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Abstract. Over the anthropocene methane has increased dramatically. Wetlands are one of the ma-

jor sources of methane to the atmosphere, but the role of changes in wetland emissions is not well

understood. The Community Land Model (CLM) of the Community Earth System Models contains

a module to estimate methane emissions from natural wetlands and rice paddies. Our comparison

of CH4 emission observations at 16 sites around the planet reveals, however, that there are large5

discrepancies between the CLM predictions and the observations. The goal of our study is to adjust

the model parameters in order to minimize the root mean squared error (RMSE) between model

predictions and observations. These parameters have been selected based on a sensitivity analysis.

Because of the cost associated with running the CLM simulation (15 to 30 minutes on the Yellow-

stone Supercomputing Facility), only relatively few simulations can be allowed in order to find a10

near-optimal solution within an acceptable time. Our results indicate that the parameter estimation

problem has multiple local minima. Hence, we use a computationally efficient global optimization

algorithm that uses a radial basis function (RBF) surrogate model to approximate the objective func-

tion. We use the information from the RBF to select parameter values that are most promising with

respect to improving the objective function value. We show with pseudo data that our optimization15

algorithm is able to make excellent progress with respect to decreasing the RMSE. Using the true

CH4 emission observations for optimizing the parameters, we are able to significantly reduce the

overall RMSE between observations and model predictions by about 50%. The CLM predictions

with the optimized parameters agree for northern and tropical latitudes more with the observed data

than when using the default parameters and the emission predictions are higher than with default20

settings in northern latitudes and lower than default settings in the tropics.
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1 Introduction and Motivation

Methane is the second most important greenhouse gas in terms of radiative forcing (Myhre et al.,

2013) and thus a major concern regarding climate change. Natural wetlands as well as human ac-

tivities such as agriculture (for example, rice cultivation) contribute to the methane emissions (Ciais25

et al., 2013). The role of wetlands in the total budget of methane, as well as in driving inter-annual

variability and changes in the methane growth rate is not well understood (e.g. Bloom et al. (2010);

Dlugokencky et al. (2011)). The Community Land Model (CLM), which is the land component of the

Community Earth System Model (CESM), is equipped with a methane module that models methane

emissions (Meng et al., 2012; Riley et al., 2011). There are several parameters in CLM related to30

the methane emission computations. The methane emissions estimated by the model are sensitive to

the exact parameter values although these parameters are not well known (e.g. Meng et al. (2012);

Riley et al. (2011); Wania et al. (2010)). Riley et al. (2011) and Meng et al. (2012) reported signifi-

cant differences in model simulations and observations in both site-level methane emissions and the

global budget. One important source of uncertainty is associated with the parametrization since the35

methane module has numerous parameters and they are yet to be identified empirically due to the

lack of field data (Riley et al., 2011). In this study our goal is to use surrogate model optimization

techniques in order to adjust the methane-related parameters of the CLM such that the differences

between the simulated and observed methane emissions at 16 sites around the globe are minimized.

40

For computing an objective function value, we have to do a computationally expensive simula-

tion with CLM4.5bgc in order to obtain the methane emission predictions at each observation site.

CLM4.5bgc and related codes are deterministic models, i.e., the simulated CH4 emissions for a given

parameter set will always be the same whenever we run the model for the same parameter set. In an

optimization framework where the goal is to find the best set of parameters to minimize the objective45

function, one obstacle is the computation time that is needed to obtain a single objective function

value. Only a few hundred function evaluations can be allowed in order to obtain a solution within

reasonable time. Moreover, the objective function value must be computed by running a simulation

model, and thus an analytic description of the objective function is not available (black-box). There-

fore, gradient information, which is important for many optimization algorithms, is not available.50

Due to the black-box nature of the objective function, it is also not known whether or not the objec-

tive function is convex and has only one local minimum (which corresponds to the global minimum)

or if there are several local and global minima in the objective function landscape.

These characteristics of the objective function (computationally expensive, black-box, possibly55

multi-modal) do not allow the application of a gradient-based optimization algorithm because, on

the one hand, the derivatives would have to be computed numerically (which may be inaccurate and

requires many expensive function evaluations), and, on the other hand, gradient-based algorithms
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generally stop at a local minimum if the initial guess is not close to the global minimum.

60

For calibrating the parameters of other CLM modules, Markov Chain Monte Carlo (MCMC)

methods and Kalman filters have been used in the literature (Lo et al., 2010; Prihodko et al., 2008;

Schuh et al., 2010; Solonen et al., 2012; Sun et al., 2013; Tian et al., 2008; Turner et al., 2009; Zeng

et al., 2013). MCMC, however, requires generally thousands of function evaluations (Ray and Swiler,

2014) and is thus not applicable for obtaining solutions in an acceptable time for computationally65

expensive problems. When using Ensemble Kalman Filters, assumptions about the underlying pa-

rameter distributions must be made and generally a large number of observations is necessary for

the method to be effective. Furthermore, evolutionary strategies such as simulated annealing, parti-

cle swarm, and differential evolution methods have been used for parameter tuning in the climate

area (Yang et al., 2012, 2013). However, these methods generally require many function evaluations70

in order to obtain good solutions.

Other methods that have recently gained interest for parameter tuning are based on data assimila-

tion (see, for example, Han et al. (2014); Moore et al. (2008)). In order to produce good parameter

estimates, these methods require in general many observations. In our optimization problem, how-75

ever, the number of observations at each site is very low (between 10 and 79 observations distributed

over one to three years), and thus data assimilation techniques are not suitable because of the low

number of observations. Ray and Swiler (2014) use a computationally cheap surrogate for CLM on

which MCMC is used to reduce the number of costly simulations required during the optimization.

In contrast to Ray and Swiler (2014), we apply an adaptive surrogate model during the optimization.80

Instead of relying on a surrogate that is based only on a limited number of initial sample points,

we iteratively improve our surrogate by incorporating new data (new objective function values) that

become available during the optimization.

We use surrogate model based global optimization algorithms because they have been shown to85

find near-optimal solutions within few hundred function evaluations for computationally expensive

multimodal black-box problems (Aleman et al., 2009; Giunta et al., 1997; Regis, 2011; Simpson

et al., 2001). Surrogate models are used as computationally cheap approximations of the objective

function. During the optimization, information from the surrogate model is used to carefully select a

new promising point in the variable domain at which the computationally expensive objective func-90

tion will be evaluated. The surrogate model is updated throughout the optimization whenever new

data are obtained.

Several surrogate model algorithms have been developed in the literature that use different surro-

gate model types. The efficient global optimization algorithm by Jones et al. (1998), for example,95
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uses a kriging surrogate model and selects a new sample point by maximizing an expected improve-

ment function. Gutmann (2001) uses radial basis function (RBF) surrogate models to approximate

the expensive objective function and a new sample point is selected by minimizing a so-called bumpi-

ness measure. Regis and Shoemaker (2007, 2013) also use RBF models and new function evaluation

points are selected by a stochastic method. Müller and Piché (2011) developed a framework for auto-100

matically computing ensembles of various surrogate model types and Müller and Shoemaker (2014)

extended the study to investigate the influence of different sampling strategies on the solution qual-

ity. Here for the first time, we apply a state-of-the-art RBF surrogate optimization algorithm to the

problem of land surface emissions of methane and describe the results. As far as we know, no other

groups have applied optimization techniques to find better parameters for methane emission models,105

and thus our work represents an innovative approach to an important land-atmosphere interaction.

The remainder of this paper is organized as follows. In Section 2 we briefly describe the CLM

and the configuration we used for predicting the methane emissions and we give information about

the individual observation sites. We also provide the mathematical description of the optimization110

problem. In Section 3 we summarize the methane-related parameters in CLM4.5bgc and show the

results of a sensitivity analysis with which we determined the parameters that are most important

for the optimization. We describe the surrogate optimization approach for solving the problem in

Section 4. Section 5 contains information about the setup of our numerical experiments and we

discuss the results of the optimization. We draw conclusions in Section 6. The appendix contains115

additional information about the methane equations and the observation sites.

2 Model Description, Configuration, and Mathematical Problem Description

2.1 Model Description

We used the Community Land Model Version 4.5 (CLM4.5), a land component of the Community

Earth System Model (CESM) (Hurrell et al., 2013) which contains a detailed biophysics, hydrology,120

and biogeochemistry representation (Koven et al., 2013; Oleson et al., 2013). CLM4.5 is fully prog-

nostic with respect to the carbon and nitrogen state variables in the vegetation, litter, and soil organic

matter, as well as methane emissions (Koven et al., 2013; Thornton et al., 2007, 2009) and it is the

most updated version of the model available.

125

We selected the latest version of CLM with improved biogeochemistry (CLM4.5bgc) over CLM4.0-

CN. The major improvements in CLM4.5bgc include the incorporation of vertically-resolved soil

carbon dynamics, an alternate decomposition cascade from the Century soil model, and a more de-

tailed representation of nitrification and denitrification based on the Century nitrogen model (Koven

et al., 2013). The hydrology of CLM4.5 has been improved to better represent the hydraulic proper-130
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ties of frozen soils, perched water tables, snow cover fraction, and lakes (Subin et al., 2012; Swenson

and Lawrence, 2012; Swenson et al., 2012).

In previous versions, simulation of ecosystem productivity was too low in high latitudes and per-

haps too high in low latitudes (Thornton et al., 2007, 2009). However, CLM4.5bgc has substantially135

increased the productivity in high latitudes, which may be overpredicted (Koven et al., 2013).

We used a mechanistic methane emission model, which is a module integrated in CLM4.5bgc (Meng

et al., 2012; Riley et al., 2011). The model simulates the physical and biogeochemical processes reg-

ulating terrestrial methane fluxes such as methane production, methane oxidation, methane and oxy-140

gen transport through aerenchyma of wetland plants, ebullition, and methane and oxygen diffusion

through soil (Riley et al., 2011). Meng et al. (2012) added constraints on methane emissions such as

the effects of redox potential and soil pH to improve the predictions of methane emissions as well as

the ability to simulate satellite derived inundation fraction (Prigent et al., 2007; Ringeval et al., 2010).

145

The model has been compared to the limited site-level observations of methane emissions (many

of the sites have very sparse spatial and temporal data coverage, and directly measured climate forc-

ing was unavailable at any of the sites) (Meng et al., 2012; Riley et al., 2011). Additionally, the

model was compared with the results from three recent global atmospheric inversion estimates of

methane emissions (Riley et al., 2011). In these comparisons, simulated emissions agreed relatively150

well with the observed emissions at some of the sites. However, there are considerable differences in

seasonality and magnitude at other sites. The simulated patterns and magnitudes of annual-average

methane emissions are consistent with the results from atmospheric inversion across most latitude

bands. The limitations are discussed in Riley et al. (2011).

155

2.2 Model Configuration and Data

Although the land model can be used interactively within CESM, we use it at specific points driven

by appropriate meteorology (Oleson et al., 2013). At each site, we forced the model with NCEP/

NCAR’s reanalysis atmospheric forcing data sets (Qian et al., 2006). These data sets include pre-

cipitation, temperature, wind speeds, and solar radiation. We also forced the model with transient160

atmospheric carbon dioxide concentrations, aerosol deposition data, and nitrogen deposition data

that is available in CLM4.5. Please note that this model is a deterministic model, and thus will give

the same answer every time it is simulated when driven by observationally-based datasets as done

here.

165
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In this study we used a total of six natural wetland sites and ten rice paddy sites (see Tables B1

and B2 in Appendix B). We chose the wetland sites from varying geographical regions such as the

tropics, mid-latitudes, and high-latitudes to account for the zonal variability. We selected the rice

paddy sites such as to cover the major rice-growing regions with a focus on Asia.

170

The water table depth is one of the critical factors for methane emissions from natural wetlands

because it determines the extent of anoxic and oxic soil zones where methane is produced and oxi-

dized, respectively (Bloom et al., 2010; Grunfeld and Brix, 1999). Methane is produced in the wet-

lands from litter and dead vegetation remnants in anoxic conditions. The changes in the water table

position also influence the moisture conditions of the soil and therefore affect the methane emissions.175

Here, we prescribed the measured water table position at each wetland site (except Panama) based

on previous studies. Since the measured water table depths at Panama were not available, we used

modeled water table positions (similar to Walter and Heimann (2000)). For the point simulations,

the methane emissions were calculated only from the saturated portion of the soil (i.e. below the

water table) when the water table is below the surface. The prescribed water table depth is used in180

the methane model for calculating anaerobic conditions, production, and oxidation.

Most of these wetland sites usually have peat soils with varying depths underlain by mineral soil.

We also forced each wetland site with measured pH and a specific plant functional type (PFT).

The PFT reflects the phenological and physiological characteristics of the vegetation (Oleson et al.,185

2013). Since the wetland PFT was not available in CLM4.5, we choose PFTs that are available in

CLM4.5 and that closely match the specific vegetation types of the individual sites. We use C3 arc-

tic grass for Salmisuo, C3 non-arctic grass for Alberta, Michigan, and Minnesota, and C4 grass for

Florida and Panama. Other surface data required to perform the point simulation include soil color

and soil texture which we extracted from the global grid data sets available in CLM4.5.190

For the point simulations at the rice paddy sites we only considered the rice growing season. The

flooding and drainage dates are shown in Table C1 in Appendix C. We assumed that the fields were

submerged during the simulation period between initial flooding and final drainage. A common fea-

ture of these sites during the growing season is that the water was not drained until harvest. We195

prescribed the C3 crop PFT for all rice paddy sites, and assumed an optimal pH for the methane

production whenever the pH value was not available. The dominant soil types at these sites are loam

and clay. Other soil-related information such as soil color and texture are derived from the global

grid datasets.

200

To bring the terrestrial carbon and nitrogen cycles close to steady-state conditions, we spun up

both wetland and rice paddy sites for 1850 conditions (atmospheric CO2 concentrations, nitrogen

6



deposition, aerosol deposition, and land use) driven by a repeating 25-year subset (1948-1972) of

the meteorological forcing data for more than 2000 years. Then, we performed transient simulations

from 1850 to the simulation starting year of each site to generate the initial conditions file.205

Additionally, we conducted global simulations of methane emissions from natural wetlands for

1993-2004. For these simulations, the grid cell averaged methane emissions were considered which

accounts for methane emissions from both the inundated and non-inundated portion of the grid

cell. Since the CLM4.5 simulated saturated fraction (an index of inundation) was substantially210

greater than the estimates from satellite observations and did not match the spatio-temporal pattern

of variability (Riley et al., 2011), we prescribed the model with inundation fraction derived from

multi-satellite observations for 1993-2004 (Prigent et al., 2007). Similar to point simulations, the

global simulations were forced with NCEP/NCAR reanalysis atmospheric forcing data from 1948

to 2004 (Qian et al., 2006). The simulations were also spun up to steady-state conditions driven215

by atmospheric CO2, nitrogen deposition, aerosol deposition, and land use in the year 1850 and a

repeated 25-year (1948-1972) subset of the meteorological forcing.

2.3 Mathematical Problem Formulation

The goal of our study is to improve the methane emission predictions of CLM4.5bgc by tuning the

methane-related parameters such that the model better fits the observations. We use the CH4 emission220

observation data for the locations and observation periods shown in Tables B1 and B2. Given the

observation data at the M = 16 locations, the goal is to minimize the root mean squared errors

(RMSEs) between the CLM4.5bgc methane emission predictions and the observations at each site

simultaneously. In order to tackle the problem, we formulate it such that we minimize the weighted

sum of the RMSEs as follows:225

minf(x) =

M∑
i=1

wiri(x) (1a)

s.t. −∞< xlk ≤ xk ≤ xuk <∞, k = 1, . . . ,d, (1b)

where d denotes the problem dimension (the number of optimization parameters), and xlk and xuk are

the lower and upper bounds of variable xk, respectively. The RMSE230

ri(x) =

√√√√ 1

Ni

Ni∑
j=1

[Oi,j −Si,j(x)]
2
, i= 1, . . . ,M, (2)

is computed for each location i.Ni is the number of observations available at location i,Oi,j denotes

the jth methane emission observation at location i, and Si,j denotes the corresponding methane

emission predicted by CLM4.5bgc. The weights wi are computed based on the means of the CH4
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emissions at the observation locations as follows. Denote235

ai =
1

Ni

Ni∑
j=1

Oi,j (3)

the mean CH4 emission at location i, i= 1, . . . ,M . The weight wi for the ith location is then defined

by

wi =
gi∑M
i=1 gi

, (4)

where240

gi =
maxi=1,...,M ai

ai
, (5)

where it is assumed that ai > 0 for all i. The goal is to give each location approximately equal

influence in the weighted sum of RMSEs, i.e., we assign locations with large mean CH4 values small

weights such that these locations have approximately the same influence on the weighted sum as lo-

cations with low emissions. Otherwise, locations with large emissions would dominate the sum (1a)245

because their RMSEs would accordingly be larger. In that case the optimization would be driven by

minimizing the RMSE of the site(s) with the largest emissions. There are also other methods of how

wi could be determined. In the numerical experiments, we will investigate also the possibilities of

assigning equal weights to each observation site and assigning weights derived from grouping the

observation sites into zones. Another possibility would be to apply clustering algorithms in order to250

determine groups of observation sites with similar characteristics. For this possibility, however, dif-

ferent clustering methods and different numbers of desired clusters will lead to different groups and

different weight adjustments. Lastly, the problem could be formulated as multi-objective optimiza-

tion problem, for example, with 16 objectives and the goal of minimizing each observation site’s

RMSE individually, or as bi-objective optimization problem by minimizing the sum of the weighted255

RMSE values of northern and southern locations at the same time. However, each objective function

evaluation is very expensive, and thus the number of evaluations that can be done to obtain the Pareto

front in a multi-objective setting is limited. Our focus is on demonstrating that single objective global

optimization analysis is useful in identifying reasonable parameter values.

3 Methane-Related Parameters in CLM4.5bgc and Sensitivity Analysis260

CLM4.5bgc has 21 parameters related to the methane emission predictions. The parameter names,

their upper and lower bounds, and default values are shown in Table 1. The upper and lower bounds

have been derived based on reported values in the literature (see Table C1 in Appendix C). How

these parameters are used in the model is detailed in Riley et al. (2011) and Meng et al. (2012) and

we repeat the important equations in Appendix A. The default parameter values vk are available in265
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the CLM4.5bgc (see Table 1).

Optimization problems become increasingly more complex and difficult to solve as the number of

parameters increases (curse of dimensionality). Thus, we determine first which of these 21 parame-

ters are the most sensitive and thus the most important for the optimization. By sensitive we refer to270

parameters that when changed slightly lead to a significant change in emission predictions. Insensi-

tive parameters, on the other hand, can be changed and do not (or comparatively only very mildly)

change the emission predictions and can thus be excluded from the optimization, which decreases

the problem dimension.

275

We conducted analyses for each observation site in which we investigated to which of these 21

parameters the methane emission predictions of CLM4.5bgc are the most sensitive. We altered the

value of each parameter k = 1, . . . ,d by, respectively, adding and subtracting 20% of the variable

range and we recorded the absolute change in emission predictions, i.e. we ran CLM4.5bgc with

perturbed parameter values280

(a) xk = min{vk + 0.2(xuk −xlk),xuk}, ∀k = 1, . . . ,d when increasing vk for 20%, and

(b) xk = max{vk − 0.2(xuk −xlk),xlk}, ∀k = 1, . . . ,d when decreasing vk for 20%

for each parameter separately.

There are several parameters that are relatively important to the sensitivity test for all 16 obser-285

vation sites, but there are also parameters that are important for some locations and less important

for others. Tables 2 and 3 show the sensitive and insensitive parameters together with the number

of locations (out of 16) for which these parameters are important and unimportant, respectively.

Thus, in the optimization we consider only the parameters in Table 2 since these parameters are

the most important at most locations. Please note that, due to (nonlinear) relationships between the290

parameters, for many parameters the effects of individual parameters will be opposite but act in a

similar manner, indicating that some parameters may be difficult to optimize for. In order to limit

the number of parameters we consider, while allowing for the largest range in behavior, we combine

information from the sensitivity study with information about the methane flux equations themselves

(described in more detail in Appendix A). The most important parameters from the sensitivity study295

come from the dominant three terms in the methane flux equation, which are production (parame-

ters 1, 2, and 21), oxidation (parameters 7, 8, 9, and 10), and aerenchyma transport (parameters 13,

15, 16, and 17). The first four parameters chosen are also the most important parameters at all 16

sites (see Table 2). Because production is the most important term, there are two parameters from

production that the sensitivity studies indicate are the most important, namely one that controls glob-300

ally the methane production flux (F_CH4, parameter 2), and one term that controls the temperature
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dependency of the methane production (Q10CH4, parameter 1). Another parameter that influences

methane at all the sites comes from the oxidation equation (VMAX_CH4_OXID, parameter 7), and

the final parameter that is important at all 16 sites is the parameter controlling the aerenchyma

transport (SCALE_FACTOR_AERE, parameter 13). The above four parameters are the most sensitive305

parameters, and thus are easy to choose, as well as cover most of the important processes we want

to investigate. For the last parameter, we include one parameter that controls how inundation affects

methane production (MINO2LIM, parameter 21). Inundation is an important process for controlling

methane flux, since there is an order of magnitude more methane coming from wet areas than dry,

and thus having one parameter which changes the model’s sensitivity to inundation is appropriate.310

4 Surrogate Models and Surrogate Model Algorithms

4.1 Surrogate Models

Surrogate models are used in optimization algorithms that aim to solve computationally expensive

black-box problems. Surrogate models serve as computationally cheap approximations of the expen-

sive simulation model (Booker et al., 1999), i.e., f(x) = s(x) + e(x), where f(·) denotes the true315

expensive objective function, s(·) denotes the computationally inexpensive surrogate model, and e(·)
denotes the difference between both. Surrogate models are used throughout the optimization to guide

the search for promising solutions. The computationally expensive objective function is evaluated

only at few selected points, and thus it is possible to find near-optimal solutions with only very few

expensive function evaluations.320

There are different surrogate model types such as radial basis functions (RBFs) (Gutmann, 2001;

Müller et al., 2013; Powell, 1992; Regis and Shoemaker, 2007, 2009; Wild and Shoemaker, 2013),

kriging (Davis and Ierapetritou, 2009; Forrester et al., 2008; Jones et al., 1998; Simpson et al., 2001),

polynomial regression models (Myers and Montgomery, 1995), and multivariate adaptive regression325

splines (Friedman, 1991). There are also mixture models (also known as ensemble models) that ex-

ploit information from several different surrogate model types (Goel et al., 2007; Müller and Piché,

2011; Müller and Shoemaker, 2014; Viana et al., 2009). In general any type of surrogate model may

be used in a surrogate model optimization algorithm. In this study, we use RBFs because they have

been shown to perform better in comparison to other surrogate model types (Müller and Shoemaker,330

2014).

An RBF interpolant is defined as follows:

s(x) =

n∑
ι=1

λιφ(‖x−xι‖) + p(x), (6)
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where φ(τ) = τ3 denotes the cubic radial basis function whose corresponding polynomial tail is335

linear (p(x) = b0 + bTx), and xι, ι= 1, . . . ,n, denotes the points at which the objective function

has already been evaluated. The parameters λι ∈ R, ι= 1, . . . ,n, and the parameters b0 ∈ R and b =

[b1, . . . , bd] ∈ Rd are determined by solving the following linear system of equations Φ P

PT 0

λ
c

=

F

0

 , (7)

where Φιν = φ(‖xι−xν‖), ι,ν = 1, . . . ,n, 0 is a matrix with all entries 0 of appropriate dimension,340

and

P =


xT1 1

xT2 1
...

...

xTn 1

 , λ=


λ1

λ2
...

λn

 c =



b1

b2
...

bd

b0


, F =


f(x1)

f(x2)
...

f(xn)

 . (8)

The matrix in (7) is invertible if and only if rank(P) = d+ 1 (Powell, 1992).

4.2 Surrogate Global Optimization Algorithm

Surrogate global optimization algorithms follow in general the steps shown in Algorithm 1.345

Algorithm 1 General Surrogate Global Optimization Algorithm

1: Select points from the variable domain to create an initial experimental design.

2: Do the expensive objective function evaluations (here the CLM4.5bgc simulations) at the points selected in

Step 1.

3: Fit the surrogate model (here the RBF model) to the data from Steps 1 and 2.

4: Use the information from the surrogate model to select the new evaluation point xnew.

5: Do the expensive evaluation at xnew: fnew = f(xnew) (here, run CLM 4.5bgc for the parameter input vector

xnew).

6: if Stopping criterion is not met (the maximum number of allowed function evaluations has not been reached)

then

7: Update the surrogate model and go to Step 4.

8: else

9: Return the best solution found during the optimization.

10: end if

We use the DYCORS algorithm by Regis and Shoemaker (2013) for the optimization of the

methane-related parameters of CLM4.5bgc. The reader is referred to this publication for the details

of the algorithm. Since the parameters have significantly differing ranges (see Table 1), we scale all

parameters to the interval [0,1] when selecting new sample sites. When doing the computationally
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expensive CLM4.5bgc simulations, we scale the parameters back to their original ranges. Thus, the350

perturbation radius used in DYCORS is the same for each variable.

We create a symmetric Latin hypercube initial experimental design with 2(d+ 1) points and run

CLM4.5bgc at the selected parameter vectors in order to compute the objective function values. We

then fit the cubic RBF model to the data and generate two sets of candidate points for the next expen-355

sive function evaluation (the next CLM4.5bgc run at the 16 sites). The first set of candidate points is

generated as described by Regis and Shoemaker (2013) by randomly perturbing the best point found

so far. The second set of candidate points is generated by uniformly selecting random points from

the whole variable domain. Thus, we create twice as many candidate points as DYCORS. The goal

of using uniformly random points from the whole variable domain is to obtain candidates that are360

far away from the best point found so far, and hence if selected as new evaluation point, the search

is more global (exploration by function evaluation at points that are far away from already sampled

points).

We use the same criteria as in DYCORS for determining the best candidate point (using the RBF365

approximation to predict the objective function values at the candidate points, compute the distance

of the candidate points to the set of already sampled points, and compute a weighted score of these

two measures where the weights cycle through a predefined pattern). In order to guarantee that the

matrix in equation (7) is well-conditioned, we ensure (as done in Regis and Shoemaker (2013)) that

the sample points are sufficiently far away from previously evaluated points by discarding candi-370

date points that are closer than a given threshold distance to previously evaluated points. We run

CLM4.5bgc at each of the 16 observation sites using the one newly selected sample point as input

parameter vector to obtain the corresponding objective function value. We update the RBF model

with the new data and iterate until we have reached the maximum number of allowed function eval-

uations.375

5 Numerical Experiments

In this section we discuss the setup and results of the numerical experiments. In a first set of ex-

periments (pseudo data case), we generate synthetic (pseudo) data and treat it as if it were the real

measurement data in order to assess how well our optimization approach performs. For these ex-

periments we know the optimal solution. In the second set of experiments (real data case), we use380

the measured methane emission data and apply the optimization algorithm. The goal in the second

set of experiments is to find a parameter set that reduces the objective function value (the weighted

RMSE in equation (1a)) from its default value (the RMSE when using CLM4.5bgc’s default param-

eter settings, see also Table 1, column vk). Finally, we run CLM4.5bgc globally with the best set of
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parameters found during the optimization of the real data case and investigate how much the default385

model predictions and the model predictions with the optimized parameter values differ from each

other.

We did experiments with d= 5 and d= 11 parameters respectively. For the d= 5 experiments,

we used parameters 1, 2, 7, 13, and 21 (Table 2). Thus, we have parameters related to three types390

of CH4 emission, namely oxidation (parameter 7), aerenchyma (parameter 13), and production (pa-

rameters 1, 2, 21). For the 11-parameter optimization, we used all variables shown in Table 2.

For each set of experiments we ran the optimization algorithm three times in order to examine the

influence of the random component in the algorithm (random initial experimental design and ran-395

dom generation of candidate points). We allowed 800 function evaluations for the five-dimensional

problem and 1000 evaluations for the 11-dimensional problem. The question of how many function

evaluations need to be performed in order to obtain a fixed level of solution accuracy is problem

dependent. For computationally-expensive optimization problems, such as the problem we consider

here, the time for evaluating the objective function and the totally available time for obtaining a400

solution usually defines how many evaluations can be done with any algorithm. Results for many

difficult computationally-expensive optimization problems (for example, problems with multiple lo-

cal minima) indicate that surrogate global optimization methods can usually obtain more accurate

results compared to non-surrogate methods with the same limited number of evaluations (see, for

example, Mugunthan et al. (2005)). It is a very difficult problem to find the best values of the param-405

eters for climate models, and the more evaluations one does, in general the better the answer.

The weights wi in equation (1a) were for the pseudo data case computed based on the pseudo

observations (see Section 5.1) at each of the 16 sites at the same dates for which we also have real

measurements. For the real data case, the weights were computed based on the actual measurements.410

The weights are given in Table D1 in Appendix D.

Solving problem (1a) requires running CLM4.5bgc for each input vector x of parameter values

and for each of the 16 observation sites. We run CLM4.5bgc on the Yellowstone Supercomputing

Facility (Computational and Information Systems Laboratory, 2012). Each simulation at a single415

location takes between 15 and 30 minutes. We do the simulations for the 16 sites in parallel in order

to speed up the objective function evaluation time.

5.1 Pseudo Data Case

We assessed the performance of the optimization algorithm by investigating how well the algorithm

could find the model parameters that were used for creating the pseudo data. For this purpose, we420
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ran CLM4.5bgc with default parameter values vk,k = 1, . . . ,d, at all 16 sites for the same time span

for which we also have observation data (see Tables B1 and B2 in Appendix B) and we record the

model’s predictions for the same dates at which the methane emissions were measured. We use this

as our pseudo observation data that we want to match in the optimization, i.e., the goal of the opti-

mization is to start from a set of parameter vectors that is different from the default parameter values425

and to recover the default parameter values by optimization. For the default parameter values, the

objective function value will be zero, which is the global minimum of the pseudo data case.

5.1.1 Results for d= 5

Figure 1 shows the progress plots of the three optimization trials T1, T2, and T3. Illustrated is430

the development of the best objective function value found within the given number of function

evaluations (horizontal axis). The fewer evaluations needed for reducing the objective function value,

the better. The plot shows that the objective function value is reduced significantly in each of the

three trials from a value of over 30 to about 5 within less than 150 function evaluations and close

to zero towards the end of the optimization. Table 4 shows the best parameter values found during435

each of the three optimization trials together with the default parameter values. The table shows

that the RMSE after 800 function evaluations is not exactly zero (which can be expected from an

approximation method), but the default parameter values are matched closely.

5.1.2 Results for d= 11

Figure 2 shows the objective function value development as the number of function evaluations in-440

creases for the 11-dimensional case for the three trials T1, T2, and T3. The figure shows a rapid

decrease of the objective function value from over 50 to less than 10 within 100 evaluations, which

shows that the surrogate model algorithm is very efficient at finding improved solutions. Although

the objective function value improvement over the following function evaluations is lower, we can

see that the algorithm still makes progress and if we allowed more than 1000 evaluations, the ob-445

jective function value would be further improved (which also follows from the global convergence

property of the DYCORS algorithm).

Table 5 shows the parameter values of the best of the three trials (T3) together with the default

parameter values and the variable vector CP that was evaluated during the optimization and that has450

a worse objective function value than the best solution, but that is closer to the default parameter

values. This point has the same parameter values as T3 for all but two parameters, namely, param-

eters 10 (Q10_CH4OXID) and 21 (MINO2LIM), which we indicate by bold numbers. For these two

parameters, the point CP is closer to the global optimum, but it has a worse objective function value.

This indicates a multimodality of the objective function (getting closer to the true global minimum455
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requires an increase in the objective function value, i.e., the algorithm has to escape from a local

basin of attraction). This multimodality makes the search for the global optimum significantly more

difficult.

In order to examine the impact of the differences between default and optimized parameter values460

on the model prediction, we use the best parameter vector of each trial and plot the corresponding

CH4 emission predictions against the predictions when using the default parameter values in Fig-

ure 3. We can see that although we do not exactly match the default parameter values, the model’s

predictions when using the optimized parameters are very close to the predictions when using the

default parameter values (all points in the scatter plot lie close to or on the dashed line which rep-465

resents agreement of default and optimized predictions). As also reflected in the best RMSE value

reported in the legend, T3 matches the default data best and T2 has the largest differences.

This result indicates that the calibration problem is not "identifiable" for all parameter sets, in-

dicating that more than one parameter set can give a very similar result in terms of the objective470

function value. For example, for the model y = α
βx + γ, there are many combinations of values for

α and β that lead to the same value of y as long as α= κβ for some constant κ. With only five

parameters as described in the previous section, the parameter values obtained from the optimization

did match very closely those of the default case used to create the pseudo data, and thus with this

small set of parameters the problem was identifiable. However, for 11 parameters, we did encounter475

the identifiability problem. In some disciplines such parameters are called “hidden”. For example,

estimating α and γ in the previous example with y = α
βx+γ when β is given would be identifiable.

However, estimating α, β, and γ is no longer identifiable.

It would be desirable to have an identifiable model, but the CLM (and probably other climate480

modules) have a number of interacting parameters and multiplicative nonlinearities, and thus there

is no guarantee that all parameters are identifiable. This is reinforced by the data in Table 5, which

indicates that the surface over which the optimization algorithm searches in the 11 parameter case

is multi-modal, i.e., there are multiple local minima and it is possible for two (or more) parameter

sets to yield the same objective function value (here RMSE). Hence the inability of the optimization485

to find the exact set of parameters that was used for generating the pseudo data is a problem caused

by the complexity and multiplicative nonlinearities of the CLM model, not by the choice of the

optimization method. However, the optimization analysis for both pseudo data cases (with 5 and

11 parameters, respectively) shows that the chosen optimization method is able to find a set of

parameter values that has a low prediction error. The multi-modality in Table 5 does indicate the490

need for a global (not a local) optimization method.
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5.2 Real Data Case

In the real data case, we use the actual methane emission measurements at each of the 16 observation

sites for computing the objective function value. Since we only have very few observations for each

site and no information about measurement errors, we did not exclude any of the measurements from495

the optimization although there might be outliers. Also for the real data case we examine the case

for d= 5 and d= 11 variables.

5.2.1 Results for d= 5

The progress of the development of the objective function value for the three trials T1, T2, and T3,

respectively, is illustrated in Figure 4 which also shows in the legend the lowest RMSE value found500

in each of the three trials. The RMSE was efficiently reduced from over 155 to below 115 within the

first 150 function evaluations. Thereafter the objective function value improvement was at a signif-

icantly lower rate. All three trials return a solution with approximately the same objective function

value.

505

The parameter values of the best solutions found in the three trials are shown in Table 6 where also

the default parameter values are given for comparison. We can see that the three optimized solutions

are approximately the same and significantly different from the default case. We can also see that

three of the five optimized parameter values are on or very close to the boundary of the variable do-

main (shown in bold), indicating that improvements of the objective function value may be possible510

by increasing the parameter range. However, it is not possible due to physical constraints and at this

point, we do not have information about possible wider parameter ranges than the ones we used in

this study.

Figures 5 and 6 show the CH4 emission predictions of CLM4.5bgc when using the default and515

the optimized parameter values for two selected observation sites (one wetland and one rice paddy

site) together with the actual observation data. The legends show the associated RMSE value before

applying the weights for computing (1a). We can see that the optimized solution actually worsens the

predictions for Alberta (the RMSE value with default parameters is about 209 and with optimized

parameters, the value is about 221, which is about 6% worse). For Central Java, on the other hand,520

the RMSE values of the optimized solutions are significantly better than for the default values (the

default RMSE is about 221 and the optimized RMSE values are about 48, which is an improvement

of over 350%). In both figures we can also see that despite the large differences between optimized

and default parameter values, the trend in the predictions of CLM4.5bgc is the same, i.e., when the

predicted CH4 emissions with default parameters increase so do the predicted emissions when using525

the optimized parameters and vice versa.
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5.2.2 Results for d= 11

Figure 7 shows the progress plots for each of the three trials together with the best objective function

values found (legend) for the 11-dimensional case. The best objective function value found is about

equal for each of the three trials. The figure shows that in each trial the algorithm is able to efficiently530

reduce the objective function value within the first 200 function evaluations. The improvement after

200 function evaluations is significantly slower.

Table 7 shows the parameter values of the best solution found in each of the three trials and the

default parameter values. The table shows that for some parameters, for example, parameters 1, 7,535

and 8, all trials lead to approximately the same values (which are different from the default pa-

rameter values). For the remaining parameters, the values corresponding to the best solution found

differ significantly for each trial and differ also from the default parameter values. Also for the 11-

dimensional problem, some parameter values corresponding to the best solution found are on the

upper or lower boundary of the parameter range (for example, parameters 1, 8, 13, 15, indicated in540

bold).

Since all three solutions have approximately the same objective function values, but the points

differ greatly, it is an indicator that we either have a multi-modal surface in which some minima

assume approximately the same objective function values, or we have a very flat valley in which545

many points assume similar objective function values. Both possibilities make it very difficult for

gradient-based optimization algorithms to find the global optimum. In the first case, the optimization

algorithm will get trapped in a local optimum if it is not started close to the global minimum. In the

second case, the gradient-based algorithm would require many function evaluations because many

steps and gradient computations are necessary due to a very small step size. The surrogate optimiza-550

tion algorithm overcomes this problem.

Table 8 shows the unweighted RMSE values (before applying the weights in (1a) for comput-

ing the objective function value) between observations and simulations using the default parameters

(column 5), the best parameters of optimization trial T1 of the 11-dimensional case (column 4), and555

the best parameters of trial T2 of the 5-dimensional case, respectively. The table shows that with our

optimization we were able to decrease the default RMSE for four sites in the 5-dimensional case and

for six sites in the 11-dimensional case. The RMSE is lower at seven sites for the 11-dimensional

case than for the 5-dimensional case. Since we minimized a weighted sum of all RMSE values, it

can be expected that the RMSE at some locations may be worse for the optimized case than for the560

default case. We can see that for two of the improved sites (Java and Cuttack), the improvement is

very large, and thus the overall RMSE of the optimized solution is lower than for the default param-
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eters.

Figures 8 and 9 show the observed CH4 emissions, the predictions with the default parameter val-565

ues, and the predictions using the optimized parameter values for Alberta (Canada) and Central Java

(Indonesia). For both sites we can see that the predictions with the optimized parameters have lower

RMSEs than when using the default parameter values (note that the reported RMSEs in the legend

are not weighted as done in equation (1a)). For Central Java, for example, the optimized parameters

greatly improved the model’s predictions, but we can also see that the temporal variability in the570

predictions stays the same although not as pronounced. We noticed this "temporal variability pre-

serving" behavior for several sites such as Beijing, California, Cuttack, New Delhi, Florida, Japan,

Michigan, Minnesota, Salmisuo, Texas, and Vercelli. Compared to the case where we optimized only

five parameters, the solution for Alberta has improved and the RMSE values for all three trials are

for the d= 11 case better than the default RMSE value. On the other hand, the solution for Central575

Java is worse for T1 in the d= 11 case than in the d= 5 case.

The temporal variability in the model’s predictions does not necessarily follow the temporal vari-

ability in the observation data (see, for example, Figure 10). Note that in Figure 10 the temporal

variability is the same for each of the three trials although the best solutions found in the three trials580

were very different (see Table 7). Thus, it seems that the improvement of the model’s predictions

is restricted by an underlying model component that enforces the temporal variability. This is likely

to be associated with structural errors either in the methane or in the carbon model. Notice that the

methane emission is dependent on the temporal variability predicted in the carbon and land model,

especially on the hetereotrophic respiration rate, which could have the wrong magnitude or temporal585

evolution.

Figure 11 shows a scatter plot of the mean values of the CH4 predictions using default and op-

timized parameter values versus the mean values of the observed CH4 emissions. Ideally, if the

simulated emissions agreed with the observations, all points would lie on the dashed line. Thus, the590

closer a point to the dashed line, the more simulation and observation are in agreement. The figure

shows that with the optimized parameters, we obtain better or similar results for Beijing, Cuttack,

Minnesota, Central Java, Nanjing, Japan, Salmisuo, Alberta, and Michigan. Although not all sites

have been strictly improved by the optimization, the overall RMSE has been improved (indicated in

the legend).595

Figure 11 also shows that with default parameters, CLM4.5bgc predicts less CH4 emissions than

observed for both observation sites in the northern latitudes (Alberta (ID=1) and Salmisuo (ID=16)),

which is corrected by the optimization such that the mean emissions at these sites are closer to
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the dashed line. Thus, based on the observation data, CLM4.5bgc with default parameters does not600

predict enough emissions in the northern latitudes. On the other hand, CLM4.5bgc over-predicts

the emissions for four locations, namely Cuttack (ID=14), Central Java (ID=12), Nanjing (ID=5),

and Japan (ID=8), which are located in the tropical/subtropical zone. For those four locations, the

predictions with the optimized parameters are closer in agreement with the observations. Hence, the

observation data force the model predictions to increase in the northern latitudes and to decrease in605

the tropics. This can also be seen in Figures 12 and 13 in the following section where we simulated

the model globally and compared default and optimized model predictions for the individual zones

(discussed below).

5.2.3 Gobal CH4 Emission Simulations

We simulated CLM4.5bgc to obtain predictions for the CH4 emissions on a global scale and com-610

pared the predictions when using the default parameter values and the optimized parameter values

from the 11-dimensional cases. Figure 12 shows spatial plots of the average methane emissions (mg

CH4 m−2 d−1) and the zonal means (right hand side of the plots) when using the default parame-

ters (panel a), and the difference between the predictions when using the default and the optimized

parameters for trial T1 (panel b). The figure shows that with the optimized parameters, the CH4615

emission predictions in the northern regions are larger than for the default parameters. For the trop-

ics, the predictions with the optimized parameters are lower than when using the default values.

Figure 13 shows a comparison of the CH4 emission predictions from several different models

(models 1-10). We can see that globally the predictions with the optimized parameters (model 12)620

were only slightly higher than with the default parameters (model 11). However, the predictions of

CH4 emissions in the tropics are significantly lower than for the default model and the predictions

are also lower in comparison to all other models (1-10). On the other hand, for the northern latitudes,

CLM4.5bgc with optimized parameters predicts significantly more CH4 emissions than the default

model and models 1-10 in the comparison. Hence, even though the global average of predicted emis-625

sions did not change much, the distribution of the predicted emissions between the tropical and the

northern latitudes changed significantly.

As indicated in the previous section, the observation data drives the model to predict more CH4

emissions in northern latitudes and fewer emissions in the tropics. We investigated whether our630

weighting scheme in equation (1a) may give too much influence to individual observation sites or

zones. Thus, we did an additional optimization trial of the parameters in Table 2 where we give each

observation site the same weight wi = 1, i= 1, . . . ,16 (“unweighted”). We also did a second addi-

tional optimization trial of the parameters in Table 2 where we give each zone the same influence

on the total RMSE in order to account for the location of the various observation sites (“zonally635
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weighted”). Thus, each location in the temperate zone (12 sites totally) has wi = 1/36, and each

location in the northern (2 sites) and tropical (2 sites) zone, respectively, has the weight wi = 1/6.

The spatial plots of the differences between the average methane emissions when using default

and optimized parameters for the unweighted trial are shown in panel (c) of Figure 12, and the spa-640

tial plots of the differences when using the zonally weighted objective function is shown in panel

(d) of Figure 12. The figures show that for both additional trials, the CH4 emissions in the northern

latitudes is even further increased. Moreover, the bars for models 13 and 14 in Figure 13 show the

total methane emissions of the unweighted and the zonally weighted trials, respectively. The zonally

weighted trial increases the global emissions, which is caused by larger emission predictions in the645

temperate zone and the northern latitudes. In comparison to the default CLM4.5bgc predictions, the

unweighted trial shows a decrease in the predicted emissions in the tropics and an increase in the

predicted emissions in the northern latitudes. Thus, even though it is suggested that CLM4.5bgc with

default parameter settings over-predicts the CH4 emissions in high latitudes (Koven et al., 2013), the

observation data argues that the predictions should even be increased.650

6 Conclusions

In this paper we used a surrogate optimization approach for calibrating the parameters of the methane

module of the Community Land Model (CLM4.5bgc). Given only relatively few measurements at

16 observation sites (wetlands and rice paddies) our goal was to explore the use of a surrogate op-655

timization method to improve the model prediction capability in a computationally efficient way

by minimizing the root mean squared error between the measurements and the model’s predictions.

We identified important methane-related parameters in CLM4.5bgc by doing a sensitivity analysis

and we were thus able to reduce the problem dimension from 21 to 11. We then used a surrogate

optimization approach for tuning the most important parameters in order to solve the problem. We660

investigated two cases, namely a problem with 5 of the most important parameters and a problem

with all 11 parameters, respectively.

We first used pseudo data in order to asses how well the surrogate optimization performs and

showed that we are able to closely match the pseudo observations. We were able to reduce the RMSE665

to less than a fifth within the first 150 function evaluations for both pseudo data cases. The objective

function was shown to have multiple local minima, which indicates that the problem is probably

not identifiable when 11 parameters were optimized. Although the RMSE was greatly reduced by

the optimization for the 11 parameter pseudo data case, the optimization results did not generate the

same values of the parameters in some cases as were used to generate the pseudo data. This is a670

20



problem with the model, not with the optimization method used. The multiple local minima detected

in Table 5 indicate that a global optimization method was needed. We used a surrogate global op-

timization method because the objective function was expensive to evaluate and has multiple local

minima. The surrogate has been shown to reduce the number of objective function evaluations (e.g.

climate model simulations) required to obtain accurate approximations of the global minimum and675

so it is designed for computationally expensive models like climate modules.

By conducting the simulations globally and comparing the average predicted emissions with de-

fault and optimized parameters, we could show that the total global CH4 emissions did not change

significantly. However, the distribution of the predicted emissions between latitudes changed signif-

icantly. The observation data force the optimized model’s CH4 emission predictions in the northern680

latitudes to increase and the predicted emissions in the tropics to decrease. In comparison to other

models, CLM4.5bgc with both default and optimized parameters predicts significantly more emis-

sions in the northern latitudes and less emissions in the tropics.
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Appendix A: Model Equations

The methane biogeochemical model used in this study is integrated in the Community Land Model685

version 4.5 (CLM4.5), which is the land component of the Community Earth System Model (CESM,

Hurrell et al. (2013)). As discussed in more detail in Riley et al. (2011) and Meng et al. (2012), the

model represents five primary processes relevant to methane emission predictions. These processes

include methane production (P ), oxidation (Roxic) , ebullition (E), transport through wetland plant

aerenchyma (A), and diffusion through soil (FDe) (described below). The methane gas and aqueous690

phase concentrations (RC) in each soil layer of each grid box is calculated at every time point using

the following equation:

∂RC
∂t

=
∂FDe

∂z
+P −E+A−Roxic (A1)

In the following sections we consider each of these terms in more detail.

A1 Methane Production695

Methane production (P ) in the anaerobic portion of the soil column is related to the grid cell estimate

of heterotrophic respiration from soil and litter corrected for various factors:

P =RH · F_CH4 · Q10CH4 · fpHfpES, (A2)

where RH is the heterotrophic respiration from soil and litter (mol C m−2 s−1), and F_CH4 is

the baseline fraction of anaerobically mineralized C atoms becoming CH4 (i.e., CO2/CH4). RH is700

corrected for its soil temperature dependence through a Q10 factor (Q10CH4), pH (fpH), redox po-

tential (fpE), and a factor accounting for the seasonal inundation fraction (S).

We adjusted the fractional inundation in each grid cell to account for a changing redox potential.

fpE =
filag(t)

fi(t)
, (A3)705

where the redox potential factor fpE is computed based on the fractional inundation fi(t) and the

adjusted fractional inundation filag(t) that is producing methane.

The adjusted fractional inundation filag(t) is computed as

filag(t) = fi(t)− fredox(t), (A4)710

where

fredox(t) = fi(t)− fi(t− 1) + fredox(t− 1)

(
1− ∆t

REDOXLAG

)
(A5)
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is the fraction of the grid cell where alternative electron acceptors (such as O2, NO−
3 , Fe+3, SO2−

4

etc.) are consumed (methane production is completely inhibited), ∆t is the time step, and RE-

DOXLAG is the time constant parameter.715

In the non-inundated fraction of a grid cell, we estimated the delay in methane production as the

water table depth increases by estimating an effective depth below which CH4 production can occur

(Zilag ):

Zilag(t) = Zi(t)−Zredox(t), (A6)720

where

Zredox(t) = Zi(t)−Zi(t− 1) +Zredox(t− 1)

(
1− ∆t

REDOXLAG

)
(A7)

is the depth of the saturated water layer where alternative electron acceptors are consumed at time t

and Zi(t) is the actual water depth at time t.

725

Additionally, we constrained the methane production using the soil pH function fpH which is

represented as

fpH = 10−0.2335pH2+2.7727pH−8.6, (A8)

where pH represents the soil pH. fpH is bounded by two parameters, namely PHMIN and PHMAX

(i.e., PHMIN < pH < PHMAX). The maximum methane production occurs at pH≈6.2.730

We used a scaling factor (S) to mimic the impacts of seasonal inundation on methane production

which is represented as

S =
MINO2LIM(f − f̄) + f̄

f
, S ≤ 1, (A9)

where f and f̄ are the instantaneous inundation fraction and annual average inundation fraction735

weighted by heterotrophic respiration, MINO2LIM is the anoxia factor that relates the fully anoxic

decomposition rate to the fully oxygen-unlimited decomposition rate.

A2 Methane Oxidation

Methane oxidation (Roxic) is represented with double Michaelis-Menten kinetics:

Roxic = VMAX_CH4_OXID

[
CCH4

K_M +CCH4

][
CO2

K_M_O2 +CO2

]
Q10_CH4OXID ·Fϑ, (A10)740

where VMAX_CH4_OXID is the maximum oxidation rate (mol m−3 s−1), Q10_CH4OXID is the

temperature dependence of the reaction, K_M and K_M_O2 are the half saturation coefficients with
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respect to CH4 and O2 concentrations (mol m−3), CCH4
and CO2

are the methane and oxygen con-

centrations in the soil (mol m−3), and Fϑ is the soil moisture limitation factor for oxidation applied

above the water table to represent water stress for methanotrophs.745

Fϑ is represented as:

Fϑ = exp

{
−P
PC

}
, (A11)

where P and PC are the soil moisture potential and optimum water potential (−2.4× 105 mm).

If the soil layer is above the water table, the soil moisture limitation factor Fϑ is applied. To ac-750

count for high-CH4-affinity methanotrophs in upland soils, we used a lower oxidation rate con-

stant (VMAX_OXID_UNSAT) and half saturation coefficient with respect to CH4 concentrations

(K_M_UNSAT).

A3 Methane Transport Through Plant Aerenchyma

The diffusive transport through aerenchyma A (mol m−2 s−1) from each soil layer is represented in755

the model as:

A=
C(z)−Ca
ra + ROB·z

DpTρf

, (A12)

where D is the free-air gas diffusion coefficient (m2 s−1), C(z) and Ca are the gaseous concen-

trations at depth z and at the atmosphere (mol m−3), ra is the aerodynamic resistance between the

surface and the atmospheric reference height (s m−1), ROB is the ratio of root length to vertical760

depth (obliquity), p is the porosity, T is the specific aerenchyma area (m2 m−2), and ρf is the root

density as a function of depth. Oxygen concentrations can also diffuse into the soil layer from the

atmosphere via the reverse of the CH4 pathway.

Here, aerenchyma porosity is parameterized based on the plant functional types (PFTs). A ratio is765

used to multiply upland vegetation aerenchyma porosity by comparing to inundated systems:

p= p · UNSAT_AERE_RATIO (A13)

If the PFT is c3_arctic_grass, c3_nonarctic_grass, or c4_grass, then p= 0.3. For the remaining

PFTs, the porosity is multiplied by NONGRASSPOROSRATIO (ratio of root porosity in non-grass to

grass):770

p= p · NONGRASSPOROSRATIO. (A14)

A minimum aerenchyma porosity is set to 0.05. Therefore, p is modified as:

p= max{p, POROSMIN}. (A15)
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The aerenchyma area varies over the course of the growing season. Therefore, it is parameterized

using the simulated leaf area index as775

T =
fNNaL

0.22
πR2, (A16)

where L is the leaf area index (m2 m−2) (used from CLM4.5 model simulation),Na is the maximum

annual net primary production (NPP, mol m−2 s−1),R is the aerenchyma radius (2.9 x 10−3 m), and

fN is the below-ground fraction of the current NPP.

780

The aerenchyma area T is multiplied by a scale factor to adjust it:

T = T · SCALE_FACTOR_AERE. (A17)

The default value is 1.

A4 Methane Ebullition

The representation of the ebullition fluxes in the methane model is based on Wania et al. (2010). The785

simulated aqueous CH4 concentration in each soil level is used to estimate the expected equilibrium

gaseous partial pressure as a function of temperature and pressure. When this partial pressure exceeds

VGC_MAX, bubbling occurs to remove CH4 to below this value, modified by the fraction of CH4 in

the bubbles (taken as 57%). The VGC_MAX parameter is the ratio of saturation pressure triggering

ebullition.790

A5 Aqueous and Gaseous Diffusion

Gaseous diffusivity in the soil depends on several factors such as molecular diffusivity, soil structure,

porosity, and organic matter content. The relationship between effective diffusivity (De, m2 s−1) and

soil properties is represented as

De =D0θ
2
a

(
θa
θs

) 3
b

· SCALE_FACTOR_GASSDIFF, (A18)795

where θa and θs are the air-filled and saturated water-filled porosity, b is the slope of the water

retention curve, and SCALE_FACTOR_GASSDIFF is the scale factor for the gas diffusion (the default

value is 1).

Appendix B: Observation Sites

Tables B1 and B2 show the information about the wetland and rice paddy observation sites, respec-800

tively, where methane emissions have been measured.
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Appendix C: Parameters and References for Bounds

Table C1 shows the CH4 related parameters in CLM4.5bgc and their literature reference information.

Appendix D: Weights Used for RMSE Computation in Equation (1) of the Manuscript

Table D1 contains information about the weights used for each observation site when computing the805

objective function value.
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Table 1. CH4 related parameters in CLM4.5bgc and their upper and lower bounds xu
k and xl

k, respectively, and

the default parameter values vk.

Parameter ID Parameter name xl
k xu

k vk

1 Q10CH4 1 4 1.33

2 F_CH4 0.1 0.4 0.26

3 REDOXLAG 15 45 30

4 OXINHIB 200 600 400

5 PHMAX 8 10 9

6 PHMIN 2 4 2.2

7 VMAX_CH4_OXID 1.25e-6 1.25e-4 1.25e-5

8 K_M 0.0005 0.05 0.005

9 K_M_O2 0.002 0.2 0.002

10 Q10_CH4OXID 1 4 1.9

11 K_M_UNSAT 0.00005 0.005 0.0005

12 VMAX_OXID_UNSAT 1.25e-7 1.25e-5 1.25e-6

13 SCALE_FACTOR_AERE 0.2 2 1

14 NONGRASSPOROSRATIO 0.2 0.5 0.33

15 POROSMIN 0.01 0.2 0.05

16 ROB 2 4 3

17 UNSAT_AERE_RATIO 0.1 0.25 0.1667

18 VGC_MAX 0.05 0.3 0.15

19 SCALE_FACTOR_GASDIFF 1 5 1

20 ATMCH4 1.7e-7 1.7e-5 1.7e-6

21 MINO2LIM 0.1 0.3 0.2
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Table 2. Parameters that are sensitive for most observation sites (out of 16).

Parameter ID Parameter name # sensitive sites

1 Q10CH4 16

2 F_CH4 16

7 VMAX_CH4_OXID 16

13 SCALE_FACTOR_AERE 16

9 K_M_O2 15

15 POROSMIN 14

16 ROB 11

8 K_M 10

17 UNSAT_AERE_RATIO 10

10 Q10_CH4OXID 9

21 MINO2LIM 9
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Table 3. Parameters that are least sensitive for observation sites (out of 16).

Parameter ID Parameter name # insensitive sites

3 REDOXLAG 16

4 OXINHIB 16

5 PHMAX 16

6 PHMIN 16

14 NONGRASSPOROSRATIO 16

18 VGC_MAX 16

20 ATMCH4 15

11 K_M_UNSAT 13

19 SCALE_FACTOR_GASSDIFF 13

12 VMAX_OXID_UNSAT 10

36



Table 4. Default and optimized parameter values of optimization trials T1, T2, and T3 for the 5-dimensional

pseudo data case. We report four decimal places because the model output is sensitive to very small changes for

some variables. Note that we scaled the numbers to the interval [0,1].

Param. Default T1 T2 T3

1 0.1100 0.1088 0.1099 0.1091

2 0.5333 0.5366 0.5385 0.5458

7 0.0909 0.0912 0.0943 0.0967

13 0.4444 0.4461 0.4454 0.4443

21 0.5000 0.4936 0.4934 0.4856

RMSE 0 0.28 0.46 0.40
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Table 5. Default and optimized parameter values of optimization trial T3 and parameter values for the point CP

that was sampled during the same optimization trial and that is closer to the default point, but that has a worse

objective function value (11-dimensional pseudo data case).

Param. Default T3 CP

1 0.1100 0.1148 0.1148

2 0.5333 0.5806 0.5806

7 0.0909 0.1336 0.1336

8 0.0909 0.1785 0.1785

9 0.0909 0.1248 0.1248

10 0.3000 0.4375 0.4302

13 0.4444 0.7107 0.7107

15 0.2105 0.1778 0.1778

16 0.5000 0.9583 0.9583

17 0.4444 0.2740 0.2740

21 0.5000 0.4436 0.4583

RMSE 0 2.28 2.35

38



Table 6. Default and optimized parameter values of optimization trials T1, T2, and T3 for the 5-dimensional

real data case. Bold indicates optimized parameters that are on (or close to) the variable boundary (all variables

are scaled to [0,1]).

Param. Default T1 T2 T3

1 0.1100 0 0 0

2 0.5333 0.1705 0.1747 0.1699

7 0.0909 0.7878 0.7518 0.7865

13 0.4444 0 0 0.0267

21 0.5000 1 1 1

RMSE 156.40 114.24 114.11 114.24
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Table 7. Default and optimized parameter values of optimization trials T1, T2, and T3 for the 11-dimensional

real data case. Bold indicates optimized parameters that are on the variable bound (all variables are scaled to

[0,1]).

Param. Default T1 T2 T3

1 0.1100 0 0 0

2 0.5 333 0.4220 0.3298 0.3813

7 0.0909 0.7093 0.6889 0.7260

8 0.0909 1 1 0.9754

9 0.0909 0 0.2335 0.6971

10 0.3000 0.7702 0.6195 0.6195

13 0.4444 1 1 0.8063

15 0.2105 0.6987 1 1

16 0.5000 0.0865 0.4274 0.2473

17 0.4444 0.8543 0.3113 0.5359

21 0.5000 0.5064 0.7449 0.5586

RMSE 164.46 107.24 107.58 107.41
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Table 8. Unweighted RMSE values for each site using the best parameters found during optimization trial T1

of the d= 11 real data case and trial T2 of the d= 5 real data case and with default parameter values.

Site Name Unweighted RMSE d= 5 Unweighted RMSE d= 11 Unweighted RMSE default

1 Alberta 220.34 203.82 209.25

2 Florida 1247.70 1280.29 1180.99

3 Michigan 334.01 337.51 328.10

4 Minnesota 41.05 35.16 34.31

5 Nanjing 97.88 96.14 212.18

6 Vercelli 325.34 326.04 293.36

7 Texas 179.21 139.09 116.85

8 Japan 132.31 161.22 184.88

9 California 372.71 374.59 360.37

10 New Delhi 18.67 19.96 14.21

11 Beijing 66.79 60.89 56.99

12 Java 49.09 54.61 221.52

13 Chengdu 231.93 241.91 198.42

14 Cuttack 72.01 63.75 364.75

15 Panama 446.83 464.59 422.86

16 Salmisuo 156.79 132.16 146.52

Total RMSE 3792.66 3991.73 4345.56
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Table B1. Wetland site data. P = precipitation, T = temperature
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Table B2. Rice paddy site data
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Table C1. Parameter names, descriptions, ranges, and literature references

Number Parameter Description Units Range References

1 q10ch4 Q10 for methane produc-

tion

unitless 1 - 10 Dunfield et al. (1993); Walter and Heimann (2000); Ri-

ley et al. (2011)

2 f_ch4 Ratio of CH4 production to

total C mineralization

unitless 0.05 - 0.5 Wania et al. (2010); Zhang et al. (2002); Zhu et al.

(2013), Effective value will depend on temperature, re-

dox and pH but cannot exceed 50% based on stoichiom-

etry (Bill Riley, personal communication)

3 redoxlag Number of days to lag for

production

days 15 - 45 Meng et al. (2012); Conrad (2002); Cheng et al. (2007)

4 oxinhib Inhibition of methane pro-

duction by oxygen

m3/mol 200 - 600 Arah and Stephen (1998); Riley et al. (2011)

5 pHmax Maximum pH for methane

production

unitless 8 -10 Cao et al. (1996); Zhang et al. (2002); Zhuang et al.

(2004); Meng et al. (2012)

6 pHmin Minimum pH for methane

production

unitless 2 - 4 Cao et al. (1996); Zhang et al. (2002); Zhuang et al.

(2004); Meng et al. (2012)

7 vmax_ch4_oxid Oxidation rate constant mol/m3-w/s 1.25e-6 - 1.25e-4 Riley et al. (2011); Walter and Heimann (2000); Dun-

field et al. (1993); Knoblauch (1994)

8 k_m Michaelis-Menten oxida-

tion rate constant for CH4

conc.

mol/m3-w 5e-4 - 5e-2 Segers and Kengen (1998); Walter and Heimann

(2000); Riley et al. (2011)

9 k_m_o2 Michaelis-Menten oxida-

tion rate constant for O2

conc.

mol/m3-w 0.002 - 0.2 Segers (1998); Walter and Heimann (2000); Riley et al.

(2011)

10 q10_ch4oxid Q10 oxidation constant unitless 1 - 4 Meng et al. (2012); ?); Walter and Heimann (2000); Zhu

et al. (2013); Zhang et al. (2002)

11 k_m_unsat Michaelis-Menten oxida-

tion rate constant for CH4

conc. in upland areas

mol/m3-w 5e-5 - 5e-3 Whalen and Reeburgh (1996); Bender and Conrad

(1992); Riley et al. (2011)

12 vmax_oxid_unsat Oxidation rate constant in

upland areas

mol/m3-w/s 1.25e-7 - 1.25e-5 Whalen and Reeburgh (1996); Bender and Conrad

(1992); Riley et al. (2011)

13 scale_factor_aere Scale factor on the

aerenchyma area

unitless 0.2 - 5 Riley et al. (2011)

14 nongrassporosratio Ratio of root porosity in

non-grass to grass

unitless 0.2 - 0.5 Colmer (2003)

15 porosmin Minimum aerenchyma

porosity

unitless 0.01 - 0.2 Colmer (2003); Cronk and Fennessy (2001)

16 rob Ratio of root length to verti-

cal depth ("root obliquity")

unitless 2 - 4 Arah and Stephen (1998); Riley et al. (2011). This pa-

rameter is poorly constrained.

17 unsat_aere_ratio Ratio to multiply upland

vegetation aerenchyma

porosity by compared to

inundated systems

unitless 0.1 - 0.25 Not available in literature. The reasonable range could

be between 0.1 and 0.25. Meng et al. (2012) used this

range for sensitivity.

18 vgc_max Ratio of saturation pressure

triggering ebullition

unitless 0.05 - 0.3 Kellner et al. (2006); Baird et al. (2004)

19 scale_factor_gasdiff Scale factor for gas diffu-

sion

unitless 1 - 5 Range not available. Reasonable range is 1-5 for sensi-

tivity analyses.

20 atmch4 Atm. CH4 mixing ratio to

prescribe

mol/mol 1.7e-7 - 1.7e-5 Range not available. Variable range; global average is

≈ 1.7e− 6

21 mino2lim Min. anaerobic decomposi-

tion rate as a fraction of po-

tential aerobic rate

unitless 0.05 - 0.45 Range not available in the literature. The default value

(0.2) is from Riley et al. (2011). The reasonable range

could be between 0.05 and 0.45 to adjust effect of

anoxia on decomposition rate (used to calculate sea-

sonal inundation factor). The range is considered based

on knowledge.
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Table D1. ID, name of observation sites, and associated weights for real data and pseudo data case (equation (1)

of the main document)

ID Location wi real data wi pseudo data

1 Alberta 0.0327 0.0656

2 Florida 0.0078 0.0067

3 Michigan 0.0280 0.1599

4 Minnesota 0.0938 0.0783

5 Nanjing 0.0566 0.0149

6 Vercelli 0.0198 0.0382

7 Texas 0.0267 0.0189

8 Japan 0.0441 0.0153

9 California 0.0421 0.0684

10 New Delhi 0.2787 0.1707

11 Beijing 0.1053 0.1189

12 Central Java 0.0810 0.0143

13 Chengdu 0.0283 0.0571

14 Cuttack 0.0968 0.0104

15 Panama Swamp 0.0177 0.0795

16 Salmisuo 0.0405 0.0827

45



0 200 400 600 800
10

−1

10
0

10
1

10
2

Number of function evaluations

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
  
  

 

 

T1 min RMSE: 0.28
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Figure 1. Progress plot that shows the development of the best objective function value found versus the number

of function evaluations for the pseudo data case with d= 5 parameters for optimization trials T1, T2, and T3.

The legend shows the lowest RMSE value found in each trial.
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Figure 2. Progress plot that shows the development of the best objective function value found versus the number

of function evaluations for the pseudo data case with d= 11 parameters for optimization trials T1, T2, and T3.

The legend shows the lowest RMSE value found in each trial.
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Figure 3. CLM4.5bgc CH4 predictions when using the default parameter values versus the predictions when

using the best solution found in each of the three optimization trials T1, T2, and T3, respectively, for the pseudo

data case with d= 11 parameters. The legend shows the lowest RMSE value found in each trial.
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Figure 4. Progress plot that shows the development of the best objective function value found versus the number

of function evaluations for the real data case with d= 5 parameters for optimization trials T1, T2, and T3. The

legend shows the lowest RMSE value found in each trial. The first function evaluation (left side of the graphs)

corresponds to the RMSE when using the default parameters.
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Figure 5. CH4 emission observations and predictions when using the optimized parameters of optimization

trials T1, T2, and T3, respectively, and when using the default parameters for the wetland site Alberta, Canada,

for the real data case with d= 5 parameters. The legend shows the lowest RMSE value found in each trial.
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Figure 6. CH4 emission observations and predictions when using the optimized parameters of optimization

trials T1, T2, and T3, respectively, and when using the default parameters for the rice paddy site Central Java,

Indonesia, for the real data case with d= 5 parameters. The legend shows the lowest RMSE value found in

each trial.
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Figure 7. Progress plot that shows the development of the best objective function value found versus the number

of function evaluations for the real data case with d= 11 parameters for optimization trials T1, T2, and T3. The

legend shows the lowest RMSE value found in each trial. The first function evaluation (left side of the graphs)

corresponds to the RMSE when using the default parameters.
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Optimized T1: 203.82
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Figure 8. CH4 emission observations and predictions when using the optimized parameters of optimization

trials T1, T2, and T3, respectively, and when using the default parameters for the wetland site Alberta, Canada,

for the real data case with d= 11 parameters. The legend shows the lowest RMSE value found in each trial.

53



2001.8 2001.85 2001.9 2001.95 2002 2002.05 2002.1 2002.15
0

50

100

150

200

250

300

350

400

year

C
H

4

 

 

Observations

CLM default: 221.52

Optimized T1: 54.61

Optimized T2: 48.31

Optimized T3: 43.40

Figure 9. CH4 emission observations and predictions when using the optimized parameters of optimization

trials T1, T2, and T3, respectively, and when using the default parameters for the rice paddy site Central Java,

Indonesia, for the real data case with d= 11 parameters. The legend shows the lowest RMSE value found in

each trial.

54



1993.4 1993.5 1993.6 1993.7 1993.8 1993.9 1993.4 1993.5 1993.6 1993.7
0

50

100

150

200

250

300

350

400

year

C
H

4

 

 

Observations
CLM default: 146.52
Optimized T1: 132.16
Optimized T2: 124.36
Optimized T3: 118.91

Figure 10. CH4 emission observations and predictions when using the optimized parameters of optimization

trials T1, T2, and T3, respectively, and when using the default parameters for the wetland site Salmisuo, Finland,

for the real data case with d= 11 parameters. The legend shows the lowest RMSE value found in each trial.
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Figure 11. Scatterplot showing the mean values of the CH4 predictions using the default and optimized param-

eter values of trials T1, T2, and T3, respectively, versus the mean values of the observations. The numbers in the

legend show the best RMSE value corresponding to each trial. The numbers above/below the boxes indicate the

observation site ID (1-Alberta, 2-Florida, 3-Michigan, 4-Minnesota, 5-Nanjing, 6-Vercelli, 7-Texas, 8-Japan,

9-California, 10-New Delhi, 11-Beijing, 12-Central Java, 13-Chengdu, 14-Cuttack, 15-Panama, 16-Salmisuo).
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Figure 12. Average methane emissions (mg CH4m−2 d−1) simulated by CLM4.5bgc for (a) default parameters,

(b) differences between default parameters and 11-dimensional optimization trial T1, (c) differences between

default parameters and optimization trial with unweighted sum of RMSE, and (d) differences between default

parameters and optimization trial with zonally weighted sum of RMSE. Zonal means are shown on the right

side of each spatial plot.
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Figure 13. Comparison of total methane emissions (Tg CH4 yr−1) between CLM4.5bgc and other models

from natural wetlands. 1: Matthews and Fung (1987), 2: Aselmann and Crutzen (1989), 3: Bartlett et al. (1990),

4: Bartlett and Harriss (1993), 5: Cao et al. (1996), 6: Walter et al. (2001), 7: Bousquet et al. (2006), 8: Bloom

et al. (2010), 9: CLM4Me, Riley et al. (2011), 10: CLM4Me’, Meng et al. (2012), 11: This study, CLM4.5bgc

with default parameters, 12: This study, CLM4.5bgc with d= 11 optimized parameters of T1, 13: This study,

CLM4.5bgc with d= 11 optimized parameters of unweighted sum of RMSE, and 14: This study, CLM4.5bgc

with d= 11 optimized parameters of zonally weighted RMSE. Note that number 7 is a top-down approach and

number 9 may include the rice paddy emissions. For number 8, no data was available for the tropics and the

temperate zone.
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