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Abstract

Generic land surface models are generally driven by large-scale datasets to describe the climate, the

soil  properties,  the  vegetation  dynamic  and  the  cropland  management  (irrigation).  This  paper

investigates  the  uncertainties  in  these  drivers  and their  impacts  on the  evapotranspiration  (ET)

simulated from the Interactions between Soil, Biosphere, and Atmosphere (ISBA-A-gs) land surface

model over a 12-year Mediterranean crop succession. We evaluate the forcing datasets used in the

standard implementation of ISBA over France where the model is driven by  the  SAFRAN high

spatial resolution atmospheric reanalysis, the Leaf Area Index (LAI) time courses derived from the

Ecoclimap-II land surface parameter database and the soil  texture derived from the French soil

database.  For  climate,  we focus  on  the  radiations  and rainfall  variables  and we test  additional

datasets which include the ERA-Interim low spatial resolution reanalysis, the Global Precipitation

Climatology Centre dataset (GPCC) and the MeteoSat Second Generation (MSG) satellite estimate

of downwelling shortwave radiations. 

The evaluation of the drivers indicates very low bias in daily downwelling shortwave radiation for

ERA-I (2.5 W m-2)  compared to the negative biases found for SAFRAN (-10 W m-2) and the MSG

satellite (-12 W m-2). Both SAFRAN and ERA-I underestimates downwelling longwave radiations

by -12 and -16 W m-2 , respectively. The SAFRAN and ERA-I/GPCC rainfall are slightly biased at

daily and longer timescales (1 and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall

is more precise than the ERA-I/GPCC estimate which shows larger inter-annual variability in yearly

rainfall error (up to 100 mm). The ECOCLIMAP-II LAI climatology does not properly resolve

Mediterranean  crop  phenology  and  underestimates  bare  soil  period  which  leads  to  an  overall

overestimation of LAI over the crop succession. The simulation of irrigation by the model provides

accurate irrigation amount over the crop cycle but the timing of irrigation occurrences is frequently

unrealistic.

Errors in the soil hydrodynamic parameters and the lack of irrigation in the simulation have the

largest influence on ET compared to uncertainties in the large-scale climate reanalysis and the LAI

climatology. Among climate variables, the errors in yearly ET are mainly related to the errors in

yearly rainfall. The underestimation of the available water capacity and the soil hydraulic diffusivity

induce  a  large  underestimation  of  ET over  12 years.  The underestimation  of  radiations  by the

reanalyses and the absence of irrigation in the simulation lead to the underestimation of ET while
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the overall overestimation of LAI by the ECOCLIMAP-II climatology induces an overestimation of

ET over 12 years.

This work shows that the key challenges to monitor the water balance of cropland at regional scale

concern  the  representation  of  the  spatial  distribution  of  the  soil  hydrodynamic  parameters,  the

variability of the irrigation practices, the seasonal and interannual dynamics of vegetation and the

spatiotemporal heterogeneity of rainfall.

  

Key words: Land surface model, evapotranspiration, forcing variables,  rainfall,  radiation, 
vegetation dynamic, irrigation, soil hydrodynamic properties.
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1 Introduction

Evapotranspiration (ET) is a key component of the water balance and the energy budget of land

surfaces. It is an essential information to represent air temperature and air humidity of the surface

boundary layer (Noilhan et al., 2011) and to monitor river discharge (Habels et al., 2008). ET can be

estimated from a Land surface model (LSM) which describes the vertical exchange of energy and

mass between the soil,  the vegetation and the atmosphere at hourly timescale. LSMs have been

designed to be coupled to atmospheric or hydrology models for large-scale studies. Uncertainties in

LSM simulation of ET can be attributed to i) model structure and parameters (referred hereafter as

model uncertainties) and ii) errors in the forcing variables used to drive the model and to integrate it

spatially. The forcing variables concern the climate and the land surface characteristics. They are

generally provided by large-scale datasets which are characterized by coarse spatial resolution (10-

50 km). These datasets may be not accurate enough to resolve the spatial and temporal variability of

ET  at  regional  scale.  Long-term  prediction  of  surface  fluxes  and  water  balance  requires  to

characterize  the  impact  of  forcing  variables  on  LSM simulations  at  seasonal  and  multi-annual

scales. 

Atmospheric reanalysis results from the combination of coupled atmosphere-ocean-land models and

meteorological observations. One challenge concerns the evaluation of their representativeness of

regional climates (Bosilovich,  2013a).  Large differences among reanalysis datasets  and between

these datasets and in situ observations are reported in Zhao et al. (2011). The errors are the greatest

at hourly and daily time steps and generally decrease at longer timescales (Zhao et al., 2011). They

can be large in mountainous regions due to unresolved topography variability and lack of dense

network measurements (Zhao et al., 2008; Wang et al., 2012). Air temperature is generally a robust

estimate (Quintana-Seguí et al., 2008; Decker et al., 2012). Zhao et al. (2011) have evaluated 4

reanalysis  datasets  over  6  French sites.  For  air  temperature,  they  found Mean Absolute  Errors

(MAE) which range from 0.5 °C to 2 °C. Rainfall and radiation, which are two key external drivers

of ET (Teulling et al., 2009; Miralles et al., 2011), are frequently reported as the most uncertain

variables (Szczypta et al., 2011;  Bosilovich et al., 2013b).  For rainfalls, Zhao et al. (2011) found

MAE which range from 1.8 mm day-1 to 4  mm day-1.  The errors in precipitation particularly affect

the simulation of surface flux, soil moisture and vegetation growth which can have large impact on

the simulation of hydrological variables (Decharme and Douville 2006a;   Maggioni et al., 2012,

Anquetin et al., 2010). Regarding radiations, their estimates are frequently inaccurate due to the few

number of in situ observations used to constraint the radiative transfer model used in the reanalysis
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(Carrer  et  al.,  2012). Zhao et  al.  (2011)  report  daily  MAE ranging from 20 to  60  W m--2 for

downwelling shortwave radiations (referred as shortwave radiation or SWdown herefater) and from

10 to 20 W m--2 for downwelling longwave radiations (referred as longwave radiation or LWdown).

Underestimations in SWdown are frequently reported over Mediterranean regions (Quintana-Seguí

et al., 2008; Szczypta et al., 2011). New radiation products derived from satellite observations, such

as  MSG/SEVIRI  can  advantageously  be  used  over  these  areas  that  lack  high-resolution

meteorological measurements in order to simulate the energy budget (Carrer et al., 2012). 

The representation of the surface characteristics concerns all the variables used to force the model in

terms  of  land  cover  type  and  use,  vegetation  dynamic  and  soil  properties.  Since  the  model

parameters are generally prescribed per land surface type, errors in land cover map can induce large

errors in LSM outputs (Avissar and Pielke, 1989; Ge et al., 2009 ; Pijanowski et al., 2011). The soil

texture is generally used to infer the soil hydrodynamic properties through pedotransfer functions

(Espino et al., 1996; Baroni et al., 2010). It is a key variable for the spatial integration of the model

since the soil properties explain a large part of ET uncertainties (Braud et al., 1995; Garrigues et al.,

2015).  The vegetation  dynamic is  represented by the  Leaf  Area Index (LAI)  cycle.  It  is  a  key

variable involved in the simulation of canopy conductance. It is used to infer secondary parameters

such  as  the  vegetation  cover  which  controls  evapotranspiration  partitioning.  LAI  cycle  can  be

described  by  a  climatology  or  satellite  observations.  Several  studies  have  reported  great

discrepancies  between distinct  LAI  satellite  observations  (Garrigues  et  al.,  2008;  Lafont  et  al.,

2011).  Their  spatial  and temporal  resolution may not  be fine enough to  represent  the cropland

dynamic. Garrigues et al. (2015) highlight the large impact of the succession of crop cycle and inter-

crop periods on the temporal dynamic of ET over long period of time. Finally, agricultural land

management such as irrigation can significantly influence the surface energy and water balance (de

Rosnay et al., 2003; Olioso et al., 2005; Puma and Cook, 2010) but irrigation is rarely accounted for

in land surface modelling at large scale.

This work aims at 

1. evaluating the uncertainties in the forcing datasets used to drive land surface models at large

scale, 

2. assessing the relative influence of the model drivers on the simulation of ET over a 12-year

Mediterranean crop succession.

We focus on the following drivers of ET:

• the rainfall and radiation climate variables, 
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• the irrigation, 

• the vegetation dynamic (LAI cycle), 

• the soil properties (soil texture, hydrodynamic parameters). 

We use  the  Interactions  between  Soil,  Biosphere,  and  Atmosphere  (ISBA)  land  surface  model

(Noilhan  and  Planton,  1989;  Noilhan  and  Mahfouf,  1996)  in  its  A-gs  version  (coupled

photosynthesis-stomatal conductance model) (Calvet et al., 1998). We evaluate the forcing datasets

used in the standard implementation of ISBA-A-gs over France. This includes the SAFRAN high

spatial resolution atmospheric reanalysis (Quintana-Seguí et al., 2008), the LAI cycles derived from

the Ecoclimap-II land surface parameter database (Faroux et al., 2013) and the soil texture derived

from the French soil database (King et al., 1995). These forcing datasets are operationally used in

the  SIM  (SAFRAN-ISBA-MODCOU)  system  which  is  dedicated  to  hydrological  monitoring

(Habets et al., 2008; Vidal et al., 2010a) and the LDAS (Land Data Assimilation System) which

combines the ISBA-A-gs model and satellite observations to monitor vegetation and soil moisture

(Barbu et al., 2013). For the climate, additional datasets used for the implementation of ISBA at the

continental  scale  are  tested  which  includes  the  ERA-Interim  low  spatial  resolution  reanalysis

(Simmons et al., 2007), the Global Precipitation Climatology Centre dataset (GPCC, Schneider et

al., 2011) and the MeteoSat Second Generation (MSG) satellite estimate of downwelling shortwave

radiations (Carrer et al.,  2012). We chose to evaluate the forcing variables  over a crop site, for

which the irrigation and the succession of crop and inter-crop periods are critical drivers of ET

dynamics. Besides, the impact of the forcing variables over a crop succession has not yet been

addressed. The evaluation is done for Mediterranean climate for which the errors in the reanalysis

estimates of radiation and rainfall were reported to be large (Szczypta et al., 2011). The evaluation

is carried out at local scale  over the Avignon 'Remote Sensing and Fluxes' crop site (southeast of

France) which is representative of typical Mediterranean cropland. This site provides 12 years of

continuous  measurements  of  micrometeorological  variables  and  surface  fluxes  which  allows  to

evaluate the forcing variables and their impact on ET for a large range of surface and atmospheric

states. We will first evaluate the large-scale forcing datasets against the local values taken at the

Avignon site. Then, we will assess the hierarchy of the influence of the tested drivers on ET.  We

finally discuss the implications of our results with respect to the spatial integration of the model to

monitor the water balance of cropland at regional scale. 

2 Site and   in situ     data 

We provide here the main characteristic of the Avignon experimental site, detailed  can be found  in
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Garrigues et al. (2015).

2.1 Site characteristics

The forcing datasets and the ET simulations are evaluated over the “Remote sensing and flux site”

of INRA Avignon1 (France;  43°55'00.4"N 4°52'41.0"E (WGS84 system) ; alt=32m a.s.l). This site

is characterized by a Mediterranean climate with a mean annual temperature of 14°C and a mean

annual precipitation of 687 mm. It is a flat agricultural field of 1.9 ha oriented north-south in the

prevailing wind direction (Fig. 1). The evaluation period comprises a 12-year crop succession from

April 2001 to December 2012 (Table 1). The crop rotation consists in a succession of winter arable

crops (wheat, peas) and spring/summer arable crops (sorghum, maize, sunflower).  Periods between

two consecutive crop cycles are short (~1-1.5 month) in the case of a summer crop followed by a

winter crop and can last up to 10 months in the reverse case (Fig. 2). During the inter-crop periods,

the soil is mostly bare.  Limited wheat regrowths occurred over short periods of time. Irrigation is

triggered only for summer crops (every two years).

The soil texture comprises 33% of clay and 14% of sand.  The  in situ  values of the soil water

content at saturation, field capacity and wilting point are 0.39, 0.31 and 0.18. 

2.2 Field measurements

Half-hourly observations  of  the  main climatic  variables,  the  shortwave and longwave radiation

fluxes, the turbulent heat fluxes (eddy-covariance measurements of ET), the ground heat flux, and

the soil moisture vertical profile have been continuously monitored since 2001. 

The crop characteristics (LAI, height, biomass) were regularly measured at selected phenological

stages. The vegetation height was linearly interpolated on a daily basis. Daily interpolation of LAI

was achieved using a functional relationship between LAI and the sum of degree days (Duveiller et

al., 2011). 

These measurements were used to drive or evaluate the model over the crop succession. 

3. The ISBA-A-gs model 

3.1 Model description

The ISBA model (Noilhan and Planton, 1989 ; Noilhan and Mahfouf, 1996) is developed at the

CNRM/Météo-France within the SURFEX surface modeling platform (Masson et al, 2013). In this

study, we used the version 6.1 of SURFEX. 

1 https://www4.paca.inra.fr/emmah_eng/Facilities/In-situ-facilities/Remote-Sensing-Fluxes
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ISBA relies  on  a  single  surface  energy  budget  of  a  soil-vegetation  composite.  The  soil  water

transfers are simulated using a force-restore scheme. They are represented by the time course of the

volumetric  soil  moisture  of  three  reservoirs:  the  superficial  reservoir  of  thickness  d1=0.01m to

regulate the soil evaporation, the root-zone and the deep reservoir which extends from the base of

the root-zone to the total soil column depth. The total latent heat flux is simulated by computing

individual estimates of soil evaporation and plant transpiration fluxes. Detailed explanations on how

soil evaporation is computed can be found in Garrigues et al., 2015. The stomatal conductance used

to compute the plant transpiration is simulated using the A-gs version of ISBA. The latter explicitly

represents the functional coupling between the stomatal conductance (gs) and the net assimilation of

CO2 (A). The stomatal conductance for water vapor is computed as a function of the net assimilation

of CO2 (Calvet et al., 1998). A-gs is  based on the model of Goudriaan et al. (1985)  modified by

Jacobs et al. (1996).  The net assimilation of CO2  is first computed at the leaf scale accounting for

the limiting effects of the air CO2  concentration and radiation. The simulation of photosynthesis is

mainly driven by the CO2 mesophyll conductance which represents the response curve of the light-

saturated net rate of CO2 assimilation to the internal CO2 concentration. The stomatal conductance

for  CO2  and  water  vapor  are  derived  from the  net  assimilation  of  CO2   using  a  flux-gradient

relationship  which  accounts  for  the  effect  of  air  humidity  deficit  on  stomatal  aperture  .  The

interactions  between the  diffusion  of   CO2   and  water  vapor  is  accounted  through an  iterative

process. Two types of plant response to soil water stress are represented depending on the evolution

of  the  water  use  efficiency.  For  drought-avoiding  type  of  plant  (e.g.  C3  crops),  the  stomatal

conductance  and  the  plant  transpiration  are  reduced  by  increasing  the  sensitivity  of  stomatal

aperture  to  air  humidity  deficit  while  the  net  assimilation of  CO2  is  kept  up by increasing  the

mesophyll conductance. In this strategy, water stress increases the plant water-use efficiency. For

drought-tolerant type of plant (e.g. C4 crops), the stomatal conductance is increased while the net

assimilation of CO2 is depleted. In this strategy, the water use efficiency is reduced. Under a critical

fraction of the root-zone water reservoir, severe stress is triggered and both the net assimilation of

CO2  and plant transpiration are depleted.  Photosynthesis and stomatal conductance are integrated

over  the  canopy. A spherical  angular  distribution  of  leaves  and  an  homogeneous  leaf  vertical

distribution is assumed to compute the radiation extinction through the canopy. While ISBA-A-gs

can simulate vegetation dynamic, in this work  the model is forced by the Leaf Area Index (LAI)

which is considered as an external driver. Refer to Calvet et al., (1998) for the photosynthesis and

stomatal conductance equations and to Calvet et al., (2012) for further explanation on water stress
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function parametrization. Detailed descriptions and equations of the model can also be found in the

SURFEX  scientific  documentation

(http://www.cnrm.meteo.fr/surfex/IMG/pdf/surfex_scidoc_v2.pdf, pages 121-135).

ISBA-A-gs is also able to simulate irrigation amounts for C4 irrigated crops. This consists in adding

an amount of 30 mm to the rainfall input each time the simulated available soil water capacity

reaches a predefined threshold (Calvet et al., 2008).

The model is  parametrized and run for 12 generic land surface patches which includes 9 types of

vegetation. Model  outputs are provided at the surface patch scale or at the grid scale  using the

proportion  of  each  land  surface  patch  within  the  simulation  grid  cell. In  the  standard

implementation of the model, the soil depths, the vegetation parameters and the LAI cycles are

given by the Ecoclimap-II land surface parameter database (described below). The soil parameters

are derived from soil texture using the pedotransfer functions embedded in the model which rely on

the Clapp and Hornberger, (1978) soil texture classification (Noilhan and Lacarrère, 1995).

4 Forcing datasets

4.1 Climate datasets

4.1.1 SAFRAN reanalysis
The  SAFRAN  dataset  is  produced  by  the  French  Meteorological  Service  (Météo-France).  It

provides  a  reanalysis  of  the  climate  variables  at  8  km horizontal  spatial  resolution  and hourly

timescale  over  France  back  to  1958  (Quintana-Seguí et  al.,  2008;  Vidal  et  al.,  2010b).  The

reanalysis is performed over climatically homogeneous zones covering the French territory. Vertical

profiles (vertical resolution of 300 m) of temperature, humidity and wind speed are computed every

6 hour from optimal interpolation between the simulations from an atmospheric model (ARPEGE

model  with  a  spatial  resolution  of  ~  20-30  km;  Déqué  et  al.,  1994)  and  the  available  in  situ

observations (acquired by ~600 stations over France). The downwelling shortwave and longwave

radiations are derived from a radiative transfer scheme which is not constrained by observations

(Ritter  and  Geleyn,  (1992)).  The  precipitation  is  computed  on  a  daily  basis  from  optimal

interpolation between a climatology and the rain gauge observations within the climatic zone. All

analyzed variables are temporally interpolated to hourly values using physical constraints. They are

projected  over  an  8-km  Lambert  grid.  For  temperature,  humidity,  wind  speed  and  radiation

variables, it consists in affecting to each grid cell the value of the vertical profile of the variable at
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the elevation of the grid cell. 

4.1.2 ERA-Interim reanalysis
The ERA-Interim (ERA-I)  reanalysis  is  produced by ECMWF (European Center  for Medium-

Range Weather Forecasts) at a spatial resolution of 0.5° and a 3-hr time step. The reanalysis is based

on a 4D-VAR data assimilation scheme using the meteorological observations within a 03:00:00 –

15:00:00 UTC window (Simmons et al., 2007). Poor performances have been reported for ERA-I

rainfall  (Szczypta  et  al.,  2011).  The  bias  in  ERA-I  rainfall  is  corrected  using  the  Global

Precipitation Climatology Centre dataset  (GPCC v6,  Schneider et al., 2011). The latter provides

monthly quality-controlled precipitation totals from 1901 to present which were derived from data

from 67,200 rain gauge stations world-wide. The GPCC-corrected ERA-I rainfall will be denoted

ERA-I/GPCC hereafter. 

4.1.3 MSG satellite downwelling shortwave radiation 
In  the  framework  of  the  Land  Surface  Analysis  Satellite  Application  Facility  (LSA  SAF),

downwelling  shortwave  radiation  is  derived  from the  Spinning  Enhanced  Visible  and  Infrared

Imager  (SEVIRI)  instrument  on  board  the  MeteoSat  Second  Generation  (MSG)  satellite  at  a

temporal  frequency  of  30  min  and  a  spatial  resolution  of  3  km.  This  dataset  is  available  at

http:/landsaf.meteo.pt. The product characteristics and the estimation method are given in Geiger et

al.  2008 and Carrer et  al.,  2012. Under cloudy-sky conditions, shortwave radiation is estimated

using the strong anti-correlation between the reflectance measured by the satellite and the solar

radiation reaching the ground. Under clear-sky conditions, shortwave radiation is estimated using an

atmospheric transmittance model (Geiger et al., 2008). The MSG satellite dataset is available from

12 October 2004. Before this date, the SAFRAN shortwave radiation is used. Missing MSG data

represents 7 % of the 12 October 2004 – 26 June 2012 period. They were replaced by the SAFRAN

estimates. The MSG estimate of downwelling longwave radiation was not available for this work.

Carrer et al. 2012 showed that this product has no significant impact on the scores of the ISBA

simultations and that the MSG shortwave radiation has the largest added-value.

4.2 Surface characteristic datasets

The ECOCLIMAP-II database provides the land surface parameters and the LAI cycles for ~273

distinct land covers over Europe at 1 km resolution (Masson et al., 2004; Faroux et al., 2013).  Each

land cover class at 1km is characterized by the fractions of the model land surface patch. The LAI

and the soil depths vary with both the land cover class (geographic location-dependent) and the 12
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model land surface patches while the rest of surface parameters only depend on the model land

surface patch. Ecoclimap-II  provides a monthly LAI climatology obtained from the analysis of the

MODIS satellite observations over each land cover and land surface patch of the model (Faroux et

al., 2013). For crops, the fraction of vegetation cover and the vegetation height are derived using

empirical functions of LAI (Masson et al., 2004). 

In the standard implementation of the model over France, the soil texture is provided by the French

Soil DataBase (FSDB) on a 1:1 000 000 scale map (King et al., 1995) which has been resampled

over the SAFRAN grid at a 8 km resolution (Habets et al., 2008).

5 Methodology

5.1 Model implementation at the Avignon site

Continuous simulations were performed from 25 April 2001 up to 26 June 2012.  The model is

forced either by local or reanalysis climate observations. Depending on the simulation, irrigation is

added or not to rainfall. The model is driven by 10-day LAI and vegetation height derived from the

ECOCLIMAP-II climatology or local observations. 

We explicitly represent the succession of crop and inter-crop periods in the simulations by changing

the model land surface patch and the associated LAI and vegetation parameters accordingly to the

crop schedule presented in  Table 1.  The C3 crop patch was used to  represent  wheat,  pea,  and

sunflower. The C4 crop patch was used for maize and sorghum. Inter-crop periods are represented

by the bare soil patch.  When the LAI climatology is used, we use the LAI cycle and the derived

vegetation height provided by the ECOCLIMAP-II database for each crop patch. When the local

LAI is used, the LAI time trajectory depicts the dynamic of the crop succession. LAI is null for the

inter-crop periods. 

The simulations were initialized once on 25 April  2001 using  in situ soil  temperature and soil

moisture measurements. The 12 year period was split into sub-simulation periods corresponding to

crop and inter-crop periods (Fig. 2). To ensure the continuity between 2 contiguous sub-simulations,

each sub-simulation was initialized using the simulated soil moisture and soil temperature of the last

time step of the previous sub-simulation. The model was run at a 5 min time step. 30 min outputs of

the state variables were analyzed at the model land surface patch scale (C3 crop, C4 crop, bare soil).

We do not consider the outputs aggregated at 1 km resolution which does not match the local field

scale. 
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5.2 Experiment design

This  work  aims  at  evaluating  the  forcing  datasets  used  to  drive  the  model  at  large-scale  and

assessing their impacts on simulated ET. We test the following drivers of ET:

• the climate with a focus on rainfall and radiations, 

• the irrigation,

• the vegetation dynamic represented by the LAI and the vegetation height time courses, 

• the soil properties (soil texture, hydrodynamic parameters). 

To address these issues, we designed the following simulations.

Control run

The  control run (SCTL) is performed using the local observations taken at the Avignon site for the

the  climate,  the  irrigation,  the  vegetation  dynamic  and  the  soil  properties.  The  irrigation  was

accounted for by adding  the actual irrigation amount to rainfall. We use the local values of the soil

moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting derived

from field  measurements  of  soil  moisture  (Garrigues  et  al.,  2015)  instead  of  the  pedotransfer

function  estimates  used  in  the  standard  implementation  of  the  model.  The  rest  of  the  model

parameters take the standard values given by the ECOCLIMAP-II database for the C3 crop, the C4

crop and the bare soil patches (Gibelin et al., 2006; Faroux et al., 2013). The root-zone depth and

the deep reservoir  size are  1.5 m and 0.5 m,  respectively. The performances  of  SCTL has  been

evaluated  in  Garrigues  et  al.  (2015)  who  showed  good  agreement  with  eddy-covariance

measurements (MD in daily ET of 0.07 mm day-1). In this paper, SCTL will thus be considered as

truth to evaluate the other experiments and eddy-covariance measurements of ET will not be used. 

Experiments

We designed nine  experiments  to  test  the  impact  of  each  driver  on  ET. These  simulations  are

derived from SCTL by replacing the local values used for the tested variable by its value used in the

standard implementation of the model at large-scale (Table 3).  We test the drivers one by one as

follows :

Impact of climate: the local climate is replaced by the large-scale reanalysis observations. We test:

◦ the reanalysis dataset: SSAFRAN  and SERA  are conducted using the SAFRAN and ERA-I

climate, respectively,
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◦ the rainfall dataset:  SGPCC is achieved with the SAFRAN climate where the SAFRAN

rainfall is replaced by the ERA-I/GPCC rainfall,

◦ the  satellite estimate  of  shortwave  radiation:  SMSG  is  achieved  with  the  SAFRAN

climate where the SAFRAN downwelling shortwave radiations is replaced by the MSG

estimate.

Impact of irrigation - two aspects are tested :

• the impact of lack of irrigation in the simulation : SNO-IRRIG is performed without accounting

for irrigation as it is frequently done for the standard implementation of land surface models

at large scale,

• the skills of the model at representing the irrigation needs for Mediterranean crops: SMODEL-

IRRIG is achieved triggering the ISBA irrigation scheme. 

Impact of vegetation dynamic:  SECO-LAI is achieved with the ECOCLIMAP-II LAI and vegetation

height instead of using their local values. 

Impact of soil properties - two aspects are investigated:

• the impact of soil texture which is used as input of the pedotransfer functions to estimate the

soil hydrodynamic parameters,

• the impact of errors in the soil hydrodynamic parameters. We consider  the soil moisture at

saturation, the soil moisture at field capacity and the soil moisture at wilting point which

represent the main sources of uncertainties in simulated ET when the model is implemented

at local scale (Garrigues et al., 2015).

To investigate both issues, two simulations are performed by replacing the local values of the soil

hydrodynamic properties used in SCTL by their pedotransfer estimates:

• SLOCAL-TEXT is achieved using the local soil texture,

• SFSDB-TEXT is achieved using the texture value from the French Soil DataBase (FDSB).

5.3 Evaluation method

We first evaluate the large-scale forcing datasets against the local observations taken at the Avignon

site.  Due to the low topographic variability of the area, the climate observations of the Avignon site

are  representative  of  the  area  covered  by  the  reanalysis  grid.  This  particularly  holds  true  for
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radiation but larger variability can be found for precipitation. The large-scale vegetation and soil

data cannot exactly match the local ones but their evaluation at local scale brings insight on their

representativeness of typical cropland and soil type of Mediterranean regions. 

Then, we assess the influence of each driver  on simulated ET  by comparing each experiment

achieved with the large-scale dataset with the control run achieved with the local observation. We

report the scattering  in LE at half-hourly timescale and the scattering in cumulative ET at daily,

monthly, seasonal and 12-yr timescales. 

The scattering between the forcing datasets and the local observations and the scattering between

each experiment  and the  control  run  are  quantified  using  the  Root  Mean Square  of  difference

(RMS),  the  Mean  Difference  (MD),  the  SD  of  differences  (SDD),  the  correlation.  The  RMS

quantifies the total scattering. MD quantifies the systematic differences and SDD represents the

random component of the RMS. 

6 Results     :

6.1 Evaluation of the large-scale forcing datasets

6.1.1 Climate variables

Rainfall

The evaluation of the ERA-I/GPCC and SAFRAN rainfall against local observations are reported in

Table 4 and illustrated by Fig. 3, Fig. 4 and Fig. 5. Table 4 shows lower correlation and larger SDD

at 3-hr timescale than at longer timescales for both datasets (Table 4). This reveals shortcomings in

the rescaling of the daily values used to build these datasets to hourly values. At daily and longer

timescales, both datasets are lowly biased. However, the SAFRAN rainfall is more precise than the

ERA-I/GPCC rainfall which shows lower correlation with measurements and has an SDD 3 times

larger  than  SAFRAN  (Table  4,  Fig.  3).  Figure  4  shows  that  the  ERA-I/GPCC  rainfall  is

overestimated  in  winter  and underestimated  in  spring and summer. The error  in  yearly rainfall

which ranges from -81 to 98 mm yr-1 for ERA-I/GPCC (Fig. 5) shows larger inter-annual variability

than for SAFRAN which ranges from -42 to 32 mm yr-1. The use of a dense network of rain gauges

over France may explain the higher precision of the SAFRAN dataset which better resolves the

rainfall spatial variability over France (Quintana-Seguí., et al., 2008). 

Radiations

The evaluation of SAFRAN, MSG and ERA-I shortwave and longwave radiations are reported in

Table 5. SAFRAN and MSG shortwave radiations show similar negative MD (~-10 W m-2) and
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SDD  with  measurements  at  both  half-hourly  and  daily  timescales  (Table  5).  The  SAFRAN

shortwave radiation is underestimated at midday in summer while the MSG satellite estimate is

underestimated  in  the  afternoon.  The  ERA-I  shortwave  radiation  has  an  absolute  MD 4 times

smaller  than SAFRAN. It  is  quasi-unbiased at  daily  timescale.  This  is  related to  compensation

effects  between  an  underestimation  of  the  shortwave  radiations  in  the  morning  and  an

overestimation in the afternoon (Fig. 6). 

SAFRAN and ERA-I underestimate longwave radiation by -12 and -16 W m-2 (Table 5). Figure 7

shows that SAFRAN describes an inverse diurnal cycle of longwave radiation and underestimates

the  maximum value  in  the  afternoon.  The  ERA-I  longwave radiation  shows consistent  diurnal

variations but it is underestimated through the diurnal and the seasonal cycles. 

The errors in yearly shortwave and longwave radiations range from -661 to -21 MJ and from -548

to -107 MJ, respectively, for SAFRAN (Fig. 5). They vary from -52 MJ to 179 MJ and from -625

MJ to -385 MJ, respectively, for ERA-I which shows lower inter-annual variations than SAFRAN. 

The uncertainties in the reanalysis estimates of shortwave and longwave radiations are attributed to

shortcomings in  the radiative transfer  scheme and to an insufficient  number of observations  to

constrain the reanalysis. Our results confirm the low bias in daily shortwave radiation reported for

ERA-I in Szczypta et al. (2011). However, our work does not show higher levels of accuracy and

precision  for  the MSG satellite  estimates  of  shortwave radiations  as   reported by Carrer  et  al.

(2012).  This can be related to the high occurrence of clear-sky conditions at the Avignon site for

which  the  satellite  measurements  are  not  explicitly  used.  The clear-sky algorithm relies  on  an

empirical parametrization of the atmospheric transmittance and on a climatology for the aerosol

content.  This may not be accurate enough to resolve the large variations in the aerosol content

generated by the frequent strong wind conditions in the Avignon region. Besides, possible errors in

the cloud mask used to trigger the clear-sky/cloudy-sky retrieval algorithm can have a large impact

on shortwave radiation estimates (Geiger et al ., 2008). 

6.1.2 Vegetation characteristics

Figure 8 shows that Ecoclimap-II overestimates low LAI during the early and late stages of the crop

cycles, which results in an overall overestimation of LAI over the crop cycle (positive bias of 1 m 2

m-2).  The maximum LAI of wheat crops (e.g. 2002, 2004, 2006) is frequently underestimated by

ECOCLIMAP-II and its timing is late compared to measurements. The timing of maximum LAI is

more accurate for summer crops (e.g. Sorghum in 2007 and 2009). Incorrect decrease in LAI is
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observed at the early stages of wheat crops.

The Ecoclimap-II LAI climatology is derived from the 2002-2006 MODIS satellite observations at

1 km spatial resolution. The first explanation of the differences between the Ecoclimap-II LAI and

the local LAI is the spatial and the temporal mismatch between the satellite observations and the

local field. The 1km satellite pixel is composed of bare soil and vegetation surfaces which reduces

the maximum LAI resolved by Ecoclimap-II. The satellite observations comprise a mix of crops

with possibly distinct cycles. Therefore, a particular crop cycle cannot be represented, nor the local

crop rotation. The monthly time step of Ecoclimap-II can be too coarse to properly resolve the

changes  in  crop phenology  which  explains  the  frequent  inaccurate  timing  of  the  Ecoclimap-II

maximum LAI. The second explanation of the differences between the Ecoclimap-II and the local

LAI is related to the intrinsic uncertainties of the Ecoclimap-II LAI. Ecoclimap-II shows unrealistic

crop cycle compared to the local LAI measurements which are representative of typical crop cycles

of the studied region. As a climatology, it does not resolve the inter-annual variability. The absence

of discrimination between winter and summer crop patches hampers the proper representation of the

seasonal and crop succession dynamics. The inter-crop periods during which the surface can be bare

during long period of time (up to 9 months) are not  represented. This leads to an underestimation of

the bare soil surfaces and contributes to the overestimation of LAI over the crop succession.

6.1.3 Irrigation

Irrigation represents 18%  (1295 mm) of cumulative rainfall (7138 mm) over 12 year for this site. It

concerns summer crops and mainly occurs from May to July. It induces much larger variation in

input water for the model than the differences in rainfall estimates between reanalysis datasets (Fig.

4).

We evaluate here the skill of the model at simulating the irrigation needs for the irrigated crops of

the crop succession.  The total  amount of simulated irrigation over each crop cycle are in close

agreement with the actual values except for sorghum in 2007 and 2011 (Table 2). MD and SDD

computed over 8 crop cycles are 25 mm and 99 mm. However, Fig. 9 highlights the inaccurate

timing of simulated irrigations. The latter are frequently underestimated in the early stages of the

crop cycle (April-June), overestimated during the growing period (July) and overestimated during

the crop senescence  (August-September). We observe frequent overestimation of the inter-annual

variability  in  July  and  August.  The  soil  moisture  thresholds  used  to  trigger  the  irrigation  are

probably too high for the considered crops and need to be adapted for Mediterranean crops. The
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lack of constraints on irrigation practices probably explains the inaccurate timing of the simulated

irrigations.

6.2 Impact on simulated ET

Figure 10 displays the differences in cumulative ET between each experiment achieved with the

large-scale  dataset  for  each  tested  driver  and  the  control  run  (SCTL)  achieved  with  the  local

observations.  The scattering  in  daily  ET between selected  experiment  and  SCTL is  presented  in

Figure 11. Table 6 reports the scattering metrics between each experiment and  SCTL. The Taylor

diagrams given in Fig. 12 summarize the deviation between each experiment and the control run

trough the correlation and the root mean square (RMS) difference. We first provide the hierarchy of

influence of the drivers on ET and then we analyze the impact of each driver on ET.

6.2.1 Hierarchy of the influence of the drivers on ET

Soil hydrodynamic parameters and the lack of irrigation generate the largest mean deviation in ET

with the control run (Table 6 and Fig 10). The MD in cumulative ET over 12 years represents 25

and 20 months of ET for the soil parameters and the irrigation, respectively. The climate and the

vegetation dynamic induces lower MD in ET which range from six to nine months of ET over 12

years.  Changing the climate forcing dataset has little influence on ET simulation compared to the

impact of irrigation and soil  properties. At seasonal timescale,  the irrigation and the vegetation

dynamic are the drivers which induce the largest random scattering with SCTL (see RMS in Fig. 12).

6.2.2 Influence of soil properties

The use of the pedotransfer estimates of the soil hydrodynamic parameters (soil moisture at field

capacity,  soil  moisture  at  wilting  point  and  soil  moisture  at  saturation)  in  SLOCAL-TEXT  leads  to

substantial  underestimation  of  ET compared to  SCTL achieved with the  field  estimates  of  these

parameters.  The  soil  moisture  at  saturation  is  involved  in  the  representation  of  the  hydraulic

diffusivity  of  the  superficial  soil  layer  in  the  ISBA  model.  Its  overestimation  by  the  ISBA

pedotransfer  function  (see  values  in  Table  3)  triggers  an  underestimation  of  the  soil  hydraulic

diffusivity and the resulting soil evaporation. The soil moisture at wilting point is a key driver of the

maximum available water capacity. Its overestimation by the ISBA pedotransfer function (Table 3)

leads to the underestimation of the plant transpiration. 

While the clay and sand fractions given by the French soil database are significantly different from

the local values, the differences between SFSDB-TEXT  and SLOCAL-TEXT  are low. Table 3 shows that the

use of the large-scale soil texture and the local soil texture lead to similar values of the maximum
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available soil water capacity for the crop (MaxAWC). The steady MaxAWC is a consequence of the

quasi-parallel shapes of the ISBA pedotransfer functions used to estimate the soil moisture at field

capacity and the soil moisture at wilting point (Noilhan and Lacarrère, 1995). This highlights the

limit  of  these pedotransfer  functions  to  resolve the spatial  variability  of  the soil  hydrodynamic

properties across various soil types.

6.2.3 Influence of irrigation

Irrigation substantially  influences ET although it concerns only short period of time of the crop

succession. The lack of irrigation in the simulation SNO-IRRIG triggers a substantial decrease in ET

during the growing periods of summer crops (Figure 10). It leads to an underestimation in ET of

1118 mm over 12 years which is 2.5 times larger than the MD induced by the use of a reanalysis

climate (Table 6). 

The simulation of irrigation by the model (SMODEL-IRRIG) leads to no bias in ET over 12 years (Table

6). The large RMS obtained for SMODEL-IRRIG  is due to the inaccurate timing of the occurrences of

simulated irrigation which locally triggers an overestimation or an underestimation in ET over the

crop succession (Fig. 10)

6.2.4 Influence of vegetation dynamic

The use of the ECOCLIMAP-II LAI in SECO-LAI  triggers an overall overestimation of ET over 12

years (441mm, 6%). This is related to the overestimation of the mean LAI over the crop succession

by ECOCLIMAP-II. The large scattering observed between SECO-LAI  and SCTL  (Fig. 12) is mainly

related to the temporal mismatch between the ECOCLIMAP-II LAI cycle and the actual LAI cycle

which leads to successive overestimation or underestimation of LAI over the crop succession. For

winter crops, ET is frequently underestimated during the growing periods and overestimated at the

end  of  the  crop  cycle  during  the  during  the  senescence.   For  summer  crops,  ET  is  mainly

overestimated. The decrease in ET observed during some inter-crop periods (mainly 2003) is due to

the occurrence of crop regrowths which are not represented by the ECOCLIMAP-II LAI.

6.2.5 Influence of climate variables

The use of SAFRAN triggers an underestimation of ET (Fig 10 and Table 6). This is mainly related

to the underestimation of longwave and shortwave radiations which decreases the surface energy

available for ET. Slightly better performances scores are obtained for ERA-I which shows lower

MD and lower scattering in ET with SCTL than SAFRAN at daily and longer timescales. This is

related to the lower bias in ERA-I shortwave radiation ERA-I. The higher SDD obtained with ERA-
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I at half-hourly timescale is related to the higher dispersion found for the ERA-I radiations (Table

5). The use of the rainfall GPCC or the MSG shortwave radiation instead of the SAFRAN estimates

have low influence on ET.  A slight increase in SDD is obtained with the use of the GPCC rainfall

which is related to its lower precision as mentioned above.  

The differences in yearly ET between the reanalyses and the local climate simulations fall within

similar range of values (from -82 to 3 mm yr-1  for SAFRAN and from -93 to 12  mm yr-1 for ERA-

I/GPCC). Figure 5 shows that the evolution of the error in yearly ET is mainly related to the errors

in rainfall. This particularly holds true for GPCC. The impacts of radiations are smaller except in

2008 and 2010 for SAFRAN.

7/ Discussion

We discuss the implications of previous results with respect to the spatial integration of the model to

monitor the water balance of cropland at regional scale. 

Soil properties

This  study highlights  the prevailing role  of the soil  hydrodynamic properties in  retrieving  the

dynamics  of ET. This particularly holds true for Mediterranean regions where ET is  frequently

limited by soil moisture. This supports findings from Smiatek et al. (2015) and Guillod et al. (2013)

who report that differences in soil datasets can substantially affect regional climate simulation (up

to  20% for  precipitation).  Besides,  Guillod  et  al.  (2013) and Garrigues  et  al.  (2015)  show the

prevailing role of the parameters affecting both the available water capacity (field capacity and

wilting point ) which drives the transpiration and the parameters affecting the hydraulic diffusivity

in the model which influences the soil evaporation.

Since the soil hydraulic properties are rarely known over large areas, they are generally derived

from empirical  pedotransfer  functions  which  relate  the  soil  hydrodynamic  properties  to  readily

available variables such as soil texture and bulk density (Cosby et al.,1984; Vereecken et al., 1989;

Schaap et al., 2001). Large discrepancies have been reported between pedotransfer functions which

are prone to distinct sources of uncertainties (Espino et al., 1996; Baroni et al., 2010). The first

shortcoming concerns their representativeness of soil property variability. The ISBA pedotransfer

functions were established upon the Clapp and Hornberger (1978) database. These functions were

calibrated  using  the  mean  values  of  the  soil  properties  over  few  classes  of  soil  texture.  The

variability  of  the  soil  parameters  within  a  given  soil  texture  class  may  exceed  the  variability

between classes. Besides  global  maps of soil texture may not be  fine  enough  to describe the soil
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property variability at regional scale. The second source of uncertainty is related to the estimation

method.  While  most  pedotransfer  functions are  based  on soil  texture,  improvements  of  the

prediction equations may require the use of additional predictors related to soil structure (Vereecken

et al,  1989). Most  pedotransfer functions are based on simple statistical regressions such as the

ISBA ones (Noilhan and Laccarère, 1995). The more advanced ROSETTA pedotransfer functions

(Schaap et al., 2001) address the uncertainty in the predicted soil parameters through the use of an

ensemble  of  functions  calibrated  over  distinct  soil  datasets.  Such  model  provides  essential

information on the variance and covariance of the hydraulic  properties (Scharnagl  et  al.,  2011)

which are required to propagate the uncertainties in the LSM simulations. 

Irrigation

Irrigation  is  a  key  component  of  the  water  balance  of  Mediterranean cropland.  It  significantly

modifies the seasonal pattern of evapotranspiration and can affect the regional climate (Puma and

Cook, 2010; Len et al., 2013). Besides, it is a key aspect of adaptation strategies to climate change.

However accurate information on irrigation amount is rarely available over large areas. The strategy

consists in simulating the irrigation amount required to satisfy the crop water needs by the land

surface  model.  But  as  demonstrated  in  this  work,  constraints  on  the  irrigation  period  and  the

irrigation  amount  need  to  be  incorporated  to  represent  the  actual  agricultural  practices  more

realistically. Adding the amount of irrigation water to rainfall may not be adapted for all types of

irrigations  (pressurized  vs  gravity  distribution).  More  accurate  description  of  the  variability  of

irrigation practices need to be incorporated in land surface models (Ozdogan et al., 2010; Olioso et

al., 2013). 

Vegetation dynamic

This work showed that the LAI climatology is not accurate enough to resolve ET dynamics over the

crop succession. The key aspects that are lacking in the ECOCLIMAP-II database and need to be

better represented in land surface models are:

- more accurate crop phenology, particularly the timing of maximum LAI,

- the succession of winter and summer crops which leads to long period of bare soil.

A strategy to resolve the temporal and spatial dynamic of vegetation would consist in using satellite

observations. Recent satellites (e.g.  next SENTINEL-2 satellite) have fine enough spatial resolution

(~10 m) and temporal frequency (5-10 days) to resolve the LAI cycle of crops more accurately and

monitor the dynamics induced by crop rotation.
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Climate

We showed that rainfall is the main climate driver of the errors in yearly ET. To monitor the water

balance at regional scale, it is of paramount importance to improve the representation of rainfall

spatiotemporal heterogeneity. While the SAFRAN rainfall is probably the most accurate and precise

reanalysis dataset over France, Zhao et al. (2012) showed that its spatial resolution may not be fine

enough  to  resolve  rainfall  spatial  heterogeneity.  This  particularly  holds  true  for  Mediterranean

regions where rainfalls are governed more by local convective elements and mesoscale convection

than by large-scale well-resolved dynamical processes (Anquetin et al., 2010; Szczypta et al., 2011;

Bosilovich et al., 2013b). The impact of the lack of irrigation on ET reported in this work provides

an indication of the errors that could be generated by the use of inaccurate rainfall forcing over

large areas. High resolution rainfall  datasets  derived from the combination of terrestrial  rainfall

radar data,  in situ observations and atmospheric models need to be developed to better  resolve

rainfall spatial heterogeneity at regional scale. 

8 Summary

The present study aims at evaluating the large-scale datasets  used to drive the ISBA-A-gs land

surface model and assessing their impacts  on the simulation of ET over a 12-year Mediterranean

crop  succession.  We focus  on  the  climate  (rainfall,  radiations),  the  irrigation,  the  vegetation

dynamic  (LAI)  and  the  soil  properties  (soil  texture,  hydrodynamic  parameters)  variables.  We

evaluate the forcing datasets used in the standard implementation of ISBA over France where the

model  is  driven by  the  SAFRAN high spatial  resolution  atmospheric  reanalysis,  the  LAI  time

courses derived from the Ecoclimap-II land surface parameter database and the soil texture derived

from the  French  soil  database.  For  climate,  additional  datasets  used  to  drive  the  model  at  the

continental scale are tested which includes the ERA-Interim low spatial resolution reanalysis, the

GPCC rainfall dataset and the downwelling shortwave radiation derived from the MSG satellite. We

first evaluate the large-scale dataset against the local values taken at the Avignon site. Then, we

assess the hierarchy of the influence of each driver on ET. We finally discuss the implications of our

results with respect to the spatial integration of the model to monitor the water balance of cropland

at regional scale. 

The main outcomes from the evaluation of the drivers are:

•  SAFRAN and ERA-I/GPCC rainfall are slightly biased at daily and longer timescales (1

and 0.5 % of the mean rainfall measurement). The SAFRAN rainfall is more precise than
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the ERA-I/GPCC rainfall which shows larger inter-annual variability in yearly rainfall error

(up to 100 mm). 

• ERA-I  has  very  low bias  (2.5  W m-2)  in  daily  downwelling  shortwave  radiation  while

SAFRAN  and  MSG  show  negative  biases  of  ~-10  W m-2.  Both  SAFRAN  and  ERA-I

underestimates downwelling longwave radiations by -12 and -16 W m-2 , respectively.

• The  ECOCLIMAP-II  LAI  climatology  does  not  properly  resolve  Mediterranean  crop

phenology.  It  does  not  describe  the  succession  of  winter  and  summer  crops  and

underestimates bare soil period which leads to an overall overestimation of LAI over the

crop succession.

• Irrigation  generates  much  larger  variations  in  incoming  water  for  the  model  than  the

differences in rainfall between the reanalysis datasets. The simulation of irrigation by the

model provides accurate irrigation amount over the crop cycle but the timing of irrigation

occurrences is frequently unrealistic.

The main results from the evaluation of the impacts on ET are:

• Errors in the soil hydrodynamic parameters and the lack of irrigation in the simulation have

the largest influence on ET compared to uncertainties in the large-scale climate reanalysis

and the  LAI  climatology. Among climate  variables,  the  errors  in  yearly  ET are  mainly

related to the errors in yearly rainfall. 

• The underestimation of the available water capacity and the soil hydraulic diffusivity induce

a large underestimation of ET over 12 years.

• The errors in the climate datasets and the absence of irrigation in the simulation lead to the

underestimation  of  ET while  the  overall  overestimation  of  LAI by the ECOCLIMAP-II

climatology induces an overestimation of ET over 12 years.

This work shows that the key challenges for the spatial integration of a land surface model 

over Mediterranean cropland concern the representation of:

◦ the spatial distribution of the soil hydrodynamic parameters which control the available

water capacity and the soil hydraulic diffusivity. 

◦ The variability of irrigation practices in land surface model. Irrigation was proved to 

have large influence on long time-series of ET although it concerns short period of time 
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of the crop succession. 

◦ The spatiotemporal variability of rainfall which can be particularly important for 

Mediterranean  climate characterized  by local convective elements.

◦ The vegetation dynamic at seasonal (phenology) and interannual (crop rotation) 

timescales.

Strategy combining models and new remote sensing observations with high spatial 

resolution (~10-20 m) and high temporal frequency (5-10 days) offer great promises to 

resolve vegetation dynamic and retrieve the spatial distribution of soil properties for 

cropland and need to be fostered in the future.
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Table 1: Definition of symbols and acronyms
BS Bare soil 

C3 C3 type of crop 

C4 C4 type of crop 

d2 Rooting  depth (m)

ERA-I ERA-Interim reanalysis climate dataset (spatial resolution of 0.5° and time step of 3-
hr )

ERA-I/GPCC ERA-I climate where rainfall was corrected using the GPCC rainfall dataset

GPCC Global Precipitation Climatology Centre dataset  (version 6, Schneider et al., 2011)
which gives  monthly quality-controlled precipitation totals.

Ecoclimap-II Land  surface  parameter  database  (spatial  resolution  of   1  km)  used  to  run  the
SURFEX/ISBA model at global scale (Faroux et al., 2013).

ET Evapotranspiration  (given  in  cumulative  value  in  mm  at  daily  or  multi-year
timescales)

fclay Clay fraction

fsand Sand fraction

FSDB French  Soil  DataBase  (King  et  al.,  1995)  which  provides  soil  texture  over  the
SAFRAN grid at a spatial resolution of 8 km.

ISBA Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land surface model.

ISBA-A-gs A-gs  version  of  ISBA.  A-gs  indicates  that  ISBA includes  a  coupled  stomatal
conductance-photosynthesis scheme.

LAI Leaf Area Index (m² m-2)

LE Latent heat flux (W m-2)

LSM Land Surface Model

MaxAWC Maximum  Available  Water  Content.  It  represents  the  maximum  water  stock
available for the crop's growth.

MD Mean deviation 

MSG MeteoSat  Second  Generation  satellite.  We  used  the  downwelling  shortwave
radiation derived from MSG observations.

NI Nash Index

NR Net Radiation

r Correlation coefficient

RMSD Root Mean Square of Differences (between two simulations)

RMSE Root Mean Square Error (between a simulated variable and its measurement)

SAFRAN Système d’Analyse Fournissant des Renseignements Atmosphériques à  la Neige’
Analysis system providing data for snow model. The SAFRAN reanalysis covers
France with a spatial resolution of 8 km and at hourly time step.
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SD Standard deviation

SDD Standard deviation of the differences 

SEVIRI Spinning Enhanced Visible and Infrared Imager instrument on board the MeteoSat
Second Generation Satellite

SURFEX 'Surface externalisée ' in French. SURFEX is an externalized land and ocean surface
platform that describes the surface fluxes and the evolution of four types of surface:
nature, town, inland water and ocean. ISBA is the land surface model used for nature
surfaces.

SWdown Downwelling shortwave radiation

LWdown Downwelling longwave radiation

θfc volumetric soil moisture at field capacity (m3 m-3)

θsat  volumetric soil moisture at saturation (m3 m-3)

θwp  volumetric soil moisture at wilting point (m3 m-3)
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Table  2:   2001-2012  crop  succession.   T and  Rain  are  the  mean  temperature  and  cumulative
precipitation, respectively, over the crop cycle. (1): these crops were interrupted and replaced by a
new one.

Year Crop Sowing       
date 

Harvest date Rain 
(mm)

T 
(°C)

Irrigation
(mm)

Simulated 
Irrigation
(mm)

2001 Maize 25 Apr 2001 28 Sep 2001 232.0 20.7 375 330
2002  Wheat 23 Oct 2001 2 Jul 2002 399.0 11.6 0 na

2003 Sunflower1 16 Apr 2003 26 May 2003 68.0 17.1 40 0

2003 Sunflower 2 Jun 2003 19 Sept 2003 68.5 24.8 225 300

2004 Wheat 7 Nov 2003 28 Jun 2004 422.0 11.2 0 na

2005 Peas 13 Jan 2005 22 Jun 2005 203.5 11.9 100 60

2006 Wheat 27 Oct 2005 27 Jun 2006 256.0 10.7 20 na

2007 Sorghum 10 May 2007 16 Oct 2007 168.5 20.6 80 330

2008 Wheat 13 Nov 2007 1 Jul 2008 502.5 11.7 20 na

2009 Maize1 23 Apr 2009 15 Jun 2009 110.5 19.2 80 0

2009 Sorghum 25 Jun 2009 22 Sept 2009 89.0 23.6 245 270

2010 Wheat 19 Nov 2009 13 Jul 2010 446.5 11.6 0 na

2011 Sorghum 22 April 2011 22 Sept 2011 268.5 21.4 60 120

2012 Wheat 19 Oct 2011 25 Jun 2012 437.0 12.0 0 na
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Table 3:  Characteristics of the experiments.  SCTL is the control simulation achieved with the local 
observations for the tested drivers of the model and the in situ values for the soil hydrodynamic 
parameters. The experiments are derived from SCTL by replacing the local observations by the large-
scale dataset values. For each experiment, the modified variables or parameters are highlighted in 
bold. FSDB stands for the French Soil Data Base used for the large-scale soil texture.  fsand, fclay are 
the fractions of sand and clay.  θfc,  θwp and θsat are the volumetric soil moisture at field capacity, 
wilting point and saturation. MaxAWC is the maximum available water capacity for the crop 
computed as Zroot-zone * (θfc-θwp) where the rooting depth Zroot-zone=1.5 m.
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                                                                                    Simulations

SCTL SSAFRAN SERA SGPCC SMSG SNO-IRRIG SMODEL-IRRIG SLAI-ECO SFSDB-

TEXT

SLOCAL-

TEXT

Forcing

variables

C
L
I
M
A
T
E

Rainfall Local SAFRAN ERA-
I/GPCC

ERA-
I/GPCC

SAFRAN Local Local Local Local Local

Shortwave 
radiation

Local MSG ERA-I SAFRAN MSG Local Local Local Local Local

Other 
climate
variables

Local SAFRAN ERA-I SAFRAN SAFRAN Local Local Local Local Local

Irrigation Local Local Local Local Local NO Simulated Local Local Local

S
U
R
F
A
C
E

Texture
 fclay; fsand 

Local 
0.33 ; 0.14

Local 
0.33 ; 0.14

Local 
0.33 ; 0.14

Local 
0.33 ; 0.14

Local 
0.33 ; 0.14

Local 
0.33 ; 0.14

Local 
0.33 ; 0.142

Local 
0.33 ; 
0.14

FSDB 
0.18 ; 
0.2

Local 
0.33 ; 
0.14

LAI Local Local Local Local Local Local Local Ecoclim
ap

Local Local

Vegetation 
height

Local Local Local Local Local Local Local Ecoclim
ap

Local Local

Soil

Hydrodyna
mic

Parameters

Estimation 
method

Values derived from in situ measurements Pedotransfer 
functions

θsat  (m³ m-3) 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.473 0.479 

θfc  (m³ m-3) 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.310 0.245 0.303 

θwp  (m³ m-3) 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.158 0.214 

MaxAWC (mm) 189 130.5 133.5





Table 4 : Evaluation of SAFRAN and ERA-I/GPCC cumulative rainfall against measurements over 
the 2001-2012 period at 3-hours, daily, 10-days, 30-days and yearly timescales. SDD and MD are 
given in absolute  value in mm and in percentage of the mean local measurement in paranthesis.
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3-hours Daily 10-days 30-days yearly

Mean in situ 
meas. (mm)

0.22 1.74 17.36 51.83 657.10

r MD SDD r MD SDD r MD SDD r MD SDD r MD SDD 

SAFRAN 0.53 0.00 
(1 %)

1.46
(674%)

0.97 0.02
(1%)

1.57
(90%)

0.98 0.21
(1%)

4.48
(26%)

0.99 0.61
(1%)

7.03
(14%)

0.99 8.22
(1%)

20.14
(3%)

ERA-I/GPCC 0.46 -0.14 
(66%)

1.57 
(720%)

0.73 0.01
(0.5%)

4.69
(270%)

0.84 0.09
(0.5%)

14.31
(82%) 

0.90  0.28
(0.5%)

21.89
(42%)

0.95 4.45
(0.7%)

60.00
(9.1%)



Table 5:  Evaluation of SAFRAN, ERA-I and MSG  downwelling shortwave radiation (SWdown)  and downwelling longwave radiation (LWdown) 
against measurements, over the 12 Oct 2004- 25 Jun 2012 period, at 3-hours and daily time steps. The SWdown performances of all the datasets were 
evaluated considering only the time steps with valid MSG SWdown, which represents 93% of the period.

                                3-hours       Daily

SWdown  
       (W m-2)

LWdown
   (W m-2 )

SWdown  
       (W m-2)

LWdown
   (W m-2)

r BIAS SDD r BIAS SDD r BIAS SDD r BIAS SDD

SAFRAN 0.97 -9.5 65.8 0.79 -11.9 29.4 0.95 -9.8 32.5 0.90 -11.9 19.2

ERA-I 0.97 2.5 60.8 0.93 -16.1 17.2 0.96 2.4 28.8 0.97 -16.1 11.0

MSG 0.96 -11.2 67.6 NA NA NA 0.95 -11.6 30.2 NA NA NA
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Table 6: Influence of the large-scale forcing variables on simulated evapotranspiration (ET) at half-hourly, daily, monthly, seasonal and multi-year 
timescales.  The mean difference (MD) and the SD of difference (SDD) between each experiment and the control run (SCTL) are computed over the 25 
April 2001 - 26 June 2012  period. In the last column, MD in cumulative ET over 12 yr is given in absolute value and in percentage of the 12-yr 
cumulative ET obtained with the control run. This percentage is translated in equivalent number of months of ET.
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Half-hourly LE 
(W m-2)
                   

Daily ET
(mm)

 

Monthly ET
(mm)

Seasonal ET
(mm)

12 -yr cumulative ET  
(mm)

Drivers Test simulations MD SDD MD SDD MD SDD MD SDD MD 
(mm)

MD 
(%)

MD 
(months 
of ET)

SOIL  
PARAMETERS

SFSDB-TEXT  -10.23 37.30 -0.36 0.69 -10.78 10.85 -31.61 21.29 -1467.7 19.9 26.7

SLOCAL-TEXT  - 9.46 35.64 -0.33 0.67 -9.96 10.68 -29.20 21.21 -1355.4 18.4 24.6

IRRIGATION
SNO-IRRIG - 7.74 42.80  -0.27  0.93 -8.15 18.38 -23.75 43.52 1117.7 15.2 20.3

SMODEL-IRRIG -0.04 47.43 0.00 1.06 -0.04 19.93 0.09 42.45 -6.0 0.1 0.1

VEGETATION 
DYNAMIC

SECO-LAI 3.03 47.23 0.11  0.97 3.19 19.14 9.33 38.89 441.1 6.0 8.0

CLIMATE SSAFRAN -3.06 45.66  -0.11  0.85 - 3.23 10.46 -9.26 20.73 -438.2 5.9 7.9

SERA -2.28  60.24 -0.08  0.83 - 2.40 9.00 -6.98 16.52 -333.4 4.5 6.0

SGPCC -3.60  49.78  -0.13  0.95 -3.80 11.26 -10.93 21.72 -516.0 7.0 9.4

SMSG -3.60  46.72  -0.13 0.80 -3.80 10.26 -11.04 19.11 -514.5 7.0 9.3





FIGURES 



Figure 1: Map of the field  site and locations of the instruments. Image from Google Earth, 2015.



Figure 2: Illustration of the typical succession of winter and summer crop over the Avignon site and implementation of the crop succession in the
simulations.  θ and T represent soil moisture and soil temperature transmitted from one sub-simulation to the following one. 
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Figure 3: Evaluation of ERA-I/GPCC (red diamond) and SAFRAN (green circle) 10-day cumulative rainfall against local observations.



Figure 4: Comparison of SAFRAN, ERA-I/GPCC and local mean monthly rainfall. Irrigation amount added to the local rainfall is also presented. The 
vertical bars represent the inter-annual variability (+/- one standard deviation). 
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Figure 5 : Evaluation of yearly values of shortwave radiation (SWdown),  longwave radiation (LWdown), rainfall and simulated evapotranspiration 
(ET)  for SAFRAN (a) and ERA-I/GPCC (b) reanalyses.  For radiations and rainfall, the differences in  yearly cumulative values between the 
reanalysis and the local observation are represented. For ET, the differences in yearly cumulative values between the simulation achieved with the 
reanalysis climate (SSAFRAN and SERA) and the simulation achieved with the local climate (SCTL) are shown. The radiation unit is given in 2.46 106  J to 
match the water flux scale given in mm.

a) SAFRAN                                                                   
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b)ERA-I/GPCC



Figure 6: Evaluation of SAFRAN, ERA-I and MSG downwelling shortwave radiations against local measurements over the 12 Oct 2004- 25 Jun 2012 
period. Differences between the reanalysis estimates and the local measurements are computed at hourly timescale for SAFRAN and MSG and at 3 
hour timescale for ERA-I. In the MSG figure, the white lines correspond to missing data. On the y-axis, Jan and Jul stands for January and July. The 
two digits indicate the year.
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Figure 7 : Comparison of SAFRAN, ERA-I and in situ mean monthly downwelling longwave 
radiation (LWdown in W m-2)  over the 25 April 2001- 25 June 2012 period. The estimates 
correspond to 3-hour integrated values. 
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Figure 8: Comparison of the Ecoclimap-II LAI with the in situ LAI over the crop cycles of the 12-
year crop succession. Crop and inter-crop periods are represented by grey and white background, 
respectively.  
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Figure 9: Comparison of the local and simulated mean monthly cumulative irrigation amount. The 
vertical bars represent the inter-annual variability (+/- one standard deviation). The total cumulative 
value of in situ and simulated irrigation over 12 years are 1295 mm and 2070 mm, respectively.
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Figure 10  :  Differences in cumulative ET between each experiment achieved with the large-scale 
dataset and the control run (SCTL) achieved with the local observations for each tested driver.  Crop 
periods and inter-crop periods are represented by grey background and white background, 
respectively.

56

5

15



57



5



Figure 11: Scattering in daily ET between selected experiments and the control run. N in the 
colorbar legend is the number of points used to represent the point density.
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Figure 12: Deviations in daily and seasonal cumulative ET between each experiment and the control
run (SCTL) summarized by a Taylor diagram (Taylor, 2001).  The contour lines indicate the root 
mean square difference between each simulation and  SCTL. The y-axis indicates the standard 
deviation of each tested simulation while the x-axis indicates the standard deviation of  SCTL. The 
colors indicate the magnitude of the MD between each simulation and  SCTL. Blue indicates very low
MD close to zero. Green indicates intermediate MD and red represents the largest MD. Numerical 
values are reported in Table 6.
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