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Abstract 14!

Projecting biogeochemical responses to global environmental change requires multi-scaled 15!

perspectives that consider organismal diversity, ecosystem processes and global fluxes. However, 16!

microbes, the drivers of soil organic matter decomposition and stabilization, remain notably 17!

absent from models used to project carbon cycle – climate feedbacks. We used a microbial trait-18!

based soil carbon (C) model with two physiologically distinct microbial communities, and 19!

evaluate how this model represents soil C storage and response to perturbations. Drawing from 20!

the application of functional traits used to model other ecosystems, we incorporate copiotrophic 21!

and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization 22!

(MIMICS) model; these functional groups are akin to ‘gleaner’ vs. ‘opportunist’ plankton in the 23!
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ocean, or r- vs. K-strategists in plant and animal communities. Here we compare MIMICS to a 1!

conventional soil C model, DAYCENT, in cross-site comparisons of nitrogen (N) enrichment 2!

effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; 3!

moreover, it raises important hypotheses involving the roles of substrate availability, 4!

community-level enzyme induction, and microbial physiological responses in explaining various 5!

soil biogeochemical responses to N enrichment. In global-scale analyses, we show that MIMICS 6!

projects much slower rates of soil C accumulation than a conventional soil biogeochemistry in 7!

response to increasing C inputs with elevated carbon dioxide (CO2)- a finding that would reduce 8!

the size of the land C sink estimated by Earth system. Our findings illustrate that tradeoffs 9!

between theory and utility can be overcome to develop soil biogeochemistry models that 10!

evaluate and advance our theoretical understanding of microbial dynamics and soil 11!

biogeochemical responses to environmental change.  12!

1 Introduction 13!

Soil contains the largest terrestrial pool of carbon (C) on Earth, and it is susceptible to 14!

environmental change. Earth system models (ESMs) show high uncertainty in their 15!

representation of current stocks and projected changes of soil C dynamics, and inadequately 16!

capture soil C cycle – climate change feedbacks (Todd-Brown et al., 2013; 2014). This 17!

uncertainty reflects, in part, the mismatch between model assumptions and our contemporary 18!

understanding of soil C processes—notably, the explicit representation of soil microbial activity 19!

and metabolic traits (Schmidt et al., 2011; Treseder et al., 2012). Recent research demonstrates 20!

that microbial explicit model structures can improve estimates of present-day soil C stocks, and 21!

may enhance our ability to predict its response to global change factors (Hararuk et al. 2015; 22!

Sulman et al., 2014; Tang and Riley, 2014; Wieder et al., 2013). Yet these models largely ignore 23!

metabolic tradeoffs and life history strategies of microbial communities in soil systems, as well 24!
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as their interactions with the physicochemical soil environment (Dungait et al., 2012; Miltner et 1!

al., 2012; Schimel and Schaeffer, 2012). A functional trait-based approach that broadly captures 2!

ecologically relevant niches can simplify microbial metabolic diversity and provide a way to 3!

examine its role in soil C dynamics under global change across scales. In terrestrial and marine 4!

systems, functional traits provide a tractable means to represent the effects of biodiversity on 5!

ecosystem function and biogeochemical cycles across scales (Barton et al., 2013; Reich, 2014), 6!

but to date analogous approaches below-ground are less well developed.  7!

Resource economic theory provides a framework to understand how tradeoffs in life 8!

history strategies result in growth trait variation among life forms. The theory posits that growth 9!

traits develop from the allocation of limited resources to competing metabolic purposes—namely 10!

growth, reproduction, or maintenance functions (Litchman and Klausmeier, 2008). In the ocean, 11!

for example, plankton communities are comprised of many functional groups (Barton et al., 12!

2013), where ‘gleaners’ grow slowly and efficiently use and store resources, whereas 13!

‘opportunists’ grow and acquire nutrients quickly though usually have short lifespans 14!

(Dutkiewicz et al., 2013; Litchman et al., 2013). The distribution of these functional groups and 15!

their diversity helps explain patterns in ocean productivity (Vallina et al., 2014). Similar 16!

gradients of trait tradeoffs are observed in terrestrial plants, animals, and aquatic bacteria, 17!

described as the ‘fast-slow’ plant economic spectrum (Reich, 2014), r- vs. K-life-history 18!

strategies (Pianka, 1970; Sommer, 1981; Wilbur et al., 1974), and copiotrophic vs. oligotrophic 19!

growth strategies (Koch, 2001), respectively. Functional groups based on these life history traits 20!

are instrumental in determining the relative abundances of certain organisms in a given 21!

environment, influencing the outcome of many ecosystem processes depending on which growth 22!

strategy dominates (Follows et al., 2007). Application of functional traits, such as those used to 23!
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classify plants, provides a tractable means to scale from organismal traits to ecosystem processes 1!

and global fluxes (Reichstein et al., 2014; van Bodegom et al., 2014).  2!

A trait-based framework for soil microbes does not yet exist within an ESM. Instead, 3!

current representations of microbial diversity in soil models primarily serve to explore microbial 4!

community ecology in the context of leaf litter decomposition studies (Allison, 2012; Kaiser et 5!

al., 2014) or plant-soil feedbacks (Fontaine and Barot, 2005; Miki et al., 2010). Thus, trait-based 6!

microbial explicit models that simulate soil C stabilization and decomposition are not currently 7!

integrated with ecosystem or Earth system models. This is partially the result of inadequate 8!

methods to quantify and identify ecologically meaningful traits. However, recent advances in 9!

microbial community analyses are creating new opportunities to examine resource controls on 10!

the microbial functional trait diversity and abundance (Berg and Smalla, 2009; Fierer et al., 11!

2007; Fierer et al., 2012a; Fierer et al., 2012b; Krause et al., 2014; Mendes et al., 2014).  12!

  In two previously published studies, we documented the feasibility and impact of 13!

explicitly representing microbial activity at global scales (Wieder et al., 2013), and introduced 14!

MIcrobial-MIneral Carbon Stabilization model (MIMICS) (Wieder et al., 2014c). Building on 15!

this work, in this study we: (1) evaluate litter decomposition dynamics with long-term 16!

observations across continental-scale climate gradients, extending the analysis from two (Wieder 17!

et al., 2014c) to fourteen sites; (2) compare simulated and observed steady state soil C pools and 18!

simulated soil C response to nitrogen (N) enrichment; (3) validate global steady-state soil C 19!

projections with observationally derived estimates; and (4) quantify uncertainty in terrestrial C 20!

storage projections with alternative model structures. Our previous efforts to explicitly consider 21!

effects of microbial activity at global scales were not similarly validated by cross-site analyses 22!

(Wieder et al., 2013). Moreover, simultaneous considerations of litter quality, microbial 23!
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physiological tradeoffs, and physicochemical protection, key features of MIMICS, were absent 1!

from previously published microbial explicit soil biogeochemical models that are run at global 2!

scales (Hararuk et al., 2015; Wieder et al., 2013). Moreover, here we explore how MIMICS 3!

refines soil C theory and alters soil C predictions under global change scenarios, compared to 4!

conventional models that do not explicitly account for microbial physiology or functional 5!

diversity. 6!

2 Modelling approach 7!

MIMICS is a soil C model that explicitly considers relationships among litter quality, functional 8!

tradeoffs in microbial physiology, and the physical protection of microbial byproducts in 9!

forming stable soil organic matter (SOM). In MIMICS, microbial biomass pools govern litter 10!

and SOM turnover and correspond to microbial functional types that exhibit copiotrophic (i.e., r-11!

selected) and oligotrophic (i.e., K-selected) growth strategies (Fig. 1, Appendix A1). The 12!

incorporation of these two groups is a first step towards incorporating microbial functional 13!

diversity in a process-based model, which allows us to test recent observations and new 14!

theoretical understandings linking microbial functional traits to soil biogeochemical processes 15!

(Fierer et al., 2007; Krause et al., 2014; Molenaar et al., 2009). Key functional traits that define 16!

microbial growth strategies for copiotrophic and oligotrophic microbial communities include 17!

microbial kinetics (based on Michaelis-Menten kinetics; Vmax and Km), growth efficiency (MGE), 18!

and turnover (τ).  19!

The seven C pools are considered in MIMICS (Fig. 1) include: metabolic and structural 20!

litter (LITm and LITs, respectively); copiotrophic and oligotrophic microbial biomass (MICr and 21!

MICK, respectively); and physically protected, (bio)chemically recalcitrant, and available soil 22!

organic matter (SOMp, SOMc, and SOMa, respectively). The chemical quality of plant litter 23!

inputs (I) determines partitioning into metabolic and structural litter pools (Parton et al., 1987). 24!
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The decomposition of LIT and SOMa pools follows Michaelis-Menten kinetics, with temperature 1!

sensitive maximum reaction velocities (Vmax; mg C (mg MIC)-1 h-1) and half saturation constants 2!

(Km; mg C cm-3) calculated for each substrate and MIC pool (eq. 1 & 2):  3!

! Vmax=e(Vslope×T+Vint) ×  av ×  Vmod ! ! ! ! ! (1);!4!

! Km=e(Kslope×T+Vint) × ak ×Kmod ! ! ! ! ! ! (2);! !5!

Where T represents mean annual soil temperature (other parameters are described in Table B1). 6!

In MIMICS, the physical and biochemical resource environment determines the relative 7!

abundance of these microbial functional types. The relative abundance of these functional groups 8!

may affect the production and chemical composition of microbial residues that are precursor 9!

materials for SOM formation (Grandy and Neff, 2008; Miltner et al., 2012). In contrast to 10!

previous work (Wieder et al., 2014c), we have restructured MIMICS here so that microbes only 11!

assimilate C from litter and available SOM pools. For a full description of model equations and 12!

assumptions see Appendix A and Table B1.  13!

2.1 Cross-site simulations  14!

To begin evaluating the soil C dynamics represented in MIMICS we conducted point simulations 15!

at fourteen Long-Term Ecological Research (LTER) sites that span continental-scale 16!

ecoclimatological gradients (Table C1). We examined rates of leaf litter decomposition, steady-17!

state soil C pools, and simulated soil C responses to N enrichment.  18!

2.1.1 Leaf litter decomposition 19!

First,!we parameterized MIMICS with leaf litter decomposition simulations. We compared 20!

results to those simulated by DAYCENT, a well-tested and widely used ecosystem model 21!

(Parton et al., 1994; sensu Bonan et al., 2013; Wieder et al., 2014a),  and observations of litter 22!
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mass loss from the Long-Term Inter-site Decomposition Experiment Team (LIDET) study 1!

(Parton et al. 2007; Adair et al., 2008; Harmon et al., 2009). Expanding on our previous efforts to 2!

evaluate soil biogeochemical models with observational data (Bonan et al., 2013; Wieder et al., 3!

2014c), this comparison evaluates the ability of both models to capture climate and litter quality 4!

effects on litter decomposition dynamics across continental-scale gradients. Here we summarize 5!

important details for the MIMICS simulations.  6!

In contrast to conventional soil biogeochemistry models, MIMICS must first be spun up 7!

to steady-state conditions before beginning litter decomposition simulations. To facilitate model 8!

parameterization we calculated steady-state C pools in MIMICS using the stode function in the 9!

rootSolve package in R (Soetaert, 2009; R Team, 2014; sensu Wieder et al., 2014c). This 10!

requires site level information on climate (Harmon, 2013), edaphic properties (Zak et al., 1994), 11!

plant productivity (Knapp and Smith, 2001), and plant litter quality- here using biome level 12!

estimates from the TRY database (Brovkin et al., 2012; sensu Wieder et al., 2014a)(Table C1)..  13!

From steady-state conditions we ran parallel simulations with control and experimental 14!

simulations. Both simulations were run at hourly time-steps, receiving prescribed litter inputs 15!

and site-level mean annual temperature; previous work shows no difference between simulations 16!

using seasonally varying temperature and mean annual temperature (W. Wieder unpublished 17!

data). Experimental simulations also received additional 100 g C to litter pools, portioned 18!

according to the lignin:N ratio of leaf litter used in the LIDET experiment. Substrate and 19!

microbial biomass pools sizes determine rates of litter decomposition in MIMICS (Appendix A). 20!

Thus, we fixed experimental microbial biomass pool size to those in the control simulations to 21!

avoid introducing unintended treatment effects from ‘litterbag’ additions into our analysis (as in 22!

Wieder et al. 2014). Using the difference between experimental and control litter pools we 23!
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calculated the percent mass remaining of six litter types at 14 experimental sites over decade 1!

long simulations. Litter mass loss projections from DAYCENT (results from Bonan et al., 2013) 2!

and MIMICS were sampled at the same time points at LIDET results to compare model output 3!

with observational data. !4!

2.1.2 Belowground response to N enrichment 5!

Second, we compared projections from both DAYCENT and MIMICS to increasing leaf 6!

litter inputs from a simulated N enrichment. In this analysis we first evaluated the steady-state 7!

soil C pool projected by MIMICS and DAYCENT at the 14 LTER sites. DAYCENT represents 8!

C turnover above- and below-ground, emphasizing the importance of separately considering 9!

surface and sub-surface dynamics in soil biogeochemical models (Schmidt et al., 2011). 10!

Presently, MIMICS lacks this vertical resolution, thus we modified the microbial turnover and 11!

growth efficiency parameters from those used in the LIDET comparison (and described in Table 12!

B1). Parameter modifications used for belowground C response to N enrichment are described in 13!

Appendix A2, and were necessary to generate steady-state SOC pools that approximated site-14!

level observations (Table C1).  The parameter modifications, however, seem justified given 15!

uncertainties generated because the processes regulating surface litter turnover differ from the C 16!

stabilization mechanisms that occur in mineral soils (Sollins et al., 1996); explicitly representing 17!

these dynamics should be a focus of future model developments. As in leaf litter decomposition 18!

simulations (section 2.1.1) litter inputs (gC m-2 y-1) were distributed throughout the soil profile 19!

(0-30 cm), to calculate volumetric C pools (mgC cm3) for MIMICS using the stode function in 20!

the rootSolve package in R (Soetaert, 2009; R Team, 2014). Similarly, we used an analytical 21!

approach to calculate steady-state pools with DAYCENT, modified to simulate 0-30 cm depth!22!

(Wieder et al., 2014a).   23!
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Subsequently, we compared projections from both DAYCENT and MIMICS to 1!

increasing leaf litter inputs from a simulated N enrichment. In a recent meta-analysis, Liu and 2!

Greaver (2010) reported that across 111 published N enrichment studies mean leaf litter inputs 3!

increased 23%. We used this as the forced response of above-ground net primary productivity 4!

(ANPP) in cross-site simulations with both models. Although the temporal dynamics of soil C 5!

responses to environmental perturbations are critical, here we simplify our analysis by focusing 6!

on the steady-state response of soil C stocks to N enrichment. We calculated the change in 7!

steady-state litter, microbial biomass, and soil C pools in response to this perturbation and 8!

compared simulated and observed results. We calculated the response ratio (treatment / control) 9!

for both model results and observations, and estimate the 95% confidence intervals using the 10!

boot.ci bootstrap analysis with the boot package in R (Canty and Ripley, 2013). This 11!

nonparametric analysis provides a first order normal approximation of among-site variation in 12!

response ratios from observations and models.  13!

Syntheses of N enrichment studies consistently report declines in microbial biomass 14!

(Janssens et al., 2010; Liu and Greaver, 2010; Lu et al., 2011).  We hypothesized these 15!

observations could guide the parameterization of potential microbial response to N enrichment; 16!

but, as this study focuses on C-only models, our interest in these particular simulations was 17!

largely theoretical. Thus, our analyses of belowground C response to simulated N enrichment 18!

were intended to explore the parameter modifications that would have to be made for models to 19!

replicate these observations. 20!

DAYCENT does not simulate microbial biomass pools, and the modifications that would 21!

be necessary to match observational data could include faster turnover of SOM pools (van 22!

Groenigen et al., 2014) and / or decreased MGE!(Frey et al., 2013). Both of these modifications 23!
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contradict current empirical and theoretical understanding of soil microbial responses to N 1!

enrichment (Janssens et al., 2010; Manzoni et al., 2012) thus, we made no changes to 2!

DAYCENT parameterizations.  3!

Without modifications preliminary results indicated that MIMICS underestimated litter C 4!

accumulation and built excessive amounts of microbial biomass. Observed declines in microbial 5!

biomass could be replicated with MIMICS if N enrichment modified microbial physiology and 6!

the competitive interactions between oligotrophic and copiotrophic functional groups. Moreover, 7!

several papers document shifts in the relative abundance of copiotrophic bacteria in response to 8!

N enrichment (Fierer et al., 2012a; Ramirez et al., 2012). Thus, we ask what changes in 9!

microbial physiology could alter the competitive dynamics between microbial functional groups 10!

in MIMICS to simultaneously increase the relative abundance of copiotrophs, reduce total 11!

microbial biomass, and replicate observed litter and soil C responses?  12!

Several microbial physiological responses may elicit these change in MIMICS, they 13!

include: increased growth efficiency (MGE); direct enzyme inhibition (reducing Vmax); and 14!

changes in microbial turnover (τ). We investigated the each mechanism, by individually 15!

perturbing single variables and quantifying effects on C pools in MIMICS. These analyses were 16!

intended to demonstrate the general applicability of MIMICS to both evaluate and generate 17!

testable hypotheses that may provide greater insight into soil biogeochemical dynamics. The 18!

exercise also may help focus efforts to develop empirical functions that describe microbial 19!

physiological response to environmental change. In the first scenario, we assume inherent 20!

physiological traits of the copiotrophic microbial community generate greater N demands and a 21!

lower microbial C:N ratio relative to their oligotrophic counterparts (Kaiser et al., 2014). As N 22!

enrichment may alleviate this N limitation, we increase the MGE of the copiotrophic community. 23!
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In a second scenario, we represent N inhibition of oxidative enzyme activity (Fog, 1988; Knorr 1!

et al., 2005) by decreasing the Vmax parameter associated with oligotrophic community 2!

decomposition. Finally, experimental warming has been shown to increase the turnover (but not 3!

efficiency) of microbial communities (Hagerty et al., 2013). Although to our knowledge there is 4!

no direct evidence for this response following N enrichment, we explore the feasibility of 5!

changes in microbial turnover to explain observed belowground C response to N enrichment.  6!

Specific changes in to individual parameters are described in Appendix A2.    7!

2.2 Global simulations  8!

First, we compared the steady-state soil C stocks from MIMICS to field-derived soil C 9!

distributions, and then examined the response of soil C storage to increasing litter inputs from 10!

rising CO2 over the 21st century.  11!

2.2.1 Global steady-state soil C estimates 12!

Steady-state soil C estimates from MIMICS were generated using globally gridded estimates of 13!

mean annual NPP and soil temperature from an offline CLM4.5 simulation (D. Lawrence & C. 14!

Koven; unpublished data) as well as soil texture from the Harmonized World Soils Database 15!

(FAO et al., 2012) and litter quality (Brovkin et al., 2012) that were modified to the CLM grid 16!

(Wieder et al., 2014a; Wieder et al., 2014b). Using the stode function in the R rootSolve package 17!

(Soetaert, 2009) we calculated steady-state litter, microbial biomass, and soil C pools in 18!

MIMICS. In applying MIMICS at global scales and to a depth of one-meter we adjusted 19!

parameter values τ, fmet, fchem, and Pscalar (Appendix A3). All other parameter values were the 20!

same as in the LIDET experiment (Table B1). We compared soil C pools simulated by CLM4.5 21!

and MIMICS (both 0-100 cm) to observationally-derived soil C estimates reported in the 22!
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Harmonized World Soils Database (FAO et al., 2012) for the same depth interval (Wieder et al., 1!

2014a; Wieder et al., 2014b; Wieder et al., 2013).  2!

2.2.2 Global response to changing litter inputs 3!

Subsequently, we compared soil C projections from CLM4.5 and MIMICS to changing litter 4!

inputs under a simulation with elevated [CO2] and constant climate. Mean annual NPP and soil 5!

temperature from CLM4.5 simulations were similarly used to force MIMICS. We did not modify 6!

our parameterization of MIMICS in transient global simulations because we lack the process-7!

level understanding to guide potential microbial responses to elevated [CO2]. Instead, our aim 8!

was to illustrate the potential effects of applying a microbial explicit approach in global C cycle 9!

projections. In our simulations we assume increases in [CO2] under Representative 10!

Concentration Pathway (RCP) 8.5 from 2006 – 2100 with a constant climate scenario (1850-11!

1870), thus isolating the effects of increased productivity on soil C storage. We calculated the 12!

change in soil C pools simulated by CLM4.5 and MIMICS over the 21st century; however, 13!

differences in soil C accumulation between the models are likely conservative estimates because 14!

of discrepancies in how C substrates entered soil pools. The absolute C fluxes in MIMICS 15!

simulations are greater than CLM4.5, because we assume that changes in NPP immediately 16!

produce litterfall fluxes that enter LIT and SOM pools represented in MIMICS. Soils in CLM4.5 17!

experience a longer temporal lag when “new” NPP enters litter pools, especially in forested 18!

regions where increasing NPP builds woodier biomass and augments coarse woody debris pools. 19!

These wood pools must first decompose before C substrates enter litter, and eventually SOM 20!

pools.  21!
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3 Results  1!

3.1 Cross-site simulations  2!

3.1.1 Leaf litter decomposition 3!

MIMICS and DAYCENT both reproduce climate effects amont sites on mean rates of leaf litter. 4!

Both model also replicate within site variation driven by litter quality (r2 = 0.66 and 0.68, 5!

respectively, p < 0.001; Fig. 2, Table 1). Notably, the greater process-level representation 6!

provided with MIMICS does not degrade projections, compared with results from a microbial 7!

implicit model, or simpler statistical models (Adair et al., 2008). We also recognize that more 8!

challenges lie ahead (Davidson et al., 2014), as additional environmental controls are relevant in 9!

governing rates of litter and SOM decomposition and stabilization.  10!

3.1.2 Belowground response to N enrichment 11!

Both  MIMICS and DAYCENT can capture the ecoclimatologial effects and continental-scale 12!

variation in steady-state soil C pools among the 14 LTER sites studied here (Pearson’s 13!

correlation r = 0.77 & 0.47, P = 0.001 & 0.09, respectively; Table C1). This indicates that the 14!

parameterizations of both models can replicate continental-scale variation in litter decomposition 15!

and soil C storage; thus, we examined soil C projections from MIMICS and DAYCENT and 16!

contrast their potential response to environmental perturbations.  17!

From these steady-state conditions, we considered the potential soil C storage response to 18!

N enrichment. While N enrichment may drive increases in plant productivity, meta-analyses 19!

consistently demonstrate that N fertilization studies result in declining microbial biomass pools 20!

and modest to negligible changes in soil C storage (Fig. 3, open circles)!(Janssens et al., 2010; 21!

Liu and Greaver, 2010; Lu et al., 2011). In first order models steady state litter and SOM pools 22!
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are directly proportional to litterfall inputs. Consequently, steady-state litter and SOM pools 1!

simulated by DAYCENT increased in excess of observations (Fig. 3, filled squares).  2!

Greater mechanistic representation in MIMICS may shed light into how microbial 3!

physiology may respond to perturbations, and how those physiological change may influences 4!

soil C storage. Without modifications MIMICS underestimates litter C accumulation and builds 5!

excessive amounts of microbial biomass, but projects reasonable changes in soil C pools in 6!

response to increasing litter inputs (Fig. 3, open triangles).  7!

In our first scenario, increasing the MGE of the copiotrophic community increased their 8!

relative abundance, summarized by the copiotrophic: oligotrophic (C:O) ratio, which increased 9!

from 12.6 ± 3.2 (mean ± 1σ) to 39.6 ± 8.8 % following modifications to MGE parameters. 10!

Because the copiotrophic microbes have higher turnover rates, an increase in their relative 11!

abundance accelerated community-aggregated rates of turnover and decreased total microbial 12!

biomass (Fig. 3, filled triangles). Concurrent changes in steady-state litter and SOM pools fall 13!

within observational uncertainty bounds.  14!

In our second scenario, modifying kinetics parameters produced reasonable agreement 15!

with observed steady-state litter and SOM pools, but simulated changes in microbial biomass 16!

pools are still well outside the range of observations (Supplementary Fig.1a). Modifying 17!

microbial kinetics generally elicited less dramatic shifts in the relative abundance of microbial 18!

functional types than MGE modifications, altering the mean C:O ratio from 34.8 ± 8.6% to 37.1 19!

± 9.9%. More drastic changes to other microbial kinetics parameters (e.g., concurrently 20!

increasing the Vmax of copiotrophic-controlled fluxes), generated larger shifts in the C:O ratio 21!

and better matched observed microbial biomass responses, but also compromised model 22!

agreement with observed changes to litter and SOM pools (data not shown).  23!
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In our third scenario, accelerating microbial turnover directly decreases the size of 1!

microbial biomass pools, but increases inputs of microbial residues that build stable SOM 2!

(Wieder et al., 2014c). Smaller microbial biomass pools also slow rates of litter decomposition. 3!

Thus, increasing turnover rates of both microbial functional types cannot drive large enough 4!

changes in microbial biomass pools without exceeding observational bounds for litter and SOM 5!

pools (data not shown). Shifting towards a more copiotrophic-dominated community by 6!

modifying microbial turnover elicits similar responses as in MGE modifications, but with greater 7!

accumulation of litter and soil C (Supplementary Figure 1b) 8!

3.2 Global simulations  9!

3.2.1 Steady-state soil C estimates 10!

Mean global NPP simulated by CLM4.5 totaled 50.1 ± 1.0 Pg C y-1 at the end of the historical 11!

period (1996-2005) Given these inputs, litter and SOM pools (0-100 cm) simulated by CLM4.5 12!

totaled 66 and 1780 Pg C, respectively. Results that show moderately strong agreement with 13!

observationally-derived estimates of soil C stocks from the Harmonized World Soils Database 14!

(Fig. 4a,b), with a stronger spatial correlation (r = 0.42) and comparable RMSE (13.7 kg C m-2) 15!

as the fully coupled ESMs represented in the Coupled Model Intercomparison Project, phase 5 16!

(CMIP5) archive (Todd-Brown et al., 2013). Using the same NPP and mean annual soil 17!

temperature, steady-state litter, microbial biomass and SOM pools simulated by MIMICS totaled 18!

218, 16.3 and 1530 Pg C, respectively (Fig. 4c). MIMICS SOM estimates show a higher spatial 19!

correlation with the Harmonized World Soils Database (r = 0.46) and have a smaller RMSE (6.8 20!

kg C m-2) than the CLM4.5 results shown here, the CLM microbial model (Wieder et al., 2013) 21!

forced with the same data (W. Wieder unpublished data), or any of the models represented in the 22!

CMIP5 archive (Todd-Brown et al., 2013).  23!
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Steady-state litter pool estimates from MIMICS are inversely related to mean annual soil 1!

temperature (r = -0.89), and largest in high latitude systems. Given its slower turnover, structural 2!

litter pools made up the bulk of total litter pools (79 ± 4.6%) and show a fairly even spatial 3!

distribution (Supplementary Fig. 2a). Estimates of microbial biomass from MIMICS were 4!

strongly related to NPP estimates (r = 0.99), in accordance with observations (Bradford et al., 5!

2013; Fierer et al., 2009). The C:O ratio in soils was 0.46 ± 0.13, and was positively correlated 6!

with the chemical quality of litter inputs (r = 0.80; Supplementary Fig. 2b). Physically protected 7!

SOM comprised 15 ± 15% of total SOM pools; but in clay rich soils, especially across the tropics, 8!

over half of total soil C was found in physically protected pools (Supplementary Fig. 2c). 9!

Chemically recalcitrant and available SOM comprised 28 ± 10% and 57 ± 12% of total SOM 10!

pools, respectively, and were generally higher in high latitude ecosystems (Supplementary Figs. 11!

2d,e). Finally, total microbial biomass pools comprise 2.5 ± 9.6% of total SOM pools, within 12!

observational bounds (Serna-Chavez et al., 2013; Xu et al., 2013), although this high variability 13!

is largely driven by the 2% of grid cell around desert regions that have significantly higher 14!

microbial biomass: SOM ratios (Supplementary Fig. 2f).  15!

3.2.2 Response to changing litter inputs 16!

Elevated [CO2] increases global NPP estimates from CLM4.5 27% percent over 2005 17!

levels, totaling 63.6 Pg C y-1 by 2100. Global litter and SOM pools in CLM4.5 increase 18!

linearly throughout the 21st century, gaining 22 and 88 Pg C, respectively, by 2100, 19!

resulting in 110 Pg C of terrestrial C storage in the top meter of soils (Fig. 5a). MIMICS 20!

projects less optimistic gains in soil C storage with increased terrestrial productivity: 21!

global litter, microbial biomass, and SOM pools simulated by MIMICS increased 10, 3.8, 22!

51 Pg C, respectively, with terrestrial soil C storage increasing 65 Pg C by the end of the 23!

21st century. Thus, with the same experimental forcing, total soil C changes projected by 24!
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MIMICS are nearly half of those from CLM4.5. With MIMICS, litter and microbial 1!

biomass pools clearly respond to inter-annual variation in soil temperature (Fig. 5), 2!

although the magnitude of this variation is less than two percent of global pools. We 3!

suspect the irregular oscillation and regular periodicity observed in Fig. 5b results from 4!

the anomaly forcing protocol used to generate the biogeochemically coupled RCP8.5 5!

results in the CLM4.5 simulation that were also used in MIMICS simulations. We note, 6!

that further study is needed to investigate how the timing and magnitude of litter inputs 7!

and temperature variation effects soil C projections in MIMICS.    Litter, microbial 8!

biomass, and physically protected SOM pools demonstrate a linear increase with 9!

increasing NPP throughout the 21st century, similar to the CLM4.5 response.  10!

The spatial distribution of soil C changes projected by CLM4.5 and MIMICS in response 11!

to increasing NPP strongly diverge (Fig. 6). Total soil C gains projected by CLM4.5 are large 12!

across the vegetated land surface, and positively correlated with NPP (r = 0.61). By contrast, 13!

MIMICS projects more modest soil C gains that are largely driven by C accumulation in 14!

physically protected SOM pools (53 Pg globally by 2100) concentrated in tropical and mid-15!

latitude ecosystems (Fig. 6 & Supplementary Fig. 3). MIMICS also projects small increases in 16!

chemically recalcitrant SOM pools (2.3 Pg), and modest C losses from available SOM pools (-17!

5.0 Pg, globally by 2100), with the greatest declines in high latitude systems.  We stress, these 18!

patterns result from a consistent parameterization applied across global simulations (described in 19!

section 2.2 and Table B1, with parameter modifications detailed Appendix A3). Results 20!

presented here emerge from the biogeographical differences in litter quality, soil texture, and 21!

their interactions via microbial community composition. 22!

4 Discussion  23!

The incorporation of microbial functional diversity in MIMICS enhanced both the prediction and 24!

understanding of potential feedbacks between microbial traits and soil C cycle dynamics, relative 25!
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to models that lack explicit representation of microbial diversity such as DAYCENT or CLM. 1!

Though we already know that conventional and microbial models provide divergent predictions 2!

of soil C dynamics in transient simulations (Wieder et al., 2013), previous models used to predict 3!

C cycle-climate feedbacks fail to represent the metabolic tradeoffs within microbial communities, 4!

physiological traits, or interactions with the physicochemical environment. Such deficiencies 5!

limit their capacity to inform our theoretical and mechanistic understanding of how soil 6!

microbial activity and diversity may ultimately affect soil C storage (Perveen et al., 2014) under 7!

various global perturbations. Using a trait-based model structure, MIMICS enhances both 8!

prediction and understanding of feedbacks between microbial diversity and soil biogeochemical 9!

function.  10!

4.1 Cross-site simulations  11!

The absolute and relative abundance of microbial functional types strongly regulates rates of C 12!

turnover in MIMICS. At sites spanning continental-scale gradients, MIMICS and DAYCENT 13!

can both replicate observations from the LIDET study (Fig. 2, Table 1, Table C1), providing 14!

robust validation for climate and litter quality effects on simulated rates of leaf litter 15!

decomposition. By applying contemporary understanding of soil biogeochemical theory, 16!

particularly the inclusion of different microbial communities, MIMICS also generates a host of 17!

testable hypotheses that can motivate synergistic data collection – model development activities. 18!

Specifically, MIMICS responds more accurately to regional-scale perturbations, as illustrated by 19!

the cross-site response to N enrichment.  20!

Potential effects of N enrichment on soil microbial activity, microbial community 21!

composition, and biogeochemical responses illustrate one example where such synergy may be 22!

found. Nitrogen enrichment commonly depresses oxidative enzyme activity (Saiya-Cork et al., 23!
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2002; Waldrop et al., 2004) and shifts microbial community structure (Fierer et al., 2012a; Frey 1!

et al., 2004; Gallo et al., 2004; Ramirez et al., 2012). As a result, N enrichment typically 2!

decreases rates of leaf litter decomposition (Fog, 1988; Hobbie, 2008; Knorr et al., 2005), 3!

reduces total microbial biomass pools and results in modest to negligible changes in soil C 4!

storage (Janssens et al., 2010; Liu and Greaver, 2010; Lu et al., 2011). These responses present 5!

significant modeling challenges because, as commonly parameterized, the quantity of litter 6!

inputs are proportional to the size of SOM and microbial biomass pools in conventional and 7!

microbial explicit models, respectively (Todd-Brown et al., 2013; Wang et al., 2014; Wieder et 8!

al., 2013). First-order models could match these observations, through accelerated turnover or 9!

increased heterotrophic respiration rates following N enrichment.  Such modifications, however, 10!

provide no additional insight into potential mechanisms that may be responsible for observed soil 11!

C responses to N enrichment. Moreover, they may actually contradict theoretical understanding 12!

of microbial physiological response to increased nutrient availability (e.g. Knorr et al., 2005; 13!

Manzoni et al., 2012).  14!

By considering the physiological attributes of microbial functional types, MIMICS 15!

provides a means to capture the nuanced changes in inputs, microbial biomass, and soil C 16!

following N enrichment. Theory and observations suggest that MGE should increase with 17!

nutrient availability, although data are sparse from soil systems (Manzoni et al., 2012). 18!

Theoretically, N enrichment may increase the MGE of the copiotrophic microbial community by 19!

decreasing the energy spilling (Bradford, 2013) associated with their intrinsically high N demand!20!

(Kaiser et al., 2014). By increasing copiotrophic growth efficiency with N enrichment, this 21!

community builds more biomass, better competes for C substrates, and increases in relative 22!

abundance; results that are consistent with observational findings from N enrichment 23!
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manipulations (Fierer et al., 2012a; Ramirez et al., 2012). Thus, microbial community shifts 1!

driven by changes in MGE may provide a mechanism that explains soil biogeochemical 2!

responses to N enrichment (Fig. 3) (Chen et al., 2014). Assuming the oligotrophic community 3!

produces more oxidative enzymes, decreasing their absolute abundance would elicit declines in 4!

oxidative enzyme activity (Saiya-Cork et al., 2002; Waldrop et al., 2004). Our results suggest 5!

this is more likely through changes in community structure that are driven by MGE or microbial 6!

turnover than through direct enzyme inhibition (Supplementary Fig. 1a). These examples broadly 7!

illustrate how consideration of microbial functional traits in MIMICS can simultaneously 8!

advance predictions and theory, producing testable hypotheses that can help guide future 9!

experimental work.  10!

The interplay between microbial community composition and soil biogeochemical 11!

response in MIMICS depends on assumptions made about how physiological differences 12!

between microbial functional types affect the ultimate fate of C (Schimel and Schaeffer, 2012; 13!

Wieder et al., 2014c). However, microbial allocation strategies remain poorly understood, 14!

emphasizing the need for better theoretical and quantitative understanding microbial 15!

physiological traits, including microbial efficiency and turnover!(Hagerty et al., 2014), the 16!

partitioning of microbial residues into different SOM pools, and microbial C:O ratios. Moreover, 17!

we also lack adequate data and understanding of how microbial physiological traits and 18!

microbial communities may be shaped by environmental gradients or respond to perturbations 19!

(Fierer et al., 2012b). Currently, litter chemical quality determines the relative abundance of 20!

microbial functional groups in MIMICS, but variation in factors such as soil moisture, 21!

temperature, pH, and the frequency of litter inputs likely influence microbial community 22!

composition (Berg and Smalla, 2009; Fierer et al., 2012b). Addressing these limitations across 23!



! 21!

sites that span key eco-climatological gradients will improve our theoretical understanding and 1!

numerical representation of soil processes in MIMICS and other microbial models.  2!

4.2 Global simulations  3!

The temporal and spatial responses of MIMICS to increasing NPP illustrate model characteristics 4!

that have important implications in understanding potential C cycle – climate feedbacks. 5!

Observations across CO2 enrichment studies show muted soil C accumulation with increasing 6!

plant productivity (Hungate et al., 2009). In models, this response can be simulated by 7!

accelerating rates of SOM turnover with increasing C inputs; a process that has to be separately 8!

parameterized in conventional soil C models (van Groenigen et al., 2014), but which is an 9!

emergent property of MIMICS. With identical forcings, MIMICS projects significantly less soil 10!

C accumulation than CLM4.5 (Figs. 5, 6), suggesting that application of microbial explicit soil 11!

biogeochemistry models in ESMs may significantly reduce projected terrestrial concentration-12!

carbon feedbacks.  13!

Concentration – carbon feedbacks, or the land C response to elevated [CO2], represents 14!

one of the strongest, but most uncertain features of terrestrial C projections from the CMIP5 15!

model archive!(Arora et al., 2013). Across models, the terrestrial response to elevated [CO2] 16!

depends on changes in plant productivity and the long-term stabilization of that C in soils. 17!

Conventional soil C models emphasize the stabilization of additional C inputs and show 18!

significant increases in soil C storage in response to increasing NPP (Todd-Brown et al., 2014; 19!

Wieder et al., 2013)(Fig. 5). By contrast, microbial explicit models often emphasize priming and 20!

accelerated soil C mineralization with increasing productivity, thus showing no long-term soil C 21!

accumulation (Wang et al., 2014; Wieder et al., 2013). Results from MIMICS present a middle 22!

ground between these two approaches, where increasing litter inputs accelerates rates of soil C 23!
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turnover, but also builds stable SOM (Figs. 5, 6). These findings result from the implementation 1!

of microbial traits and their interactions with the physicochemical soil environment in MIMICS. 2!

Strikingly different spatial patterns of soil C changes emerge from our global simulations. 3!

Whereas CLM4.5 presents nearly uniform increases in soil C accumulation across vegetated land 4!

surfaces, MIMICS projects a much more nuanced and heterogeneous response of soil C response 5!

to increasing NPP (Fig. 6). Low-latitude and some temperate ecosystems provide a moderate C 6!

sink, while high latitude systems become a week source of C to the atmosphere. These spatial 7!

differences are driven by the response of microbial biomass and SOM pools to increasing litter 8!

inputs in MIMICS. Globally, increasing litter inputs builds more microbial biomass (Fig. 5). 9!

Subsequent effects of larger microbial biomass pools on soil C storage, or loss, depend on 10!

interactions between microbial functional traits, community composition, and the 11!

physicochemical soil environment.  12!

Microbial residues build SOM, especially in clay rich soils that physically protect 13!

inherently labile microbial residues. At low latitudes the high chemical quality of litter inputs 14!

increases the relative abundance of copiotrophs, which also have faster turnover rates and 15!

produce residues that are physically protected in clay rich soils common across the tropics 16!

(Supplementary Fig. 2d). Accordingly, we see the largest soil C gains in physically protected 17!

SOM pools across the tropics in response to elevated [CO2] (Figs. 6b & Supplementary Fig. 3a), 18!

illustrating how interactions between microbial functional traits and the physicochemical soil 19!

environment may influence soil C responses to perturbations. By contrast, low litter quality 20!

characteristic in high latitude systems favors an oligotrophic dominated community. The 21!

coarsely textured soils common at high latitudes also afford little physical protection of SOM. 22!

These factors result in large SOM pools that are not protected by mineral-association and are 23!
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vulnerable to microbial degradation and loss. Thus, increasing NPP and microbial biomass 1!

accelerates the decomposition of litter and SOM, with significant losses from available SOM 2!

pools evident across arctic and boreal ecosystems (Figs. 6b & Supplementary Fig. 3c). By 3!

incorporating a trait-based framework, spatial variability in soil C projections from MIMICS 4!

generate testable hypotheses that can be evaluated with future experimental work. These results 5!

emphasize the importance of interactions between litter quality, microbial community dynamics, 6!

and soil texture in mediating soil C response to environmental change at regional- to global-7!

scales.  8!

Although direct experimental tests to evaluate these results are scant, results from leaf 9!

litter manipulations indicate that augmenting litter C inputs may drive soil C accumulation on 10!

high clay soils (e.g., tropical forests; (Leff et al., 2012; cf. Sayer et al., 2011), whereas coarsely 11!

textured soils (e.g., temperate forests) show less dramatic soil C accumulation, and some 12!

evidence for net soil C losses (Bowden et al., 2014; Lajtha et al., 2014). Moreover, empirical 13!

data shows CO2 enrichment may stimulate plant productivity, but without proportional increases 14!

in soil C storage (Hungate et al., 2009; van Groenigen et al., 2014). Thus, we find little 15!

experimental evidence to support the large and ubiquitous soil C gains projected by CLM4.5 and 16!

other conventional soil biogeochemistry models in response to increasing C inputs. Although 17!

projections from MIMICS seem to better agree with observations, greater attention should be 18!

given to evaluating the models’ process-level representation and temporal dynamics across 19!

ecoclimatological gradients. Key uncertainties in the parameterization of MIMICS include the 20!

partitioning of microbial residues to different SOM pools as well as understanding factors 21!

controlling C fluxes between protected and available pools. In particular, these fluxes are critical 22!
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in regulating the size and turnover of physically protected SOM pools in MIMICS, which largely 1!

determine the soil C response (Figs. 5, 6 & Supplementary Fig. 3).  2!

Beyond differences in total soil C accumulation, MIMICS also shows stronger sensitivity 3!

to inter-annual variability than conventional models. For example, effects of inter-annual 4!

temperature variability on litter and microbial biomass pools are clearly evident (Fig. 5). 5!

Following perturbations, microbial explicit models can also exhibit an oscillatory behavior (Li et 6!

al., 2014; Wang et al., 2014). Our global simulation provides some insight into the magnitude of 7!

these responses in the context of a realistic, global environmental perturbation. Together, inter-8!

annual variability and the oscillatory response in MIMICS show less than two percent variation 9!

in litter and microbial biomass pools, significantly less than in other microbial models (Wang et 10!

al., 2014; sensu Wieder et al., 2014c). Future application of non-linear models, however, should 11!

be aware of these characteristics, especially in climate change simulations. The temperature 12!

sensitivity and oscillations in litter and microbial biomass pools, however, are dwarfed by large, 13!

sustained changes in SOM pools throughout the 21st century driven by increasing NPP (Figs. 5, 14!

6); therefore, testing the accuracy of projections and their underlying mechanisms in MIMICS is 15!

more important than concern over potential oscillations in litter and microbial biomass pools.  16!

5 Conclusions 17!

Our study shows that MIMICS improves the representation of soil C dynamics compared to 18!

conventional biogeochemistry models. Moreover, MIMICS offers a platform to develop new 19!

understanding of the relationships between microbial communities and SOM dynamics by 20!

addressing ecological questions surrounding microbial community composition and soil 21!

biogeochemical function. By grouping microbial diversity into simplified functional groups, we 22!

demonstrate how community differences may have strong influence over soil C projections, and 23!

show that understanding how functional traits and groups organize across environmental 24!
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gradients and reorganize following perturbations is needed to parameterize and accurately 1!

simulate soil biogeochemical function in ESMs.  2!

Appendix A: Model description  3!

A1 Model structure, assumptions & equations.  4!

The temperature sensitivity of microbial kinetics (Vmax and Km, described in Table B1) are 5!

derived from observational data (German et al., 2012; sensu Wieder et al., 2013; Wieder et al., 6!

2014c), with modifications based on assumptions regarding microbial functional types!7!

(Beardmore et al., 2011; Dethlefsen and Schmidt, 2007; Molenaar et al., 2009), litter chemical 8!

quality and soil texture effects (Vmod and Kmod; Table B1). Building on our previous work 9!

(Wieder et al. 2014), the LIDET decomposition study presented here was designed to facilitate 10!

parameter estimation (Table B1), however we note many of these parameter values the are 11!

poorly constrained by direct observations. Instead, many parameter values broadly rely on our 12!

theoretical understanding of how physiological tradeoffs produce life-history strategies that are 13!

optimized for different resource environments (Beardmore et al., 2011; Resat et al., 2012; 14!

Russell and Cook, 1995).  15!

For example, fast-growing r-strategists (copiotrophs) are typically characterized by a 16!

lower MGE, but higher growth and turnover rates, relative to slower-growing K-strategists 17!

(oligotrophs) (Fierer et al., 2007; Fierer et al., 2012a; Klappenbach et al., 2000; Pianka, 1970; 18!

Ramirez et al., 2012). Given that physiological traits in MIMICS are also sensitive to 19!

environmental factors, including temperature and resource chemistry (Frey et al., 2013; 20!

Keiblinger et al., 2010; Manzoni et al., 2012; Rousk and Bååth, 2007; Sinsabaugh et al., 2013; 21!

Steinweg et al., 2008; Thiet et al., 2006) the physical and chemical resource environment 22!

determines the relative abundance of these microbial functional types. We contend that the 23!
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copiotrophic / oligotrophic framework represented in MIMICS applies to archea, bacteria, and 1!

fungi. For example, fungi have a diversity of physiological characteristic that range from 2!

extremely copiotrophic (Saccharomyces sp., yeasts) to extremely oligotrophic growth strategies 3!

(see Parkinson et al. 1989). We acknowledge that quantifying the relative abundance and 4!

physiological characteristics of these growth strategies is an answered challenge for soil 5!

scientists; however, the model assumes that the physiological characteristics and ecological 6!

function of these organisms has a greater bearing on soil C processes than their location on the 7!

phylogenetic tree. 8!

Specifically, we assume that the production of microbial biomass will be more rapid and 9!

more efficient using substrates from metabolic litter and available SOM pools, and that for a 10!

given substrate oligotrophic microbial communities will have a higher MGE than copiotrophs 11!

(Kaiser et al., 2014; Wieder et al., 2014c). Turnover of microbial residues (eq. A4 & A8) 12!

provides inputs to SOM pools that are considered microbial available, chemically recalcitrant, or 13!

physically protected, with the latter determined by soil clay content in different soil 14!

environments. We assume that size and chemistry of copiotrophic microbial residues may favor 15!

physicochemical stabilization in finely textured soils (Grandy and Neff 2008; Spence et al., 16!

2011) (Table B1).  17!

In MIMICS the size of microbial biomass pools are proportional to the quantity of litter 18!

inputs (also see Wang et al., 2014). Although this pattern agrees with observations (Bradford et 19!

al., 2013; Fierer et al., 2009), our original parameterization of MIMICS (Wieder et al., 2014) 20!

produced biased results when compared to a wider suite of LIDET sites (Wieder, unpublished 21!

data).  Specifically, rates of mass loss were more rapid than LIDET observations at higher 22!

productivity sites (deciduous forests, conifer forests, and humid grasslands), and too slow in 23!
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lower productivity sites (tundra, boreal forests, and arid grasslands). To alleviate this bias we 1!

normalized microbial turnover rates (τ) in MIMICS with an empirical relationship based on site 2!

level productivity (or grid-cell NPP in global simulations) (Table B1). Observations from soil 3!

food web studies (e.g., Thakur & Eisenhauer 2015) provide mechanistic support this 4!

modification, where sites with higher microbial biomass, that is to say more productive sites, 5!

may support greater top-down control over total microbial biomass.  6!

We also assume that finely textured soils will restrict enzyme access to available C 7!

substrates, here represented by increasing the half saturation constant (Km) of available SOM 8!

with increasing clay content (Zimmerman and Ahn 2011). We stress these empirical 9!

relationships for partitioning for microbial residues and modifications to microbial kinetics based 10!

on clay content that are used here are based on this theoretical understanding, and the numerical 11!

constraints of building plausible SOM and microbial biomass pools with co-existence of both 12!

microbial functional types across wide biogeographic and edaphic gradients. These simple 13!

equations, however, are not constrained by observational estimates, and ignore potentially 14!

important influences in soil mineralogy on SOM stabilization. 15!

The model structure employed here assumes that the breakdown and assimilation of 16!

chemically recalcitrant SOM is a two-step process involving depolymerization (eq. A10) and 17!

assimilation (eq. A3 & A7).  This approach has been used by other microbial explicit (Allison et 18!

al., 2010; Wang et al., 2013), and theoretically applies to each pool and flux represented in 19!

MIMICS.  Here, we make simplifying assumption to omit such dynamics from microbial 20!

decomposition of litter pools, focusing on microbial interactions and the breakdown of 21!

chemically recalcitrant SOM, as a means to represent the priming of “recalcitrant” SOM with 22!

fresh organic (litter) inputs (Kuzyakov  2010). Parameter values chosen here reflect the greater 23!
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enzymatic capacity for depolymerization in oligotrophic communities (higher Vmax and lower 1!

Km), but copiotropic communities possess a greater enzymatic capacity for assimilation of SOMa. 2!

Specifically, we assume the Vmax of chemically recalcitrant SOM (SOMc) is approximately 3!

similar to structural litter (LITs) (Table B1); however, in mineral soils enzymes have a harder 4!

time accessing these substrates. Thus, the parameter KO (eq. A10) increases the half saturation 5!

constant (Km) for oxidation of SOMc. Theoretically, KO could also function of soil texture or 6!

mineralogy, but for now we isolate mineralogical controls to the uptake of SOMa (eq. A3 & A7) 7!

through the Pscalar parameter.  8!

The size of the microbial biomass pool has no influence on the transfer of physically 9!

protected SOM to available SOM pools (eq. A9). This flux is intended to represent the physical 10!

desorption of SOM from mineral surfaces and / or the breakdown of aggregates, with flux rates 11!

inversely related to soil clay content. There are no soil respiration losses associated with 12!

movement of chemically recalcitrant or physically protected SOM into the available SOM pool. 13!

The fluxes (mg C cm-3 h-1) from donor to receiver pools and numbered on Fig. 1, are calculated 14!

as: 15!

LITm_MICr!! =!MICr!×!Vmax[r1]!×!LITm!/!(Km[r1]!+!LITm)!! (A1)!16!

LITs_MICr!! =!MICr!×!Vmax[r2]!×!LITs!/!!(Km[r2]!+!LITs)!!! (A2)!17!

SOMa_MICr!!=!MICr!×!Vmax[r3]!×!SOMa!/!(Km[r3]!+!SOMa)! (A3)!18!

MICr_SOM! =!MICr!×!τ[r]! !!! ! ! (A4)!19!

LITm_MICK!!=!MICK!×!Vmax[K1]!×!LITm!/!(Km[K1]!+!LITm)!! (A5)!20!

LITs_MICK! =!MICK!×!Vmax[K2]!×!LITs!/!!(Km[K2]!+!LITs)!! (A6)!21!

SOMa_MICK!=!MICK!×!Vmax[K3]!×!SOMa!/!(Km[K3]!+!SOMa)!! (A7)!22!

MICK!_SOM!=!MICK!×!τ[K]!! ! ! (A8)!23!
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SOMp_SOMa=!SOMp!×!D!!! ! ! (A9)!1!

SOMc_SOMa=!(MICr!×!Vmax[r2]!×!SOMc!/!!(KO[r]!×Km[r2]!+!SOMc))!!+!2!

!!!!!!!!!!!(MICK!×!Vmax[K2]!×!SOMc!/!!(KO[K]!×Km[K2]!+!SOMc))! (A10)!3!

Thus, changes in C pools (mg C cm-3) can be described using the following equations:  4!

dLITm
dt

= I[LITm] × 1-fi, met( ) - A1 - A5 ! (A11)!5!

dLITs
dt

= I[LITs] ×  1-fi, struc( )  - A2 - A6 ! (A12)!6!

dMICr
dt

= MGE[1]× A1( )+ MGE[2]× A2( )+ MGE[1]× A3( )− A4 ! (A13)!7!

dMICK
dt

= MGE[3]× A5( )+ MGE[4]× A6( )+ MGE[3]× A7( )− A8 ! (A14)!8!

dSOMp
dt

= I[LITm] ×  fi, met + fp[r ]×A4( )  + fp[K]×A8( )  - A9 ! (A15)!9!

dSOMc
dt

= I[LITs] ×  fi, struc + fc[r]×A4( )  + fc[K]×A8( )  - A10 ! (A16)!10!

dSOMa
dt

= fa[r]×A4( )  + fa[K]×A8( )  + A9 + A10  - A3 - A7 ! (A17)!11!

A2 Cross-site simulations 12!

To simulate steady state SOC pools with MIMICS (Table C1) we modified parameters relating 13!

to microbial growth efficiency (MGE) and turnover (τ). Specifically, we decreased the MGE of 14!

the copiotrophic community (to 0.5 and 0.2 for metabolic and structural substrates, respectively), 15!

and increased the sensitivity of MICr turnover to litter quality (5.2×10-4×e0.6(fmet)). We also 16!

increased microbial turnover three-fold over values listed in Table B1.  17!

To match observed changes in the microbial and biogeochemical response to N 18!

enrichment we further modified potential changes to microbial physiology following N 19!
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enrichment.  These included modifications to MGE, microbial kinetics, and microbial turnover.  1!

In the first scenario we increased MGE of the copiotrophic community approximately 10% (to 2!

0.56 and 0.22 for metabolic and structural substrates, respectively). Effects on steady-state C 3!

pools simulated by MIMICS are described in the main text (section 3.1.2 & Fig. 3). We also 4!

explored the likelihood of matching observed soil C response to N enrichment by modifying 5!

microbial kinetics and turnover (Vmax and τ, respectively). In both of these simulations MGE 6!

values were the same as in the LIDET experiment (0.55 and 0.25, for metabolic and structural 7!

substrates entering MICr). In the second scenario, to represent N inhibition of oxidative enzyme 8!

activity (Fog, 1988; Knorr et al., 2005) we decreased the Vmax parameter associated with 9!

oligotrophic community turnover of structural litter pools and chemically recalcitrant SOM in 10!

MIMICS by 15% (Supplementary Fig. 1a, filled triangles). In the third scenario, to explore how 11!

change in microbial turnover may alter steady-state C pools simulated by MIMICS we show 12!

results following modifications to τ.  Data in Supplementary Fig. 1b (filled triangles) show 13!

results following a six percent increase in the turnover of MICK in response in N enrichment. 14!

A3 Global simulations 15!

In moving from cross-site to global simulations we used different estimates of plant productivity, 16!

taken from CLM4.5. We also simulated soils 0-100 cm (rather than 0-30 cm). Given these 17!

changes, we adjusted parameter values τ, fmet, fc, and Pscalar. Parameter changes we made in 18!

global simulations served several functions including to: maintain both microbial functional 19!

groups in most gridcells (Supplementary Fig. 2b), simulate appropriate ratios of MIC:SOC 20!

(Supplementary Fig. 2f), and simulate reasonable steady-state SOM distributions (Fig. 4). 21!

Specifically, we increased the sensitivity of MICr turnover to litter quality using the formula 22!

(5.2×10-4×e0.4(fmet)). We used the same equation to partition litter inputs into metabolic and 23!
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structural pools, but reduced total allocation to metabolic pools 15%. We increased the fraction 1!

of microbial turnover allocated to the chemically protected pool (fc) four times over the amount 2!

listed in Table B1. Finally, we modified the physical protection scalar using the following 3!

equation (Pscalar = 0.8× e−3 fclay( )
−1
). 4!

!5!
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Table B1: MIMICS parameters, values, and units used for LIDET simulations.   6!
Parameter Description Value Units 

fmet Partitioning of litter inputs to LITm  0.85 - 0.013(lignin/N)   –   

fi Fraction of litter inputs transferred to SOM 0.05, 0.05 §   – 

Vslope Regression coefficient (eq. 1) 0.063 # ln(mg Cs (mg MIC)-1 h-1)°C-1 

Vint Regression intercept (eq. 1) 5.47 # ln(mg Cs (mg MIC)-1 h-1) 

aV Tuning coefficient (eq. 1) 8 ×10-6 #   – 

Vmod-r Modifies Vmax for fluxes into MICr 10, 2, 10 *   – 

Vmod-K Modifies Vmax for fluxes into MICK 3, 3, 2 ¶   – 

Kslope Regression coefficient (eq. 2) 0.017, 0.027, 0.017 *,¶ ln(mg C cm-3)°C-1 

Kint Regression intercept (eq. 2) 3.19 # ln(mg C cm-3) 

aK Tuning coefficient (eq. 2) 10 #   – 

Kmod-r Modifies Km for fluxes into MICr 0.125, 0.5, 0.25×Pscalar *   – 

Kmod-K Modifies Km for fluxes into MICK 0.5, 0.25, 0.167×Pscalar ¶   – 

Pscalar Physical protection scalar used in Kmod 2.0× e−2 fclay( )
−1

 
   –  

MGE Microbial growth efficiency  0.55, 0.25, 0.75, 0.35 ## mg mg-1 
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τ Microbial biomass turnover rate  5.2×10−4 × e0.3( fmet ) ×τmod,  

2.4×10−4 × e0.1( fmet ) ×τmod ** 

h-1  

τmod Modifies microbial turnover rate 0.8< NPP 100 <1.2  – 

fp Fraction of τ  partitioned to SOMp 0.3× e1.3( fclay), 0.2× e0.8( fclay) �� – 

fc Fraction of τ  partitioned to SOMc 0.1× e−3( fmet ), 0.3× e−3( fmet ) �� – 

fa Fraction of τ  partitioned to SOMa  1 – (fp + fc) ** – 

D Desorption rate from SOMp to SOMa 1.5×10−5 × e−1.5( fclay)  h-1 

KO Further modifies Km for oxidation of SOMc 4, 4 ** – 

§For metabolic litter inputs entering SOMp & structural litter inputs entering SOMc, respectively 7!
#From observations in (German et al., 2012), as used in (Wieder et al., 2013; Wieder et al., 2014c). 8!
*For LITm, LITs, & SOMa, fluxes entering MICr, respectively.  9!
¶For LITm, LITs, & SOMa, fluxes entering MICK, respectively. 10!
## The first two values correspond to C fluxes into MICr, the second two values correspond to C fluxes into MICK (see eq. A13 & A14)  11!
**For MICr & MICK, respectively.  12!
§§NPP units = g C m-2 y-1 13!
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Table C1. LTER study sites and bioclimatic information  1!

Mean annual temperature and precipitation (MAT & MAP, respectively)(Harmon, 2013); 2!

edaphic properties (0-10 cm) (Zak et al., 1994); above-ground net primary productivity 3!

(ANPP)(Knapp and Smith, 2001); litter chemistry (Brovkin et al., 2012); and steady-state SOM 4!

pools simulated by DAYCENT and MIMICS (0-30 cm). Data from other sources are marked 5!

with asterisks and noted below. Where no soil texture data were available (ARC & BNZ) we 6!

used 50% sand and 5% clay for DAYCENT and MIMICS simulations. Litter characteristics for 7!

KBS follow those for grassland sites. 8!

Site 
MAT 

˚C 
MAP 
mm 

Soil C  
kg C m-2 

Sand 
% 

Clay 
% 

ANPP 

gC m-2 y-1 
Lignin 

% 
Litter 
C:N 

DAYCENT  
kg C m-2 

MIMICS 
kg C m-2  

Arctic (ARC) -7 327 4.9* - - 71 16.6 36.5 4.2 6.1 
Bonanza Creek  
(BNZ) -5 403 6.5* - - 150 25.6 52.1 7.5 9.2 

Niwot Ridge 
(NWT) -3.7 1249 7.1 50 6 100 16.6 36.5 6.0 8.4 

Hubbard Brook 
(HBR) 5 1396 8.9 71 3 352 21 49.0 5.4 5.8 

Cedar Creek 
Reserve (CDR) 5.5 823 2.5 87 4 139 16.6 36.5 1.9 4.8 

Harvard Forest 
(HFR) 7.1 1152 4.6* 64* 15* 372 21 49.0 6.8 6.6 

Andrews Forest 
(AND) 8.6 2309 6.5 55 11 400* 24.4 68.5 9.6 6.3 

Shortgrass 
Steppe (SGS) 8.9 440 1.6 57 24 58 16.6 36.5 2.7 3.5 

Kellogg Bio. 
Station (KBS) 9.7 890 4.0* 50* 17* 216 21 49.0 4.0 5.5 

Coweeta (CWT) 12.5 1906 3.9 55 17 730* 21 49.0 9.8 7.2 
Konza Prairie 
(KNZ) 12.8 791 4.6 11 39 222 16.6 36.5 5.7 6.6 

Jornada (JRN) 14.6 298 0.65 82 10 115 16.6 36.5 4.3 3.2 

Sevilleta (SEV) 16 254 0.4 74 12 92 16.6 36.5 4.5 2.8 

Luquillo (LUQ) 23 3363 4.1* 51* 32* 525* 17.8 52.6 3.8 6.2 
 9!

* Data for: ARC (Mineral soil), no depth reported; (Mack et al., 2004) BNZ (O horizon) 10!

(Waldrop et al., 2012); HFR (C. Lajtha & S. Frey unpublished data); AND (Zak et al., 1994); 11!

KBS (~0-20 cm)(Syswerda et al., 2011); CWT (Zak et al., 1994); LUQ (Beinroth, 1982; 12!

Cleveland et al., 2011; Frank et al., 2012). !  13!
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Table 1. Biome aggregated results for leaf litter decomposition experiment that compares 1!

simulations from MIMICS and DAYCENT with observations from the LIDET study (Fig. 2). 2!

Models were sampled at the same time as observations for each litter type decomposed at each 3!

site.  Data show the number of observations (n), Pearson’s correlation coefficient (r), root mean 4!

square error (RMSE), and bias calculated between observed and simulated percent mass 5!

remaining. Sites grouped into each biome include: Tundra (ARC & NWT); Boreal Forest (BNZ); 6!

Conifer Forest (AND); Deciduous Forests (CWT, HBR & HFR); Humid Grasslands (CDR, KBS, 7!

& KNZ); Arid Grasslands (JRN, SEV, SGS); and Tropical Forest (LUQ; Table B1 for site 8!

abbreviations).  9!

   

MIMICS 

  

DAYCENT 

 Biome n r RMSE bias r RMSE bias 

Tundra 114 0.84 10.0 3.8 0.88 8.3 3.2 

Boreal Forest 60 0.91 9.2 -4.5 0.86 9.1 -0.6 

Conifer Forest 60 0.95 13.2 -11.6 0.94 9.1 5.9 

Deciduous Forests 148 0.86 11.1 -0.7 0.87 13.6 10.5 

Humid Grasslands 151 0.70 18.8 -7.3 0.78 15.2 -4.2 

Arid Grasslands 113 0.83 15.2 -0.4 0.82 19.9 11.6 

Tropical Forest 46 0.74 21.7 17.2 0.80 20.8 17.0 

All 692 0.81 14.56 -1.42 0.82 14.5 5.4 

 10!

  11!
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 1!

Figure 1. Soil C pools and fluxes represented in MIMICS. Litter inputs (I) are partitioned into 2!

metabolic and structural litter pools (LITm & LITs) based on litter quality (fmet). Decomposition 3!

of litter and available SOM pools (SOMa) are governed by temperature sensitive Michaelis-4!

Menten kinetics (Vmax and Km), red lines. Microbial growth efficiency (MGE) determines the 5!

partitioning of C fluxes entering microbial biomass pools vs. heterotrophic respiration. Turnover 6!

of the microbial biomass (τ, blue) depends on microbial functional type (MICr & MICK), and is 7!

partitioned into available, physically protected, and chemically recalcitrant SOM pools (SOMa, 8!

SOMp, & SOMc, respectively). Bracket numbers correspond to the equations for fluxes described 9!

in Appendix A1. The definition and values of parameters are included in Table B1.   10!

  11!
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1!
Figure 2. Litter decomposition results from observation and models. Points show the percent leaf 2!

litter mass remaining of six different litter types that decomposed over a decade long experiment 3!

across 14 different LTER sites, which correspond to seven different biomes. Simulations from 4!

(a) MIMICS and (b) DAYCENT were sampled at the same time points as LIDET observations. 5!

Dashed line shows the 1:1 line (see also Table 1).  6!

  7!
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 1!

Figure 3. Observed and modeled C response ratio (treatment / control) to experimental N 2!

enrichment. Open circles show observed mean and 95% confidence interval of leaf litter inputs, 3!

organic layer C, microbial biomass, and mineral soil C (Liu and Greaver, 2010). Modeled results 4!

show the steady-state changes in pools following increases in leaf litter inputs projected by 5!

MIMICS (open triangles), MIMICS (with increasing MGE in response to N enrichment; filled 6!

triangles) and DAYCENT (filled squares; see also Supplementary Fig. 1).  7!

  8!
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 1!

Figure 4. Global soil C pools (g C m-2, 0-100 cm) from observations!and models. (a) 2!

Observations from the Harmonized World Soils Database and global total = 1260 Pg C. (b) 3!

CLM4.5 global total = 1780 Pg C (spatial correlation with observations (r) = 0.42, model-4!

weighted root mean square error (RMSE) = 13.7 kg C m−2). (c) MIMICS global total = 1530 Pg 5!

C (r = 0.46, RMSE = 6.8 kg C m-2). 6!

  7!

g C m-2
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1!
Figure 5. Temporal change in global soil C pools (Pg C; 0-100 cm) in response to elevated [CO2] 2!

and increasing plant productivity throughout the 21st century. (a) Changes in all litter, microbial 3!

biomass, and SOM pools simulated by CLM4.5 (dashed line) and MIMICS (black line), totaling 4!

110 and 65 Pg C globally, respectively, for simulations receiving the same C inputs and 5!

environmental conditions. Specific changes in individual MIMICS pools included: (b) Structural 6!

and metabolic litter pools (dashed and solid lines, respectively); (c) Oligotrophic and 7!

copiotrophic soil microbial biomass pools (dashed and solid lines, respectively); and (d) 8!

physically protected, chemically recalcitrant, and available SOM pools (solid black, dashed, and 9!
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solid grey lines, respectively). Results are from offline (land-only), biogeochemically coupled 1!

simulations where terrestrial NPP increases from 50 Pg C y-1 in 2005 to 64 Pg C y-1 by 2100, 2!

without concurrent changes in climate. Note differences in the y-axes scales among panels.  3!

  4!
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 1!

Figure 6. Spatial distribution of changes in soil C pools projected using (a) CLM4.5 and (b) 2!

MIMICS. Values (g C m-2) were calculated by subtracting the sum of all soil C pools (0-100 cm) 3!

projected in 2100 under RCP 8.5 [CO2] from those estimated in 2005. Positive values show 4!

regions of net soil C accumulation over the 21st century with increasing litter inputs from 5!

elevated [CO2].  6!

  7!
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Online Supporting Information 1!

Supplementary Figures 1-3: Additional information not presented in the main text of the 2!

manuscript that provide more detailed results from cross-site and global MIMICS simulations. 3!


