is used,
grid points in the lowest levels can be located below the
surface in some members). We focus on a vertical region
of interest of up to approximately 100 hPa and for the505

Bm and p(WCB) grids discard the model levels above
this elevation (retaining the lower 52 levels).

S2. The same setup as (S1.), but with horizontal wind field,
B, and p(WCB) grid spacing reduced to 1◦ × 1◦. As in
(S1.), the lower 52 vertical levels are used for B and510

p(WCB).

S3. The same setup as (S2.), but with B and p(WCB) grids
defined by a constant surface pressure of 1000hPa, not
by the ensemble minimum surface pressure. The wind
forecast data remain as in (S2.). The advantage of this515

setup is that the p(WCB) grid can be interpreted as
a structured pressure level grid and thus be visualized
much more efficiently (Part 1, Sect. 4.3). This way, the
interactivity in Met.3D can be improved. The drawback,
however, is that some of the lower-level grid points are520

now located below the surface and become invalid. This
reduces the vertical grid spacing in the lower tropo-
sphere above mountainous terrain.

S4. An ABL-T setup using a grid B that is regular in the
horizontal with a grid spacing of 1◦×1◦ as in (S2.) and525

(S3.). In the vertical, the grid is regular in pressure with
a grid spacing of 10 hPa. This spacing is on the order
of the average spacing of the model level grids used
in (S2.) and (S3.), and results in a comparable num-
ber of vertical levels in the region of interest (90 levels530

between 1000 and 100 hPa). Usage of a regular pres-
sure level grid can be motivated physically: from hydro-
static balance (e.g. Wallace and Hobbs, 2006, Sect. 3.2),
we know that for a column of air with constant mass

m the difference in pressure δp between top and bot-535

tom boundary of the column stays constant with height:
−δp= gρδz =mgA, where g is the acceleration due to
gravity (assumed to be constant), ρ the density of the air,
δz the geometric height of the column and A the cross-
sectional area of the column. We start the trajectories540

on those grid points of B that are located below 700 hPa
and classify a grid point as belonging to a WCB if a par-
ticle is positioned in the corresponding grid cell. This
way, while we implicitly assume a particle geometry
that is rectangular in longitude, latitude and pressure,545

the mass represented by the particle remains constant
when rising at constant latitude. The artefact of decreas-
ing grid cell area A towards the poles remains, though.
For trajectory integration, the same forecast data as in
(S2.) and (S3.) are used.550

For all trajectory computations, LAGRANTO is driven
with ECMWF ENS forecast data at six-hour timesteps. The
model internally uses a 30 min timestep for the integration,
trajectory positions are output at six-hour intervals.

3.2 Setup comparison555

In terms of computational resources, setup (S1.) is the most
demanding configuration. On our test system (six-core Intel
Xeon running at 2.67GHz; 24 GB RAM; 512 GB solid state
drive), the computation of the trajectories of a single timestep
takes about 50 CPU minutes per member. The data output for560

a timestep of all members, stored in binary NetCDF format,
amounts to approximately 38 GB. While such simulations
are feasible for research settings, they are not suited for fore-
casting. For setups (S2.) and (S3.), the number of trajectories
decrease by a factor of 16. The time required to compute the565

trajectories reduces to about three CPU minutes per timestep
and member, about 2.4 GB of trajectory data are produced
per timestep for the entire ensemble. With the current ENS
size of 51 members, this setting is feasible for forecasting if
a small compute cluster is available. For setup (S4.), the time570

further reduces to about one CPU minute and data volume
reduces to approximately one GB.

In Figs. 5 and 6, the four setups are compared by means
of four typical visualizations of the Met.3D workflow: (a)
the volume rendering of p(WCB) isosurfaces already used in575

Fig. 3c, (b) a volume rendering of WCB features in forecast
member 12 (as captured by the binary grid B12), (c) a hor-
izontal section at 410 hPa through the ascent region associ-
ated with precipitation, and (d) a horizontal section through
the inflow region at 950 hPa. The TNF forecast case of 19580

October 2012 that already served for the examples in Part
1 is used. The main features (cf. Fig. 1 in Part 1: inflow
over the Mediterranean Sea, ascent over the English Channel
and Southern England, outflow over Scandinavia and Russia,
as well as a strong ascent associated with former Hurricane585

Rafael over the North Atlantic) are well represented by all
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setups. However, in the regions of maximum p(WCB), se-
tups (S2.) and (S3.) predict probabilities that are decreased
by about 10 % compared to the “reference” setup (S1.). This
is visible in the smaller extent of the 30 % isosurface in590

Fig. 5a as well as in the horizontal sections (Fig. 6c, d). Also,
single member WCB structures are more solid in setup (S1.),
as illustrated in the 3-D view of the binary volume of member
12 (Fig. 5b). The decrease is caused by the lower horizontal
grid spacing of the driving wind fields, in which fewer trajec-595

tories experience strong ascent – potentially due to smoothed
vertical velocities. Nevertheless, setups (S2.) and (S3.) cap-
ture the shape and location of the p(WCB) features equally
well as (S1.).

The differences between setups (S2.) and (S3.) are negli-600

gible. While virtually no differences can be found in the vi-
sualizations of the WCB ascent at 410 hPa (Fig. 6c), the dif-
ferences become more pronounced in the lower atmospheric
layers (Fig. 6d). This can be explained with the grid topol-
ogy: at higher altitudes, the elevation of the model levels be-605

comes increasingly independent of surface pressure (cf. Part
1, Sect. 4.1) and hence the difference in the p(WCB) grids
vanishes. However, even at low altitudes the observed differ-
ences in p(WCB) remain within a few percent.

The bottom rows of Figs. 5 and 6 show the results for the610

ABL-T setup (S4.). Despite the crude assumption with re-
spect to air parcel geometry, the major p(WCB) features are
captured well. However, this setup tends to predict slightly
higher probabilities compared to (S2.) and (S3.) in the at-
mospheric boundary layer, and slightly lower probabilities at615

higher altitudes.
Results for other time steps are similar (not shown). We

conclude that from the presented candidates, setups (S3.) and
(S4.) are best suited to be used in a forecast setting. While
showing small differences with respect to the absolute pre-620

dicted values, both capture the shape and locations of re-
gions of elevated p(WCB). Also, both are feasible to com-
pute in less than an hour and the results can, due to the struc-
tured vertical grid layout, be visualized more efficiently than
the results computed by the setups based on hybrid sigma-625

pressure vertical coordinates (cf. Part 1, Table 2)1.

4 Probability region contribution

The methods introduced so far allow to visualize the com-
puted p(WCB) fields and to find regions in which the occur-
rence of a WCB is most likely. However, it remains an open630

question how the magnitudes of the displayed probabilities
should be interpreted. A distinct property of the examples

1To provide an order of magnitude of the rendering times: using
the same hardware setup as in Part 1 Table 1 (Nvidia GeForce GTX
560Ti graphics card with 2 GB of video memory on a six-core Intel
Xeon running at 2.67GHz) and a sampling step size of 0.1, the
isosurface visualizations in Fig. 5a require on average 361ms for
setup (S2.) and 102ms for (S3.).

presented in Sect. 3 are relatively low probabilities. For in-
stance, in Fig. 3c maximum values only reach about 30 %. As
mentioned in the introduction, such low magnitudes can have635

two causes: either indeed only 30 % of all ensemble members
predict the WCB event, or large spatial variation of the fea-
tures in the individual members causes only marginal over-
lap and thus low probabilities. Also, noise in the individual
binary volumes can cause empty grid cells in the features and640

decrease probability values. Interpreting the data correctly
and being able to distinguish between these causes is very
important for making decisions on potential flight routes.

The issue can be approached by looking at the individ-
ual ensemble members, as illustrated in Fig. 7. While due645

to limited print space Fig. 7 only shows a small selection of
members, we indeed find that much more than 30 % of the
members predict a WCB feature. However, it is difficult for
a human user to remember how many of the 51 members
showed a WCB feature. Visualizing the WCB features of all650

members in a single view (Fig. 7f) results in massive clutter
and, thus, does not reveal insight.

We are interested in the following information: given a re-
gion bounded by a probability isosurface, how many individ-
ual ensemble members predict a WCB feature that overlaps655

with this region and that, thus, contributes to the probability
value at any of the grid points inside the isosurface? To de-
termine this number of members, we propose a method that
applies region growing to identify the grid points inside the
isosurface, then uses the members’ binary grids Bm to deter-660

mine which members have contributed. To efficiently make
use of the Bm, we condense the binary grids into bitfields
that are stored together with the probability volume. For the
current example and for the 51 members of the ECMWF en-
semble, each grid point p(WCB)kji is augmented by a bit-665

field stored in a 64-bit integer variable (one bit for each
member). The bitfields are generated during evaluation of the
probability criterion (in this case, step (3.) in Sect. 2).

Figure 8 illustrates the approach. In a hypothetical ensem-
ble of ten members, nine members predict a WCB feature670

(coloured bars). However, the maximum probability value
that occurs is 30 % (red region). To determine the contribu-
tion to the region, the algorithm scans the volume for grid
points exceeding the 30 % value. Starting from the first iden-
tified point, a region growing algorithm determines all grid675

points belonging to the red region. Combining the bitfields
of the identified points with a bitwise “or”-operation reveals
that in total, members 1, 2, 3, 4, 5, 6, 8 and 9, thus 80 % of
the ensemble, contribute to the region. We hence know that
much more than 30 % of all members predict a WCB. The680

information is stored for each of the identified grid points in
a separate data field, the contribution volume. It needs to be
recomputed every time the probability isovalue changes. For
example, applying the algorithm to the white 10 % region in
Fig. 8 yields a contribution of 90 %.685

The contribution volume can be used in visualizations of
p(WCB) to colour a probability isosurface according to the
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number of members that contribute. Figure 9 shows the ap-
plication of the method to the WCB forecast from Fig. 3c,
setup (S3.). Whenever an isosurface point is identified and690

visualized (cf. Part 1, Sect. 4.3, for the employed raycast-
ing algorithm), the eight data points that enclose the isosur-
face position are sampled. Since the isosurface value is in-
terpolated from these eight points, at least the point with the
maximum probability value is located inside the isosurface,695

and the point with the lowest value is located outside the iso-
surface (otherwise no crossing could be found between the
points). Thus, by sampling the contribution volume at the
grid point with the maximum value (and exploiting the fact
that all grid points of a contiguous structure in the contribu-700

tion volume carry the same value) the number (or percentage)
of contributing members can be obtained. Indeed, Fig. 9c
shows that about 85 % of the example’s ensemble members
contributed to the 30 % isosurface – an immediate hint to the
forecaster to have a closer look at the predicted structure.705

In addition, region growing can be applied to yield infor-
mation on how many disjoint WCB features contribute from
a particular member, and how the sizes of these features com-
pare to the size of the region bound by the probability isosur-
face. The diagram in Fig. 9d is displayed by Met.3D when710

the user selects an isosurface with the mouse pointer. It shows
the sizes of the WCB features in the individual members in
a stacked box plot. The size of the probability isosurface is
displayed by the red line. Single features are divided into
solid bars, depicting the fraction of the feature that overlaps715

with the probability isosurface, and a transparent bar, depict-
ing the full size of the feature. If more than one feature con-
tributes from a given member, each disjoint feature is shown
in a different colour. For the example in Fig. 9, this informa-
tion reveals further insight: first, most members contribute720

exactly one contiguous feature; second, these features are for
the most part substantially larger than the isosurface region
(also compare the size of the probability isosurface to the
WCB features in Fig. 7). We infer that most members’ fea-
tures indeed represent WCB events. A WCB is hence very725

likely to occur.
Of course, the method can also be applied to probability

fields other that p(WCB); similarly low probabilities can also
occur for features derived from other NWP fields.

5 Case study730

At this point, all visualization and analysis methods are
available that are required to use Met.3D to answer the
forecast questions listed in the introduction. This section
demonstrates how Met.3D can be used in practice. The pre-
sented case study revisits the TNF forecast case for 19 Oc-735

tober 2012, a case that has already been used in the previous
sections and in Part 1 and that is also discussed in Schäfler
et al. (2014). We supplement the case study with a video ac-
companying this paper, as it helps convey the full value of

Met.3D’s interactive 3-D visualizations. The video contains740

this section’s static figures, as well as additional content, in
animated form. It is intended to be used side-by-side with the
paper. Start times for the video are provided throughout the
following text. To compute p(WCB), setup (S3.) from Sect. 3
is used.745

Assume the forecast activities to take place on Monday, 15
October 2012. The ensemble and deterministic predictions
initialised at 00:00 UTC on that day, as well as the preced-
ing model runs, are available to the forecaster (in the fol-
lowing, we abbreviate forecast valid times as “12Z/19” for750

12:00 UTC 19 October 2012, and forecast initialisation (or
base, or run) times as “IT00Z/15” for 00:00 UTC 15 October
2012). We are interested in areas that favour WCB develop-
ment in Central Europe, being reachable with the Deutsches
Zentrum für Luft- und Raumfahrt (DLR) Falcon aircraft from755

the campaign base in Oberpfaffenhofen, Southern Germany.
Due to requirements from air traffic authorities, potential
flight routes need to be announced at least three days in ad-
vance of a flight. Hence, our aim is to explore the atmo-
spheric situation in order to evaluate suitable flight condi-760

tions towards the end of the week.

5.1 Weather situation

Our first step is to study the large scale weather situation in
the deterministic high-resolution forecast to analyse whether
a promising synoptic situation will develop (forecast ques-765

tion A). The upper level flow is of particular interest. WCBs
frequently occur on the leading edge (i.e. downstream) of
troughs (where low pressure systems develop), and WCB
outflow is often associated with jet streaks. We start with
a Met.3D configuration featuring three views: a horizon-770

tal section of wind speed and geopotential height (initially
placed at jet stream level at 250 hPa), 3-D isosurfaces of
wind speed, and 3-D isosurfaces of cloud cover. We explore
the time period from Wednesday, 17 October, to Sunday, 21
October. Figure 10 shows screenshots of the individual views775

at three selected timesteps. To capture the 3-D spatial struc-
ture of the jet, the isosurfaces of wind speed are visualized at
30 and 50ms−1. Cloud cover is visualized by isosurfaces at
0.2 and 0.7, the latter coloured by elevation. Both 3-D views
contain contour lines at surface level showing the mean sea780

level pressure. The video shows the Met.3D window with the
full time animation.

A number of events of interest to our objectives can be
observed: a distinct trough over the Atlantic moves east-
ward and narrows over time. At the same time, high pressure785

over Central and Eastern Europe intensifies. At upper levels,
a pronounced jet stream extends from Spain over Southern
England to Scandinavia, causing strong winds over Western
Europe blowing from a southerly direction. On the leading
edge of the trough, upper level cirrus clouds are embedded in790

the jet, whereas upstream, i.e. on the rear side of the trough,
only scattered low level clouds are present. Further upstream
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(south of Greenland in Fig. 10), the large-scale flow and
cloud field are perturbed by the extratropical transition of for-
mer Hurricane Rafael (cf. Fig. 1 in Part 1; cloud field visible795

in the video). It approaches from the south and transforms
into an extratropical cyclone. The leading edge of the trough,
covering France and Southern England, would be well reach-
able with the Falcon.

Before we explore further forecast data, we obtain infor-800

mation about the uncertainty of the forecast (forecast ques-
tion B). First, we check the consistency of the deterministic
forecast by comparing the currently used forecast (IT00Z/15)
to the two previous runs from IT12Z/14 and IT00Z/14. The
video (at 00:36 min) shows how the forecast runs are tog-805

gled for the forecast valid at 18Z/19. While the IT00Z/15 and
IT12Z/14 runs show a fairly consistent situation, the trough
is much broader in the IT00Z/14 forecast. Also, the strong jet
on its leading edge has a different shape and is located fur-
ther east and further north. For specifying a flight route, this810

spatial uncertainty is an important factor.
To get a more comprehensive picture, we explore the en-

semble forecast of IT00Z/15 for occurrence, location and in-
tensity of trough and jet in the individual members. Figure 11
shows selected ensemble members and the ensemble mean815

of the jet stream visualization for the forecast valid at 18Z/19
(the animation over the members is contained in the video
at 01:14 min). The jet over Europe is present in all mem-
bers with similar intensity. However, we observe variation in
shape and location that is in part stronger than the difference820

between the IT00Z/14 and IT00Z/15 deterministic forecasts.
Nevertheless, the majority of the members predict a compa-
rable jet structure over Europe. This also becomes apparent
in the ensemble mean, which despite averaging features a jet
core of over 50ms−1. In contrast, the variation observed in825

the jet structure further upstream over the central North At-
lantic is larger, indicating that the predicted evolution of the
extratropical transition of Hurricane Rafael is very uncertain.
Here the 50ms−1 signal is smoothed out in the mean.

In summary, we conclude that at least parts of the re-830

gion approximately covering France, Southern England and
the Benelux will be located on the downstream side of the
trough.

5.2 Warm conveyor belt occurrence

Next, we examine the p(WCB) data to determine whether835

a suitable WCB event is likely to occur in our region of inter-
est (forecast question C). Figure 12 shows selected timesteps
from the IT00Z/15 forecast; the corresponding animation is
shown in the video at 01:55 min. We choose an initial selec-
tion criterion of ∆p= 500hPa in ∆t= 48h and visualize840

the predicted fields with a 3-D isosurface of a low probabil-
ity (10 %). To track the temporal evolution of the p(WCB)
field inside the isosurface (in particular the evolution of the

maxima), the 3-D normal curves proposed in Part 1, Sect.
3.4, are used2.845

Indeed, we find that on both 18 October and 19 October,
WCB airmasses are likely to ascend on the leading edge of
the trough over France and Southern England. These air-
masses are potentially of interest to a research flight. Since
the normal curves reveal larger probabilities on 19 Octo-850

ber, we focus on this day. At 12Z/19 (Fig. 12b) and 18Z/19
(Fig. 12c), the ascent signal is most apparent in the predic-
tion. At 00Z/19 and 06Z/19 (Fig. 12a), the airmass is still
close to the surface and too far south to be reached by a single
Falcon flight. At 00Z/20 (Fig. 12d) and 06Z/20, the airmass855

has reached upper levels and WCB activity is dominated by
outflow. For the campaign objectives, the time around 12Z/19
and 18Z/19 is most interesting to us: the air is ascending
and hence meteorologically active (precipitation is associ-
ated with the ascending phase of a WCB), and it is located in860

an area that can be well reached by the Falcon. The 3-D vi-
sualization allows to judge the vertical extent, shape, and el-
evation of the region of high probability. The normal curves,
coloured by probability, reveal that the maximum values of
p(WCB) on 19 October are on the order of 20 to 30 %. By865

moving the camera and using vertical poles, we see that the
region enclosed by the 10 % isosurface is tilted westwards
(left column of Fig. 12, video at 02:29 min). At 18Z/19, the
maximum is located at around 400 hPa.

Due to the low magnitudes of p(WCB), we next intend870

to clarify (a) whether indeed only a few ensemble mem-
bers predict the WCB, and (b) how the predicted probability
changes with a changing selection criterion (forecast ques-
tion D). Figure 13a shows a screenshot of Met.3D with the
region contribution analysis (Sect. 4) applied to the forecast875

valid at 18Z/19 (video at 02:42 min). A 20 % isosurface is
used to capture the regions of maximum predicted p(WCB).
Indeed, for both 12Z/19 (not shown) and 18Z/19 the analy-
sis confirms that over 85 % of the ensemble members have
contributed to the 20 % probability region over the English880

Channel. The difference between 20 and 85 % indicates large
spatial variation in the ensemble. Also, the histogram (on the
right side of Fig. 13a) shows that the majority of individual
WCB features that overlap with the 20 % isosurface cover
a larger volume than the resulting probability region itself.885

This implies that the regions that experience ascent in the in-
dividual members are larger than the region enclosed by the
isosurface. To validate these findings, we animate over the
individual members (Fig. 13b, c, and d; video at 03:16 min).
Indeed, almost all members predict a WCB feature on the890

2Normal curves are well suited in this case to obtain an overview
of the situation, as the magnitudes of maximum p(WCB) values and
their variation between timesteps are not known beforehand (hence
it is difficult to choose a suitable value for an inner opaque isosur-
face as done for the jet visualization; see Part 1, Sect. 3.4). Normal
curves converge at local extrema and hence at a glance highlight
maxima, regardless of their magnitude.
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leading edge of the trough. However, as expected, the vari-
ability in shape and location of the predicted features is very
large. In addition to members in which the WCB air ascends
at 18Z/19, members in which the air is already in the outflow
stage (elongated features at jet stream level) or still in the895

inflow stage (close to the surface) are equally present. This
indicates additional temporal uncertainty. Hence, while there
seems to be a good chance to sample WCB air on 19 October
in the region covering Western France to Southern England,
the location in space and time of the WCB ascent is still un-900

certain in the IT00Z/15 forecast.
To judge the strength of the predicted ascent, we modify

the trajectory selection criterion. Figure 14 (video at 03:38
min) shows how the predicted p(WCB) changes with ∆p.
By decreasing ∆p (Fig. 14a), we can confirm a high like-905

lihood of ascending airmasses in the region of interest3;
the probability increases with decreasing ∆p. Increasing ∆p
(Fig. 14b) reduces the predicted probabilities. However, the
location of the maximum remains at the same position. The
region in which high probabilities for ascending airmasses910

are forecast is hence also the region in which the strongest
updrafts occur.

5.3 WCB characteristics

The next goal is to characterise the predicted ascent with re-
spect to related atmospheric processes (forecast question E).915

We take a closer look at the WCB trajectories of the ensem-
ble control run and visualize the trajectory particle positions
at single timesteps. Animation over the timesteps of the tra-
jectories computed forward and backward from 18Z/19 re-
veals that the air that at 18Z/19 has ascended to the region920

over the Channel originates from the ABL over the Western
Mediterranean Sea and Northwestern Africa around 18Z/18
(Fig. 15a, video at 04:10 min). It is lifted over Spain in the
early hours of 19 October and over the course of the day
continues its ascent over Western France, the Channel and925

Southern England (Fig. 15b, c). By vertically shifting a hori-
zontal section of geopotential height and equivalent potential
temperature of the deterministic forecast at 18Z/18 (similar
to the ensemble control but chosen here for its added detail),
we discover a cyclone over the Northern British Isles, and930

a weaker surface low located on the west coast of France
(Fig. 15d, video at 04:28 min). South of Spain, warm and
moist air (high equivalent potential temperature) is advected
northward. This airmass represents the WCB inflow region;
it is subsequently lifted by the WCB. In contrast, on the rear935

side of the trough, colder and drier airmasses over the East
Atlantic are transported southward to Spain. Over the follow-
ing 24 h, the cyclone over the British Isles remains stationary,
the weaker surface low moves towards Norway (Fig. 15e, f,
video at 04:52 min). Animation over the ensemble members940

3Note that the normal curves are again advantageous for this in-
teraction as they allow to visually track the location and magnitude
of maximum probabilities despite the changing magnitudes.

reveals that most other members predict similar ascents orig-
inating from the Western Mediterranean Sea and Northwest-
ern Africa. Figure 16 reproduces the visualization of Fig. 15c
for the members shown in Fig. 13b, c, and d. The trajectory
particles that represent the WCB airmasses are lifted along945

similar paths. However, the temporal evolution of the WCBs
differs in the members. At 18Z/19, the airmasses are at dif-
ferent stages of their ascent.

Figure 17 shows vertical sections of potential vorticity
(PV) and cloud cover of the deterministic forecast valid at950

18Z/19 (animated in the video at 05:19 min). The dynamic
tropopause, as indicated by the 2-PVU-surface, folds along
the trough (Fig. 17a). On the rear side of the trough, dry
stratospheric air is transported downward. On its leading
edge, the tropopause is elevated where it transitions into the955

anticyclonic region over Central Europe. Between 700 and
500 hPa, increased values of PV indicate regions of diabatic
PV production. They coincide with the cold front that can
be identified from the strong gradient in equivalent poten-
tial temperature (dense contour lines below the clouds in960

Fig. 17b). The cold front tilts westward with height, match-
ing the tilted structure of the p(WCB) isosurface described
in the previous section. Ahead (east) of the front, predicted
cloud cover largely coincides with the location of the WCB.
Overall, the situation resembles the classic conceptual WCB965

model (Browning, 1986). The WCB outflow predicted over
the North Sea at 00Z/20 is related to lower PV values aloft.
This is consistent with predicted ice water and cloud cover in
this region (not shown).

5.4 Potential flight segments970

Given the findings from the previous subsections, we in-
terpret the p(WCB) maximum as the most likely location
for the predicted WCB event and draft potential flight seg-
ments. Figure 18 shows the corresponding Met.3D configu-
ration. For 12Z/19 and 18Z/19, we slide a horizontal section975

trough the p(WCB) volume to determine precise locations
of the maxima (video at 05:42 min). At 12Z/19, maximum
probabilities are located above the Pyrenees at low levels, in
the Bordeaux area between 700 and 600 hPa, and south of
Brittany around 400 hPa. Six hours later, the maximum is980

most prominent above Southern England at altitudes around
400 hPa. A vertical section is used to explore potential flight
segments. It allows to estimate at which elevation a flight
should take place, and, by moving the section, to quickly as-
sess how spatially relocating the leg will impact the expected985

measurements. In the given case, the 2-D sections suggest
flight legs at 12Z/19 over France at elevations between 800
and 600hPa (WCB ascent) and at 18Z/19 over Southern
England at elevations around 400 hPa (WCB outflow)4.

4During TNF, we did not have the vertical p(WCB) informa-
tion available. We placed the flight along a horizontally pre-defined
flight leg over France which appeared to fit well with the 2-D
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However, given the uncertainty in the temporal evolution990

of the WCB (previous section), we need to carefully monitor
developments in subsequent forecast runs. Figure 19 (video
at 07:38 min) shows the predictions for 18Z/19 for forecast
runs subsequent to the IT00Z/15 run. Over the next two days,
the ensemble predictions converge toward higher p(WCB)995

over the English Channel and Southern England. The eleva-
tion of the predicted maximum in p(WCB) remains approx-
imately constant. Indeed, the research flights conducted dur-
ing TNF showed that the targeted WCB occurred as predicted
(Schäfler et al., 2014).1000

6 Conclusions

Motivated by the forecast requirements of the T-NAWDEX-
Falcon 2012 campaign, we have demonstrated the feasibility
of applying interactive 3-D ensemble visualization to fore-
casting warm conveyor belt situations during aircraft-based1005

field campaigns. The article extends our work presented in
Part 1, in which we have introduced the new open-source 3-
D ensemble visualization tool Met.3D. In the present paper,
we have proposed methods to compute and to visually anal-
yse 3-D probabilities of WCB occurrence. The techniques1010

have been integrated into Met.3D and are part of the released
version 1.0 (see Part 1, Sect. 6, for information on code avail-
ability). A case study, revisiting a forecast case that occurred
during T-NAWDEX-Falcon, has demonstrated how the meth-
ods introduced in the two papers can be used for practical1015

forecasting.
Following the literature, our methods detect WCBs by

means of Lagrangian particle trajectories. By computing tra-
jectories for each member of the ECMWF ensemble forecast,
a distribution of WCB features is obtained from which prob-1020

abilities of occurrence can be derived. We have discussed
different approaches to trajectory seeding and gridding, and
have shown that probabilities derived from trajectories com-
puted at a horizontal grid spacing of 1◦ in latitude and lon-
gitude capture the same WCB structures as trajectories com-1025

puted at a higher grid spacing of 0.25◦. A proposed visual
analysis method supports the interpretation of the probabil-
ity fields. The method facilitates fast visual estimation of the
number of ensemble members that forecast a WCB feature
in a region of interest bounded by a probability isosurface. In1030

particular for situations in which the magnitude of observed
probabilities is low, the method helps to distinguish the case
in which only few members predict a WCB but at approxi-
mately the same location, from the case in which many mem-
bers predict a WCB but the spatial variation is high. The1035

method can be applied to probabilities of other features as
well.

p(WCB) product. We were only able to guess at which altitudes
we should fly. In fact, from the 3-D p(WCB) data we find that the
flight should rather have been planned south of the pre-defined flight
leg.

With Met.3D and the proposed WCB methods, we are
now able to analyse ensemble prediction data in a way previ-
ously impossible. Three of us (M. Rautenhaus, C. M. Grams,1040

A. Schäfler) have actively been involved in forecasting dur-
ing aircraft-based field campaigns. With respect to the case
study and our experience in research flight planning, we note
a few conclusions from our work, reflecting the authors’
opinions.1045

1. Combination of 2-D and 3-D visualization methods
gives a more complete picture of the forecast atmo-
sphere. 3-D elements can depict different aspects of the
data than horizontal and vertical 2-D sections alone. For
example, usage of isosurfaces and normal curves allows1050

for very fast initial judgement of the predicted WCB sit-
uation. However, we would not want to abandon the fa-
miliar 2-D sections; for many tasks (obtaining quantita-
tive information, visualizing multiple forecast parame-
ters in the same plot, analysing the vertical structure of1055

the atmosphere along a flight segment) they are superior
to 3-D methods. If 3-D visualization is used, achieving
good spatial perception is important, as we have dis-
cussed in Part 1.

Furthermore, while we think that 3-D visualization1060

helps to understand the atmospheric situation in many
cases, it does not work equally well for all forecast vari-
ables. For the isosurfaces of wind speed and WCB prob-
ability used in the case study, 3-D visualization is well
suited. For variables that highly fluctuate in space (as1065

is often the case for variables depending on moisture,
such as relative humidity), isosurfaces are problematic.
For these cases, additional methods that help the user
focus on the regions and features of interest will need to
be developed.1070

2. One of the primary advantages of Met.3D is the high
pace at which a forecast can be explored. Interactivity,
the possibility for the user to change a parameter that
affects the visualization and to receive immediate vi-
sual feedback, is key to this property. It facilitates the1075

very fast analysis of static scenes (moving the camera
to explore spatial structure of a feature, moving a verti-
cal axis), of dynamic processes (animation over time),
of uncertainty (animation over the ensemble, compari-
son of different forecast base times), and of sensitivity1080

(changing a parameter that affects a displayed statistical
quantity).

However, we find that while interactivity enables the
user to quickly visualize a large amount of data, the
user is also confronted with many more images than he1085

would be if he were restricted to, for example, a lim-
ited number of horizontal sections. Here, as Trafton and
Hoffman (2007) suggest, a virtual “sketchpad” that cap-
tures elements discovered by the forecaster and that al-
lows him to represent his “mental model” of the atmo-1090
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sphere would be useful. The sketchpad could also be
used to communicate the findings to colleagues, a com-
mon challenge during campaigns.

3. Our methodology to predict probabilities of WCB
occurrence illustrates challenges of feature-based ap-1095

proaches to analyse ensemble data. Our region contri-
bution approach helps to interpret the derived probabil-
ities, however, further work will be useful. For exam-
ple, we would like to automatically obtain information
about how features in different members correspond to1100

each other: do other members predict the same situation
but shifted in space or in time? Such information would
allow to identify different scenarios forecast by the en-
semble, and uncertainty could be differentiated with re-
spect to space and time. Detection and visualization of1105

further 3-D cyclonic features would also be very use-
ful. For a single member we could see, for example, at
a glance which WCB transports which airmass along
which route, driven by which cyclone and in relation to
which front and jet stream. How to meaningfully visu-1110

alize such features for an entire ensemble to depict their
uncertainty is an open research question.

4. A drawback of the Met.3D visualization approach is
that since it uses the complete ensemble dataset, inter-
active usage requires the forecast data to be available1115

on the local hard drive. For field campaigns based at
remote locations, this is not feasible. In these cases,
web based approaches such as DLR’s Mission Support
System (Rautenhaus et al., 2012) might be the better
choice. Alternatively, dedicated ensemble compression1120

schemes might enable more efficient remote handling,
or remote visualization solutions such as VirtualGL5

could be used to locate data and visualization system
at the same site while allowing users to explore the data
remotely using a modest internet connection.1125

We will actively use and further evaluate our develop-
ments during upcoming field campaigns, including a future
NAWDEX campaign scheduled for 2016. It will again target
WCBs. We also intend to continue our work on trajectory-
based ensemble analysis. For example, trajectories can be1130

applied to detect further Lagrangian features. Different se-
lection criteria can reveal airmasses that have undergone spe-
cific physical or chemical processes, or that originate in spe-
cific geographic regions. Also, ensemble trajectories can be
used to track, for instance, the dispersion of pollutants or vol-1135

canic ash. Modified versions of our proposed methods can be
used to derive probabilities that reveal forecast uncertainty in
regions in which a pollutant or volcanic ash concentrations
exceed a critical threshold. In this respect, more complex se-
lection algorithms and the visualization of combined proba-1140

bilities of multiple features will be challenging.

5http://www.virtualgl.org

Considering the ever increasing data volume generated by
ensemble weather prediction systems, effective and intuitive
visualization methods are and will be important to weather
forecasting. The atmosphere is three-dimensional, and while1145

we need to conduct user studies to formally prove the added
value through 3-D visualization, in our opinion forecast anal-
ysis can be made much more intuitive by using interactive
3-D methods, thus decreasing the time a meteorologist needs
to analyse a forecast dataset.1150

The Supplement related to this article is available online

at doi:10.5194/gmd-0-1-2015-supplement.
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(a)

(b)

Figure 1. Total column probability of WCB occurrence (%), as
available during TNF. Probabilities are computed from ABL-started
trajectories filtered for an ascent of 500hPa in 48 h. Forecasts from
(a) 00:00 UTC 15 October 2012 and from (b) 00:00 UTC 17 Oc-
tober 2012, both valid at 18:00 UTC 19 October 2012. Compare to
Fig. 3 in Schäfler et al. (2014).
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Figure 2. Methods to compute p(WCB). (a) ABL-T method using trajectories started in the atmospheric boundary layer and integrated 48 h
forward in time. To get 3-D gridded information on WCB location, an air parcel volume needs to be assumed for each particle so that grid
points overlapping with the volume can be determined. (b) DF-T method using domain-filling trajectories started from every grid point of
the p(WCB) grid and integrated both 48 h forward and backward in time. No volume has to be assumed as selected WCB trajectories are
located exactly on grid points (c).

(a) (b) (c)

(d) (e) (f)

Figure 3. Derivation of p(WCB) with DF-T setup (S3.). (a, d) Trajectories started at 18:00 UTC 19 October 2012, computed with wind fields
from the ensemble control forecast from 00:00 UTC 17 October 2012, integrated forward and backward in time for 48 h each. Trajectories are
selected according to an ascent of (a–c) 500 and (d–f) 600hPa in 48 h. Colour encodes altitude (hPa). (b, e) Volume rendering of the binary
grid B, representing the start positions of the selected trajectories. (c, f) Probability of WCB occurrence derived from all 51 members of the
ensemble. The red opaque isosurface shows 30 % probability, the purple transparent isosurface 10 % probability. Vertical axes are labelled
with pressure altitude (hPa).
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Figure 4. Sample Met.3D data processing pipeline to visualize p(WCB), depicted analogous to Fig. 10 in Part 1. Different pipeline modules
(yellow) are responsible for reading and selecting trajectories, and for computing the p(WCB) field. In the example, a volume actor (green;
for details see Part 1, Sect. 3) visualizes the resulting p(WCB) data. A request for the probability of occurrence of trajectories, emitted by the
volume actor, triggers further requests up the pipeline. Intermediate results are cached by the memory manger, connected to each pipeline
module (indicated by the black lines). Pipeline execution can be parallel and is controlled by a task scheduler, also connected to all pipeline
modules (for details see Part 1, Sect. 4.2).
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(a, S1.) (b, S1.)

(a, S2.) (b, S2.)

(a, S3.) (b, S3.)

(a, S4.) (b, S4.)

Figure 5. Comparison of setups to compute p(WCB). Same forecast as in Fig. 3. The selection criterion is set to 500hPa in 48 h. (a) Volume
rendering of p(WCB) (red opaque isosurface shows 30 % probability, purple transparent isosurface 10 % probability). (b) Volume rendering
of the binary grid B of a single member (member 12), representing the WCB features for this member. (S1.) DF-T setup with a horizontal
grid spacing of 0.25◦×0.25◦, in the vertical the lower 52 (of 62) hybrid sigma-pressure levels (up to approximately 100hPa) defined by the
ensemble minimum surface pressure are used. (S2.) As (S1.) but with 1◦ × 1◦ horizontal grid spacing. (S3.) As (S2.) but with vertical levels
defined by a constant surface pressure of 1000hPa. (S4.) ABL-T setup with 1◦ × 1◦ horizontal grid spacing and a regular vertical grid with
a grid spacing of 10hPa.
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(c, S1.) (d, S1.)

(c, S2.) (d, S2.)

(c, S3.) (d, S3.)

(c, S4.) (d, S4.)

Figure 6. Same as Fig. 5, but showing: (c) Horizontal section of p(WCB) at 410hPa. (d) Horizontal section of p(WCB) at 950hPa. Colour
coding in %. Green contour lines show ensemble mean geopotential height.
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Figure 7. WCB features (binary grids Bm) of further members m of the forecast shown in Fig. 3b. Members (a) 2, (b) 4, (c) 34, (d) 36 and
(e) 42. Note that location and shape of the WCB features vary strongly. (f) WCB features of all 51 members of the ensemble, visualized
in a single image and distinguished by colour (colour coding denotes member number). Black contour lines in all images show sea level
pressure of the corresponding member (of the ensemble mean in (f)).
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Figure 8. Schematic 2-D example of a case in which many ensem-
ble members predict a WCB feature but spatial variation causes
low probability values. Consider an ensemble of ten members, of
which nine members predict a WCB feature (depicted by the differ-
ent coloured and numbered lines). In the example, only a maximum
of three features overlap in any grid cell (resulting in a maximum
probability of 30 %; red grid cells). By storing the indices of all
members that contribute to a given grid cell, our method is able to
determine the members that contribute to a probability region. In
the example, 8 members (that is, 80 %) contribute to the red region.
The grey grid cells illustrate the 10 % region.

(a) (b)

(c)

(d)

Figure 9. Application of the region contribution algorithm to the
WCB forecast from Fig. 3c. (a) Horizontal section of p(WCB) at
415hPa over Southern England (colour coding in %). (b) Grid
boxes that intersect with the 415hPa surface and that exceed
the isosurface threshold of 30 % (the red isosurfaces in Fig. 3c),
coloured by the percentage of contributing members as identified
by the region growing algorithm (colour coding in %). Green con-
tour lines in (a) and (b) show ensemble mean geopotential height.
(c) The 30 % isosurfaces of Fig. 3c coloured by the percentage of
contributing members. Purple contour lines show ensemble mean
sea level pressure. (d) Size (in grid cells) of WCB features in the
members contributing to the 30 % isosurface above Southern Eng-
land. If multiple features contribute from a given member, they are
stacked using different colours (in the example, small secondary
features exist in members 24, 31, and 46). The bar of each feature is
divided into total feature size (light colour) and the fraction of the
feature that overlaps with the 30 % isosurface (solid colour). The
red horizontal line marks the size of the 30 % isosurface.
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(a) 18:00 UTC 18 Oct 2012

(b) 18:00 UTC 19 Oct 2012

(c) 00:00 UTC 21 Oct 2012

Figure 10. Time sequence of (left) horizontal section with contour lines of geopotential height and filled contours of wind speed (ms−1) at
250hPa, (middle) jet stream (opaque isosurface 50ms−1, transparent isosurface 30ms−1, and black contour lines of sea level pressure) and
(right) clouds (opaque isosurface cloud cover fraction of 0.7, transparent isosurface cloud cover fraction of 0.2, and black contour lines of
sea level pressure). Colour coding in the right panel denotes cloud elevation in hPa. Deterministic forecast from 00:00 UTC 15 October 2012,
valid at (a) 18:00 UTC 18 October 2012, (b) 18:00 UTC 19 October 2012, and (c) 00:00 UTC, 21 October 2012.
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Figure 11. Navigation through the ensemble. Members (a) 27, (b) 33, (c) 37, (d) 43, (e) 45 and (f) the ensemble mean of horizontal wind
speed (forecast from 00:00 UTC 15 October valid at 18:00 UTC 19 October 2012). Shown are the 50ms−1 (green opaque) and 30ms−1

(yellow transparent) isosurfaces. Black contour lines show sea level pressure.
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(a) 06:00 UTC 19 Oct 2012

(b) 12:00 UTC 19 Oct 2012

(c) 18:00 UTC 19 Oct 2012

(d) 00:00 UTC 20 Oct 2012

Figure 12. Subsequent time steps of p(WCB) (computed with DF-T setup (S3.)), rendered from different viewpoints. Forecast from
00:00 UTC 15 October 2012, valid at (a) 06:00 UTC, (b) 12:00 UTC, (c) 18:00 UTC 19 October and at (d) 00:00 UTC 20 October 2012.
Trajectory filtering is set to 500hPa in 48 h. The purple transparent isosurfaces show a probability of 10 %. The interior structure of the
isosurfaces is visualized using the 3-D normal curves approach proposed in Part 1, Sect. 3.4. The normal curves follow the gradient of the
p(WCB) field and converge at local maxima. They are coloured by probability (%) to allow to visually track probability maxima (red to
black convergence zones). Black surface contour lines show ensemble mean sea level pressure.
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Figure 13. Region contribution analysis applied to the ensemble forecast from 00:00 UTC 15 October 2012, valid at 18:00 UTC 19 Octo-
ber 2012. (a) Screenshot of the Met.3D configuration. 20 % isosurfaces of p(WCB) are coloured by the percentage of contributing members.
The contribution distribution of the feature over Southern England is shown in the histograms on the right side of the window (feature size
in (top) grid cells and (bottom) 103 km3; see Fig. 9 for details on the diagram). (b–d) WCB features (binary grids B) as predicted by the
individual ensemble members (b) 2, (c) 9 and (d) 19. Purple surface contours in (a) and black surface contours in (b–d) show sea level
pressure.
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(a)

(b)

Figure 14. Adjusting the filter criterion for the p(WCB) forecast
shown in Fig. 12c (forecast from 00:00 UTC 15 October 2012, valid
at 18:00 UTC 19 October 2012). Filter criterion of (a) 400hPa and
(b) 550hPa in 48 h (in Fig. 12c a criterion of 500hPa in 48 h
is used). The purple transparent isosurfaces show a probability of
10 %. Normal curves inside the isosurfaces are coloured by proba-
bility (%). Black contour lines show ensemble mean sea level pres-
sure.
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Figure 15. (a–c) Particle positions of the (backward) WCB trajectories of the ensemble control forecast, started at 18:00 UTC 19 Octo-
ber 2012 and computed on the forecast initialised at 00:00 UTC 15 October 2012. Colour codes pressure elevation in hPa. (d–f) Horizontal
sections of geopotential height (contour lines), wind barbs and equivalent potential temperature (colour coded in K) of the deterministic
forecast from 00:00 UTC 15 October 2012 at 950hPa. Forecasts are valid at (a, d) 18:00 UTC 18 October 2012, (b, e) 06:00 UTC 19
October 2012, and (c, f) 18:00 UTC 19 October 2012.

Figure 16. The same as Fig. 15c, but for the ensemble members (a) 2, (b) 9 and (c) 19. Also compare to the visualizations of the corresponding
binary grids B shown in Fig. 13b–d.
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(a) (b)

Figure 17. (a) Vertical section of potential vorticity (colour coding in PVU; red colours in the left plot mark the 2-PVU surface and thus
the dynamic tropopause), potential temperature (grey contour lines), liquid and ice water content (blue and green contour lines). (b) Vertical
section of cloud cover fraction (colour coding) and equivalent potential temperature (red contour lines). Black surface contour lines in both
(a) and (b) show sea level pressure. Deterministic forecast from 00:00 UTC 15 October 2012, valid at 18:00 UTC 19 October 2012.

Figure 18. Planning potential flight legs with Met.3D (ensemble forecast from 00:00 UTC 15 October 2012, valid at 18:00 UTC 19 Octo-
ber 2012). The large view in the middle shows a vertical section of p(WCB) (colour scale in %), potential temperature (black contour lines),
liquid and ice water content (blue and white contour lines). Purple surface contours show ensemble mean sea level pressure. The small view
on the upper right shows a vertical section of potential vorticity (same colour coding and contour lines as in Fig. 17a). The small view on the
lower right shows a horizontal section at 390hPa, showing p(WCB) (same colour scale as in the large view) and contour lines of ensemble
mean geopotential height. The maximum p(WCB) along the proposed leg can be found over southern England at around 400hPa. The
vertical section of PV shows how a flight at that altitude, going westward, would penetrate the tropopause shortly after sampling the WCB.
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(a)

(b)

Figure 19. Convergence of p(WCB) with decreasing forecast lead
time. Forecasts from (a) 12:00 UTC 15 October 2012 and (b)

12:00 UTC 16 October 2012, valid at 18:00 UTC 19 October 2012.
Filter criterion is 500hPa in 48 h. Isosurfaces show 30 % (red
opaque isosurface) and 10 % (purple transparent isosurface). Black
surface contours show ensemble mean sea level pressure. The fore-
cast from 00:00 UTC 17 October 2012 is shown in Fig. 3c.


