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Abstract. We present Met.3D, a new open-source tool for
the interactive 3-D visualization of numerical ensemble
weather predictions. The tool has been developed to sup-
port weather forecasting during aircraft-based atmospheric
field campaigns, however, is applicable to further forecast-5

ing, research and teaching activities. Our work approaches
challenging topics related to the visual analysis of numerical
atmospheric model output – 3-D visualization, ensemble vi-
sualization, and how both can be used in a meaningful way
suited to weather forecasting. Met.3D builds a bridge from10

proven 2-D visualization methods commonly used in mete-
orology to 3-D visualization by combining both visualiza-
tion types in a 3-D context. We address the issue of spatial
perception in the 3-D view and present approaches to using
the ensemble to allow the user to assess forecast uncertainty.15

Interactivity is key to our approach. Met.3D uses modern
graphics technology to achieve interactive visualization on
standard consumer hardware. The tool supports forecast data
from the European Centre for Medium Range Weather Fore-
casts (ECMWF) and can operate directly on ECMWF hybrid20

sigma-pressure level grids. We describe the employed visu-
alization algorithms, and analyse the impact of the ECMWF
grid topology on computing 3-D ensemble statistical quanti-
tites. Our techniques are demonstrated with examples from
the T-NAWDEX-Falcon 2012 campaign.25

1 Introduction

Weather forecasting requires meteorologists to explore large
amounts of numerical weather prediction (NWP) data, and to
assess the uncertainty of the predictions. Visualization meth-
ods that facilitate fast and intuitive exploration of the data30

hence are of particular importance. In practice, the forecast-
ing process for the most part relies on two-dimensional (2-

D) visualization methods. Meteorologists use weather maps,
vertical cross-sections and a multitude of meteorological di-
agrams to depict the data. From these image sources, they35

build “mental models” of the three-dimensional (3-D), time-
varying forecast atmosphere inside their heads (Hoffman and
Coffey, 2004; Trafton and Hoffman, 2007).

Despite the 3-D nature of the atmosphere, 3-D visualiza-
tion methods have not found widespread usage, even though40

there have been promising attempts in the 1990s and early
2000s that suggested added value (Treinish and Rothfusz,
1997; Koppert et al., 1998; McCaslin et al., 2000). Various
hindering factors are discussed in the literature, including
resistence of forecasters to adapt to new 3-D visualization45

methods that are decoupled from their “familiar” 2-D prod-
ucts (Koppert et al., 1998; Szoke et al., 2003), problems with
spatial perception in 3-D renderings (Szoke et al., 2003), as
well as issues due to limited performance (Treinish and Roth-
fusz, 1997) and the need for dedicated graphics workstation50

hardware (Koppert et al., 1998).
In addition to 3-D space and time, forecast visualization

has in recent years become more challenging through the in-
creased use of ensemble weather predictions – sets of fore-
cast runs whose distribution provides information on fore-55

cast uncertainty (e.g. Gneiting and Raftery, 2005; Leutbecher
and Palmer, 2008). The development of visualization meth-
ods that depict the uncertainty derived from ensemble data
is an active topic of research not only for weather forecast
ensembles (Obermaier and Joy, 2014). Yet again, ensemble60

visualization techniques related to weather forecasting pub-
lished so far mainly focus on two dimensions as well (e.g.
Potter et al., 2009; Sanyal et al., 2010).

In this article we introduce a new open-source visual-
ization tool, Met.3D, that provides interactive 3-D visual-65

ization techniques for ensemble prediction data. There has
been an immense progress in mainstream graphics hardware
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capabilities in recent years. Making use of these develop-
ments, Met.3D facilitates interactive visualization of present-
day NWP datasets on consumer hardware. The tool has been70

developed as a new effort to demonstrate the feasibility of
using 3-D visualization for forecasting, this time also con-
sidering uncertainty information from ensemble datasets. It
is intended to be used for actual forecasting tasks, as well as
a platform to implement and evaluate new 3-D and ensemble75

visualization techniques.
The work presented in this paper has been inspired by

a particular application, forecasting the weather situation to
plan research flights during aircraft-based field campaigns.
We focus on this application throughout the paper at hand.80

However, Met.3D is applicable to a broader range of fore-
casting and visual data analysis tasks. Both fast exploration
and uncertainty assessment play a major role in campaign
forecasting:

1. When investigating suitable meteorological conditions85

to specify the route of a research flight (that is, way-
points in 3-D space and time), the forecaster is re-
quired to quickly identify atmospheric features rel-
evant to the flight and to communicate findings to
colleagues. Upper-level features typically important90

to flights with high-flying aircraft are of an inher-
ently three-dimensional nature (for example, clouds,
jet streams, or the tropopause). From our experience
in campaigns with DLR (German Aerospace Centre)
involvement, visualization used during campaigns has95

been solely based on 2-D methods, typically with lim-
ited interactivity. We are hence interested in investigat-
ing how 3-D visualization methods and interactivity (to
quickly navigate the data space) can be used to aid the
exploration.100

2. Assessing the forecast’s uncertainty has become indis-
pensable as flights frequently have to be planned multi-
ple days before take-off (typically three to seven days;
the medium forecast range) to obtain the required ap-
proval from air traffic authorities. While the use of en-105

semble predictions has been reported for recent field
campaigns (e.g. Wulfmeyer et al., 2008; Elsberry and
Harr, 2008; Ducrocq et al., 2014; Vaughan et al., 2015),
they have, to the best of our knowledge, not been used
to create specific interactive forecast products for flight110

planning. However, ensembles provide valuable infor-
mation; for example, 3-D probability fields for the oc-
currence of a targeted atmospheric process or feature
can be derived. Potential flight routes can be planned in
regions in which the probability is high. An open ques-115

tion, however, is how the ensemble data can be visual-
ized to improve flight planning in the medium forecast
range.

Our objective is to use interactive 3-D visualization of en-
semble predictions from the European Centre for Medium120

Range Weather Forecasts (ECMWF) to improve the forecast
process for field campaigns. The work has been stimulated
by the forecast requirements of a specific field campaign, the
international T-NAWDEX-Falcon campaign (THORPEX –
North Atlantic Waveguide and Downstream Impact Exper-125

iment – Falcon, hereafter TNF). TNF took place in Octo-
ber 2012 with the objective to take in-situ measurements in
warm conveyor belts (WCBs), airstreams in extratropical cy-
clones that lift warm and moist air from near the surface to
the upper troposphere (e.g. Browning and Roberts, 1994).130

Schäfler et al. (2014) provide details on the campaign and its
flight planning. The major forecasting challenge was to pre-
dict the likelihood of WCB occurrence within aircraft range.
This was expressed by a number of forecast questions that
guided the development of Met.3D:135

– A: How will the large scale weather situation develop
over the next week, and will conditions occur that
favour WCB formation?

– B: How uncertain are the weather predictions?

– C: Where and when, in the medium forecast range and140

within the spatial range of the aircraft, is a WCB most
likely to occur?

– D: How meaningful is the forecast of WCB occurrence?

– E: Where will the WCB be located relative to cyclonic
and dynamic features?145

In a recent ECMWF Newsletter article (Rautenhaus et al.,
2014), we provided a brief overview of our work. It is the pur-
pose of this publication to describe the techniques we have
developed in detail and to present our solutions to particular
challenges.150

We split our work into two parts, structured as follows. In
the paper at hand, we introduce Met.3D. We discuss chal-
lenges related to interactive 3-D visualization and present
techniques that address questions A and B.

To put our work in the context of the literature, we review155

recent works in meteorological and ensemble visualization
in Sect. 2. Section 3 presents Met.3D’s visualization capa-
bilities. When introducing 3-D visualization to forecasting,
we need to consider that the 2-D visualization methods com-
monly used in meteorology provide many advantages (for160

example, spatial perception) and that meteorologists are used
to working with them. In a 3-D forecast tool to be used in
practice, we hence have to be careful not to replace proven
2-D methods, but to put them into a 3-D context and to use
3-D visualization to add value. We address the challenges of165

creating such a “bridge” from 2-D to 3-D visualizations, of
improving spatial perception of 3-D renderings and of de-
signing interactive methods that provide fast and easy vi-
sual access to ensemble information. A supplementary video
containing real-time screen recordings of examples shown170
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in Sect. 3 demonstrates the performance of Met.3D on mid-
range consumer hardware.

To avoid time consuming preprocessing of the forecast
data prior to visualization, Met.3D operates directly on the
ECMWF hybrid sigma-pressure model grid. The characteris-175

tics of the data and resulting challenges for visualization are
discussed along with Met.3D’s visualization algorithms and
system architecture in Sect. 4. Section 5 discusses the effi-
cient yet accurate computation of statistical quantities from
the ensemble predictions. When computing statistical quanti-180

ties on a per-grid-point-basis an error is introduced, since the
vertical positions of the ECMWF model grid points vary be-
tween members. Regridding to a common grid is a solution,
albeit time consuming and hence undesirable for real-time
visualization. We analyse the error introduced when ignor-185

ing such a regridding and provide advice on how to handle
the issue. Section 6 provides information on code availabil-
ity, before the article is concluded in Sect. 7.

In the second part of this study (Rautenhaus et al., 2015,
hereafter “Part 2”), we address forecast questions C to E.190

A method to compute 3-D WCB probabilities from La-
grangian particle trajectories is introduced and evaluated, and
Met.3D is extended by a technique to visually analyse the de-
rived probabilities. To demonstrate the added value of 3-D vi-
sualization for forecasting, we present a comprehensive case195

study with detailed meteorological interpretations of a fore-
cast case of TNF. The case study uses methods from both
papers and illustrates how Met.3D can be used in practice.
Readers primarily interested in the application of Met.3D
should read Sect. 3 in this part, skip the technical sections200

and proceed to the case study in Part 2.

2 3-D and ensemble visualization in meteorology

Our work is related to 3-D visualization in meteorology and
to uncertainty and ensemble visualization.

2.1 3-D visualization in meteorology205

Visualization tools in meteorology can be distinguished with
respect to application in a research setting and application
in an operational forecast setting (Papathomas et al., 1988).
As Koppert et al. (1998) point out, a tool in an operational
setting should offer techniques tailored to the specific fore-210

casting task and not confuse the forecaster with large sets of
parameters that need to be configured. A research setting, on
the other hand, demands a tool that is flexible to adapt to dif-
ferent exploration tasks and data formats. Its visualizations
should be highly configurable by the user.215

In forecasting, 2-D visualization systems prevail. With re-
spect to field campaigns with DLR involvement, the Mission
Support System (MSS) is frequently used, a tool that gener-
ates horizontal and vertical 2-D sections of the forecast data
upon user request (Rautenhaus et al., 2012). This tool mo-220

tivated the design of our proposed bridge from 2-D to 3-D
that we describe in Sect. 3. Further 2-D systems that have
been applied include the German Weather Service (DWD)
NinJo workstation (Heizenrieder and Haucke, 2009) and the
ECMWF Metview software (Russell et al., 2010).225

The few reports on the usage of 3-D visualization of atmo-
spheric model data in forecasting date to the 1990s and early
2000s. Treinish (1996), Treinish and Rothfusz (1997) and
Treinish (1998) reported on experiments with 3-D visualiza-
tion for local forecasting during the 1996 Olympic Games230

in Atlanta. They concluded that an advantage of their 3-D
methods was “that they virtually eliminated the need to labo-
riously evaluate numerous two-dimensional images”, how-
ever, noted a lack of interactivity due to limitations in com-
putational performance. Schröder (1997), Lux and Frühauf235

(1998) and Koppert et al. (1998) presented RASSIN and its
successor VISUAL, a 3-D forecasting system for usage within
the DWD. Discussing their experience with an operational
test of the software, Koppert et al. (1998), too, point out the
importance of system performance for user acceptance. They240

furthermore highlight the need for common concepts of op-
erations (user interface and workflow) when forecasters are
asked to transition from a 2-D to a 3-D environment.

McCaslin et al. (2000) presented D3D, a 3-D software
built at the United States Forecast Systems Laboratory (FSL)245

on top of the Vis5D tool (Hibbard and Santek, 1990). D3D’s
user interface was designed to match that of the 2-D D2D

software in use at the National Weather Service Weather
Forecast Offices (WFOs). “Real-time forecast exercises”
were conducted to evaluate the value of 3-D visualization,250

and the software was installed at a number of WFOs. A few
case studies were presented, including usage of D3D for the
examination of tropical cyclones (Watson et al., 2002), the
usage of 3D trajectories (Barjenbruch et al., 2002), and the
analysis of the synoptic situation during a tornado outbreak255

(Nietfeld, 2003). Szoke et al. (2003) report on experiences
gained with the system. They discuss the reluctance of fore-
casters to switch from 2-D to 3-D, but also confidently state
that for forecasters trained with D3D it is “hard to deny that
examining the atmosphere using a 3-D tool is not more ef-260

fective and complete than using 2-D displays”. Szoke et al.
(2003) also positively report on the interactivity introduced
by their system. Interactively moveable vertical soundings
and cross sections, for example, were very well perceived by
the forecasters. There was also an approach to ensemble vi-265

sualization with D3D. Alpert (2003) suggest to interpret the
ensemble dimension as the vertical coordinate in Vis5D and
to view a 2D map of an ensemble product as a 3D isosurface.
Subsequently, Nietfeld (2006) reported on the application of
3-D techniques in a WFO to visualize observed radar data in270

the forecast process, using the GR2Analyst software.
With respect to research environments, 3-D visualization

is more frequently used. Early approaches in the 1970s and
1980s used mainframe computers to create 3-D views or an-
imations of atmospheric observations and numerical model275
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output (e.g. Grotjahn and Chervin, 1984; Hibbard, 1986;
Papathomas et al., 1988; Hibbard et al., 1989; Schiavone
and Papathomas, 1990, and references therein). For example,
Wilhelmson et al. (1990) created an award-winning (cf. Mid-
dleton et al., 2005) animation movie of a numerically mod-280

elled storm, a project that at that time still required multiple
months and a large amount of computer time (Wilhelmson
et al., 1990). Since around 1990, a number of workstation and
desktop visualization tools have appeared. Vis5D, mentioned
above, became a major 3D visualization tool in meteorology285

and was widely used into the 2000s (Hibbard, 2005; Mid-
dleton et al., 2005). However, its development was discon-
tinued. A number of other, mostly general-purpose, systems
that have been used in the atmospheric sciences are listed by
Schröder (1997), Böttinger et al. (1998) and Middleton et al.290

(2005). They include the commercial systems Application

Visualization System (Upson et al., 1989; Favre and Valle,
2005), Iris Explorer (Walton, 2005), the IBM Data Explorer

(Abram and Treinish, 1995; Watson, 1995, later renamed to
OpenDX and made open-source, discontinued in 2007), and295

amira (Stalling et al., 2005, now Avizo).
More recently, prominent tools include Vapor (Norton and

Clyne, 2012; Clyne et al., 2007) and the Unidata Integrated

Data Viewer (IDV) (Murray and McWhirter, 2007; Mur-
ray et al., 2009). Vapor is an open-source 3-D visualization300

software developed at the United States National Centre for
Atmospheric Research. It features a number of 3-D visu-
alization techniques to view time varying gridded datasets,
however, does not provide techniques for ensemble data or
forecasting functionality. IDV is a comprehensive Java ap-305

plication for the analysis and visualization of geosciences
data. It is based on the Visualization for Algorithm Devel-

opment (VisAD) library (e.g. Hibbard, 1998, 2005) and sup-
ports a variety of visualization methods, including some 3-D
support. For example, Yalda et al. (2012) use IDV’s 3-D ca-310

pabilities for interactive immersion learning. On a broader
scope, Paraview (Henderson et al., 2004) is an open-source
general-purpose visualization tool that can also be used with
meteorological data. In the context of a graduate university
course, Dyer and Amburn (2010) investigated how Paraview315

can be used in a meteorological setting. Also, commercial
general-purpose systems with 3-D capabilities that are fre-
quently used in the atmospheric domain include IDL (e.g.,
cf. Middleton et al., 2005) and Avizo Green (e.g. Böttinger
et al., 2013). 3-D visualization has also been used for vir-320

tual reality applications in teaching (e.g. Gallus et al., 2003,
2005).

A major reason why 2-D methods are often preferred in
the atmospheric sciences is that they are well suited to convey
quantitative information, as Middleton et al. (2005) point out325

in a survey of visualization in meteorology. 2-D contour lines
and colour mappings can be used to convey a large range of
data values. In a 3-D depiction, only a small number of iso-
surfaces can be displayed without cluttering and occlusion.
However, a 3-D image is able to convey spatial structure in330

all three dimensions, a distinct advantage compared to 2-D
methods. On the downside, spatial perception is more chal-
lenging in 3-D. Determining the location of a data feature
displayed in a 2-D image is usually not an issue. In a 3-
D projection, achieving good spatial perception can be dif-335

ficult. Major influencing factors are, for example, shadows
(Wanger et al., 1992) and illumination models (e.g. Weigle
and Banks, 2008; Lindemann and Ropinski, 2011, and refer-
ences therein). The issue is also noted by Szoke et al. (2003).
As an approach, they have implemented a switch to an over-340

head view and a vertically moveable map in D3D to enable
the forecaster to better judge the spatial position of a 3-D
feature.

2.2 Ensemble visualization

Ensemble visualization aims at identifying variability, sim-345

ilarities, and differences among ensemble members. It is
closely related to uncertainty visualization, of which Pang
et al. (1997) and Johnson and Sanderson (2003) provide
early overviews. In the atmospheric sciences, 2-D visualiza-
tions of statistical quantities that summarize the ensemble350

distribution or that represent relative frequencies for events
are frequently used. Wilks (2011, Ch. 7.6.6) lists a num-
ber of techniques. For example, current products provided
in ECMWF’s ecCharts system (Lamy-Thépaut et al., 2013)
include maps of mean and standard deviation (SD), maps of355

threshold probabilities (for example, the probability of pre-
cipitation exceeding a critical threshold) and of derived sta-
tistical measures (for example, the extreme forecast index,
Lalaurette, 2003).

In a recent survey–also including applications outside360

the atmospheric domain–, Obermaier and Joy (2014) clas-
sify ensemble visualization methods described in the liter-
ature into location-based methods and feature-based meth-

ods. Location-based methods compare ensemble properties
at fixed locations in the dataset. In the simplest case, this in-365

cludes the ensemble mean, SD, or probability as computed
at a given grid point. Such statistical quantities have been
visualized via colour maps, opacity, texture, and animation
(Djurcilov et al., 2002; Rhodes et al., 2003; Lundstrom et al.,
2007). Also, glyphs have been used to display, for example,370

uncertainty in wind fields (Wittenbrink et al., 1996). Feature-
based methods, on the other hand, extract features from each
ensemble member and aim at visually comparing the de-
tected features. Examples include spaghetti plots (where the
isolines are the features), the joint display of detected cy-375

clonic features (Hewson and Titley, 2010), and visualization
techniques for the prediction of hurricane tracks (Cox et al.,
2013). Recently, Whitaker et al. (2013) have generalised box-
plots to contour boxplots to enable an improved quantitative
and qualitative analysis of ensembles of 2-D isocontours and380

level-sets. In 3-D, the effect of uncertainty on the position of
3-D isosurfaces has been the topic of a number of studies. It
has been approached with, for instance, geometric displace-
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ments (Grigoryan and Rheingans, 2004) and surface anima-
tion (Brown, 2004). In a study concerning the reconstruction385

of the earth’s subsurface model, Zehner et al. (2010) visu-
alize confidence intervals around an isosurface using addi-
tional transparent surfaces as well as lines connecting the sur-
faces. Recently, techniques have used stochastic modelling
of uncertainty in scalar ensembles to quantify and visualize390

the possible occurrences of isosurfaces (Pöthkow and Hege,
2011; Pöthkow et al., 2011; Pfaffelmoser et al., 2011; Pfaffel-
moser and Westermann, 2012). The latter studies all include
examples from the atmospheric domain.

A few articles in the visualization literature have pre-395

sented software tools that put special emphasis on ensem-
bles in earth-science applications. Potter et al. (2009) present
the Ensemble-Vis tool and investigate the usage of multi-
ple linked views to visualize 2-D weather simulation ensem-
bles. They conclude that the combination of standard statis-400

tical displays (spaghetti plots, maps of mean and SD) with
user interaction facilitates clearer presentation and simpler
exploration of the data. In their Noodles tool, Sanyal et al.
(2010) enhance spaghetti plots by glyphs and confidence rib-
bons to highlight the Euclidean spread of 2-D contour en-405

sembles. They describe the usage of their methods by atmo-
spheric researches investigating different parametrisations in
the Weather Research and Forecasting (WRF) model. Sanyal
et al. also highlight the positive effect of interactivity and
linked views on the user and note the challenge of potential410

generalization of their work to three dimensions. Recently,
Höllt et al. (2014) have presented Ovis, a system for the visu-
alization of 2-D ocean heightfield ensemble data. They again
use linked views of maps, statistical plots and 3-D renderings
and demonstrate the use of time-series glyphs for the com-415

parative visualization of the ensembles at two different po-
sitions over time. Höllt et al. discuss the application of their
tool to off-shore oil operations and the planning of underwa-
ter glider paths.

3 The 3-D ensemble visualization tool Met.3D420

Met.3D has been developed to support ensemble data explo-
ration during forecasting; at the time of writing in particular
for field campaigns. Beside this primary objective, we have
designed the software in a way that it can be used as a frame-
work into which new ensemble visualization techniques can425

be implemented and evaluated with respect to their use in
forecasting. We note that Met.3D is not intended to be a full-
featured meteorological workstation; this would be beyond
the scope of our work.

At the time of writing, Met.3D supports forecast data from430

the ECMWF Ensemble Prediction System (ENS), compris-
ing 50 perturbed forecast runs and an unperturbed control
run (Buizza et al., 2006; Miller et al., 2010). These 51 fore-
cast members approximate the distribution of possible future
weather scenarios (Leutbecher and Palmer, 2008).435

The visualization examples shown in this paper use data
from the TNF forecast case of 19 October 2012. The satellite
image in Fig. 1 provides a real-world observation of major
features that appear in the visualizations: a distinct narrow
trough was located to the west of the British Isles. Upstream440

of the trough the former Hurricane Rafael transformed into
a strong midlatitude cyclone. East of the trough, ascending
WCB airmasses formed a cloud band extending from Spain
to the British Isles. The clouds further stretch along a jet
stream over southern Scandinavia and the Baltic Sea.445

The static images shown in the following sections are com-
plemented by video clips contained in the Supplement to
the paper, helping to illustrate the interactive capabilities of
Met.3D. The videos are screen recordings realised on hard-
ware consisting of a consumer-class six-core Intel Xeon run-450

ning at 2.67GHz, equipped with 24 GB of RAM, a 512 GB
solid state drive and an Nvidia GeForce GTX 560Ti graphics
card with 2 GB of video memory.

3.1 User interface

Figure 2 shows the graphical user interface (GUI) of Met.3D.455

The forecast data fields can be displayed in multiple 3-
D views (Fig. 2a, b, c). In the horizontal, a cylindrical
longitude–latitude projection is used. As common in mete-
orology, the logarithm of pressure serves as the vertical coor-
dinate. Vertical scale, i.e. the proportion of vertical to hor-460

izontal units, can be specified for each view individually.
Time navigation is provided for the forecast initialisation (or
base, or run) time and the forecast valid time (Fig. 2d). This
way, subsequent forecast runs can be checked for consistency
by keeping the valid time fixed and changing the initialisa-465

tion time. A distinct feature is the ensemble navigation. The
user can select a specific forecast member for exploration,
animate over members and toggle the ensemble mean for all
currently displayed data fields (Fig. 2e).

Visual entities such as a horizontal or vertical cross-470

section, the base map or a 3-D isosurface are represented by
actors and are assigned to a scene. A scene, in other words
a collection of actors, can be assigned to one of the views for
rendering. An actor can be part of multiple scenes. For ex-
ample, a cross-section could be viewed as a traditional 2-D475

image in one view, and be combined with a 3-D isosurface in
another. If the section is relocated, its position is updated in
both views. To keep the user interface simple, properties that
the user can modify for a particular actor (e.g. the isovalue of
an isosurface, the forecast variable displayed by an actor, the480

associated colour palette) are arranged in a tree-like structure
on the left of the Met.3D window and are easily accessible
(Fig. 2f). If used in a forecast setting, only the uppermost
tree nodes are required by the user to, for instance, load pre-
defined forecast products.485

Trafton and Hoffman (2007) point out the importance of
visual comparisons in the forecasting process. Met.3D’s ac-
tors can be synchronized in time and ensemble dimension,
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its views can be synchronized to the same camera viewpoint.
Thus, side-by-side comparison of different datasets is facili-490

tated.

3.2 A bridge from 2-D to 3-D

To help forecasters transition to the 3-D visualization envi-
ronment, we have implemented horizontal and vertical 2-D
sections. The sections reproduce the look of the correspond-495

ing products in the DLR MSS (Rautenhaus et al., 2012), pro-
viding filled and line contours, wind barbs, coast lines and
graticule. In Met.3D, the sections are embedded into the 3-D
context and can be interactively moved in space by the user
in real-time. This provides a very fast means to explore the500

atmosphere’s vertical structure (by sliding a horizontal sec-
tion up and down), or the change in forecast variables along
a flight track when a waypoint is relocated (by moving a ver-
tical section). Also, the camera can be moved interactively to
zoom in, pan, or tilt the view – for instance, to view multi-505

ple sections stacked on each other from an angled viewpoint.
Figure 3 illustrates the concept. The forecast wind field is vi-
sualized by means of a horizontal and vertical section. The
horizontal map – largely resembling the corresponding prod-
uct from the MSS – is stacked on top of surface level con-510

tours displaying the mean sea level pressure (Fig. 3b). The
vertical section is augmented by a 3-D isosurface of wind
speed (Fig. 3c); the isovalue is chosen such that the strongest
winds of the jet stream, an important indicator for the large
scale flow of the upper troposphere, are captured. The 3-D515

display allows us to locate the vertical section in space and
additionally provides information on the spatial structure of
the jet.

We approach the challenge of spatial perception by draw-
ing projections of all rendered structures to the surface to im-520

itate shadows generated by a light source above the scene. As
illustrated in Fig. 3b and c, the shadows help to qualitatively
judge the elevation of a feature, and also show its horizontal
location. To improve the quantitative judgement of elevation,
the user can colour the isosurface according to pressure ele-525

vation, and place vertical poles in the scene that provide la-
belled pressure axes (Fig. 3c). The poles can be interactively
moved in the scene (by picking and dragging handles that ap-
pear in an interaction mode), so that different locations can
be probed.530

Vertical sections can be drawn along an arbitrary num-
ber of waypoints (Fig. 3c). Analogous to vertical poles, each
waypoint and section segment displays a handle in interac-
tion mode that the user can drag to move the waypoint or
segment. They can also be moved synchronously in multiple535

scenes, as illustrated in Fig. 4. Displayed are sections of po-
tential vorticity (Fig. 4a, the red colours around values of 2
PVU show the dynamic tropopause) and cloud cover fraction
(Fig. 4b). Wind barbs overlain on a horizontal section can
be configured to automatically scale in size and density. In540

Fig. 5, the horizontal section of equivalent potential temper-

ature shows the different character of airmasses transported
by Rafael. When the user zooms into the view, Met.3D in-
creases the density of the wind barbs (Fig. 5b). The frontal
zone along which the typical change in wind direction occurs545

can now be well perceived.
With respect to colours used in the visualizations, it is im-

portant to address perceptual issues (Hoffman et al., 1993).
To map scalar value to colour, we have implemented the
perceptually-based Hue-Chroma-Luminance (HCL) colour550

space. Following Zeileis et al. (2009) and Stauffer et al.
(2013), the user can create colour palettes by specifying
ranges in hue, chroma and luminance. Alternatively, colours
can be explicitly specified to reproduce colour bars the user is
familiar with. An example is the colour palette for potential555

vorticity shown in Fig. 4.

3.3 Ensemble support

Met.3D enables the forecaster to explore variation in the en-
semble, to identify regions in which the forecast is uncertain,
and to explore possible forecast scenarios. The user can inter-560

actively navigate through the ensemble members to judge the
variability in the forecast. Each member can also be explored
individually. Statistical measures including threshold proba-
bilities, mean, minimum, maximum and SD can be derived
on-demand. For threshold probabilities (for example, wind565

speed exceeding 45ms−1 or cloud cover fraction being be-
low 0.2) the threshold value can be adjusted interactively.

Figure 6 shows an example of exploring the upper level
ensemble wind field of the forecast from Monday, 15 Oc-
tober 2012, 00:00 UTC, valid at Friday, 19 October 2012,570

18:00 UTC. To visualize the jet stream, two wind speed iso-
surfaces are rendered. The large variation of the ensemble
regarding position, structure, and strength of the jet stream
over the Atlantic highlights high uncertainty in this area. On
the other hand, the strong jet extending from Spain to Scan-575

dinavia is predicted with higher certainty: while in the mean
wind field the 45ms−1 signal over the Atlantic is largely
smoothed out, it is present over Europe (Fig. 6d). However,
adding a horizontal section of wind speed SD (Fig. 6e) to the
isosurface of mean wind speed reveals that the position of the580

jet is uncertain in particular on its northern side.
Figure 7 shows the probability of wind speed exceeding

45ms−1. A high probability of over 70 % can again be found
over northern Europe (Fig. 7a). The large horizontal extent of
the area of low (10 %) probability above the Atlantic reflects585

the uncertainty. The actual jet can occur anywhere in this re-
gion. Two days later, with decreasing forecast lead time, the
ensemble has significantly converged and the uncertainty has
decreased (Fig. 7b).

Figure 7c and d shows the probability of the Schmidt–590

Appleman criterion (Schumann, 1996), an indicator for the
occurrence of contrails (aircraft-induced clouds that also
have been the target of research flights; Voigt et al., 2010;
Kaufmann et al., 2014). Visualization of the probability of
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the Schmidt–Appleman criterion being fulfilled shows that595

contrails, in the example, can only occur between about 400
and 200 hPa. In the given case, a high probability can be ob-
served on the leading downstream edge of the jet.

3.4 Normal curves

In the volume visualizations shown in Figs. 6 and 7, the struc-600

ture of the scalar fields inside the transparent isosurfaces can-
not easily be inferred. As stated in Sect. 2.1, this is a dis-
advantage of 3-D visualization: While an isosurface allows
inference on the three-dimensional spatial structure of the
displayed data field, it only displays a single data value. Al-605

though two or three isosurfaces can be rendered in a single
image using transparency, the image quickly becomes illeg-
ible when more surfaces are used. Normal curves were sug-
gested by Pfaffelmoser et al. (2011) to estimate the spatial
distance between two isosurfaces. For our application, we610

propose to use 3-D normal curves as an intermediate means
between a 2-D section and a 3-D isosurface to visualize the
structure of scalar fields in the interior of an isosurface.

The curves are started on a transparent isosurface and pro-
ceed along the field’s gradient direction, i.e. normal to the615

isosurface. The spacing of the curves can be controlled by
the user (cf. Sect. 4.4). We colour the curves according to
the scalar value. This way, we achieve a visual sampling of
a subdomain of the volume. In contrast to a 2-D section that
samples a planar subdomain, the normal curves sample a 3-620

D subdomain enclosed by an isosurface via a discrete set of
lines. Following the gradient, the curves converge at local
extrema of the data field. This way, the user can at a glance
identify the locations and strengths of present extrema, and
judge the strength and direction of the gradient between an625

extremum and the outer isosurface.
Figure 8 illustrates the approach. The goal is to identify

regions of maximum probability of cloud ice water content
exceeding 0.01 g kg−1, and to track the regions’ evolution
over time. The normal curves immediately show a maximum630

in the upper part of the transparent 40 % isosurface (Fig. 8b
and c). The corresponding shadows reveal that the maxi-
mum is approximately located above the Pyrenees. Interac-
tion with the vertical axis shows a vertical position between
300 and 200 hPa. Further visual aids can now be added to ob-635

tain more quantitative information. In the example, the hor-
izontal section can be immediately placed in the region of
interest, without the need to search the entire vertical extent
of the model atmosphere (Fig. 8d).

While extrema can also be identified with an inner opaque640

isosurface (cf. Fig. 7) or by interacting with 2-D sections, the
normal curve approach requires less interaction steps. This
is advantageous if the absolute values of the extrema are not
known beforehand (with isosurfaces the user needs to search
over isovalues), and if the extrema shall be visually tracked645

over ensemble members or time. Concerning time, in partic-
ular probability values tend to decrease with increasing fore-

cast lead time, hence a fixed isosurface is not well suited to
visualize the temporal evolution of a maximum.

In Fig. 2c (also shown in the video at 05:40 min), the650

method is applied to the upper level wind field shown in
Fig. 6. Here, the normal curves inside the 45ms−1 isosur-
face converge to the string-like line of local maxima in the
wind field – the curves are used to identify the position of the
jet core and its strength.655

4 Visualization algorithms and system architecture

Response time, the time required to display a new image after
the user has interacted with, for example, camera or timestep,
is crucial to the acceptance of an interactive visualization
tool, as Szoke et al. (2003) and Hibbard (2004) emphasize.660

To achieve low response times, we make extensive use of
modern graphics processing units (GPUs). These highly par-
allel processors provide high computational throughput and
memory bandwidth and are well suited to accelerate visual-
ization algorithms.665

GPU acceleration is implemented with OpenGL 4 and the
OpenGL Shading Language (GLSL)1, using vertex, geome-
try, fragment and compute shaders. These small GPU pro-
grams allow the parallel execution of operations on the level
of a graphics vertex or of an output fragment (i.e. a single670

pixel in the generated image), the generation of new geom-
etry by the graphics subsystem, or the general parallel exe-
cution of operations. We will not go into detail of graphics
technology here, for an introduction to GPU based visualiza-
tion we refer the reader to, for example, Bailey (2009, 2011,675

2013) or Engel et al. (2006). On the CPU side, Met.3D is
implemented in C++.

A second important factor influencing response time is the
way data is read from disk and whether and how it needs
to be processed prior to visualization. We have designed an680

ensemble data pipeline to handle this task efficiently.
In this section, we discuss the methods used to achieve

high visualization performance in Met.3D. After describing
the data that can be handled by the tool (Sect. 4.1), we discuss
the ensemble data pipeline (Sect. 4.2) and the GPU-based685

visualization algorithms (Sects. 4.3 and 4.4).

4.1 Forecast data

The data upon which we have based our visualization meth-
ods are obtained from the ECMWF global ensemble weather
prediction system ENS and the high-resolution determinis-690

tic integrated forecast system IFS. One of our system design
goals was to support the forecast data in the format they can
be retrieved from the ECMWF Meteorological Archive and
Retrieval System (MARS). MARS outputs the data interpo-
lated in the horizontal to a regular latitude/longitude grid.695

In the vertical, the data is available on either a set of pre-

1https://www.opengl.org/documentation/glsl/

https://www.opengl.org/documentation/glsl/
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defined pressure levels (PL), or, higher resolved and thus
better suited for 3-D visualization, on the native model grid
levels (ML). For the latter, the model uses terrain following
hybrid sigma-pressure coordinates, as illustrated in Fig. 9.700

The vertical pressure coordinate pk of a grid point at level
k is defined by a set of fixed coefficients ak and bk and the
surface pressure psfc below the grid point (Untch and Hor-
tal, 2004): pk = ak + bk × psfc. With increasing altitude the
influence of psfc decreases. During TNF, the operational en-705

semble forecast was available with 62 levels (91 levels for
the deterministic forecast, increased by the time of writing
to 137 levels). At this resolution, levels are constant in pres-
sure above approximately 64 hPa (70 hPa)2. In the horizon-
tal, a spectral truncation of T639 (T1279) is available, cor-710

responding to a regular latitude/longitude grid of approx.
0.28◦ by 0.28◦ (0.15◦ by 0.15◦). Forecasts are available twice
daily (starting at 00:00 and 12:00 UTC) at a timestep of three
hours up to 144 h forecast lead time and six hours up to 240 h
forecast lead time.715

For the examples in this article, we use ENS data interpo-
lated horizontally to 1◦ × 1◦ and to 0.25◦ × 0.25◦. 1◦ × 1◦ is
the grid spacing we were able to operationally retrieve during
TNF, as permitted by the available internet bandwidth and
interpolation time required by MARS. Deterministic data is720

used at 0.15◦ × 0.15◦ grid spacing. In the vertical, all 62 and
91, respectively, levels are used.

The forecast domain used in the examples encom-
passes 100◦ in longitude by 40◦ in latitude, resulting in
101× 41× 62 grid points for ENS data fields at 1◦ × 1◦ grid725

spacing, 401× 161× 62 points at 0.25◦ × 0.25◦ grid spac-
ing, and 669× 268× 91 points for the deterministic forecast
at 0.15◦ × 0.15◦ grid spacing. Using floating point precision
(4 bytes per value), the data fields require approximately 1,
16 and 62 MB per member, timestep, and forecast parameter730

in graphics memory. For visualizations using multiple fore-
cast parameters and the entire ensemble, the required mem-
ory quickly adds up.

Forecast data can be read directly from GRIB files output
by MARS or from NetCDF-CF3 files. Our goal was to min-735

imise the time span between data availability at ECMWF and
visualization. Hence, no preprocessing of the data prior to us-
age in Met.3D is required. Forecast parameters not output by
the ECMWF model, however, need to be computed first. For
this purpose, Met.3D can be connected to the data processing740

system of the DLR MSS, which derives additional quantities
(for example, relative humidity and potential vorticity) from
the forecast parameters output by ECMWF.

4.2 Ensemble processing pipeline

To process the ensemble data prior to rendering, we have745

designed a data processing pipeline composed of modules

2http://old.ecmwf.int/products/data/technical/model_levels/
3http://cfconventions.org/

(data sources) that create, read or process data and that can
be combined in flexible ways. Figure 10 illustrates the con-
cept. Algorithms in the data sources (for example, ensem-
ble statistics or trajectory filtering, cf. Part 2) can be im-750

plemented to execute on either CPU or GPU (the latter via
compute shaders). All data sources are connected to a mem-
ory manager that caches intermediate results. The actors that
implement the visualization methods are placed at the end
of a pipeline. They send requests into the pipeline to obtain755

a specific data item. These requests are composed of multiple
key/value pairs similar to the Web Map Service requests used
in the MSS (see Rautenhaus et al., 2012, for details). A re-
quest emitted into a pipeline propagates from data source to
data source. Each data source interprets the keys it requires.760

If the requested operation has been executed before and the
result has been cached, no action is taken. Otherwise, the data
source defines a processing task to perform the requested op-
eration. The task, however, is not executed immediately. If
applicable, remaining keys are passed on to the data source’s765

input(s). If a data source requires additional input, it can also
append keys to the request.

All processing tasks defined this way are assembled into
a task graph that is passed to a scheduler for execution. Based
on the dependencies provided by the graph structure and in-770

formation carried by the tasks, the scheduler can process the
tasks. For example, tasks that have to be performed for all
members of the ensemble can be executed in parallel.

As an example, consider the pipeline depicted in Fig. 10b.
The volume actor at the end of the pipeline emits a request775

for a scalar field containing the probability of horizontal wind
speed exceeding 45ms−1. The module computing the prob-
ability field requires the wind field of each ensemble mem-
ber, regridded to a common grid. Hence, requests for regrid-
ded data fields containing the members’ wind speed are emit-780

ted and a task is set up to compute the probability from these
fields. The regridding module, in turn, requests that the wind
speed fields are read from disk by the reader module. For an
ensemble of size M , the resulting task graph (Fig. 10c) con-
tains M tasks to read the wind field of a single member, M785

tasks to regrid these fields to a common grid, and one task
to compute the probabilities. The regridding tasks are well
suited to be executed in parallel.

To indicate an order of magnitude of the response times
that Met.3D achieves on our test hardware when the dis-790

played data field is changed, Table 1 lists timings for chang-
ing the forecast time in the horizontal section in Fig. 3. Tim-
ings are provided for displaying a single member of the en-
semble and for displaying the ensemble mean (the latter as
an example of a statistic that requires all members of all vari-795

ables when computed on-demand), both when data needs to
be read from disk and when it is available in cache. If the data
to be visualized is available in cache, no task graph needs to
be executed and the response time is on the order of a few
milliseconds. If data needs to be read from disk, the response800

time is bounded by the disk’s bandwidth. This becomes no-

http://old.ecmwf.int/products/data/technical/model_levels/
http://cfconventions.org/
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ticeable in particular when ensemble statistical quantities are
derived on-demand. For the TNF dataset at 0.25◦ grid spac-
ing, all members of the ensemble encompass approximately
3.2 GB that need to be read from disk. Our test hardware805

requires about 17 seconds for this task. One possibility to
decrease this time is to pre-compute frequently used statis-
tical quantities. In our setup, this can be done with the MSS
data processing system. However, the interactivity to change,
for example, the threshold for a probability field is lost with810

this solution. Alternatively, the system performance can be
increased by using pre-loading techniques to hide disk ac-
cess. Here, the data for an anticipated subsequent timestep
is read in the background while the user explores the cur-
rent timestep. The current Met.3D architecture is prepared to815

implement such techniques. However, comprehensive opti-
misations of the system performance were outside the scope
of this project and are left for future work.

4.3 GPU based visualization algorithms

Met.3D’s visualization algorithms support data fields on both820

hybrid sigma-pressure levels and on pressure levels. The dif-
ference is how the data fields are sampled on the GPU to
obtain a value at a particular position in longitude–latitude-
pressure space – an operation required by all visualiza-
tion algorithms. In the horizontal, data fields on a regular825

longitude–latitude grid are supported.
To use the data on the GPU, a single forecast variable of

a single member is stored in a 3-D texture (i.e. a 3-D data ar-
ray) in GPU memory. We assume that these data fields fit into
GPU memory. Longitude–latitude axes, as well as pressure830

levels for PL grids, are stored in an additional 1-D texture.
For ML grids, the corresponding 2-D psfc field and the co-
efficients ak and bk are stored. This allows for computation
of the pressure coordinate of a grid point on-the-fly, without
the need to use additional graphics memory for a 3-D texture835

with pressure values.
Horizontal 2-D sections on a pressure surface p are ren-

dered by placing the vertices of a grid of triangles horizon-
tally at the positions of the data grid points and vertically
at p (Fig. 11a). Data sampling only needs to be done when840

p is changed. Executed in parallel for each vertex, a binary
search in the vertex shader yields the model levels (or pres-
sure levels) k and k+1 enclosing p in the corresponding
grid column. Following the ECMWF FULLPOS interpola-
tion routines (Yessad, 2014), interpolation between these two845

levels is done linearly in ln(p). The results are cached in a 2-
D texture. Filled contours are rendered by assigning colour to
each fragment within a triangle in the fragment shader, using
the horizontally hardware-interpolated scalar value. To ob-
tain a colour, colour palettes (cf. Sect. 3.2) are stored as 1-D850

transfer functions in 1-D textures. These textures are used as
lookup tables (LUTs), mapping a scalar value to a colour.
Line contours are generated by a marching squares (e.g.
Hansen and Johnson, 2005, Chap. 1) implementation in a ge-

ometry shader. Each grid cell of the cached 2-D cross-section855

texture is examined in parallel and, if applicable, a line seg-
ment is drawn. Graticule, coast and border lines are overlain
on each horizontal section to improve spatial perception (cf.
Fig. 3b). Wind barbs are also generated in a geometry shader.
It takes the horizontal wind field’s u and v components as in-860

put and generates the geometry of the barbs, again exploiting
GPU parallelism.

Vertical sections are rendered with a similar grid of trian-
gles. A triangle vertex is drawn for each vertical (model or
pressure) level and each of a number of intermediate hori-865

zontal points along a line connecting the waypoints the user
has specified (Fig. 9b). The distance between the intermedi-
ate points can be specified. A vertex shader computes the ver-
tical position of each vertex and places it accordingly. This
operation is a simple lookup for PL data and involves interpo-870

lation of psfc and computation of the model level pressure for
ML grids. Scalar values are interpolated horizontally, also in
the vertex shader, on the level on which the vertex is placed.
They are also cached in a 2-D texture that is updated if a way-
point is moved. Filled and line contours are generated equiv-875

alently to those in the horizontal sections.
3-D isosurfaces are rendered with front-to-back raycast-

ing (Krüger and Westermann, 2003; Engel et al., 2006) im-
plemented in the fragment shader. For each fragment (pixel)
of the output image, a ray is cast through the data volume,880

sampling it at regular intervals and thus finding isosurface
crossings. For this type of visualization algorithm, sampling
the scalar volume is more expensive, as we need to interpo-
late in all three spatial dimensions to an arbitrary position
in longitude–latitude-pressure space. For PL data, the grid is885

rectilinear (Fig. 11b) and can be sampled using texture map-
ping (e.g. Bailey, 2009), thus benefiting from the fast trilinear
hardware interpolation provided by modern GPUs. By map-
ping the longitude-latitude-pressure coordinates of the sam-
pling position to texture coordinates (tlon, tlat, tp) on the unit890

cube, the GPU interpolates the 3-D texture at an arbitrary
position. For regular grids, this mapping is a simple linear
scaling. Since, however, PL grids retrieved from MARS are
irregularly spaced in the vertical, we need a method to map
pressure to tp. This is realised by means of an LUT stored in895

an additional 1-D texture. The level indices k can be linearly
scaled to tp,k ∈ (0. . .1). Since we know the pressure values

pk at the levels k, we can compute a continuous k̃ for inter-
mediate p by linearly interpolating in ln(p) (Fig. 11b). k̃ can
subsequently be scaled to tp. These mappings from p to tp900

are precomputed for a number, say 2048, of pressure values
and stored in the LUT that can be accessed in the shader.

ML grids are not rectilinear and thus sampling becomes
more complicated. As illustrated in Fig. 11b, the continu-
ous level index k̃ in general is not the same for adjacent grid905

columns. In the worst case, a given p is located between dif-
ferent model levels in its four surrounding grid columns. Tri-
linear hardware interpolation requires k̃ to be the same in all
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surrounding grid columns, it hence cannot be used. Conse-
quently, we need to split the interpolation into four vertical910

interpolations in the grid columns and a subsequent bilinear
horizontal interpolation. A naïve approach is to use the bi-
nary search used for the horizontal sections for the vertical
interpolations, however, our experiments showed that ren-
dering times can be reduced by a factor of about two when915

again making use of an LUT approach for hardware inter-
polation. However, the horizontal interpolation needs to be
implemented in software. ML sampling is hence over four
times more expensive than PL sampling.

To use hardware interpolation for ML in the vertical, we920

need to extend the LUT approach. First, the horizontal tex-
ture coordinates tlon and tlat are set to the horizontal position
of the grid columns. Since the model level pressure varies
with psfc, we in principle need to precompute one LUT for
every psfc value that occurs in the forecast field. We instead925

make use of a 2-D LUT, containing LUTs for discrete val-
ues of psfc reflecting the expected range of psfc in the data.
Using bilinear hardware interpolation, this LUT is used to
interpolate in both psfc and ln(p) to obtain a mapping from
ln(p) to tp. The additional memory requirement is reason-930

able: For an LUT using 2048 entries in the vertical and 600
entries for psfc between 1050 and 450hPa, approximately 9
MB of GPU memory are required in float precision (i.e. 4
bytes/value). The table can be shared among variables on the
same grid.935

The traversal of the data volume is accelerated with an
empty-space skipping strategy (Krüger and Westermann,
2003). The longitude-latitude-pressure space covered by
a data field is divided uniformly into a regular grid of Ni ×
Nj ×Nk cells. For each cell, minimum and maximum data940

values are computed. In the shader, the information is used to
skip cells in which an isosurface cannot possibly be located.
Due to the different horizontal and vertical scales, care has
to be taken when choosing the step size for traversing non-
empty cells. Depending on the factor that is used to scale945

ln(p) to a z coordinate in visualization space, the vertical dis-
tance between two grid points often is considerably smaller
than the horizontal distance. The step size needs to be chosen
small enough to ensure that no grid point is skipped during
traversal.950

Once an isosurface crossing has been identified, the iso-
surface normal (equivalent to the gradient of the scalar field
at the crossing position) is computed via central differences.
The pixel colour is subsequently determined using the com-
monly used Blinn–Phong lighting model (e.g Engel et al.,955

2006). Colour can be predefined or obtained from a transfer
function. Also, a second scalar field can be mapped to the
isosurface to colour, for example, a wind speed isosurface by
temperature.

Table 2 lists typical rendering times for images shown in960

this article. Note that the performance of the raycaster de-
pends on the visualized data as well as on camera viewpoint.
In particular the effectiveness of the empty-space skipping

strategy for a selected isovalue depends strongly on the spa-
tial distribution of the data values. During user interaction,965

the step size used by the raycaster to sample the data fields
can be reduced (cf. Table 2). While this temporarily reduces
image quality, rendering time is also reduced.

2-D sections are rendered at the same performance for ML
and PL datasets, as the same number of interpolation opera-970

tions needs to be performed for both grid types. For raycasted
images, Table 2 provides timings for ML datasets and PL
datasets with the same number of vertical levels. Due to the
reduced number of vertical interpolation operations, PL data
are typically rendered by a factor of two to three faster than975

ML data.
We note that as for the data pipeline, comprehensive op-

timisations of the visualization algorithms were outside the
scope of our work. In particular with respect to the raycaster,
further optimisations are possible, for example, by integrat-980

ing an adaptive step size strategy.

4.4 Computation of normal curves

Normal curve computation is implemented in a compute
shader. Figure 12 illustrates the proposed normal curve al-
gorithm. To generate a set of seed points, rays aligned with985

the three world space axes (longitude, latitude, pressure) are
cast through the data volume. The rays are started at reg-
ularly spaced points (grey arrows; the spacing can be ad-
justed by the user). To avoid the regular pattern of these
initial start points being reflected by the normal curves, we990

disturb the ray positions by a random factor (black arrows).
The intersection points of the rays with the selected outer
isosurface are then used as initial seed points for the normal
curves (green dots). In particular in regions of high curva-
ture, multiple rays can hit the isosurface at close-by points995

on the surface. To prevent normal curves from being started
close together, a regular volume with a grid size of the aver-
age initial ray distance is placed over the scene (yellow grid).
Only one seed is allowed per grid cell. Hence, if a seed point
falls into a cell already occupied, it is discarded (illustrated1000

in the orange grid cell). The normal curves are integrated in
parallel in the direction of the scalar field’s gradient, using
a 4th-order Runge–Kutta scheme. The gradient is computed
with the same method used for isosurface shading. If present,
the integration can be stopped at an inner opaque isosurface1005

(illustrated by the red isosurface in Fig. 12).

5 Impact of (not) regridding on ensemble statistical

quantities

A challenge that arises from aiming at interactive ensemble
visualization is the efficient yet accurate computation of sta-1010

tistical quantities from the ensemble predictions. We com-
pute statistical quantities per grid point. Probabilities, for ex-
ample, are computed by evaluating for every member and
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for each grid point a given probability criterion (for instance,
wind speed exceeding a given threshold). The evaluation of1015

the criterion yields for every member a binary volume, with
the bits set when the criterion is fulfilled. Probabilities are
computed by counting the number of members with a set bit
for each grid point. Other statistical measures are computed
similarly for each grid point over the ensemble dimension.1020

For 2-D grids, this is common procedure (Wilks, 2011)
and also for 3-D grids not an issue as long as a given grid
point is located at the same spatial position in all members.
However, due to surface pressure varying between ensemble
members, this is not the case for data on ML grids. Hence,1025

depending on the vertical gradient of the forecast variable
from which a statistical quantity is computed, an error is in-
troduced. One approach to this issue is to vertically regrid all
ensemble members to a common grid, for example, the one
defined by the mean surface pressure (as done in the example1030

pipeline in Fig. 10). This, however, introduces an additional
interpolation step and demands computational resources.

In this section, we investigate the visual and quantitative
differences between statistical quantities computed from the
original ML grids and those computed from data fields re-1035

gridded to a common grid. The differences are compared to
an additional error that is introduced by linearly interpolat-
ing the statistical quantities. At ECMWF, maps of statisti-
cal quantities on pressure levels are computed from the indi-
vidual member’s forecast data on these pressure levels. This1040

implies that a forecast meteorological variable is first inter-
polated to the target vertical position for each member (us-
ing linear interpolation in p or ln(p), cf. Yessad, 2014), fol-
lowed by the computation of the statistical quantity. If, on the
contrary, we first compute the statistical quantity on the 3-D1045

model grid and then linearly interpolate to the target vertical
position, an error is introduced due to the non-linear nature
of most statistical measures. The same problem arises in the
horizontal dimensions.

In the following, we analyse regridding and interpolation1050

error for the forecast data we had available from TNF. We
present results from the forecast initialised at 00:00 UTC 15
October 2012 and valid at 114 h lead time at 18:00 UTC 19
October 2012. This case is representative for the dataset, re-
sults for other timesteps of the TNF dataset are similar.1055

5.1 Variation in grid point pressure

First, we estimate typical vertical grid point displacements
that can be observed between ensemble members. Fig-
ure 13a shows the SD of psfc for the example case. It reaches
values of 8 to 10 hPa in the uncertain regions of the fore-1060

cast. This particularly applies to the low pressure systems
over the Atlantic and the northern British Isles. Figure 13b
shows a vertical cross-section of the maximum pressure dif-
ference between any two members per grid point in these two
areas. Close to the surface, the difference reaches 40 hPa,1065

corresponding (at low altitudes) to an elevation offset of

about 400m. In most other regions, however, differences are
smaller. Also, as expected from the model grid topology, dif-
ferences vanish in upper atmospheric levels.

5.2 Difference due to vertical regridding1070

Vertical regridding is implemented as a data source that can
be integrated into the Met.3D ensemble processing pipeline
(cf. Fig. 10). The user can toggle between visualizations from
original and from regridded data fields, and, if required, per-
manently enable regridding. If statistical quantities are com-1075

puted from the original member grids, the resulting field is
interpreted on a grid defined by the mean surface pressure.

On our test hardware (cf. Sect. 3), the cost of single-
threaded CPU regridding on average is about 60ms per
member and variable for the TNF ENS forecast at 1◦ grid1080

spacing (256 742 grid points per 3-D field) and about 1 s
at 0.25◦ grid spacing (4 997 262 grid points). Even though
multiple ensemble members can be processed in parallel on
a multicore machine and the regridding process could be fur-
ther sped up using the GPU, there is a delay in particular1085

for high-resolution datasets and visualizations using multi-
ple variables.

We have visually inspected a number of 2-D and 3-D
renderings of statistical quantities of several meteorological
variables. As expected, the largest visual differences appear1090

close to the surface. They become most manifest in horizon-
tal sections, which are most sensitive to vertical variations
in a 3-D data field. Figure 14 shows two typical low-altitude
examples, the probability of horizontal wind speed exceed-
ing 20ms−1, p(|v|> 20m s−1), and the SD of relative hu-1095

midity, σ(RH). From our inspection we find that differences
tend to be larger for variables that depend on moisture and
variables derived thereof, however, we could not find any ex-
amples in which visualized structures were significantly al-
tered. For example, while there is some visible difference in1100

σ(RH) along Rafael’s warm front, the structure itself is not
significantly altered.

Visual differences strongly depend on the employed colour
palette and visualized data range. Depending on the range
of values covered by a single colour, small changes might1105

simply not be reflected in the visualization. To ensure that
differences in general are small, we have performed a statis-
tical analysis of the entire TNF dataset. Figure 15 shows re-
sults for three statistical quantities computed from the wind
field of the example case: mean µ(|v|), SD σ(|v|), and1110

p(|v|> 20m s−1). The scatter plots show that for all three
quantities the largest differences appear at lower altitudes
(higher model level indices). Also, differences mostly are
small compared to absolute values of the quantities. For ex-
ample, at only a few grid points the difference in σ(|v|) and1115

p(|v|> 20m s−1) exceeds 1ms−1 and 10 %, respectively.
The range of differences observed in Fig. 14 is well reflected
in the histogram.
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Larger differences appear for statistical quantities com-
puted from moist variables (Fig. 16). Again, the histogram1120

for σ(RH) confirms the range of differences shown in Fig. 14
(Fig. 16d). For probabilities of potential vorticity and cloud
cover, differences of up to 30 % can occur (Fig. 16e and f).
However, for most grid points, differences are smaller.

Figure 17 shows a histogram of σ(psfc) of the example1125

case, overlain with the bin-averaged difference in σ(|v|).
As can be expected, larger differences on average occur in
regions with high σ(psfc). However, even for large σ(psfc),
most differences are small (not shown). We hence cannot
state that large σ(psfc) in general accounts for large differ-1130

ences.

5.3 Error due to vertical interpolation of statistical

quantities

The error introduced by vertical linear interpolation of a sta-
tistical quantity depends on the quantity. Consider the exam-1135

ple given in Table 3. Due to the linear nature of the ensemble
mean, there is no difference whether we first compute the
mean at the grid points and then interpolate to the sample lo-
cation or vice versa. For non-linear quantities including SD
and probability, the results are different.1140

Figure 18 shows distributions of the interpolation errors
for σ(|v|) and p(|v|> 20m s−1). Note that in contrast to the
differences caused by regridding, the largest errors due to in-
terpolation occur in upper atmospheric levels, where the ver-
tical distance between model levels becomes larger. Between1145

the surface and approximately model level 10 (approximately
100 hPa), the order of magnitude of the interpolation errors
is comparable to that of the differences due to regridding. At
middle atmospheric levels, both errors are at a minimum, as
shown by the vertical profile of horizontally averaged differ-1150

ences. At the upper boundary of the model atmosphere, in-
terpolation errors become significantly larger, These regions,
however, are not relevant for the forecast cases we are inter-
ested in.

5.4 Discussion1155

The examples show that the errors introduced by comput-
ing the statistical quantities from the original member grids
are of comparable magnitude to the errors introduced by ver-
tically interpolating the computed quantities. For most grid
points, both are negligible and result in only little difference1160

in the visualization. However, for some variables and cases
(in particular moist variables), differences can be of the same
order of magnitude as the statistical quantity itself.

We conclude that for general exploration of the forecast
data it is sufficient for the user to use the “fast” option and vi-1165

sualize quantities computed from the original member grids.
However, if the result is crucial for an important decision,
our advice is to switch to regridded quantities and accept
the additional compute time. The “best” results and those

most comparable to products obtained from ECMWF can be1170

achieved by first interpolating each member to the desired
vertical pressure and then computing the statistical quanti-
ties. In this case, neither regridding nor vertical interpolation
of the quantity corrupts the result. In Met.3D, this is possible
for horizontal sections.1175

6 Code availability

To facilitate ease of deployment and of future research and
developments, we make the source code of Met.3D avail-
able as open-source under the GNU General Public License,
version 3. Please point your web browser to the software’s1180

repository at
https://bitbucket.org/wxmetvis/met.3d to obtain an up-to-
date version of the software. We welcome user feedback as
well as contributions that help with the further development
of the code. If you are interested, please contact us.1185

7 Conclusions

We have presented Met.3D, a new open-source tool that
provides interactive 3-D visualization techniques for nu-
merical ensemble weather prediction data in a way suit-
able for weather forecasting. The development of Met.3D1190

has been motivated by the application of forecasting during
aircraft-based atmospheric field campaigns, in particular, by
the requirements of the T-NAWDEX-Falcon 2012 campaign.
However, we see the tool applicable to a wider range of appli-
cations, including the analysis of ensemble simulation output1195

in atmospheric research and the usage of Met.3D to support
teaching in meteorology classes.

Our work is concerned with meaningful 3-D depiction and
ensemble visualization, two challenging topics of weather
forecast visualization. We have addressed a number of chal-1200

lenges that have been discussed in the literature, including
prevention of a decoupling between commonly used 2-D
and new 3-D visualization methods, spatial perception in 3-
D scenes, suitable uncertainty visualization techniques, and
system performance. Interactivity is key to our approach. It1205

is facilitated by exploiting the computational power provided
by modern graphics processing units and by means of a flexi-
ble, modular system architecture. We have built a bridge from
proven 2-D visualization methods commonly used in mete-
orology to 3-D visualization. 2-D products are rendered in1210

a 3-D context, a product’s position can be changed interac-
tively. When 3-D elements are visualized, spatial perception
is improved by displaying shadows on the Earth’s surface,
enabling the user to judge the horizontal position and rel-
ative elevation of an element. Quantitative height informa-1215

tion can be obtained by means of interactive vertical axes.
We have proposed normal curves, a novel visualization tech-
nique to reveal the structure inside a transparent 3-D iso-
surface of a scalar field. With normal curves, the locations

https://bitbucket.org/wxmetvis/met.3d
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and magnitudes of local extrema in the visualized data can1220

be identified at a glance. To visually provide information on
forecast uncertainty, Met.3D implements support for ensem-
ble forecasts. The tool is designed to allow integration of
both feature-based and location-based ensemble visualiza-
tion techniques. In the presented version, forecast products1225

can be animated over the ensemble dimension, and statistical
quantities can be derived and visualized on demand. Con-
cerning the computation of statistical quantities from fore-
cast data on hybrid sigma-pressure grids, we have shown that
ignoring the variation in grid point pressure between the en-1230

semble members has little impact on the visualization.
The article at hand is the first of a two-part study. We

have focussed on Met.3D’s functionality, system architecture
and visualization algorithms. In Part 2, we focus on the spe-
cific forecast requirements of T-NAWDEX-Falcon and use1235

Met.3D to predict warm conveyor belt situations. Ensemble
particle trajectories are employed to predict a probability of
warm conveyor belt occurrence. In particular, a case study,
revisiting a forecast case from T-NAWDEX-Falcon, demon-
strates the practical application of Met.3D and highlights the1240

potential of the software to improve the weather forecasting
process.

Future work needs to include careful evaluation of the pre-
sented visualization techniques to study their impact on tasks
performed by meteorologists and atmospheric researchers in1245

their daily work. We discuss our point of view on the added
value of interactive 3-D ensemble visualization for forecast-
ing after the presentation of the case study in the conclusions
of Part 2. For example, in our experience, the provided in-
teractivity for 2-D sections and the ability to add features as1250

3-D elements helps to much faster build a mental model of
the atmosphere. This, of course, reflects our personal percep-
tion. We plan to evaluate the issue with a user study in the
near future.

We will actively use Met.3D during upcoming field cam-1255

paigns, including a future NAWDEX campaign scheduled for
2016. We also see much potential for further research in me-
teorological visualization: With respect to 3-D visualization,
further improvement of spatial perception is very important.
In the Met.3D version presented here, shadows are only ren-1260

dered on the Earth’s surface. Global illumination techniques
(e.g. Jönsson et al., 2014) that, for example, allow 3-D el-
ements to mutually cast shadows on each other, may fur-
ther improve the user’s judgement of spatial relationships.
Also, the impact of different projections on perceived spatial1265

distance needs to be studied. Met.3D currently is restricted
to a cylindrical map projection in the horizontal. Additional
challenges include the efficient rendering from further native
model grid topologies and real-time placement of text labels
to convey quantitative information. The latter applies in par-1270

ticular to 2-D and 3-D contour lines and surfaces. Due to the
employed GPU implementation of the 2-D marching squares
contouring algorithm, continuous line geometry is not eas-

ily available. Hence, it is difficult to compute positions for
labels.1275

With respect to ensemble and uncertainty visualization,
open questions are abundant, as reflected by the literature
surveyed in Sect. 2. In Part 2, we introduce a feature-based
approach for WCBs. Further approaches, both feature-based
and location-based, can be implemented in Met.3D to study1280

their feasibility and applicability in meteorology.
With the development of Met.3D, we have demonstrated

how we envision 3-D and ensemble techniques to become
a part of standard meteorological visualization. The tool pro-
vides a solid software infrastructure that opens the door to in-1285

vestigate the above listed and other research questions, thus
enabling the further advancement of meteorological visual-
ization.

The Supplement related to this article is available online

at doi:10.5194/gmd-0-1-2015-supplement.1290
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Table 1. Order of magnitude of response times achieved by Met.3D
to display a new image after the user has advanced the forecast time
for the horizontal section in Fig. 3b, displaying either data of a sin-
gle member or of the ensemble mean (the latter an example of a
statistic that requires all members of all variables when computed
on-demand). Timings are measured on the test hardware described
in Sect. 3 and given for both forecast data at 1° grid spacing and
at 0.25° grid spacing. 12 parallel threads are used by the sched-
uler for task graph execution. Fig. 3b uses four forecast variables,
reading all ensemble members (for computation of the mean) from
disk hence involves reading 4× 51× 1 MB at 1° grid spacing and
4× 51× 16 MB at 0.25° grid spacing.

data source 1° 0.25°

single member disk (NetCDF) 50 ms 365 ms

ensemble mean disk (NetCDF) 0.85 s 17 s

single member member in cache <10 ms 25 ms

ensemble mean mean in cache <10 ms 25 ms

Table 2. Order of magnitude of rendering times achieved by Met.3D
for selected visualizations from this paper. Timings are measured on
the test hardware described in Sect. 3. ECMWF ENS data at a grid
spacing of 1° in both longitude and latitude are used. The data fields
are available in GPU memory. ML refers to visualizations from hy-
brid sigma-pressure model levels (62 levels), PL refers to visualiza-
tions from datafields regridded to 62 pressure levels chosen equal to
the levels of an ML grid defined by a constant surface pressure of
1000hPa. Timings are average values of continuous rendering over
30 seconds. A Met.3D window of 1600 by 900 pixels is used (the
size used for the video in the Supplement, corresponding to a view-
port of 1192 by 864 pixels). “Animated” for cross-sections refers
to vertically sliding a horizontal section or moving a waypoint of a
vertical section.

figure setting ML PL

Fig. 3b static 2.3 ms
Fig. 3b animated 2.8 ms

Fig. 4a static 6.2 ms
Fig. 4a animated 6.8 ms

Fig. 6a step size 0.1 417 ms 114 ms
Fig. 6a step size 1 107 ms 47 ms

Fig. 7a step size 0.1 222 ms 73 ms
Fig. 7a step size 1 62 ms 39 ms

Fig. 7c step size 0.1 248 ms 76 ms
Fig. 7c step size 1 72 ms 40 ms

Fig. 2c step size 0.1 273 ms 100 ms
Fig. 2c step size 1 83 ms 67 ms



18 M. Rautenhaus et al.: 3-D visualization of ensemble weather forecasts – Part 1: Met.3D

Table 3. Example of vertically interpolating statistical quantities. Consider an ensemble of three members and corresponding scalar quantities
s1 .. s3 at the two vertical levels k and k+1. While the mean value µ(s), interpolated to the midlevel between k and k+1, equals the mean
of the interpolated scalar values, this is not true for the SD σ(s) and the probability that a scalar value exceeds 1.5, p(s > 1.5). The subscript
i refers to “interpolated”.

level s1 s2 s3 µ(si) µi(s) σ(si) σi(s) p(si > 1.5) pi(s > 1.5)

k 0.8 1.7 1.8 1.433 0.45 0.66
midlevel 1.4 1.45 1.4 1.4166 1.4166 0.24 0.44 0 0.5
k+1 2.0 1.2 1.0 1.40 0.43 0.33
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Figure 1. Real-world context for the T-NAWDEX-Falcon case used
for the examples: visible Meteosat satellite image of Europe and
the North Atlantic of 12:00 UTC 19 October 2012 (Meteosat op-
erated by EUMETSAT, image processing by DLR-IPA). Important
features are the narrow trough to the west of the British Isles (dark
red line), the former Hurricane Rafael and the WCB manifest in the
cloud band east of the trough.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. The main user interface of Met.3D. We apply 2-D and 3-D visualization techniques to explore ensemble weather forecasts. (a)

Isosurfaces of cloud cover fraction of 0.5 coloured by elevation (hPa), and a vertical section of potential vorticity (PVU). (b) Horizontal
section with contour lines of the mean geopotential height field (m) and and filled contours of its SD (m). (c) Normal curves applied to the
wind field to visualize the jet core. The white isosurface shows 45ms−1. Colour coding inms−1. (d–f) See text for details.
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(a)

(b)

(c)

Figure 3. Bridge from 2-D to 3-D visualization. (a) Horizontal
section of geopotential height (contour lines) and horizontal wind
speed (colour) at 250hPa, as obtained from the DLR Mission Sup-
port System. ECMWF deterministic forecast from 00:00 UTC 17
October 2012, valid at 18:00 UTC 19 October 2012. (b) The same
data, rendered by Met.3D and mapped into the 3-D context. The
section can be interactively moved by the user. (c) Vertical section
of horizontal wind speed (colour) and potential temperature (con-
tour lines) in Met.3D, amended by a 50ms−1 isosurface of wind
speed, coloured by pressure (hPa). Note how spatial perception of
the 3-D isosurface is aided by rendering shadows and labelled ver-
tical poles (animated version of this figure in the Supplement at
00:05 min).
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(a) (b)

Figure 4. Vertical sections can be moved interactively in Met.3D to explore the vertical structure of the atmosphere, for example along
potential flight track segments. (a) Potential vorticity (colour coding in PVU), (b) cloud cover fraction. Red colours in (a) mark the 2-PVU
surface and thus the dynamic tropopause. Note the low tropopause along the trough. Same forecast as in Fig. 3 (animated version of this
figure in the Supplement at 01:24 min).

(a) (b)

Figure 5. Met.3D automatically scales size and density of wind barbs overlain on horizontal sections. (a and b) Equivalent potential temper-
ature (colour coded in K) at 850hPa, overlain with contour lines of geopotential height. Same forecast as in Fig. 3 (animated version of this
figure in the Supplement at 01:54 min).
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Figure 6. Navigation through the ensemble. Visualized are the 50ms−1 (green opaque) and 30ms−1 (yellow transparent) isosurfaces of
horizontal wind speed (forecast from 00:00 UTC 15 October valid at 18:00 UTC 19 October 2012). (a) Control run, members (b) 27 and (c)

33, (d) ensemble mean, (e) ensemble mean augmented by a horizontal section of SD (ms−1), (f) ensemble maximum (animated version of
this figure in the Supplement at 02:26 min).
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Figure 7. Probability fields computed from the ensemble, valid at 18:00 UTC 19 October 2012. (a and b) Probability of horizontal wind
speed exceeding 50ms−1, as computed from the forecast initialised (a) at 00:00 UTC 15 October 2012 and (b) at 00:00 UTC 17 October
2012. Shown are the 70 % (red opaque) and 10 % (white transparent) isosurfaces. Note how the ensemble converges. (c and d) Probability
of contrail occurrence (Schmidt–Appleman criterion fulfilled and relative humidity greater than 80 %), as viewed from different camera
positions (80 % red opaque and 50 % white transparent) (animated version of this figure in the Supplement at 03:23 min).
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Figure 8. Normal curves help to analyse the topology of 3-D scalar fields. They reveal the distribution of data values in a subdomain
enclosed by a 3-D isosurface and enable fast identification and tracking of local extrema. (a–c) Probability of cloud ice water content
exceeding 0.01 g kg−1. The white transparent isosurface shows 40 % probability. Colour coding in %. (d) Details of the identified maximum
are inspected with a horizontal section at 250hPa. Forecast from 00:00 UTC 17 October 2012 valid at 12:00 UTC 20 October 2012 (animated
version of this figure in the Supplement at 04:28 min).
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Figure 9. Hybrid sigma-pressure levels used by the ECMWF
model. (a) The elevation of the model levels (green lines, the exam-
ple shows levels from the 31 level model, level indices k in green)
changes with surface pressure (black curve at the bottom). The data
value for a given pressure value p can be located at different lev-
els in the grid (the red line marks the location of p= 600hPa). (b)

Example of how the surface orography affects the vertical displace-
ment of the grid points in a vertical section.



M. Rautenhaus et al.: 3-D visualization of ensemble weather forecasts – Part 1: Met.3D 27

Figure 10. Pipeline concept of Met.3D: (a) Data sources are connected to form a pipeline, into which a visualization actor sends data
requests. (b) Sample pipeline to visualize the probability of horizontal wind speed exceeding 45ms−1. A request for the probability triggers
further requests up the pipeline. (c) Task graph generated by the pipeline in (b).
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(a)

(b)

Figure 11. Sampling data fields in GPU shaders. (a) For each ver-
tex of a horizontal section, model levels k and k+1 are found by
binary search. The scalar value is linearly interpolated in ln(p) be-
tween these two levels. (b) PL grids are rectilinear (left), allowing
the usage of trilinear hardware interpolation between the grid points
surrounding a sample position (red dot). For ML grids (right), the
sample position can be located between different model levels k for
two adjacent grid columns, thus prohibiting hardware interpolation.

Figure 12. Computation of normal curves. Seeding points for the
curves (green dots) are placed at the intersections between axis
aligned rays (black arrows) and the outer isosurface (only rays from
two directions are shown for illustration). Only a single seed is al-
lowed in each grid box of the yellow volume.

(a)

(b)

Figure 13. (a) SD of surface pressure, σ(psfc). Forecast from
00:00 UTC 15 October 2012, valid at 18:00 UTC 19 October 2012.
Red contour lines show mean sea level pressure. (b) Vertical sec-
tion of the pressure difference (yellow-blue-black colour bar in hPa)
between highest and lowest ensemble member, rendered on top of
a wireframe map of σ(psfc).



M. Rautenhaus et al.: 3-D visualization of ensemble weather forecasts – Part 1: Met.3D 29

(a) (d)

(b) (e)

(c) (f)

Figure 14. Visual differences between statistical quantities computed from a vertically regridded ensemble to those computed from the
original ensemble. Horizontal section at 950hPa (approx. model levels 51–55 in Figs. 15 and 16) of (a–c) p(|v|> 20m s−1) (%) and (d–f)

σ(RH). Same forecast as in Fig. 13. Shown is (a) the probability and (d) SD computed from the original model grid, (b and e) computed
from members regridded to the grid defined by the mean psfc, and (c and f) the difference between both fields.
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(a) (b) (c)

(d) (e) (f)

Figure 15. Distribution of differences between statistical quantities computed from a vertically regridded ensemble to those computed from
the original ensemble. Plots are generated from all 256 742 grid points of the data field. Same forecast as in Fig. 13. Shown are (a and d)
µ(|v|), (b and e) σ(|v|), and (c and f) p(|v|> 20m s−1). (a–c) Distribution and vertical occurrence of absolute values of the quantities.
(d–f) Distribution and vertical occurrence of differences due to regridding (denoted by regrid∆). Note the logarithmic scale of the histograms
in (d–f). Probability values are discrete due to the size of the ensemble (51 members).
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(a) (b) (c)

(d) (e) (f)

Figure 16. The same as Fig. 15 but for variables depending on moisture. (a and d) SD of relative humidity. (b and e) Probability of potential
vorticity exceeding 2 PVU. (c and f) Probability of grid box cloud cover fraction falling below 0.05.
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Figure 17. Histogram of σ(psfc), overlain with the bin-average dif-
ference of σ(psfc) against the differences between σ(|v|) computed
from a vertically regridded ensemble and computed from the origi-
nal member grids. Same forecast as in Fig. 13.
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Figure 18. Distribution of errors due to vertical linear interpolation (denoted by interp∆) of statistical quantities. (a) Distribution of errors
of σ(|v|) (top), and vertical occurrence of the errors (bottom). (b) The same for p(|v|> 20m s−1). (c) Vertical profile of level average
differences due to regridding (crosses) and interpolation (dots). Same forecast as in Fig. 13.


