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Abstract. The design of the icosahedral dynamical core DYNAMICO is presented. DYNAMICO

solves the multi-layer rotating shallow-water equations, a compressible variant of the same equiva-

lent to a discretization of the hydrostatic primitive equations in a Lagrangian vertical coordinate, and

the primitive equations in a hybrid mass-based vertical coordinate. The common Hamiltonian struc-

ture of these sets of equations is exploited to formulate energy-conserving spatial discretizations in5

a unified way.

The horizontal mesh is a quasi-uniform icosahedral C-grid obtained by subdivision of a regular

icosahedron. Control volumes for mass, tracers and entropy/potential temperature are the hexagonal

cells of the Voronoi mesh to avoid the fast numerical modes of the triangular C-grid. The horizontal

discretization is that of Ringler et al. (2010), whose discrete quasi-Hamiltonian structure is iden-10

tified. The prognostic variables are arranged vertically on a Lorenz grid with all thermodynamical

variables collocated with mass. The vertical discretization is obtained from the three-dimensional

Hamiltonian formulation. Tracers are transported using a second-order finite volume scheme with

slope limiting for positivity. Explicit Runge-Kutta time integration is used for dynamics and forward-

in-time integration with horizontal/vertical splitting is used for tracers. Most of the model code is15

common to the three sets of equations solved, making it easier to develop and validate each piece of

the model separately.

Representative three-dimensional test cases are run and analyzed, showing correctness of the

model. The design permits to consider several extensions in the near future, from higher-order trans-

port to more general dynamics, especially deep-atmosphere and non-hydrostatic equations.20
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1 Introduction

In the last two decades a number of groups have explored the potential of quasi-uniform grids for

overcoming well-known deficiencies of the latitude-longitude mesh applied to atmospheric general

circulation modelling (Williamson, 2007). Particularly compelling has been the computational bot-

tleneck created by the convergence of the meridians at the pole, which prevents efficient distribution25

of the computational load among many computers. Quasi-uniform grids have no such singular points

and are free of this bottleneck. The first attempts at using quasi-uniform grids (Sadourny et al., 1968;

Sadourny, 1972) failed at delivering important numerical properties that could be achieved on Carte-

sian longitude-latitude grids (Arakawa, 1966; Sadourny, 1975b, a; Arakawa and Lamb, 1981). For

this reason the balance has been in favor of longitude-latitude grids until the recent advent of mas-30

sively parallel computing provides a strong incentive to revisit these grids.

Since one reason for using quasi-uniform grids is the capability to benefit from the computing

power of massively parallel supercomputers, many groups have set high-resolution modelling as a

primary target. For the dynamical core, which solves the fluid dynamical equations of motion, this

generally implies solving a non-hydrostatic set of equations. Indeed the hydrostatic primitive equa-35

tions commonly used in climate-oriented GCMs assume that the modelled motions have horizontal

scales much larger than the scale height, typically about 10km on Earth. Some hydrostatic models

on quasi-uniform grids have been developed but essentially as a milestone towards a non-hydrostatic

model (Wan et al., 2013).

In fact in many areas of climate research high-resolution modelling can still be hydrostatic. For40

instance paleo-climate modelling must sacrifice atmospheric resolution for simulation length, so

that horizontal resolutions typical of CMIP-style climate modelling are so far beyond reach, and

would definitely qualify as high-resolution for multi-millenial-scale simulations. Similarly, three-

dimensional modelling of giant planets is so far unexplored since resolving their small Rossby radius

requires resolutions of a fraction of a degree. Modelling at Institut Pierre Simon Laplace (IPSL)45

focuses to a large extent on climate time scales and has diverse interests ranging from paleoclimate

to modern climate and planetology. When IPSL embarked in 2009 in an effort to develop a new

dynamical core alongside LMD-Z (Hourdin et al., 2013), a medium-term goal was therefore set to

focus on hydrostatic dynamics in order to best serve the IPSL community with increased efficiency

and versatility.50

By versatility it is meant the ability to relax in the dynamical core certain classical assumptions

that are accurate for the Earth atmosphere but not necessarily for planetary atmospheres, or may

have small but interesting effects on Earth. For instance in LMD-Z it is possible to assume for dry

air a non-ideal perfect gas with temperature-dependent thermal capacities and this feature is used to

model Venus (Lebonnois et al., 2010). In a similar vein a parallel effort has been undertaken to relax55

the shallow-atmosphere approximation in LMD-Z and solve the deep-atmosphere quasi-hydrostatic

equations (White and Bromley, 1995; Tort and Dubos, 2014a). Although this feature is not yet im-
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plemented in DYNAMICO, the same prognostic variables have been adopted in DYNAMICO as in

the deep-atmosphere LMD-Z (Tort et al., 2014a), in order to facilitate upcoming generalizations of

DYNAMICO, including generalizations to non-hydrostatic dynamics.60

LMD-Z is a finite-difference dynamical core but the kinematic equations (transport of mass, en-

tropy/potential temperature, species) are discretized in flux-form, leading to the exact discrete con-

servation of total mass, total entropy/potential temperature and species content. Upwind-biased re-

constructions and slope limiters are used for the transport of species, which is consistent with mass65

transport and monotonic (Hourdin and Armengaud, 1999). Horizontal dynamics are discretized in

vector-invariant form following the enstrophy-conserving scheme of Sadourny (1975a). Unlike the

vast majority of hydrostatic dynamical cores, Simmons and Burridge (1981) is not used for vertical

momentum transport and hydrostatic balance. Another discretization is used, which also preserves

exactly energy (Hourdin, 1994). Due to this emphasis on exact discrete conservation properties in70

LMD-Z a critical design goal of DYNAMICO was to have at least equivalent properties of conser-

vation and consistency.

Pursuing both objectives of consistency and versatility (as defined above) implies that generic

approaches must be found, rather than solutions tailored to a specific equation set. For instance the

equivalence of mass and pressure, the proportionality of potential and internal energies are valid75

only for the hydrostatic primitive equations and cease to be valid in a deep-atmosphere geometry, or

even in a shallow-atmosphere geometry with a complete Coriolis force (Tort and Dubos, 2014a). The

Bernoulli function appearing in the vector-invariant form of the equations of motion is the sum of

kinetic energy and geopotential only if an ideal perfect gas (with temperature-independent thermal

capacities) is assumed (?). The same assumption is required to have internal energy and enthalpy80

proportional to temperature, as in Simmons and Burridge (1981). For versatility the dynamical core

should not critically rely on such accidental relationships. This raises the question of what assump-

tions can be made that are both common to all potential target equation sets and sufficient to obtain

the desired consistency properties. The answer to that question that has emerged during the DY-

NAMICO project is that the Hamiltonian formulation of the equations of motion is a sufficient com-85

mon structure from which discrete consistency can be obtained for all well-formed equation sets.

This idea is not really new. In fact it has been advocated for some time now by Salmon who applied

it to the Saint-Venant equations(Salmon, 1983, 2004). However the Hamiltonian approach has been

applied only once to date to derive a full-fledged three-dimensional dynamical core, by Gassmann

(2013). Gassmann (2013) uses the Hamiltonian formulation of the fully compressible equations in90

Eulerian coordinates. This Hamiltonian theory has been recently extended for compressible hydro-

static flows and for non-Eulerian vertical coordinates (Tort and Dubos, 2014b; Dubos and Tort, 2014)

and serves as the basis to formulate the discretization of dynamics in DYNAMICO.
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In addition to the above approach, building blocks for DYNAMICO include a positive definite

finite-volume transport scheme (Lauritzen et al., 2014a) and finite-difference operators generaliz-95

ing Sadourny’s scheme to general unstructured spherical meshes. A partial generalization has been

achieved by Bonaventura and Ringler (2005) but still lacked a discrete conservation of potential

vorticity/potential enstrophy and exact discrete geostrophic equilibria, two properties tied together

as discussed by Thuburn (2008). A full generalization was obtained later by Thuburn et al. (2009);

Ringler et al. (2010) assuming a Delaunay-Voronoi pair of primal and dual meshes, or more gener-100

ally orthogonal primal and dual meshes (see section 2). Thuburn et al. (2014) further generalize to

a wide class of non-orthogonal dual meshes, targeting the cubed sphere which has a better balance

between the degrees of freedom for mass and velocity, thus avoiding numerical modes present in tri-

angular meshes and their dual (Gassmann, 2011; Weller et al., 2012). However the accuracy of finite

differences on the cubed sphere is poor and a triangular-hexagonal grid yields much more accurate105

results for a similar number of degrees of freedom than the cubed sphere (Thuburn et al., 2014). On

Delaunay-Voronoi meshes placing mass inside triangles leads to a branch of non-stationary numer-

ical modes which must be controlled by a non-trivial amount of dissipation (Rípodas et al., 2009;

Wan et al., 2013) while placing mass inside Voronoi domains leads to a stationary numerical modes

which requires no or very little dissipation for stable integrations (Ringler et al., 2010; Skamarock110

et al., 2012; Gassmann, 2013). DYNAMICO follows the second option.

The present paper is organized as follows. Section 2 describes how the transport of mass, potential

temperature and other tracers is handled by DYNAMICO. For this the grid and the discrete repre-

sentation of scalar and vector fields are introduced. Mass fluxes through control volumes boundaries

are provided by the dynamics, as described in section 3. Following the Hamiltonian approach, the115

primary quantity is the total energy, which is discretized first vertically then horizontally then yields

the discrete expressions for the Bernoulli function and other quantities appearing in the curl-form

equation of motion. Section 4 is devoted to energetic consistency. The discrete energy budget of

DYNAMICO is derived, and the underlying Hamiltonian structure of the TRiSK scheme (Thuburn

et al., 2009; Ringler et al., 2010) is identified. In section 5 sample numerical results are presented,120

verifying the correctness of DYNAMICO and its ability to perform climate-style integrations. Our

main contributions are summarized and discussed in section 6, and future work is outlined.

2 Kinematics

In this section we describe how the transport of mass, potential temperature and other tracers is

handled by DYNAMICO, using mass fluxes computed by the dynamics as described in section 3.125

We use bold face letters for vectors in three-dimensional physical space and for points on the unit

sphere. Space-dependent fields are functions of a vector n on the unit sphere and a generalized

vertical coordinate η. Especially the geopotential Φ(n,η, t) is a dependent quantity. Using the dot
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notation for the Lagrangian (material) derivative, u = ṅ is an angular velocity tangent to the unit

sphere Σ, i.e. n ·u = 0. The Eulerian position r of a fluid parcel in physical space is determined by130

the geopotential Φ considered as a vertical Eulerian coordinate and n, i.e. r = r(Φ,n). An expression

for r(Φ,n) is not needed to solve the transport equations and needs to be specified only when dealing

with the dynamics (see section 3). Denoting ∂α = ∂/∂α for α= n, η, t, the continuous flux-form

budget for mass, potential temperature θ and tracer q are

∂tµ+ ∂n ·U + ∂ηW = 0, (1)135

∂tΘ + ∂n · (θU) + ∂η (θW ) = 0. (2)

∂tQ+ ∂n · (qU) + ∂η (qW ) = 0. (3)

where µ is the pseudo-density such that total mass is
∫
µd2ndη, Θ = µθ, Q= µq, U = µu is the140

horizontal mass flux vector, W = µη̇ is the mass flux per unit surface through model layers η = cst.

The following subsections describe the grid, indexing conventions, the discrete mass and poten-

tial temperature budgets, and finally the positive-definite finite-volume scheme used for additional

tracers.

2.1 Icosahedral-hexagonal grid, staggering and discrete objects145

The mesh is based on a tessellation of the unit sphere (Sadourny et al., 1968). Each triangle has

a global index v and each vertex has a global index i. Several points are associated to each index

i or v. Mesh generation and smoothing is described in Appendix A and numerical stability issues

arising in the calculation of spherical geometric entities are raised and solved in Appendix B. By

joining v−points one obtains the hexagonal-pentagonal mesh, with control volumes indexed by i150

and vertices indexed by v. Mass will be associated with hexagonal control volumes and i-points,

so we will refer to this mesh as the primal mesh, while the triangular mesh will be referred to as

dual. Additional quantities are associated to primal edges joining v−points, and dual edges joining

i-points. Both types of edges are indexed by e. These notations follow Thuburn et al. (2009). Lorenz

staggering is used in the vertical. Full vertical levels are indexed by k = 1 . . .K. Interfaces between155

full levels are indexed by l = 1/2 . . .L=K + 1/2.

Following the spirit of discrete exterior calculus (DEC, see e.g. Thuburn and Cotter, 2012), we

associate to each scalar or vector field a discrete description reflecting the underlying differential-

geometric object, i.e. 0−forms (scalar functions), 1−forms (vector fields with a curl), 2−forms

(vector fields with a divergence) and 3−forms (scalar densities). Scalar densities include µ and Θ.160

We describe them by discrete values µik,Θik defined as their integral over the three-dimensional

control volumes (µik is in units of kg). Scalar functions include θik = Θik/µik and specific volume

αik = δkΦi/(gµik). 2−forms include the fluxes of mass and potential temperature. The horizontal

mass flux vector U = µu is described by its integrals Uek over a vertical boundary between two
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Figure 1: Staggering and location of key prognostic and diagnostic variables.

hexagonal control volumes and the vertical mass flux per unit surface W = µη̇ by its integral Wil165

over the pseudo-horizontal boundary between two adjacent control volumes located one above an-

other (unit : kg/s).

Averages and finite differences are decorated with the location of the result, i.e. δkΦ lies at full lev-

els, ml lies at interfaces, and Φ
ek

is collocated with Uek (see Fig. 1). Especially, using the notations

of Ringler et al. (2010)170

δiUk =−
∑

e∈EC(i)

neiUek, δeΦk =
∑

i∈CE(e)

neiΦik, δvvk =
∑

e∈EV (v)

tevvek.

Operators δi, δe and δv are discrete versions of the two-dimensional div, grad and curl operators.

They are mimetic in the sense that they satisfy for any Ae, Bi the discrete formulae :∑
e

AeδeB+
∑
i

BiδiA = 0 (4)

δv(δeB) = 0 (5)175

(4) is a discrete integration-by-parts formula and (5) imitates curlgrad = 0 (Bonaventura and Ringler,

2005). Notice that the generic A,B used here are unrelated to quantities A (areas) and B (Bernoulli

function) defined later.

2.2 Discrete mass, potential temperature and tracer budgets

The discrete mass and budget and potential temperature budgets are written in flux-form :180

∂tµik + δiUk + δkWi = 0, (6)

∂tΘik + δi (θ
∗
kUk) + δk (θ∗iWi) = 0, (7)

where we omit certain indices when there is no ambiguity (e.g. in ( 6) we omit the index e of θ∗ek and

Wek since operator δi is always applied to quantities located on edges) and θ∗ek, θ∗il are values of θ
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reconstructed at interfaces between control volumes. Currently simple centered averages are used :185

θil =
Θik

µik
, θ∗ek = θk

e
, θ∗il = θi

l
(8)

but it would be possible to use more accurate, possibly upwind biased, reconstructions as in finite

volume advection schemes. Indeed, as shown by Gassmann (2013), conserving discrete energy is

possible when upwinding the advection of θ provided the same reconstructed values are reused in

the curl-form momentum equation (see 4.2).190

Either a Lagrangian vertical coordinate or a mass-based vertical coordinate can be used. In the

former case W = 0. Notice that if W = 0 and θik = θk is initially uniform, it will remain so at later

times for adiabatic motion. This corresponds to using an isentropic/isopycnal vertical coordinate. In

the latter case (mass-based vertical coordinate) only the column-integrated mass Mi is prognostic,

while µik is diagnosed from Mi :195

Mi =
∑
k

µik, µik =−Miδka− δkb (9)

with al, bl predefined profiles satisfying a= 0, b= 0 at the top and a= 1, b= 0 at the bottom. Then

summing (10) over k and using no-flux top and bottom boundary conditions for W provides a prog-

nostic equation for Mi :

∂tMi + δi
∑
k

Uk = 0. (10)200

Once ∂tMi hence ∂tµik = (δka)∂tMi have been determined, (10) complemented by boundary con-

ditions W = 0 at top and bottom is a diagnostic equation for Wil.

(6-7) are marched in time together with the dynamics using a Runge-Kutta time scheme with a

time step τ (see section 3). On the other hand the additional tracers q are weakly coupled to the

dynamics and can be stepped forward with a larger time step ∆t=Ntransportτ with 1/Ntransport205

larger than the maximum Mach number in the flow. To this end, using simple bookkeeping, the

dynamics provide time-integrated fluxes Uek,Wil (both in units of kg) such that :

δtµik + δiUk + δkWi = 0 (11)

where δt is a finite difference over Ntransport full Runge-Kutta time steps. Then (2) is discretized

using horizontal-vertical splitting (Easter, 1993; Hourdin and Armengaud, 1999) :210

Q
(1)
ik = Q

(0)
ik −

1

2
δk

(
q

(0)
i Wi

)
µ

(1)
ik = µ

(0)
ik −

1

2
δkWi

Q
(2)
ik = Q

(1)
ik − δi

(
q(1)
e Ue

)
µ

(2)
ik = µ

(1)
ik − δiUe

Q
(3)
ik = Q

(2)
ik −

1

2
δk

(
q

(2)
i Wi

)
215
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where Qik is the cell-integrated value of qµ (in kg), Q(0)
ik (resp. Q(3)) is the value of Qik at old

time t (resp. new time t+Ntranspτ ), Q(m)
ik , µ

(m)
ik for m= 1,2 are intermediate values, and q(m) are

point-wise values of the tracer reconstructed from Q(m) and µ(m) (see below). The reconstruction

operators satisfy the consistency principle that q(m) = 1 whenever Q(m) = µ(m). As a result Q(3) =

µ(3) whenever Q(0) = µ(0), i.e. the tracer budget is consistent with the mass budget.220

The vertical reconstruction is one-dimensional, piecewise-linear, slope-limited, and identical to

Van Leer’s scheme I (Van Leer, 1977; Hourdin and Armengaud, 1999). The horizontal advection

scheme is identical to SLFV-SL of Lauritzen et al. (2012) and is detailed in (Dubey et al., 2015).

It relies on cell-wise linear reconstructions of q. For this a gradient is estimated in each cell using

nearby values (Satoh et al., 2008) and limited to maintain positivity (Dukowicz and Kodis, 1987).225

The position at which the reconstructed value is evaluated is determined in a semi-Lagrangian fash-

ion (Miura, 2007).

3 Dynamics

We now turn to the discretization of the momentum budget. A Hamiltonian formulation of the hy-

drostatic primitive equations in a generalized vertical coordinate is used (?). From this formulation230

the energy budget is obtained invoking only integration by parts, a structure easy to reproduce at

the discrete level in order to conserve energy. Before arriving, at the end of this section, at the

fully discrete three-dimensional equations, we start from the Hamiltonian of the hydrostatic primi-

tive equations. Introducing a vertical discretization (of the Hamiltonian) produces (the Hamiltonian

of) a compressible multi-layer Saint-Venant model. The Boussinesq approximation, enforced by a235

Lagrange multiplier, yields a standard multi-layer Saint-Venant model. Finally the horizontal dis-

cretization is described.

3.1 Continuous Hamiltonian

An ideal perfect gas with pα=RT and constant Cp =R/κ is assumed where p is pressure, α

specific volume and T temperature. Then240

π = Cp (p/pr)
κ

θ = T (p/pr)
−κ

α =
RT

p
=
κθπ

p
,

where π is the Exner function and θ potential temperature. Note that, letting U(α,θ) be specific

internal energy, ∂U/∂α=−p, ∂U/∂θ = π, U +αp− θπ = 0.245

We work within the shallow-atmosphere and spherical geopotential approximation, so that gravity

g is a constant, the elementary volume is a2g−1dΦd2n and ṙ · ṙ = g−2Φ̇2 + a2u ·u. The primitive
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equations are generated by the Hamiltonian :

H[µ, v,Θ, Φ] =

1∫
0

dη
〈
µ

(
a2 u(v,n) ·u(v,n)

2
+U

(
1

gµ

∂Φ

∂η
,

Θ

µ

)
+ Φ

)〉
(12)

+p∞a
2g−1 〈Φ(η = 1)〉250

where 〈f(n,η)〉=
∫

Σ
fd2n with Σ the unit sphere and v = a2 (u + n×Ω) is prognostic (Dubos

and Tort, 2014). In (12) H is a functional of the three-dimensional fields µ, v,Θ, Φ and u(v,n) =

a−2v−n×Ω. The terms in the integral are kinetic, internal and potential energy. The last term in

(12) represents the work of pressure p∞ exerted at the top η = 1 of the computational domain and

sets the upper boundary condition p= p∞.255

Discretizing Hamiltonian (12) in the vertical direction yields a multi-layer Hamiltonian (Bokhove,

2002) :

H =
∑
k

Hk

[
µk,vk,Θk,Φk+1/2,Φk−1/2

]
(13)

+p∞a
2g−1

∫
Σ

ΦNd2n

Hk =

〈
µk

(
a2 u(vk,n) ·u(vk,n)

2
+U

(
δkΦ

gµk
,

Θk

µk

)
+ Φ

k
)〉

260

where µk =
∫ ηk+1/2

ηk−1/2
µdη,Θk =

∫ ηk+1/2

ηk−1/2
Θdη. Notice that µk, vk are at full model levels while geopo-

tential Φl is placed at interfaces.

In order to reduce (13) to a multi-layer shallow-water system, the Boussinesq approximation is

made by introducing into (13) Lagrange multipliers λk enforcing µk = a2ρr
δkΦ
g :

Hk =

〈
µk

(
a2 u(vk) ·u(vk)

2
+ (1− θk)Φ

k
)

+λk

(
µk
ρr
− a2 δkΦ

g

)〉
+ p∞a

2g−1 〈Φ(η = 1)〉(14)265

where θk is now the non-dimensional buoyancy of each layer. Notice that the last term can be omitted

(p∞ = 0). Indeed changing p∞ only adds a constant to λik and does not change the motion (see 3.3).

3.2 Fully discrete Hamiltonian

We now discretize horizontally the Hamiltonians (14,13,12). In addition to the kinematic degrees

of freedom µik,Θik we need to discretize the velocity degrees of freedom. Since we shall need the270

curl of v, it is a 1−form in the nomenclature of discrete differention geometry. Hence we describe

v by the discrete integrals vek =
∫

Γe
v(n,ηk) · dl (unit : m2/s) where Γe is a triangular edge. An

approximation of H is then given by :

H [µik,Θik, Φil, vek] = K +P (15)

K = a2
∑
ike

µik
Aie
Ai

u2
ek where uek =

vek −Re
a2de

,275

P =
∑
ik

µik

(
Φi
k

+U

(
a2AiδkΦi
gµik

,
Θik

µik

))
+ p∞a

2g−1
∑
i

AiΦiL
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where Re = a2
∫

Γe
(Ω×n) · dl is the planetary contribution to ve, de is the (angular) length of tri-

angular edge Γe and Aie is an (angular) area associated to edge Γe and to a cell i to which its

belongs, with Aie = 0 if Γe is not part of the boundary of cell i. uek is a first-order estimate of the

component of u along Γe. In planar geometry, Aie = 1
4 lede is a consistent formula for Aie because280

it satisfies Ai =
∑
eAie (Ringler et al., 2010). It is therefore also consistent in spherical geometry,

with Ai '
∑
eAie. Letting Aie = 1

4 lede simplifies somewhat the kinetic energy term :

K =
a2

2

∑
ek

(µk
A

)e
ledeu

2
ek =

a2

2

∑
ik

µik
Ai

ledeu2
e

i

Comparing (15) and (13) it is clear that (15) is also a valid horizontal discretization of (13).

Regarding (14), a discretization of the kinetic energy part is simply K as above. The other terms are285

discretized in a straightforward way :

H = K +
∑
ik

[
µik

(
1− Θik

µik

)
Φi
k

+λik

(
µik
ρr
− a2Ai

δkΦi
g

)]
+ p∞a

2g−1
∑
i

AiΦiL (16)

with λik the point-wise value of λ (0−form).

3.3 Discrete equations of motion

We now write the equations of motion corresponding to the discrete Hamiltonians. First mass fluxes290

must be computed for use by kinematics. It is computed as :

Uek =
∂H

∂vek
=
(µk
A

)e
leuek. (17)

Uek is therefore a centered estimate of the mass flux across the face orthogonal to edge Γe.

Next hydrostatic balance is expressed as ∂H/∂Φil = 0 or equivalently H ′ = 0 where H ′ is in-

duced by arbitrary, independent variations of Φ only. For the compressible Hamiltonian (15) this295

yields

H ′ =
∑
ik

(
µikΦ′i

k − a2AiδkΦ′i
g

pik

)
+ p∞a

2g−1
∑
i

AiΦ
′
iL

=
∑
il

(
µi
l +

a2Ai
g

δlpi

)
Φ′il +

∑
i

(
µiK

2
+
a2Ai
g

(p∞− piK)

)
Φ′iL

Therefore a2Aiδlpi+gµi
l = 0 with the upper boundary condition piK = p∞+gµiL/(2a

2Ai). These

are discrete versions for ∂ηp+µg = 0 and p(η = 1) = p∞. pik can be determined starting from the300

top level. Alternatively one can define a pressure p∗il at layer interfaces by p∗iL = p∞ and δkp∗i +

gµik = 0, then let pik = p∗i
k
. Especially surface pressure is psi = p∞+ g

∑
kµik. When η is mass-

based, one finds from (9) that p∗il =Alp
s
i +Cl with surface pressure psi = p∞+ gMi and Cl =

gBl + (1−Al)p∞, i.e. the usual way to diagnose the vertical pressure profile from surface pres-

sure is recovered. Once pik has been determined, the specific volume αik = α(pik,θik) follows. The305

geopotential is obtained by integrating :

δkΦi =
gµikαik
a2Ai

, Φi1/2 = Φsi , (18)
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starting from the ground, where Φsi is the time-independent surface geopotential.

On the other hand for the incompressible Hamiltonian (16), geopotential Φil is obtained by en-

forcing the constraint ∂H/∂λik = 0, i.e. (18) but with specific volume αik = 1/ρr independent from310

pressure. Furthermore :

H ′ =
∑
ik

[
(1− θik)µikΦ′i

k −λika2Ai
δkΦ′i
g

]
+ p∞a

2g−1
∑
i

AiΦ
′
iL

=
∑
il

(
(1− θi)µi

l
+
a2Ai
g

δlλi

)
Φ′il +

∑
i

(
(1− θiK)

µiK
2
− (p∞−λik)a2g−1Ai

)
Φ′iL

Therefore λik satisfies the same equations as pik but with (1− θik)µik instead of µik, which shows

that θik acts indeed as a buoyancy θ = (ρr − ρ)/ρr. The Lagrange multipliers λik enforcing the in-315

compressibility constraint are to be interpreted as the pressure at full model levels, a typical outcome

within the Boussinesq approximation (Holm et al., 2002).

Finally the horizontal momentum balance is written in vector-invariant form. When W = 0 :

∂tvek + δeBk + θ∗ekδeπk + (qkUk)
⊥
e = 0 (19)

where320

πik =
∂H

∂Θik
, Bik =

∂H

∂µik
,

and the⊥ operator is defined in Ringler et al. (2010) through antisymmetric weights wee′ =−we′e :

(qkUk)
⊥
e =

∑
e′

wee′qee′Ue′ where qee′ =
q∗e′k + q∗ek

2

with q∗ek a value of potential vorticity reconstructed at e−points from values at v−points qvk =

δvvk/µv , where µvk is µ integrated over triangular control volumes defined as an area-weighted325

sum of neighboring µik (Ringler et al., 2010). Currently a centered average q∗ek = qk
e is used but

other reconstructions, including upwind-biased reconstructions, could be used as well (Ringler et al.,

2010). The weights wee′ are obtained by Thuburn et al. (2009), eq. 33 as a function of the ratios

Riv =Aiv/Ai satisfying
∑
vRiv = 1, i.e.

∑
vAiv =Ai. Using the compressible Hamiltonian (15)

one finds :330

πik = π(αik, θik), (20)

Bik = Kik + Φi
k
, (21)

where Kik = a2 ledeu
2
e

i

Ai
(22)

is an approximation of kinetic energy 1
2a

2u ·u. Therefore geopotential at full levels is defined as a

centered average of Φil and Exner pressure is diagnosed in each control volume using the equation335

of state. Because pik = p(αik,θik), (20) simplifies to πik = cp (pik/pr)
κ. In practice πik and αik are

both diagnosed from pik,θik when solving the hydrostatic balance.
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On the other hand using the incompressible Hamiltonian (16) yields

Bik =Kik + Φi
k

+
λik
ρr
, πik =−Φik (23)

As already mentioned, changing p∞ only modifies the upper boundary condition and only adds a340

constant to λik. Since only δeBk is important for dynamics, the value of p∞ is arbitrary an can be

set to 0. Now if θik = θk is horizontally uniform, θ∗ek = θk and :3.4

δeBk + θ∗ekδeπk = δe

(
Kk +

λk
ρr

+ (1− θk)Φ
k
)
,

and (19) takes the expected form for a multi-layer shallow-water model. In the more general case

where θik is not uniform, (19) is a discretization of the vector-invariant form of Ripa’s equations345

(Ripa, 1993).

When W 6= 0 an additional term takes into account vertical momentum transport :

∂tvek + δeBk + θ∗ekδeπk + (qkUk)
⊥
e

+

(
W

k

µk

)e
δlv
∗
e = 0 (24)

where v∗el is a value of ve reconstructed at interfaces. Here a centered average v∗el = ve
l is used. The350

above discretization does not possess particular conservation properties and other equally accurate

formulae could be explored.

3.4 Time marching

After spatial discretization one obtains a large set of ordinary algebraic equations :

∂y

∂t
= f(y) (25)355

where y = (Mi,Θik,vik) with a mass-based coordinate and y = (µik,Θik,vik) with a Lagrangian

coordinate. Geopotential Φik is diagnosed from y when computing the trends f(y) (details below).

(25) is advanced in time using a scheme of Runge-Kutta type. Temporal stability is limited by the

external mode, which propagates at the speed of sound c. For a p−stage scheme, about (p/Cmax)×
cT/δx evaluations of f are necessary to simulate a time T with resolution δx where Cmax is the360

maximum time step allowed to integrate the differential equation dx/dt= ix. It is therefore desirable

to maximize the effective Courant number Ceff = Cmax/p. The design goals of the time scheme

are to be fully explicit for simplicity, second-order accurate and with a favorable effective Courant

number for efficiency.

2−stage Runge-Kutta schemes of order 2 are unconditionally unstable for imaginary eigenvalues365

and ruled out. All explicit p-step RK schemes of order p are equivalent for linear equations. p=

3 and p= 4 yield C
(3)
max =

√
3 and C

(4)
max = 2

√
2, respectively, hence CRK3

eff = 1/
√

3<CRK4
eff =

1/
√

2. Kinnmark and Gray (1984b) provide p-stage Runge-Kutta schemes with optimalCmax = p−

12



1 and order 2 for odd p (referred to as RK2.p below). Third- and fourth-order accuracy are achievable

at a small price in terms of stability, i.e.Cmax =

√
(p− 1)

2− 1 (Kinnmark and Gray, 1984a). Hence370

for p= 4 and p= 5 optimal schemes are RK4 and RK2.5, the latter having Ceff = 0.8, about 13%

larger than CRK4
eff . Currently the following scheme yn 7→ yn+1 is implemented for RK4 :

y1 = yn +
τ

4
f(yn)

y2 = yn +
τ

3
f(y1)

y3 = yn +
τ

2
f(y2)375

yn+1 = yn + τf(y3),

where τ ≤ 2
√

2δx/c is the time step and yn ' y(nτ). A similar sequence is used for RK2.5. This is

a low-storage scheme since the same memory space can be used for y1,y2,y3 and yn+1. It is also

very easy to implement. It is 4th order accurate for linear equations but only second-order accurate

for non-linear equations.380

Furthermore the last step is similar to an Euler step, hence

δtµik + δi
(
τU3

k

)
+ δk

(
τW 3

i

)
= 0

so that the time-integrated mass fluxes expected by the transport scheme are simplyUek = τU3
ek, W il =

τW 3
il or their sum over Ntransport successive time steps (see section 3).

Recap : computation of trends in a mass coordinate385

At the beginning of this computation vek, Mi,Θik are known. Cell-integrated mass µik and potential

temperature θik are diagnosed using (9,8). Pressure pik follows from hydrostatic balance (see sub-

section 3.3), then Exner pressure and specific volume πik, αik. Geopotential is obtained bottom-up

using (18), then the Bernoulli function (21,22).

From µik,vek horizontal mass fluxes Uek are obtained then, by vertical integration, ∂Mi/∂t. Then390

∂µi/∂t is obtained and injected into the mass budget (1) to compute the vertical mass flux Wil by

a top-down integration. The potential temperature fluxes and trend are then computed using (7,8).

Finally the velocity trend is computed following (24).

Recap : computation of trends in a Lagrangian coordinate

At the beginning of this computation vek, µik,Θik are known. Potential temperature θik is diagnosed395

using (9,8). Pressure pik (compressible equations) or λik (incompressible equations) follows from

hydrostatic balance (see subsection 3.3). Geopotential is obtained bottom-up using (18) and either

αik = α(θik,pik) or αik = 1/ρr, then the Bernoulli function and Exner pressure using either (21) or

(23).

From µik,vek horizontal mass fluxes Uek is obtained then ∂µi/∂t. The trends of potential tem-400

perature and velocity are finally computed using (7) with Wil = 0 and (19).
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3.5 Filters

Centered schemes need stabilization to counteract the generation of grid-scale features in the flow.

Linear sources of grid-scale noise, e.g. dispersive numerical errors, may be handled by filters, e.g.

upwinding or hyperviscosity. Other sources are genuinely non-linear, e.g. the downward cascade of405

energy or enstrophy. Here we handle these sources through hyperviscosity as well rather than with

a proper turbulence model, e.g. Smagorinsky (1963), following a widespread although disputable

practice (see Gassmann, 2013).

For this purpose hyper-diffusion is applied every Ndiff time steps in a forward-Euler manner :

Θik := Θik −Ndiffτ
L2p
θ

τθ
Dp
θΘik (26)410

vek := vek −Ndiffτ
[
L2p
ω

τω
Dp
ω (vek −Re) +

L2p
δ

τδ
Dp
δ (vek −Re)

]
(27)

where the exponent p is 1 or 2, the dissipation time scales τθ, τω, τδ serve to adjust the strength of

filtering, the length scales Lθ, Lω, Lδ are such that L−2
θ , L−2

ω , L−2
δ are the largest eigenvalue of the

horizontal dissipation operators Dθ, Dω, Dδ defined as :

DθΘi = −δi
[
le
de
δe

(
Θi

Ai

)]
415

Dωve = −δe
(

1

Av
δvve

)
Dδve = −δe

(
1

Ai
δi

(
le
de
ve

))
These positive definite operators correspond to diffusing a scalar, vorticity and divergence. No-

tice however than filtering with p > 1, although it damps grid-scale noise, does typically not re-

move entirely oscillations nor guarantee positivity of the filtered field (see e.g. Jiménez, 2006).420

L−2
θ , L−2

ω , L−2
δ are precomputed by applying Dθ, Dω, Dδ many times in sequence on random data

so that their largest eigenvalue is given by ratio of the norm of two successive iterates. This process

converges very quickly and in practice 20 iterations are sufficient. The dissipation time scales and

the exponents can be set to different values for θ,ω, δ.Ndiff is determined as the largest integer that

ensures stability, i.e. such that Ndiffτ be smaller than all three dissipation time scales.425

4 Energetics

4.1 Conservation and stability

In addition to its aesthetic appeal, discrete conservation of energy has practical consequences in

terms of numerical stability which we discuss here using arguments similar to energy-Casimir sta-

bility theory (Arnold, 1965). Indeed if a dynamical system conserves a convex integral quantity,430

then any state of the system which is a minimum of that quantity is necessarily a stable steady-state.
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For instance the states of rest of the shallow-water equations minimize a linear combination of total

energy and mass. Each additional conserved integral quantity widens the family of steady states that

can be proven to be stable. In the discussion below we assume that the discrete equations of motion

conserve total energy. The additional conserved quantities then depend on the vertical coordinate435

used.

Assuming a Lagrangian vertical coordinate, the additional integral quantities conserved by the

discrete equations of motion are, for each layer, the horizontally-integrated mass and potential tem-

perature
∑
iµik ,

∑
iΘik, which form a subset of the Casimir invariants of the continuous equa-

tions (Dubos and Tort, 2014). Stationary points of the pseudo-energy H ′ =H −∑kΦk
∑
iµik −440 ∑

k πk
∑
iΘik are such that ∂H/∂vek = 0 (state of rest), ∂H/∂Θik = πik = πk and ∂H/∂µik =

Φi
k

= Φk. In the absence of topography, uniform Φi
k

and πik in each layer are achieved if θik, µik, Φil

do not depend on the horizontal position i. Such states of rest are stable provided H ′ is convex.

The above reasoning shows that linearization of the discrete equations of motion around a steady

state making H ′ convex yields linear evolution equations with purely imaginary eigenvalues. For-445

ward integration in time is then linearly stable provided the relevant Courant-Friedrichs-Lewy con-

dition is satisfied. Especially, it is not necessary for linear stability that the time-marching scheme

conserves energy.

With a mass-based vertical coordinate, the exchange of mass between layers reduces the set of

discrete Casimir invariants to total mass and potential temperature
∑
iMi,

∑
ikΘik. Considering450

the linear combination H ′ =H−Φ
∑
iMi−π

∑
ikΘik one finds the condition ∂H/∂Θik = π. It is

impossible to satisfy both hydrostatic balance and a uniform Exner pressure, hence no feasible state

minimizes H ′. On the other hand if cell-integrated entropy Sik is prognosed instead of potential

temperature, one can show that isothermal states of rest minimize H ′ =H −Φ
∑
iMi−T

∑
ikSik

(Tort et al., 2014a).455

We now proceed to derive the discrete energy budgets corresponding to a Lagrangian and a mass-

based vertical coordinate. In these calculations only the adiabatic terms are considered, and the effect

of the hyperviscous filters is omitted.

4.2 Lagrangian vertical coordinate

When W = 0 the continuous-time energy budget reads :460

dH
dt

=
∑
ik

∂H

∂λik
∂tλik +

∑
il

∂H

∂Φil
∂tΦil +

∑
ik

∂H

∂µik
∂tµik +

∑
ik

∂H

∂Θik
∂tΘik +

∑
ik

∂H

∂vek
∂tvek

= −
∑
ik

∂H

∂µik
δi
∂H

∂vek
−
∑
ik

∂H

∂Θik
δi

(
θ∗ek

∂H

∂vek

)
−
∑
ek

∂H

∂vek

(
δe
∂H

∂µik
+ θ∗ekδe

∂H

∂Θik

)
−
∑
ee′k

wee′q
∗
ee′

∂H

∂vek

∂H

∂ve′k
.

Using the discrete integration-by parts formula (4) and the antisymmetry property wee′ +we′e = 0,

one finds dH/dt= 0.465
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More generally, similar calculations yield the temporal evolution of an arbitrary quantityF (µik,Θik,vek,Φil,λik)

:

dF
dt

=
∑
ik

∂F

∂λik
∂tλik +

∑
il

∂F

∂Φil
∂tΦil + {F,H}µ + {F,H}Θ + {F,H}v (28)

{F,H}µ =
∑
ek

(
∂H

∂vek
δe
∂F

∂µik
− ∂F

∂vek
δe
∂H

∂µik

)
(29)

{F,H}Θ =
∑
ek

θ∗ek

(
∂H

∂vek
δe

∂F

∂Θik
− ∂F

∂vek
δe

∂H

∂Θik

)
(30)470

{F,H}v = −
∑
ee′k

wee′q
∗
ee′

∂F

∂vek

∂H

∂ve′k
(31)

(28-31) imitate at the discrete level the Hamiltonian formulations obtained in Dubos and Tort (2014).

Discrete conservation of energy then appears as a consequence of the antisymmetry of the brackets

{F,H}µ, {F,H}Θ, {F,H}v , the formulation of hydrostatic balance as ∂H/∂Φil = 0, and, in the

incompressible case, of the constraint ∂H/∂λik = 0. The antisymmetry of {F,H}µ , {F,H}Θ is475

equivalent to the discrete integration-by-parts formula (4), itself equivalent to the discretization of

the horizontal div and grad operators being compatible (see e.g. Taylor and Fournier 2010). The

antisymmetry of {F,H}v results from wee′ =−wee′ and qee′ = qe′e (Ringler et al., 2010).

4.3 One-layer shallow-water equations

In the simplest case of a single layer without topography (Φs = 0), the incompressible Hamiltonian480

(14) with Θ = 0, ρr = 1, a= 1, p∞ = 0 reduces to :

H =
1

2

∑
e

( µ
A

)e
ledeu

2
ek +

∑
i

[
µi

Φi
2

]
=

1

2

∑
e

h
e
ledeu

2
ek +

1

2

∑
i

gAih
2
i

where Φi = ghi is the geopotential at the “top” of the model and we have taken into account the

constraint µi =Aihi, where hi is interpreted as the thickness of the fluid layer. Hamiltonian H is485

precisely the one considered in Ringler et al. (2010). The discrete equations of motion also reduce

to their energy-conserving scheme (not shown). (28) reduces to :

dF
dt

= {F,H}µ + {F,H}v (32)

This is a discrete imitation of the shallow-water Poisson bracket. Had we used the enstrophy-

conserving scheme of Ringler et al. (2010) instead of the energy-conserving scheme, {F,H}v would490

have been :

{F,H}Zv =−
∑
ee′k

wee′q
∗
e′k

∂F

∂vek

∂H

∂ve′k
(33)
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This discrete bracket is not antisymmetric. Comparing (31) and (33) one sees that the energy-

conserving bracket (31) is the antisymmetrization of (33), i.e. :

{F,H}v =
1

2

(
{F,H}Zv −{H,F}

Z
v

)
.495

In the limit of the linearized shallow-water equations on the f−sphere Thuburn et al. (2009), both

brackets (31-33) reduce to :

{F,H}linv =−f
h

∑
ee′k

wee′
∂F

∂vek

∂H

∂ve′k
(34)

where f is the constant value of the Coriolis parameter and h is the background fluid layer thickness,

i.e. he = h+h′e, h
′
e� h.500

In Ringler et al. (2010), the energy-conserving discretizations of the mass flux, kinetic energy and

Coriolis term were devised by choosing a certain form and stencil for each of them with undeter-

mined coefficients, deriving the energy budget, and choosing the undetermined coefficients in such a

way that all contributions cancel out. In hindsight this delicate task could have been avoided by fol-

lowing the approach used here, inspired by Gassmann (2013) and advocated since some time already505

by Salmon (Salmon, 1983, 2004): discretizing the energy and the brackets, instead of the equations of

motion themselves. The critical part is to discretize the brackets. Starting from the linearized bracket

(34) implicitly derived in Thuburn et al. (2009), a straightforward non-linear generalization is (33),

which can be antisymmetrized to yield (31). From this point of view all the critical building blocks

of Ringler et al. (2010) were already obtained in Thuburn et al. (2009). The present approach gen-510

eralizes this scheme to three-dimensional equations in a generalized vertical coordinate, exploiting

recent advances in the relevant Hamiltonian formulation (?).

4.4 Mass-based vertical coordinate

When a mass-based coordinate is used instead of a Lagrangian vertical coordinate, additional terms

proportional to the vertical mass fluxWil appear in the equations of motion and in the energy budget.515

These terms cancel each other for the continuous equations but not necessarily for the discrete equa-

tions. It is possible to obtain a cancellation by imitating at the discrete level a relationship between

the functional derivatives of H due to invariance under a vertical relabeling (remapping) (?). This

strategy has been recently implemented in a longitude-latitude deep-atmosphere quasi-hydrostatic

dynamical core (Tort et al., 2014a). Tort et al. (2014a) estimate the numerical heat source due to520

the vertical transport terms as less than 10−3Wm−2 in idealized climate experiments (Held and

Suarez, 1994). Hence canceling this very small numerical heat source is not yet implemented in

DYNAMICO and energy is not exactly conserved when a mass-based vertical coordinate is used.

So far we see no indication that this would damage long-duration simulations (see numerical

results in section 5) but in the future strict energy conservation may be offered as an option, together525

with the choice to prognose entropy instead of potential temperature.
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4.5 Relation with Gassmann (2013)

At this point some important differences with respect to the approach of Gassmann (2013) can be

highlighted. Firstly, since the vertical coordinate is non-Eulerian, geopotential Φ depends on time

and appears as an argument of the Hamiltonian. It therefore produces additional terms in the energy530

budget which vanish as shown in 4.2. On the other hand vertical momentum is not prognostic, since

the equations are hydrostatic.

Secondly, Gassmann (2013) progonoses contravariant momentum components while we prognose

vek, which are equivalent to covariant velocity components. Indeed the latter appear as the preferred

prognostic variables in the Euler-Lagrange equations of motion (Tort and Dubos, 2014b) and their535

Hamiltonian formulation in a general vertical coordinate (Dubos and Tort, 2014). An immediate ad-

vantage of prognosing vek is that vorticity is trivially and naturally obtained along the lines of DEC.

Furthermore the horizontal mass flux appears in the mass and tracer budgets through its contravariant

components, and the functional derivatives of the Hamiltonian with respect to covariant momentum

components are directly the contravariant mass flux components. This translates directly at the dis-540

crete level into (17). As a result the discrete Poisson bracket is almost trivial, with the exception of

the Coriolis part. Hence averaging only occurs where it is unavoidable due to mesh staggering, i.e.

in the discrete Coriolis term and in the Hamiltonian.

In a Eulerian formulation of the non-hydrostatic Euler equations, prognosing covariant compo-

nents woud have the drawback that the no-flux lower boundary condition involves a linear combina-545

tion of all three covariant components, which on a staggered mesh may be difficult to discretize in an

energy-conserving way. This may be a reason why Gassmann (2013) prognoses rather contravariant

components. However with a mass-based or Lagrangian coordinate and hydrostatic equations, this

is not an issue since the no-flux lower boundary condition only enters the mass budget.

5 Results550

In this section, the correctness of DYNAMICO is checked using a few idealized test cases. Hor-

izontal resolutions of M = 32, 40, 64, 80, 128, 160 are used. Defining mean horizontal resolution

δx as the distance between hexagon centers on a regular planar hexagonal mesh covering the sur-

face of the Earth with 10M2 cells, or equivalently the length of the edges of triangles in a reg-

ular triangular mesh with 20M2 triangles and the same surface, these values translate into δx'555

280, 220, 140, 110, 70, 55km.

Since our horizontal advection scheme is very similar to one scheme studied by Mittal and Ska-

marock (2010), we do not show two-dimensional results and focus on a three-dimensional test case

of the DCMIP suite (Kent et al., 2014). Correctness of the three-dimensional dynamics solver is

checked using the dry baroclinic instability setup of Jablonowski and Williamson (2006). Finally560
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M Resolution Nz l1 l2 l∞

40 220 km 30 0.7085 0.529 0.600

80 110 km 60 0.3136 0.285 0.4035

160 55 km 120 5.39× 10−2 7.01× 10−2 0.1705

Table 1: Global error norms for Hadley-like Meridional Circulation test case. Horizontal resolution

is defined as 2R where 3
√

3/210M2R2 = 4πa2 is the radius of the 10M2 perfect and identical

hexagons that would be needed to cover the surface 4πa2

the forced-dissipated setup defined by Held and Suarez (1994) is carried out to demonstrate the

suitability of DYNAMICO for climate type simulations.

5.1 Transport by a prescribed Hadley-like Meridional Circulation

This test case consist of a single layer of tracer, which deforms over the duration of simulation.

The flow field is prescribed so that the deformed filament returns to its initial position in the end565

of simulation. We used resolutions M ×Nz = 40× 30, 80× 60, 160× 120. The hybrid coefficients

are computed so that the model levels are initially uniformly spaced. Figure 2 shows the tracer

profile at t= 12h and t= 24h for horizontal resolutions M = 80 and M = 160. At t= 24h the

tracer field should ideally be independent of latitude, so any latitudinal dependance results from

numerical errors. Figure 2(a,b) shows that for coarse resolution the scheme is diffusive and the final570

profile is quite diffused particularly at the downward bending points. Figure 2(c,d) shows that the

increasing resolution decreases the diffusive nature of the advection scheme. Moreover the slope

limiter successfully avoids the generation of spurious oscillations in the numerical solution. Table 1

shows the global error norms for different horizontal and vertical resolutions.

As expected from two-dimensional test cases (Lauritzen et al., 2014a), our transport scheme is575

more diffusive than finite volume schemes on essentially Cartesian meshes such as those presented

in Kent et al. (2014). Sample solutions (their Fig. 6) and error norms (their Table 6) they present

indicate that our scheme achieves at resolution δx an accuracy similar to these schemes at resolution

2δx.

580

5.2 Baroclinic instability

The baroclinic instability benchmark of Jablonowski and Williamson (2006) is extensively used to

test the response of 3D atmospheric models to a controlled, evolving instability. The initial state for

this test case is the sum of a steady-state, baroclinically unstable, zonally-symmetric solution of the585
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(a) Horizontal resolution 110km(M = 80), 60 vertical levels.
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(b) Horizontal resolution 55km(M = 160), 120 vertical levels.

Figure 2: Latitude-altitude plot of advected tracer profile at the mid time (t= 12h , left ) and in the

end of the simulation (t= 24h, right) for Hadley-like Meridional Circulation test case. Ideally, tracer

isolines would be horizontal at the final time (contours separated by 0.1) .

hydrostatic primitive equation and of a localized zonal wind perturbation triggering the instability in

a deterministic and reproducible manner.

Even without the overlaid zonal wind perturbation, the initial state would not be perfectly zonally-

symmetric because the icosahedral grid, as other quasi-uniform grids, is not zonally-symmetric.

Therefore the initial state possesses, in addition to the explicit perturbation, numerical deviations590

from zonal symmetry. This initial error, as well as truncation errors made at each time step by the

numerical scheme, is not homogeneous but reflects the non-homogeneity of the grid. It nevertheless

has the same symmetry as the grid, here wavenumber-5 symmetry. Due to the dynamical instability

of the initial flow, the initial error is expected to trigger a wavenumber-5 mode of instability (provided
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such an unstable mode with that zonal wavenumber exists). Depending on the amplitude of the initial595

truncation error, this mode can become visible, a case of grid imprinting (Lauritzen et al., 2010).

Fig. 3 presents results obtained at resolutionsM = 32, 64, 128 (mean resolution 280, 140, 70 km)

using 30 hybrid vertical levels and fourth-order filters (p= 2 in 26, 27). Dissipation time and time

step are set to τ = 6h, 3h, 1.5h and δt= 600s, 300s, 150s respectively. The right column shows

the temperature field at pressure level 850hPa at day 9. At this day the baroclinic wave is well600

developed. The wave crest is reasonably sharp at M = 32, and becomes sharper at higher resolution.

The simulated temperature field is qualitatively similar to those obtained at comparable resolutions

by other models (e.g. Jablonowski and Williamson, 2006 Figs. 6, 7).

The left column shows surface pressure at day 12, after the baroclinic wave has broken, letting

time for grid imprinting to develop. Grid imprinting in the Southern hemisphere, measured quanti-605

tatively as in Lauritzen et al. (2010) as the root-mean-square departure of surface pressure from its

unperturbed value of 1000hPa, exceeds 0.5hPa at day 9 at M = 32, at day 11 at M = 64 and at

day 13 at M = 128. Comparing with Fig. 12 of Lauritzen et al. (2010), these values are in the low

end of icosahedral models.

610

5.3 Thermally-forced idealized general circulation

Held and Suarez (1994) propose a benchmark to evaluate the statistically steady states produced

by the dynamical cores used in climate models. Detailed radiative, turbulence and moist convective

parametrization are replaced with very simple forcing and dissipation. The simple forcing and dissi-

pation are designed in terms of a simple relaxation of the temperature field to a zonally-symmetric615

state and Rayleigh damping of low-level winds to represent the boundary-layer friction. We use 19

hybrid vertical levels and fourth-order filters (p= 2 in 26, 27) at resolutions 280 km and 140 km

(M = 32, 64) . Statistics are computed over the last 1000 days excluding initial 200 days, left for

spin-up time of the model. Temporal statistics are computed from daily samples on the native grid at

constant model level, then interpolated to a lat-lon mesh and zonally-averaged.620

Figure 4 presents statistics obtained when using horizontal resolution of 280 km (M = 32) and

dissipation time τ = 6h. The model is stable for longer dissipation times (τ = 24h) but smaller

values produce smoother fields. Statistics obtained at resolution 140 km (M = 64) with τ = 3h

are presented in Fig. 5. First-order statistics (panels ab) are close to those presented in Held and

Suarez (1994) and present very little sensitivity to resolution. Second-order statistics are slightly625

more sensitive to resolution and increase slightly from M = 32 to M = 64. Temperature variance at

M = 64 is close to that presented in Held and Suarez (1994) and slightly smaller than that obtained

by Wan et al. (2013) on a triangular icosahedral grid at comparable resolution R2B5.
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Figure 3: Dry baroclinic instability test case (Jablonowski and Williamson, 2006). Left : surface pres-

sure in hPa at day 12 (contours separated by 10hPa). Right : temperature in K at day 9 (contours

separated by 10K) and 850hPa. Resolution increases from top to bottom rows : 280km, M = 32

(top), 140km, M = 64 (middle), 70km, M = 128 (bottom).
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Figure 4: Time-zonal statistics of Held and Suarez (1994) experiment at resolution 280km (M =

32) with dissipation time τ = 6h. Contour intervals are 5ms−1 (zonal wind), 10K (temperature),

20m2s−2 (eddy momentum flux), 5Kms−1 (eddy heat flux), 40m2s−2 (eddy kinetic energy) and

5K2 (temperature variance).
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Figure 5: Time-zonal statistics of Held and Suarez (1994) experiment at resolution 140km (M = 64)

with dissipation time τ = 3h. Contour intervals as in Fig. 4.
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6 Conclusions

6.1 Contributions630

A number of building blocks of DYNAMICO are either directly found in the literature or are adapta-

tions of standard methods : explicit Runge-Kutta time stepping, mimetic horizontal finite-difference

operators (Bonaventura and Ringler, 2005; Thuburn et al., 2009; Ringler et al., 2010), piecewise-

linear slope-limited finite-volume reconstruction (Dukowicz and Kodis, 1987; Tomita et al., 2001),

swept-area calculation of scalar fluxes (Miura, 2007), directionally-split time integration of three-635

dimensional transport (e.g.Hourdin and Armengaud, 1999). It is therefore useful to highlight the

two specific contributions brought forward, in our opinion, in the design of DYNAMICO, and that

can be of broader applicability for model design.

The first contribution is to separate kinematics from dynamics as strictly as possible. This separa-640

tion means that the transport equations for mass, scalars and entropy use no information regarding the

specific momentum equation being solved. This includes the equation of state as well as any metric

information, which is factored into the prognosed degrees of freedom and into the quantities derived

from them (especially the mass flux). Metric information is not used to prognose tracer, mass and

potential temperature. It is confined in a few operations computing the mass flux, Bernoulli function645

and Exner function from the prognostic variables. This formulation is in line with more general lines

of thought known as physics-preserving discretizations (Koren et al., 2014) and discrete differential

geometry (Thuburn and Cotter, 2012). Similarly, while we use the exact same hybrid vertical coor-

dinate as most hydrostatic primitive equations model, we insist that it should be considered as mass-

based rather than pressure-based. Indeed the coincidence (up to time-independent multiplicative and650

additive factors) of mass and pressure is a peculiarity of the traditional shallow-atmosphere hydro-

static equations with a pressure top boundary condition. Recognizing the fundamentally kinematic

definition of the hybrid coordinate in terms of mass rather than pressure emphasizes its relevance for

solving other equation sets, especially non-hydrostatic (Laprise, 1992).

The second contribution is to combine this kinematics-dynamics separation with a Hamiltonian655

formulation of the equations of motion to achieve energetic consistency. This approach extends the

work of Gassmann (2013) to hydrostatic equations of motion and non-Eulerian vertical coordinates.

This extension relies itself on a recent corresponding extension of the Hamiltonian theory of atmo-

spheric fluid motion (Tort and Dubos, 2014b; Dubos and Tort, 2014). The Hamiltonian approach

further confines the equation-dependent parts of the numerical scheme to a single quantity, the to-660

tal energy of the system expressed in terms of the prognostic variables and, in the case of hydro-

static equations, geopotential. The latter is a pseudo-prognostic variable which is an argument of the

Hamiltonian but is diagnosed at each time step by enforcing the hydrostatic constraint, found to be

simply the condition that the derivatives of the Hamiltonian with respect to geopotential degrees of
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freedom vanish. This variational formulation of hydrostatic balance was first identified in the context665

of the deep-atmosphere quasi-hydrostatic equations (Tort et al., 2014a) then generalized (Dubos and

Tort, 2014) and applied to DYNAMICO within the shallow-atmosphere approximation. Ultimately

the choice of a specific equation set boils down to choosing and discretizing the Hamiltonian, with-

out changing the general structure of the algorithm computing the tendencies.

670

These two advances yield our design goals, consistency and versatility. The desired ability to solve

different equation sets is currently limited to the hydrostatic primitive equations and the multi-layer

Saint-Venant or Ripa equations, but little work is required to solve other similar equations like the

recently derived non-traditional spherical shallow-water equations (Tort et al., 2014b). Whichever

set of equations needs to be solved in the future, including the fully compressible Euler equations,675

energetic consistency is guaranteed if the general approach followed here and in Tort et al. (2014a)

is applied. Furthermore this approach is not limited to finite-difference schemes but can be extended

to finite element schemes.

We would also like to emphasize what the Hamiltonian approach does not achieve. Good numer-

ical dispersion crucially depends on grid staggering (for finite differences) or on the finite element680

spaces used to represent the various quantities. It is entirely possible to design an energy-conserving

schemes with disastrous numerical dispersion properties. Other properties, such as exact geostrophic

equilibria or a discrete potential vorticity budget, come in addition to the antisymmetry of the dis-

crete Poisson bracket, as discussed in section 4 (see also Cotter and Thuburn, 2014). However the

Hamiltonian formulation provides a divide-and-conquer strategy by allowing to easily transfer these685

additional properties to new sets of equations once they have been obtained for a specific one.

6.2 Outlook for DYNAMICO

A Lagrangian vertical coordinate is currently available as an option. In the absence of the vertical

remapping that must necessarily take place occasionally in order to prevent Lagrangian surfaces to

fold or cross each other, this option can not be used over meaningful time intervals. However it is con-690

venient for development purposes since it allows to investigate separately issues related to the vertical

and horizontal discretizations. Nevertheless a future implementation of vertical remapping would be

a useful addition. There is room for improvement on other points. Especially it may be worth im-

proving the accuracy of the transport scheme, especially for water vapor and other chemically or

radiatively active species. Regarding potential temperature, Skamarock and Gassmann (2011) have695

found that a third- order transport scheme for the potential temperature could significantly reduce

phase errors in the propagation of baroclinic waves. Whether more accurate transport of potential

temperature is beneficial for climate modelling remains to be determined.

The Hamiltonian framework leaves a complete freedom with respect to the choice of a discrete

Hamiltonian. Here the simplest possible second-order accurate approximation is used, but other700
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forms may yield additional properties, such as a more accurate computation of the geopotential.

Ongoing work suggests that it is possible to design a Hamiltonian such that certain hydrostatic

equilibria are exactly preserved in the presence of arbitrary topography. Such a property is sometimes

achieved by finite-volume schemes (Botta et al., 2004; Audusse et al., 2004), and its absence is one

manifestation of the so-called pressure-gradient force error (Gary, 1973).705

DYNAMICO is stabilized by (bi)harmonic operators to which we refer as filters rather than dissi-

pation. Indeed they are numerical devices aimed at stabilizing the model rather than physically-based

turbulence models such as nonlinear viscosity (Smagorinsky, 1963). Turbulence models induce a

well-defined dissipation rate of resolved kinetic energy that should enter as a positive source term in

the entropy budget in order to close the energy budget. Emulating this process in a discrete model710

can however prove difficult (Gassmann, 2013). Indeed, in order to convert into heat the kinetic en-

ergy destroyed by filters, one needs to recast their contribution to the energy budget as a positive

definite sum. Whether this can be done in DYNAMICO is left for future investigation.

Coupling DYNAMICO to the LMD-Z terrestrial physics package suite is ongoing. For planetary

applications, it will be important to also check the discrete angular momentum budget (Lebonnois715

et al., 2012; Lauritzen et al., 2014b).

In the near future DYNAMICO should become able to solve richer, quasi-hydrostatic equations

(White and Bromley, 1995; Tort and Dubos, 2014a) and to take into account deviations of the geopo-

tential from spherical geometry (Tort and Dubos, 2014b). Extension to fully-compressible Euler

equations is the next step and should leave its general structure unchanged (Dubos and Tort, 2014).720

Code availability

Results presented in this article are based on release r339 of DYNAMICO. Instructions to download,

compile, and run the code are provided at http://forge.ipsl.jussieu.fr/dynamico/wiki. DYNAMICO is

licensed under the terms of the CeCILL open source license.
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Appendix A: Mesh generation and smoothing

Among various possible ways of generating the triangular mesh, we follow the method of Sadourny

et al. (1968). Starting from a spherical icosahedron made of 20 equal spherical triangles, edges are895

divided into equal M geodesic arcs, then the arcs joining the newly generated vertices are divided

equally. The number of total grid points for resolution M is N = 10M2 + 2.

The hexagonal mesh is constructed as the Voronoi diagram of the triangular mesh (Augenbaum

and Peskin, 1985). This ensures that primal and dual edges are orthogonal, a requirement of the

numerical scheme. The edge between control volumes Vi and Vj is a geodesic arc equidistant from900

Gi and Gj . A corner P of a Voronoi cell is shared by three Voronoi cells and is hence equidistant

from all three associated generators Gi, Gj and Gk.

Numerical errors can be reduced by various optimization methods (e.g. Miura and Kimoto, 2005.

We use Lloyd’s iterative algorithm (Du et al., 1999), a fixed-point iteration aimed at letting generators

and centroids Ci of control volumes coincide :905

Ci =

∫
Vi

x dA∥∥∥∫Vi
x dA

∥∥∥ . (A1)

The optimization process is efficient for coarse grids but tends to stagnate at high grid resolution (Du

et al., 2006). Therefore we simply stop the optimization process after a fixed user-defined number

iterations. Optimization is performed only once during the grid generation and even a few thousand

iterations are computationally not very costly.910

Appendix B: Accurate and stable spherical primitives

Although round-off errors may not be an urgent concern with double-precision computations at

presently common resolutions, it may become if formulae with high round-off error are used in

sequence, if single precision is used for speed, or at high resolutions. In this Appendix we describe

geometric primitives that are not sensitive to round-off error, or more precisely that are not more915

sensitive to round-off errors than equivalent planar primitives. This primitives are required in the

grid generation and optimization process and compute centroids, circumcenters and spherical areas.

Let Gi, Gj and Gk be generators in anti-clockwise order. The sides of spherical triangle GiGjGj

are O(h) with h∼ 1/M small and the vectors Gi, Gj and Gk are known up to a round-off er-
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ror ε. The circumcenter p is a unit vector equidistant from each generator. Using the fact that920

Gi,GjGk, p have unit norm and some algebra yields the system :

p ·p = 1, (Gj −Gi) ·p = (Gk −Gi) ·p = (Gj −Gk) ·p = 0. (B1)

A solution of (B1) is given by

p =
p1

‖p1‖
where p1 = (Gi−Gj)× (Gi−Gk), (B2)

used for instance by Miura and Kimoto (2005). Due to finite precision the computation of (Gi−925

Gj)× (Gi−Gk) has an error O(εh). Furthermore p1 is O(h2). Therefore (B2) yields p with an

error which is O(ε/h). In order to avoid dividing a by the small factor ‖p1‖, we take advantage of

the fact p is close to Gi. Hence it is better to solve for p−Gi, which yields

p =
p2

‖p2‖
where p2−Gi =

p1

2p1 ·p1
×
(
‖Gj −Gi‖2(Gi−Gk) + ‖Gk −Gi‖2(Gj −Gi)

)
.

(B3)

Each input to p2−Gi has a relative errorO(ε/h) and p2−Gi itself isO(h), yielding an overall abso-930

lute errorO(ε). Now p2 isO(1) and known withinO(ε), hence p as well. In order to check the accu-

racy of formulae (B2,B3) we present in figure (6) Err = maxl,m=i,j,k

∥∥(p−Gl)
2− (p−Gm)2

∥∥
for a random set of spherical triangular cells of decreasing size. With the direct formula (B2) Err

increases as the triangle size decreases (as predicted by the scaling Err ∼ ε/h), demonstrating the

sensitivity of (B2) to round-off error. (B2) becomes useless when h∼ ε/h which would happen with935

single-precision calculations at resolutions of about 1/1000 the planetary radius, i.e. 6km on Earth.

Conversely (B3) is stable and determines the position of p within round-off error.

Regarding the spherical center of mass (A1), an exact Gauss formula exists for polygonal control

volumes (not shown). Again this formula has large cancellation errors and yields Ci with a round-off940

error O(ε/h). For a spherical triangle, the planar center of mass (equal-weight barycenter) projected

onto the unit sphere yields a third-order accurate estimate of the true center of mass. Therefore

subdividing a polygon into spherical triangles and forming an area-weighted sum of their barycen-

ters yields a second-order accurate estimate of Ci. This accuracy is sufficient for our purposes. An

accurate and stable alternative is to decompose polygons into triangles and quadrangles, map the945

unit square to a spherical quadrangle or triangle and use high-order Gauss-Legendre quadrature to

evaluate (A1).

Finally computing the areaA of a spherical polygon should not be done using the simple but again

unstable defect formula. Instead we decompose polygons into triangles and use l’Huillier formula :

tan
A

4
=

√
tan

s

2
tan

s− a
2

tan
s− b

2
tan

s− c
2

(B4)950
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Figure 6: Error in circumcenter calculation using direct formula (B2) and stable formula (B3).

For a given value of the grid size h, the triangle is defined by three points on the unit sphere

a,b/‖b‖ ,c/‖c‖ where b = a+hb̃, c = a+hc̃ and b̃, c̃ are random vectors whose Cartesian com-

ponents are statistically independent, centered, Gaussian random variables with unit variance. For

each h, 100 b̃, c̃ are generated and the largest error is reported.

where A is the desired triangular area, 2s= a+ b+ c and a,b,c are the geodesic lengths of the sides

of the triangle, computed as dist(p,q) = sin−1 ‖p×q‖. Formula (B4) reduces for small triangles to

the planar Henon formula, which demonstrates its stability.
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