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Replies to Anonymous Referee #1 

 

Authors are grateful to the Referee #1 for his/her precious suggestions and comments. Below, please find the 
changes to the text and replies for each issue raised. 

 

Some issues should be better focused, with a more extended discussion:  

1) runoff for unsaturated soils (pag. 1227, line 23), a discussion could be usefull with reference to the 
suction-runoff dependence highlighted by Cuomo and Della Sala (2013, Eng. Geol. Journal) and similar 
contributions.  

Following referee’s suggestion, we propose to modify the text as specified below. 

At page 1227, line 20, after “evapo-transpiration and runoff processes”, insert: “The combination of rainfall 
infiltration and runoff may cause different types of mass-movements (either slope failure or erosion 
processes) depending on the intensity and duration of the rainfall and the values of soil suction (Cuomo and 
Della Sala, 2013)”. 

At page 1231, line 12: at the end of the sentence “..looks less important.” please add “In addition, as 
underlined by Cuomo and Della Sala (2013), among other authors, in unsaturated shallow deposits, time to 
runoff, time to failure and runoff rates strongly depend on soil water characteristic curves, soil initial 
conditions, rainfall intensity and slope angle. Moreover, soil mechanical parameters affect the time to failure 
that can result either shorter or longer than time to runoff.”  

 

2) definition of "medium-scale" landslides is not provided. Do you mean medium-size landslide or what? 
Please refer to any landslide classification for basic definitions.  

Actually, we meant a medium-size landslide (all the occurrences in the text have been accordingly modified).  

In addition, by following Hutchinson’s proposal (1995), the “deep-seatedness” of the case study could be 
classified as “intermediate” (being the estimated maximum vertical depth of the surface of rupture from the 
ground surface, Vmax, equal to ca. 25 m). 

At page 1244, lines 15-18: please change “The rock slide shows a medium-scale size (maximum width = 200 
m, length > 650 m), and involves Late Miocene conglomerate..” into “The rock slide is of medium-size 
(maximum width = 200 m, length > 650 m, estimated maximum vertical depth = 25 m), with a deep-
seatedness factor (sensu Hutchinson, 1995) that may be classified as “intermediate”. It involves Late 
Miocene conglomerate..” 

Page 1226, line 15: replace “medium-scale” with “medium-size”. 

Page 1228 line 22: replace “medium-scale” with “medium-size”. 

Page 1245, line 20: replace “medium-depth” with “medium-size”. 

Page 1245, line 26: replace “medium-scale” with “medium-size”. 

Page 1249, line 5: replace “medium-scale” with “medium-size”. 



Page 1250, line 13: replace “medium-depth” with “medium-size”. 

 

3) a special characteristic of shallow soil covers in Campania region is not much evidenced: that is the 
unsaturated conditions of soils, whose suction is seasonally variable. For this issue, you can summarise the 
main results of Cascini et al. (2014, Landslides) about the seasonal effects of rainfall and soil suction for 
slope stability 

At page 1241, after line 23, please insert the following sentence: 

Rainfall-induced shallow landslides are widespread in the pyroclastic soils covering the slopes of the study 
area. Among the various factors affecting the spatial distribution and the type of slope instability, Cascini et 
al. (2014) pointed out that both the rainfall conditions and the consequent seasonal variations of soil suction 
play a significant role. In particular, when suction is low and frontal rainfall occurs (from November to May) 
first time shallow landslides are triggered; when suction is high or very high and convective or hurricane-
type rainfall occurs (from June to October) mostly erosion phenomena occur, often turning into 
hyperconcentrated flows.  

 

At page 1242, line 25, please insert the following sentence 

Shallow landslides listed in Table 1 occurred between November and March, a period characterised by a 
medium to low suction range and included in the rainy season (October to April) according to Cascini et al. 
(2014). The same Authors pointed out that, in this period, frontal rainfall typically occurs and may trigger 
widespread first-time shallow landslides later propagating as debris flow or debris avalanches. 
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Replies to Anonymous Referee #2 

Authors are grateful to the Referee #2 for his/her comments and interesting suggestions. Below, please find 
our replies to each issue raised, and the proposed changes to the text.  

 

1) First, the adopted fitness definition deserves a more robust discussion and motivation in the manuscript. 
Moreover, the authors should mention if they performed an investigation on alternative metrics. In fact, 
according to the literature, the adopted fitness can significantly affect the results of calibration procedures, 
both in terms of achieved maximum and potential overfitting (which affects validation accuracy). 

We agree with the Referee, and propose to extend the discussion on the adopted fitness, also providing an 
example of computation, by including the following sentences.  

Page 1240, after line 4:  
“For instance, if two dates of activation are available, the obtained fitness is Фu = 1 + ½ = 1.5 if both are well 
captured by the mobility function (i.e. they correspond to the highest peaks). On the other hand, in case only 
one of the dates is captured and the remaining one ranks fifth, Фu = 1 + ⅕ = 1.2.” 

Page 1252, after line 10:  
“In this study, a 2-steps efficiency criterion was employed: the relative position of the peaks of the mobility 
function with respect to the dates of landslide activation was first considered, and the fitness computed. 
Based on the value of ΔZcr, the obtained solutions were further ranked. Average, synthetic filter functions can 
then be computed by selecting the best 100 kernels for successive validation purposes. Alternative metrics 
(cf., among the others, Krause et al., 2005) for the fitness function are being tested. However, due to 
uncertainties concerning input data (i.e. rainfall and dates of landslide activation), the adoption of 
sophisticated techniques does not sound very promising. In addition, problems of over-fitting may depend on 
both data uncertainties and number of parameters. Commonly, kernels characterized by a complex pattern 
(and then by many parameters) are needed for simulating groundwater dynamics (Pinault et al., 2001). 
Nevertheless, more complex kernels do not necessarily imply higher predictive uncertainties (Fienen et al., 
2010; Long, 2015). Still, the adopted discrete approach allows focusing only on the timing of the peaks of 
the mobility function, thus somehow relieving the computational effort. Due to the cited uncertainties in 
input data, a “temporal window” was in fact employed to help matching dates of activation with the peaks of 
the mobility function. Further attempts of defining the fitness function by different metrics, and the analysis 
of its effects on calibration and validation, are being considered against another case study (San Benedetto 
Ullano, in Calabria, Southern Italy), whose mobility phases have been recently monitored by the same 
authors (Iovine et al., 2010; Capparelli et al., 2012).” 

 

2) As for the family of “optimal kernels”, my advice is to better explain such a concept. 
In fact, a single-objective GA typically provides a single optimal (or “best”) individual, thus the mentioned 
concept of “family of optimal kernels” provided by the procedure can confuse the reader. 

The same applies to the concept of “average kernels” introduced in section 5. Currently, the reader has to 
struggle to understand why the authors average kernels when they have a “best kernel”, or what is the origin 
of the 100 averaged kernels. 

 

We agree with the Referee, but up to date - in the performed experiments related to real case studies - we 
never got a single “best solution” much better than the rest. Commonly, a set of optimal solutions with 
rather similar fitness were instead obtained. That is why we chose to average a number of individuals to 
synthetize the kernel to be used for validation. Accordingly, we propose to extend the discussion both on the 
family of optimal kernels and on the average kernel, by including the following period. 

Page 1241, after line 6: 
“Differently from what usually experienced in rainfall-runoff models, GASAKe therefore provide multiple 



equivalent solutions - i.e. a number of optimal kernels with same fitness, Фu, despite different shapes. This 
may depend on the limited number of available dates of activations, and on other noises in input data (e.g. 
rain gauges located too far from the site of landslide activation; inaccurate information on dates of activation 
or on the phenomenon). The adoption of synthetic kernels – e.g. obtained by averaging a suitable set of 
optimal kernels – allows to synthetize the family of results for successive practical applications: in this work, 
the best 100 kernels obtained for each case study were in fact utilized to synthetize average kernels to be 
employed for validation purposes.” 

 

3) Also, in section 6, it is not clear why the progressive calibration procedure was also labelled as “self-
adaptive”. 

The term “self-adaptive” was actually used to stress the ability of the model to react to input changes, such 
as new dates of landslide activations and more prolonged rainfall series. This feature represents a major 
advantage of the model. In particular, the self-adaptive procedure of progressive calibration was performed 
by considering an increasing number of dates of activation to mimic the adoption of the model in a landslide 
warning system. Obtained results underlined how GASAKe easily self-adapt to external changes by optimizing 
its performances with increasing fitness values. To better explain the above issues, we would propose to 
modify the manuscript as follows.  

Page 1248, line 5, replace “simulate the occurrence of known landslide activations” with “to react and self-
adapt to input changes, like new dates of landslide activation,”.  

Page 1248, line 7, replace “In particular,” with “To simulate the adoption of GASAKe in a landslide warning 
system,”. 

Page 1251, line 5, at the end of the sentence, please add: “Accordingly, the results of the progressive 
procedure underlined how GASAKe can easily self-adapt to external changes by optimizing its performances, 
providing increasing fitness values”.  
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ABSTRACT 
GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is 
based on Genetic-Algorithms and allows to obtaining thresholds of landslide activation from the set 
of historical occurrences and from the rainfall series. 
GASAKe can be applied to either single landslides or set of similar slope movements in a 
homogeneous environment. Calibration of the model is based on Genetic Algorithms, and provides 
for families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting 
from these latter, the corresponding mobility functions (i.e. the predictive tools) can be obtained 
through convolution with the rain series. The base time of the kernel is related to the magnitude of 
the considered slope movement, as well as to hydro-geological complexity of the site. Generally, 
smaller values are expected for shallow slope instabilities with respect to large-scale phenomena. 
Once validated, the model can be applied to estimate the timing of future landslide activations in the 
same study area, by employing recorded or forecasted rainfall series.  
Example of application of GASAKe to a medium-size slope movement (the Uncino landslide at San 
Fili, in Calabria, Southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, 
Campania, Southern Italy) are discussed. In both cases, a successful calibration of the model has 
been achieved, despite unavoidable uncertainties concerning the dates of landslide occurrence. In 
particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the 
model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e. neither missing 
nor false alarms) has been achieved against 5 activations. As for temporal validation, the 
experiments performed by considering the extra dates of landslide activation have also proved 
satisfactory. 
In view of early-warning applications for civil protection purposes, the capability of the model to 
simulate the occurrences of the Uncino landslide has been tested by means of a progressive, self-
adaptive procedure. Finally, a sensitivity analysis has been performed by taking into account the 
main parameters of the model.  
The obtained results are quite promising, given the high performance of the model obtained against 
different types of slope instabilities, characterized by several historical activations. Nevertheless, 
further refinements are still needed for applications to landslide risk mitigation within early-warning 
and decision-support systems. 
 
Key words: hydrological model, rainfall threshold, landslide triggering, genetic algorithm 
 



1 INTRODUCTION 
A nationwide investigation, carried out by the National Geological Survey, identified approximately 
5×105 slope movements in Italy, an average of 1.6 failures per square kilometre (Trigila, 2007). 
According to other investigations, this figure would rather be a lower estimate (cf. Servizio 
Geologico, Sismico dei Suoli, 1999; Guzzetti et al., 2008). In the period 1950–2009, at least 6349 
persons were killed, went missing, or were injured by landslides, with an average of 16 harmful 
events per year, thus confirming the notable risk posed to population (Guzzetti, 2000; Salvati et al., 
2010).  
Petley (2008) estimated that about 90% of worldwide casualties can be attributed to landslides 
triggered by rainfall. With reference to the Italian territory, about 70% of landslides result to be 
triggered by rainfall (cf. CNR-GNDCI AVI Project, Alfieri et al., 2012).  
In more general terms, slope instability conditions are influenced by rainfall that, allowing 
infiltration into the slopes, cause temporary changes in groundwater dynamics (Van Asch et al., 
1999). Actually, rainfall infiltrates the slopes only partially, the remaining aliquots being involved 
into evapo-transpiration and runoff processes. The combination of rainfall infiltration and runoff 
may cause different types of mass-movements (either slope failure or erosion processes) depending 
on the intensity and duration of the rainfall and the values of soil suction (Cuomo and Della Sala, 
2013). Concentration of water deriving from either contemporary or antecedent storms at specific 
sites plays a major role in triggering landslides – as testified by slope instabilities that commonly 
follow the heaviest phases of rainfall events.  
To model the relationships between rainfall and landslide occurrence, two distinct approaches are 
generally adopted in literature. The first, “complete” or “physically-based”, attempt to determine 
the influence of rainfall on slope stability by modelling its effects in terms of overland flow, 
groundwater infiltration, pore pressures and related balance of shear stress and resistance (cf. e.g. 
Montgomery and Dietrich, 1994; Wilson and Wieczorek, 1995; Crosta, 1998; Terlien, 1998; Crosta 
et al., 2003; Pisani et al., 2010). At this latter purpose, numerical models are employed, and a 
notable (and expensive) amount of detailed data is commonly required to define the geological 
scheme of the slope in litho-structural, hydrogeological, morphologic and geotechnical terms. The 
second approach (adopted in the present study), named “empirical” or “hydrological” (Cascini and 
Versace, 1988), is based on a statistical-probabilistic analysis of rainfall series and of dates of 
occurrence of landslide activation (see, among the others, Campbell, 1975; Caine, 1980; UNDRO, 
1991; Sirangelo and Versace, 1996; Guzzetti et al., 2007; 2008, Brunetti et al. 2010, Gariano et al., 
2015). Methodological examples in literature generally focus on thresholds obtained for i) single 
phenomena or ii) given types of slope movements within a homogeneous geo-environmental setting 
(cf. e.g. Jakob and Weatherly, 2003). 
In this study, the hydrological model GASAKe (i.e., the Genetic-Algorithm based release of the 
model Self Adaptive Kernel) to forecast the triggering of slope movements is described. The model 
can be applied to either single landslides or to a set of similar phenomena within a homogeneous 
study area. Model calibration is performed by means of Genetic Algorithms: in this way, a family of 
optimal, discretized kernels can iteratively be obtained from initial tentative solutions. In another 
release of the model (CMSAKe – i.e., Cluster model SAKe) the calibration could instead be 
performed through an iterative procedure (Terranova et al., 2013).  
Examples of application of the model to a medium-size landslide (the Uncino landslide at San Fili) 
and to shallow slope movements in the Sorrento Peninsula are discussed in the following sections. 
Temporal validation is discussed for both cases, in view of early-warning applications of GASAKe 



for Civil Protection purposes. Moreover, a progressive, self-adaptive procedure of calibration and 
validation is discussed, by considering the Uncino case study, to verify changes in fitness, 
predictive ability and base time when an increasing number of dates of activation is employed. In 
addition, the results of preliminary, parametric analyses are presented, aimed at investigating the 
role of the main parameters of the model.  
 
2 BACKGROUND 
Physical systems evolve in time due to their own inner dynamics and/or as a consequence of 
external causes. Suitable observational tools can be employed to monitor their evolution. They can 
be arranged to promptly send reports or warnings to the authorities of civil protection to support the 
management of emergencies (Cauvin et al., 1998; for applications to landslides, cf. also Keefer et 
al., 1987; Iovine et al., 2009; Capparelli and Versace, 2011; Pradhan and Buchroithner, 2012).  
In the case of complex systems (e.g. nuclear power stations, telecommunication networks, etc.), 
many parameters, in part interdependent, have to be monitored. Missing an automated phase of 
analysis and proper filtering, a great number of reports may be delivered by the monitoring 
apparatus in few seconds. At this purpose, the concepts of threshold (Carter, 2010), event and 
warning must therefore be suitably defined. 
Regarding slope movements, the notions of threshold and warning have long been investigated. In 
particular, a threshold constitutes a condition - generally expressed in quantitative terms or through 
a mathematical law - whose occurrence implies a change of state (White et al., 1996). According to 
the ALARM study group (Cauvin et al., 1998), an event is i) a portion of information extracted 
from either continuous or discrete signals (i.e. a significant variation), transmitted by a component 
of the monitoring network; or ii) a set of data concerning the considered context (e.g. restorations, 
actions, observations). According to such definition, an event must be instantaneous and dated. As 
for warning, its definition derives from that of event: it is a discrete indicator aimed at triggering a 
human or an automated reaction. The warning can be classified into distinct levels (e.g. in terms of 
security) or by type (e.g. related to a distinct component of the dynamic system under 
consideration), to be transmitted by the monitoring system.  
In complex systems, causal factors responsible for emergency conditions may be difficult to 
identify. Therefore, warnings may be issued according to pre-fixed thresholds related to suitable 
physical properties of the system. In these cases, the timing of data sampling of the monitoring 
instruments should be progressively adapted to the evolution of the phenomenon. A further issue 
concerns the chances of missing alarms and of false alarms, as well as the camouflage of an alarm 
among simultaneous others.  
In physical terms, slope instability can occur when the shear strength gets lower than a given 
threshold (Terzaghi, 1962). Rain infiltration may temporarily change the dynamics of ground water 
(Van Asch et al., 1999): due to an increase in pore water pressure, the effective shear strength of the 
material decreases, and a slope movement can be triggered.  
Groundwater may reach a given location within the slope by different paths. The main natural 
mechanisms include: i) surface flow, strongly influenced by morphology; ii) direct infiltration from 
the surface; iii) flow within the soil mantle (throughflow) from upslope and sideslopes; iv) seepage 
from the bedrock toward the overlying colluvium. The length of the different paths may be quite 
different, and characterized by distinct velocities: as a consequence, aliquots of the same rainfall 
event may reach a given site at different times, variously combining with other groundwater 
amounts (Ellen, 1988). 



Aiming at applying a hydrological approach, empirical relations have to be determined by means of 
thresholds to distinguish among conditions which likely correspond to landslide occurrence or not. 
To this aim, different hydrological parameters can be selected (Guzzetti et al., 2007; 2008 and 
http://rainfallthresholds.irpi.cnr.it/): the cumulative rain recorded in a given temporal window 
(hours/days/months) before landslide activation; the average rain intensity in the same temporal 
window; normalized rains to reference values (e.g. annual averages). Simplified hydrological 
balances can also be adopted in empirical approaches, by considering losses of aliquots of rains by 
run-off, evapo-transpiration, etc.  
As concerns superficial landslide, triggering thresholds can be derived from relations between the 
“triggering” rain (daily, hourly or shorter), corresponding to the onset of the slope movement, and 
the cumulative rain in an antecedent period (usually, few days to two weeks before landslide 
activation) (e.g. Campbell, 1975; Cannon and Ellen, 1985; Wieczorek, 1987; Terlien, 1996; Crosta, 
1998; Zêzere and Rodrigues, 2002). In other cases, thresholds refer to relations between rain 
intensity, I, and duration, D, (e.g., Brunetti et al., 2010, Berti et al., 2012, Peres and Cancelliere, 
2014). In some studies, antecedent rains were also considered, allowing to obtain better results (e.g. 
Campbell, 1975). Larger amounts of antecedent rain should allow slope movements to be activated 
by less severe triggering storms. In general, a direct relationship between antecedent rain and 
landslide dimension can be observed (Cascini and Versace, 1986); though, in some peculiar 
conditions (e.g. Hong Kong case studies, caused by suction reduction - Brand et al., 1984) this is 
not the case, and the role of antecedent rains looks less important. In addition, as underlined by 
Cuomo and Della Sala (2013), among other authors, in unsaturated shallow deposits, time to runoff, 
time to failure and runoff rates strongly depend on soil water characteristic curves, soil initial 
conditions, rainfall intensity and slope angle. Moreover, soil mechanical parameters affect the time 
to failure that can result either shorter or longer than time to runoff. 
Difficulties in hydrological modelling of landslides generally increase, due to physical and 
economic issues, when dealing with deeper and larger phenomena (Cascini and Versace, 1986). In 
such cases, landslide activation depends on the dynamics of deeper groundwater bodies. By the 
way, it is not by chance that most studies do refer to small and superficial slope movements. Large 
slope movements usually show complex relationships with rains, as different groundwater aliquots 
may combine and reach the site of landslide triggering. Depending on type (cf. dimension, material, 
kinematics, etc.), different hydrological mechanisms should be considered, thus limiting the 
possibility of generalization of the thresholds (Dikau and Schrott, 1999; Corominas, 2001; Marques 
et al., 2008). Again, the mobilization of deeper phenomena commonly requires greater rainfall 
amounts with respect to shallow landslides, spanned over longer periods (Aleotti, 2004; Terranova 
et al., 2004; Guzzetti et al., 2007; 2008;). In these cases, rain durations responsible for landslide 
activations commonly range from ca. 30 days to several months, even beyond a single rainy season 
(Brunsden, 1984; Van Asch et al., 1999; Gullà et al., 2004; Trigo et al., 2005). 
To analyse the triggering conditions of slope movements – either shallow or deep-seated – a 
modelling approach can be employed that is based on the threshold concept. For landslides (e.g. 
Aleotti, 2004; Wieczorek and Glade, 2005; Terranova et al., 2004; Vennari et al., 2014), empirical 
thresholds can be expressed in terms of curves, delimiting the portion of the Cartesian plane which 
contains “all and only” the hydrological conditions related to known activations (cf. e.g. the I-D 
chart proposed by Caine, 1980). A further improvement to this approach can be obtained by 
considering hydrological conditions not related to landslide activations (Crozier, 1997; Sengupta et 
al., 2010; Gariano et al., 2015).  



In general, no changes of state are assumed to occur below the threshold (zt), while they do happen 
above it. Alternatively (Crozier, 1997), a range of conditions can be defined, delimited by:  
 a lower threshold (zlow), below which changes of state do never occur, and  
 an upper threshold (zupp), above which changes always happen.  

For values between zupp and zlow, a probability of state change can be defined, essentially depending 
on i) the incompleteness of knowledge on the physical process under investigation, and ii) the 
incapacity of the model to fully replicate the behaviour of the same process. In probabilistic terms: 

P(Et)  = 0 for z(t) < zlow 
P(Et) = 1 for z(t) > zupp 
P(Et) = G[z(t)] for zlow ≤ z(t) ≤ zupp 

(1)

in which: P is the probability of occurrence (1=success, 0=unsuccess); Et is a process (succession of 
events) whose states change with time t; z(t) is the value assumed, at time t, by the variable that 
determines the change of state; zlow and zupp are the minimum and maximum thresholds, 
respectively; G[z(t)] is a probability function, monotonically increasing with t in the range ]0,1[. 
In hydrological models, to express the influence of rainfalls on runoff and groundwater dynamics, a 
“kernel” (also named “filter function”) can be employed, usually defined in terms of simple, 
continuous analytical functions (Chow et al., 1988). In such a way, suitable weights can be assigned 
to the precipitations occurred in the last hours/days before a given geo-hydrological process (e.g. 
discharge, measured at a generic river cross section; landslide activation), as well as to earlier rains 
recorded weeks/months before. The following types of kernels are among the most utilized: Beta, 
Gamma, Nash, negative exponential distribution. Furthermore, in this type of models, the “base 
time” (tb) expresses a sort of memory with respect to rainfalls. For instance, in classic rainfall-
runoff modelling, tb defines the time of concentration, while in slope stability analyses it represents 
the time interval, measured backward from landslide activation, during which rainfall is deemed to 
effectively affect groundwater dynamics, contributing to destabilization.  
To modelling slope stability, both the shape and the base time of the kernel must be properly 
selected by considering type and dimension of the investigated phenomena, as well as geo-structural 
and hydrogeological characteristics. Unfortunately, in several real cases, the above-mentioned 
analytical functions may fail in capturing the complexity of groundwater dynamics properly, as well 
as the related landslide activations. In this respect, the adoption of discretized kernels, automatically 
calibrated through iterative computational techniques, may offer effective solutions. 
 
3 THE MODEL GASAKe 
GASAKe is an empirical-hydrological model for predicting the activation of slope movements of 
different types. It is based on a classic threshold scheme: the exceedance of the threshold 
determines a change of state, i.e. the triggering of the landslide. The scheme is inspired from the 
FLaIR model (Forecasting Landslides Induced by Rainfall), proposed by Sirangelo and Versace 
(1996): through changes of state in time, the variable z(t) assumes the meaning of “mobilization 
function”. In other terms, the values of z(t) depend on the amount of rain stored in the aquifer.  
In hydrology, rainfall-runoff modelling is commonly performed by adopting a linear, steady scheme 
(Chow et al., 1988). Such approach implies that the transformation of rainfall in runoff can be 
described by an integral of convolution between a unitary impulsive response of the basin – the 
kernel, h(t) – and the rainfall, p(t).  
The kernel (filter function) represents the unitary volume influx in an infinitesimal period, and is 
defined as: 



න ݄ሺݐሻ݀ݐ ൌ 1
ஶ


 (2)

in which h(t)=h(-t), h(t) ≥ 0, 	∀ݐ.  
In practical applications, the lower bound (t=0) corresponds to the beginning of the flood-wave 
rising, and the kernel assumes a finite duration (tb). The integral of convolution is therefore 
expressed as:  
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ൌ 	න ݄ሺ߬ሻ ݐሺ െ ߬ሻ݀߬

௧್


 (3)

in which z(t) represents the discharge at the time t. For a specific case study, the kernel can be 
determined by means of calibration procedures, by relating discharge measurements to rains.  
In discretized terms, the elements of the kernel are characterized by width Δt and height hi, and 
equation (3) can be written as: 

௨ݖ ൌ݄ ∙ ௨ିାଵ ∙ ݐ∆

௨

ୀଵ

 (4)

 
Sirangelo and Versace (1996) proved that the same approach may turn out promising also for slope-
stability modelling. Capparelli and Versace (2011) stressed that the I-D chart of Caine (1980) 
corresponds to a kernel defined by a power function ݄ሺݐሻ ൌ   , with b<0. The main difficulty inݐ	ܽ
exporting the well-established knowledge of rainfall-runoff modelling, usually based on many 
measurements, to rainfall-landslide modelling lies in the scarcity of adequate information for proper 
calibration. In the latter case, only few dates of activation are in fact commonly available (often 
with unsatisfactory details on location and phenomena), and the values of z(t) are unknown. From a 
mathematical point of view, such a problem can be handled by assuming that the timing of the 
maxima of z(t) corresponds to the dates of landslide activation. When studying the triggering 
conditions of landslides, calibration can be therefore performed by maximizing the mobilization 
function in correspondence of the dates of activation.  
Scarcity of information inevitably reflects on the resulting kernel, whose shape may turn out highly 
indeterminate: different functions, or different parameters of the same function, can in fact 
maximize z(t) in correspondence of the dates of mobilization. Model optimization – and its reliable 
utilization for early-warning purposes – can turn out an awkward issue.  
In this work, an innovative modelling approach – based on discretized kernels, automatically 
calibrated through iterative computational techniques – is proposed, which may help in facing the 
above-cited difficulties. For modelling purposes, the rainfall series and a coherent set of dates of 
landslide occurrence – either related to a given slope movement, or to a set of landslides of the same 
type in a homogeneous geo-environmental zone – must be given as input to GASAKe.  
Unfortunately, when dealing with the timing of occurrence, historical notices may refer either to 
portions of the considered phenomena or to entire landslide bodies. Therefore, dates should be 
properly selected to consider only consistent cases. Moreover, dates of activation are usually known 
with only a broad approximation: with respect to the reports, the actual timing of occurrence may be 
located backward (documents may assign a later date) or forward (in case of later, more relevant 
movements). For modelling purposes, it is then useful to specify a temporal window, lasting from 
an initial (dt-from) to a final date (dt-to), containing the presumable date of occurrence.  
Rainfall series are commonly reconstructed from data recorded at rain gauges located in a 
reasonable proximity of the study area. The temporal window of the hydrological analysis is 



defined by the intersection of i) the period of observation of the rains and ii) that delimited by the 
ancientmost and the recentmost dates of activation of the landslide. A potential source of 
uncertainty lies in the fact that, occasionally, the considered rain gauge records amounts that 
notably differ from those actually experienced at landslide location. Furthermore, landslide 
triggering may also be due to causes different from rainfall (e.g. human activity, earthquakes): a 
thorough preliminary analysis must always be performed to verify the significance of rainfall 
preceding landslide activation, to detecting cases not to be considered in the hydrological study. 
In the model, rains older than tb are neglected. Suitable maximum and minimum values (tb-max and 
tb-min) must be initialized to allow the model to determine optimal values. Commonly, tb ranging 
from few hours to some weeks are suggested for shallow landslides, while greater values (up to 
several months) sound suitable for deep-seated phenomena. 
Based on the geological knowledge of the phenomenon under investigation, the initial shape of the 
kernel can be selected among a set of basic types. Among these, i) a “rectangular” shape can be 
adopted if older precipitations must have the same weight of more recent rains; ii) a “decreasing 
triangular”, if older precipitations are assumed to have a progressively smaller weight than more 
recent rains; iii) “increasing triangular”, if older precipitations are assumed to have a progressively 
greater weight than more recent rains. A casual shape or any other function can also be 
implemented in the model (e.g., Beta, Gamma, Nash, Negative exponential distribution).  

 
3.1 Model Calibration  
In GASAKe, model calibration is performed against real case studies through Genetic Algorithms 
(GAs). These latter are general-purpose, iterative search algorithms inspired by natural selection 
and genetics (Holland, 1975). Since 1970’s, GAs have been applied to several fields of research, 
from applied mathematics (Poon and Sparks, 1992), to evolution of learning (Hinton and Nowlan, 
1987), evolutionary robotics (Nolfi and Marocco, 2001), and debris-flow modelling (Iovine et al., 
2005; D’Ambrosio et al., 2006). GAs simulate the evolution of a population of candidate solutions 
to a given problem by favouring the reproduction of the best individuals. The candidate solutions 
are codified by genotypes, typically using strings, whose elements are called genes.  
GAs explore the solution space, defined as the set of all possible values of the genes. At the 
beginning of a given optimization experiment, the members of the initial population of genotypes 
(in this study, the kernels) are usually generated at random. The performance of each solution, in 
terms of phenotype (i.e. the mobilization function), is evaluated by applying a suitable fitness 
function, so determining its “adaptability”, i.e. the measure of its goodness in resolving the problem.  
The sequence of random genetic operators “selection, crossover and mutation”, constrained by 
prefixed probabilities, constitutes a single GA-iteration that generates a new population of candidate 
solutions. At each iteration, best individuals are in fact chosen by applying the selection operator. 
To form a new population of offspring, crossover is employed by combining parents’ genes. 
Mutation is successively applied to each gene, by randomly changing its value within the allowed 
range.  
Thanks to the GA approach, better individuals (i.e. characterized by higher fitness values) can be 
obtained over time. In fact, according to individual probabilities of selection, any change that 
increases the fitness tends to be preserved over the GA iterations (Holland, 1975). For further 
details on GAs, cf. Goldberg (1989) and Mitchell (1996). 
In the present study, a steady-state and elitist GA (cf. De Jong, 1975) was employed to obtain the 
family of optimal kernels that maximize the mobility function in correspondence with known dates 



of landslide activations. The procedure employed for calibration of GASAKe is schematized in Figure 
1.  
At the beginning of an optimization experiment, the initial population of N kernels is generated at 
random, and the fitness of the related mobility functions is evaluated (cf. below). In order to evolve 
the initial population of candidate solutions and progressively obtaining better solutions, a total 
number of Λ GA-iterations follows.  
At each iteration of the GA, the operators selection, crossover and mutation are applied as follows 
(Fig. 2): 

 selection  
i. ne “elitist” individuals are merely copied in a “mating pool” from the previous generation, by 

choosing the best ones;  
ii. the remaining N-ne candidate solutions are chosen by applying the “tournament without 

replacement” selection operator. More in detail, a series of tournaments are performed by 
selecting two individuals at random from the previous generation: the winner (i.e. the one 
characterized by the highest fitness) is copied into the mating pool, according to a prefixed 
surviving probability (ps), which is set greater for the fittest individual. Note that, when 
choosing the N-ne candidate solutions, a given individual cannot be selected more than once.  

 crossover  
After the mating pool is filled with N individuals, the crossover operator is applied, according to 
a prefixed probability (pc):   

i. two parent individuals are chosen from the mating pool at random;  
ii. a cutting point (crossover point) is then selected at random in the range ]tb-min, tb-max[; 

iii. the so-obtained portions of parents’ strings are exchanged, thus mixing the genetic information 
and resulting in two children (Fig. 3).  

When the crossover is not applied, the two parents are merely copied into Pnew.  

 mutation 
Based on a prefixed probability (pm), a random number of elements of the kernel (pme, expressed 
as a percentage of tb) is mutated, by adding to each element an amount dh that is randomly 
obtained in the range [pmh1, pmh2], as a function of the maximum value of the kernel (hmax). Then 
dh ranges from dh1 to dh2:  
dh1 = pmh1 · hmax 
dh2 = pmh2 · hmax 

(5)

Furthermore, the base time is also mutated (increased or decreased) within the bounds [tb-min, tb-

max], according to a random factor dtb selected in the range [1/pmtb, pmtb] (Fig. 4). 
Note that the children obtained after both crossover and mutation must be normalized, before they 
can be included in the population Pnew, by properly scaling the elements of the kernels to ensure 
validity of equation 2. 
During calibration, the shape of the kernel and its tb are iteratively refined. Note that the shape is not 
subject to any constraint, while tb is allowed to vary in the range [tb-min - tb-max]. The fitness is 
computed for each examined mobilization function, and new populations of kernels are generated as 
described above.  
As for the fitness function, in GASAKe it is defined as follows: 

 the L available dates of landslide activation – as derived from the historical analyses – are 
arranged in a vector S = {S1, S2, …, Si, …, SL}; 



 the vector of the relative maxima of the mobility function, Z = {z1, z2, …, zj, …, zM}, is sorted 
in decreasing order (M = number of relative maxima); 

 the vector of the partial fitness is φ = {φ1, φ2, …, φi, ... φL}, where φi = k-1 depends on the rank k 
of the relative maxima of zj that coincide with known dates of activation Si. In case Si does not 
correspond to any relative maximum, it is φi = 0. 

With reference to a given kernel, the resulting fitness is expressed by ௨ ൌ ∑ ߮
ୀଵ . Aiming at 

generalizing the results for easier comparison to other study cases, a normalized fitness index is 

adopted,  = u /max, defined in the range [0,1], being ௫ ൌ 	∑ 1/݅
ୀଵ . 

For instance, if two dates of activation are available, the obtained fitness is ௨ = 1 + ½ = 1.5 if both 
are well captured by the mobility function (i.e. they correspond to the highest peaks). On the other 
hand, in case only one of the dates is captured and the remaining one ranks fifth, ௨ = 1 + ⅕ = 1.2. 
Thanks to the above procedure, a family of “optimal kernels” which maximizes the fitness can be 
determined. The mobility function is in fact forced toward a shape characterized by relative maxima 
(zj) coinciding with the dates of landslide occurrence (Si). An optimal solution leads to a mobility 
function having the highest peaks in correspondence with such dates; further peaks may also be 
present, characterized by lower values. Nevertheless, kernel solutions generally determine mobility 
functions whose highest peaks only partly match with the dates of landslide occurrence (i.e. some 
dates may not correspond to the highest peaks nor to any peak at all).  
To selecting the most suitable kernel from a given family of optimal ones, let’s define:  

 zj-min as the lowest of the peaks of the mobility function in correspondence with one of the dates 
of activation (Si);  

 zcr as the “critical threshold”, i.e. the highest peak of the mobility function just below zj-min;  

 the “safety margin”, Δzcr = ( zj-min - zcr ) / zj-min.  
When applying the fitness function to evaluate a given kernel, either incompleteness or low 
accuracy of input data may lead to “false alarms” – i.e. peaks of the mobility function (zj) which are 
greater than the threshold zcr, but do not correspond to any of the known dates of activation. Such 
alarms can actually be of two different types: 1) “untrue false”, due to an informative gap in the 
archive (i.e. correct prediction); 2) “true false”, in case of real misprediction of the model. On such 
cases, further historical investigations may help to discriminating between the mentioned types of 
false alarms. 
Also depending on the specific purpose of the analysis, the most suitable kernel can therefore be 
selected by one or more of the following criteria: i) the greatest Δzcr; ii) the shortest tb; iii) the 

smallest 0 = ∑ 	ሺ݅ െ 0.5ሻ	݄	ݐ߂ஸ௧
, i.e. the first-order momentum of the kernel with respect to the 

vertical axis. The first criterion allows for activating early-warning procedures with greatest 
advance; the remaining ones (to be employed when Δzcr is too small) generally correspond to more 
impulsive responses to rainfall.  
Differently from what usually experienced in rainfall-runoff models, GASAKe therefore provide 
multiple equivalent solutions - i.e. a number of optimal kernels with same fitness, ௨, despite 
different shapes. This may depend on the limited number of available dates of activations, and on 
other noises in input data (e.g. rain gauges located too far from the site of landslide activation; 
inaccurate information on dates of activation or on the phenomenon). The adoption of synthetic 
kernels – e.g. obtained by averaging a suitable set of optimal kernels – allows to synthetize the 
family of results for successive practical applications: in this work, the best 100 kernels obtained for 



each case study were in fact utilized to synthetize average kernels to be employed for validation 
purposes. 

 
4 CASE STUDIES 
The case studies considered in this paper are: i) a set of shallow landslides in the Sorrento Peninsula 
between Gragnano and Castellammare di Stabia (Campania, Southern Italy); and ii) the Uncino 
landslide at San Fili (Calabria, Southern Italy).  
Note that, as the numbers of known historical activations in the study areas were adequate, some 
dates could be excluded from calibration, and were successively employed for validation purposes. 
In particular, the recentmost dates of landslide activation (cf. Tables 1 and 2) were considered to 
validating the “average kernels” (see below), as obtained from the families of optimal solutions 
defined through calibration. The procedure employed for validation is schematized in Figure 5. 
 
4.1 Shallow landslides in the Sorrento Peninsula - Campania 
The Sorrento Peninsula is located in western Campania, Southern Italy (Fig. 6). In the area, 
Mesozoic limestone mainly crop out, covered by Miocene flysch, Pleistocene volcanic deposits 
(pyroclastic fall, ignimbrite), and Pleistocene detritical-alluvional deposits (Di Crescenzo and 
Santo, 1999). The carbonate bedrock constitutes a monocline, gently dipping towards WNW, 
mantled by sedimentary and volcanoclastic deposits, with thickness ranging from few decimetres to 
tens of meters.  
Rainfall-induced shallow landslides are widespread in the pyroclastic soils covering the slopes of 
the study area. Among the various factors affecting the spatial distribution and the type of slope 
instability, Cascini et al. (2014) pointed out that both the rainfall conditions and the consequent 
seasonal variations of soil suction play a significant role. In particular, when suction is low and 
frontal rainfall occurs (from November to May) first time shallow landslides are triggered; when 
suction is high or very high and convective or hurricane-type rainfall occurs (from June to October) 
mostly erosion phenomena occur, often turning into hyperconcentrated flows. 
The study area is characterized by hot, dry summers and moderately cold and rainy winters. 
Consequently, its climate can be classified as Mediterranean (Csa in the Köppen-Geiger's 
classification). In particular, the mean annual temperature ranges from 8-9°C, at the highest 
elevations of M. Faito and M. Cerreto, to 17-18°C along coasts and valleys. Average annual rainfall 
varies from 900 mm west of Sorrento to 1500 mm at M. Faito; moving inland to the East, it reaches 
1600 mm at M. Cerreto and 1700 mm at the Chiunzi pass (Ducci and Tranfaglia, 2005). On 
average, annual totals are concentrated in about 95 rainy days. During the driest six months (from 
April to September), only 30% of the annual rainfall is recorded in about 30 rainy days. During the 
three wettest months (November, October, and December), a similar amount is recorded in about 34 
rainy days (Servizio Idrografico, 1948-1999). In the area, convective rainstorms may occur, 
characterized by a very high intensity, at the beginning of the rainy season (from September to 
October). In Autumn-Winter, either high intensity or long duration rainfall are usually recorded, 
while uniformly distributed rains generally occur in Spring (Fiorillo and Wilson, 2004). As for 
annual maxima of daily rainfall recorded at the sea level, the Amalfi coast (southern border of the 
Sorrento Peninsula) is characterized by smaller values (59 mm) of average annual maxima of daily 
rainfall than the Sorrento coast (86 mm), on the northern border. Such difference seems to persist 
even at higher elevations (up to 1000 m a.s.l.), with 84 mm vs. 116 mm for the southern and 
northern mountain slopes, respectively (Rossi and Villani, 1994). 



Severe storms frequently affect the study area, triggering shallow landslides that propagate seaward, 
often causing casualties and serious damage to urbanized areas and transportation facilities (Mele 
and Del Prete, 1999; Calcaterra and Santo, 2004; Di Crescenzo and Santo, 2005). In the second half 
of the XX century, several shallow landslides activated nearby Castellammare di Stabia: in Table 1, 
the major events recorded between Vico Equense and Gragnano are listed, with details on types of 
events, affected sites and references. Shallow landslides listed in Table 1 occurred between 
November and March, a period characterised by a medium to low suction range and included in the 
rainy season (October to April) according to Cascini et al. (2014). The same Authors pointed out 
that, in this period, frontal rainfall typically occurs and may trigger widespread first-time shallow 
landslides later propagating as debris flow or debris avalanches. 
Rainfall responsible for landslide occurrences in the Sorrento Peninsula are shown in Fig. 7, in 
terms of cumulated antecedent rains, extracted from the records of the nearest gauges (Tramonti, 
Castellammare, and Tramonti-Chiunzi – cf. Fig. 6). The trends of antecedent rains look quite 
differentiated, ranging from abrupt (cf. curves 5, 6, 7) to progressive increases (cf. 2, 4, 10). On the 
other hand, the curve 0 does not highlight significant amounts of rainfall in the 14 days preceding 
landslide activation: therefore, the occurrence recorded on 14 April 1967 was excluded by the 
hydrological analysis. Quite moderate amounts of cases 6 and 7 (occurred on 4 November 1980 and 
14 November 1982, resp.) were instead recorded in short periods, thus resulting into high-intensity 
events that could be considered as triggering factor of the observed landslides. 
As a result, the dates of activation from #1 to #10 were selected for calibration, whilst #11 was 
employed for validation. As shallow landslides were being considered, the rainfall period employed 
for calibration spanned from 17 January 1963 to 10 December 1996; for validation, the rainfall 
series terminates on 10 February 1997 – i.e. the validation date +tb (this latter as obtained from 
calibration). 
 
4.2 The Uncino landslide - San Fili (Northern Calabria) 
San Fili (Fig. 8) is located on the western margin of the Crati graben, a tectonic depression 
belonging to the active Calabrian-Sicilian Rift Zone (Monaco and Tortorici, 2000). In the area, 
vicarious, N-S trending normal faults mark the base of the Coastal Chain, at the transition between 
Palaeozoic metamorphic rocks, to the west, and Pliocene-Quaternary sediments, to the east 
(Amodio Morelli et al., 1976). Nearby San Fili, Palaeozoic migmatitic gneiss and biotitic schist, 
generally weathered, are mantled by a Late Miocene sedimentary cover of reddish continental 
conglomerates, followed by marine sandstone and clays (CASMEZ, 1967).  
In particular, the village lies in the intermediate sector between the two faults, marked by a NE-SW 
trending connection fault, delimiting the Miocene sediments on the north from the gneissic rocks on 
the South.  
The Calabrian Tyrrhenian sector (including the study area) results rainier than the Ionian (about 
1200-2000 mm vs. 500 mm), although the most severe storms are more frequently recorded on the 
Ionian sector (Terranova, 2004). The average annual temperature is about 15°C: the coldest months 
are January and February (in average 5°C), followed by December (8°C); the hottest months are 
July and August (24°C), followed by June (22°C).  
The climate at San Fili, like in most of Calabria, is Mediterranean (Csa), according to Köppen 
(1948). Being located on the Eastern side of a ridge, the area is subject to Staü conditions with 
respect to perturbations coming from the Tyrrhenian sea. It is characterized by heavy and frequent 
Winter rainfall, caused by cold fronts mainly approaching from North-West, and Autumn rains, 



determined by cold air masses from North-East. In Spring, rains show lower intensities than in 
Autumn, whilst strong convective storms are common at the end of Summer.  
The average monthly rains recorded at the Montalto Uffugo gauge (the closest to San Fili) are listed 
in Table 2. From October to March (i.e. the wet semester), 77% of the annual rainfall is totalized in 
about 77 rainy days and 36% is recorded in 38 days, during the three wettest months; finally, from 
June to August (i.e. the three driest months), 6% of the annual rains fall in 11 days. 
The Uncino landslide is located at the western margin of San Fili (Fig. 8). The rock slide is of 
medium-size (maximum width = 200 m, length > 650 m, estimated maximum vertical depth = 25 
m), with a deep-seatedness factor (sensu Hutchinson, 1995) that may be classified as 
“intermediate”. It involves Late Miocene conglomerate, arenite and marly clay overlaying 
Palaeozoic gneiss and biotitic schist. The slope movement repeatedly affected the village, damaging 
the railway and the local road network, in addition to some buildings: the ancientmost known 
activation dates back to the beginning of the XX Century (Sorriso-Valvo et al., 1996); from 1960 to 
1990, a set of 7 dates of mobilization are listed in Table  3. On such events, the railroad connecting 
Cosenza to Paola was damaged or even interrupted. Note that, having not been recorded by 
landslide experts, such type of information is usually affected by intrinsic uncertainty (e.g. 
concerning the dates of activity) and may be related to either partial or total activations of the 
phenomenon, with unavoidable problems of homogeneity of the set employed for model calibration. 
By the way, on 28 April 1987, the railway was put out of service, hence the relevance of the 
infrastructure decreased, together with media attention. 
The informative content of the Uncino case study is quite high, and allows for a more accurate 
calibration of the kernel with respect to the Sorrento Peninsula case: consequently, a smaller family 
of optimal solutions are expected. Nevertheless, the known activations still suffer from uncertainties 
related to dates and affected volumes.  
Cumulated antecedent rains, corresponding to the Uncino landslide occurrences, are shown in Fig. 
9. Rainfall data were extracted from the records of the nearest rain gauge, located at Montalto 
Uffugo (cf. Fig. 8). The trends of antecedent rains may be distinguished into 3 main patterns: the 
curve 2 shows a constant increase of rainfall in time, totalizing the greatest amounts from ca. 90 to 
180 days. On the other hand, the case 0 shows the lowest values throughout the considered 
accumulation period. The curves 1, 3, 4, and 5 totalize intermediate values, with abrupt increases 
shown by 3 and 5 from 120 to 180 days. Finally, the case 6 looks similar to case 2 between 30 and 
90 days, but shows no more increases in the remaining period (analogously to 1 and 4).  
The curve 0 does not highlight significant amounts of rainfall in the 30-180 days preceding the 
landslide activation: for this reason, the occurrence recorded on 23 November 1988 was excluded 
from the hydrological analysis. Of the remaining curves, case 1 generally shows the lowest amounts 
from ca. 40 to 180 days. 
As a result, the dates of activation from #1 to #5 were selected for calibration, whilst #6 was 
employed for validation. As a medium-size landslide was being considered, the rainfall period 
employed for calibration spans from 1 September 1959 to 31 August 1980; for validation, it ranges 
from 1 September 1980 to 31 March 1981 - i.e. including the validation date by ca. ±tb (this latter  
as obtained from calibration). 
 
5  RESULTS 



GASAKe was applied to shallow-landslide occurrences in the Sorrento Peninsula and to a medium-
size slope movement at San Fili, by considering the dates of activation and the daily rainfall series 
mentioned in section §4.1 and §4.2, and adopting the values of parameters listed in Table 4.  
As several kernels, among those obtained from calibration, usually allow obtaining similar fitness 
values, “average kernels” were computed for the considered case studies, by averaging the best 100 
kernels. 
 
5.1 Application to shallow landslides in the Sorrento Peninsula 
In Table 5, the statistics related to the family of optimal kernels (made of the best 100 filter 

functions, as obtained from calibration) are summarized. From such values, a low variability of  , 
tb and μ0 can be appreciated; Δzcr shows instead a greater range of values. The average kernel for the 
Sorrento Peninsula case study is shown in Figure 10: it is characterized by fitness = 0.806, with Δzcr 
= 0.00282, and tb = 28 days. From such kernel, antecedent rainfall mostly affecting landslide 
instability range from 1 to 12 days, and subordinately from 25 to 26 days. Negligible weights refer 
to rains occurred in the remaining period. 
In Fig. 11, the mobility function related to the average kernel is shown. In this case, 4 out of 10 
dates of landslide activation are well captured by the model (being ranked at the first 7 positions of 
the mobility function maxima); the remaining 6 dates do also correspond to relative maxima of the 
function, but are ranked from the 43rd to the 151st position. When considering the remaining relative 
maxima, several false positives can be recognized, mainly up to 1979. 

During calibration, the best fitness ( =0.807) was first reached after 1749 iterations (at 6th 
individual), with Δzcr = 0.00441 and tb = 26 days. The kernel corresponding to such individual looks 
similar to the best one in terms of tb, Δzcr, and μ0 (Fig. 12). The pattern of the best kernel is only 
slightly dissimilar from the average one: significant weights can in fact be appreciated up to 14 
days, and then between 20-22 and 25-26 days. 
By applying the average kernel, a validation was performed against the remaining date of activation 
(cf. Table 1, #11, multiple event occurred on 10 January 1997). Validation resulted fully satisfied, 
as shown in Fig. 13: the value of the mobilization function for the event #11, in fact, is well above 
the zcr threshold (49.01 vs. 18.05), and is ranked as II highest value among the function maxima 
(Fig. 13a). The same peak can also be appreciated as the maximum of the period ±tb (Fig. 13b). 
Accordingly, if adopting the average kernel, the event #11 of landslide activation could properly be 
predicted by the model. 
 
5.2 Application to the Uncino landslide 
In Table 6, the statistics related to the family of optimal kernels are summarized. From such values, 
a low variability of tb and Δzcr can be appreciated. The average kernel for the Uncino case study is 
shown in Fig. 14. 
The average kernel is characterized by fitness = 1, Δzcr = 0.0644, and tb = 66 days. Based on such 
kernel, antecedent rains from 1 to 17 days, and from 27 to 45 days, mainly affect landslide 
instability. Relatively smaller weights pertain to the rains occurred more than 53 days before the 
triggering; for periods older than 66 days, the weights are negligible. 
In Fig. 15, the mobility function related to the average kernel highlights that all the 5 dates of 
activation are well captured by the model (they are ranked at the first 5 positions among the 
function maxima). When considering the remaining relative maxima of the function, only 4 of them 
evidence quasi-critical situations (between 1965 and 1966, and subordinately in 1970 and 1977). 



During calibration, the best fitness ( =1) was first reached after 684 iterations (at 13th individual) 
with Δzcr = 0.0595. The best kernel (Fig. 16) was obtained at iteration 993, at 8th individual, with 
Δzcr = 0.0631. Its pattern results very similar to the average one, with a tb of 66 days. 
By applying the average kernel, a validation was performed against the last known date of 
activation (cf. Table 3, #6, occurred on December 1980). Validation resulted fully satisfied, as 
shown in Fig. 17: the value of the mobilization function for the event #6, in fact, is well above the 
zcr threshold (17.49 vs. 16.87), and is ranked as the sixth highest value among the function maxima 
(Fig. 17a). The same peak can be appreciated as the maximum of the period ±tb (Fig. 17b). 
Accordingly, if adopting the average kernel, the event #6 could properly be predicted by the model. 
 
6 SELF-ADAPTIVE PROCEDURE AND SENSITIVITY ANALYSES 
The capability of the model to react and self-adapt to input changes, like new dates of landslide 
activation, was evaluated by a progressive, self-adaptive procedure of calibration and validation, 
using the information available for the Uncino case study. To simulate the adoption of GASAKe in a 
landslide warning system, the model was iteratively calibrated by the first 2, 3, 4, and 5 dates of 
activation (L), and validated against the remaining 4, 3, 2, 1 dates, respectively. In each experiment, 
the GA-parameters listed in Table 4 were adopted. Finally, the model was merely calibrated by 
considering all the 6 dates of activation. The results of the self-adaptive procedure are listed in 
Table 7. The related kernels are shown in Fig. 18. As a result, a progressive increase in fitness and 

predictive ability (zcr), together with the base time (ranging from 30 to 80 days), can be 
appreciated when employing a greater number of dates of activation. 
Furthermore, aiming at evaluating the sensitivity of the model with respect to the GA parameters, a 
series of analyses was performed by considering the Uncino case study. More in detail, the 
experiments carried out are listed in Table 8. Each simulation stopped after 1500 iterations: GA-
parameters were initialized by considering the “benchmark experiment” (cf. values in Table 4), 
except for the parameter that was in turn varied as indicated in Table 8. 
By varying the GA parameters listed in Table 8, the maximum fitness (Φmax), the safety margin 
(Δzcr), the number (ni) of iterations needed to first reach Φmax, and the base time (tb) of the average 
kernel are shown in Fig. 19. If experiments with Φmax = 1 are only taken into account, the minimum 
and maximum numbers (min_Λ, max_Λ) of GA-iterations needed to reach Φmax, the minimum and 
maximum base times (min_tb, max_tb) of the average kernel, and the minimum and maximum safety 
margins (min_ Δzcr, max_Δzcr) of the average kernel are listed in Tables 9, 10 and 11. 
 
7 DISCUSSION E CONCLUSIONS 
In the present paper, the model GASAKe is presented with examples of application to shallow-
landslides in Sorrento Peninsula (Campania), and to the medium-size Uncino landslide at San Fili 
(Calabria). Furthermore, the capability of the model to simulate the occurrence of known landslide 
activations was evaluated by a progressive, self-adaptive procedure of calibration and validation 
against the Uncino case study. Finally, the sensitivity of the model with respect to the GA 
parameters was analysed by a series of experiments, performed again by considering the latter 
landslide. 
As concerns the Sorrento Peninsula case study, the maximum fitness obtained during calibration is 
smaller than unity. For the best 100 kernels, Φmax, Δzcr and tb vary in a small range (ca. 0.1%, 4.8%, 
and 13%, respectively). Furthermore, as mentioned above, for specific types of application (e.g. 
civil protection), the observed small values of Δzcr would imply short warning times. Consequently, 



a suitable kernel should be rather selected by privileging the shortest tb or the smallest 0. In Fig. 
12, the four kernels point out that the greatest weights for the first 12-15 days are obtained by 

selecting the kernel with smallest 0, thus allowing for the most timely advice if used within an 
early-warning system. 
In the average kernel, the greatest weight can be attributable to the first 12 days, with a maximum 
base time of about 4 weeks, reflecting the general shape of the curves in Fig. 7, and in good 
agreement with the shallow type of slope instability considered.  
Furthermore, the validation of the average kernel is satisfactory, as the validation date (#11 in Table 
1) corresponds to the second highest peak of the mobility function. In addition, no missing alarms 
and only four false alarms in about 5 years are to be found (i.e. in the period from the last date used 
for calibration to the one for validation). The peaks of the mobility function corresponding to the 
activation dates can roughly be grouped in two sets, characterized by distinct values: a first set, with 
z(t)>40, generally includes the ancientmost plus the validation dates (#1, #2, #4, #5, #6, and #11); a 
second set (#3, #7, #8, #9, and #10), with 18<z(t)<25. False alarms result more frequent and higher 
in the first period (from 1963 to 1980), presumably due to lack of information on landslide 
activations. 
Regarding the Uncino case study, the maximum fitness in calibration reaches unity. With respect to 
the Sorrento Peninsula case study, Δzcr and tb of the best 100 kernels vary in a greater range (ca. 
25%, and 30.5%, respectively), with Δzcr one order of magnitude greater. In this case, the kernel 
would in fact allow for a safety margin of ca. 5%.  
In the average kernel, three main periods can be recognized with heavier weights, attributable to i) 
the first 17 days, ii) 27-45 days, and iii) 54-58 days. The base time ranges from about 8 to 12 weeks, 
in good agreement with the medium-size type of slope instability considered.  
Furthermore, the validation of the average kernel performed successfully: in fact, the validation date 
(#6 in Table 3) corresponds to the third highest peak of the mobility function; even in this case, 
neither missing alarms nor false alarms in about 2 years (from the last date calibration date to the 
validation one) are to be found. The peaks of the mobility function corresponding to the activation 
dates are characterized by z(t)>18. 
In the self-adaptive procedure applied to the same Uncino case study, values for L=6 merely refer to 
calibration, whilst the ones for 2≤L≤5 concern validation. With regard to Table 7 and Fig. 20, it can 
be noticed that:  

 for 2≤L≤5, tb increases 2.7 times with L, and then remains constant for L≥5; 

 from L=2 to L=4, zj-min and zcr slightly decrease, and then abruptly increase for L≥5; 

 for L≥4, Δzcr monotonically increases 72 times with L (being almost constant in the 2-4 
transition); 

 Φv monotonically increases 1.7 times with L. 
As a whole, a satisfying performance is obtained starting from 3 dates (i.e. correct predictions in 
more than 3 out of 4 times). For L=5, only one false alarm is observed. Finally, the calibration 
performed by considering all the 6 dates of activation provided fully satisfying results. Accordingly, 
the results of the progressive procedure underlined how GASAKe can easily self-adapt to external 
changes by optimizing its performances, providing increasing fitness values. 
The average kernels obtained by considering from 2 to 6 dates of landslide activation point out 
increasing base times, with significant weights for the ancientmost rains of the temporal range (Fig. 



18). Such results is in good accordance with the extent of the slope movement and, therefore, with 
the expected prolonged travel times of the groundwater affecting landslide activation.  
In the sensitivity analyses, again performed by considering the Uncino landslide, Φmax = 1 was 
obtained in 60% of the experiments (cf. Table 8). The results, shown in Fig. 19, and listed in Tables 
9, 10, and 11, permit to select the set of parameters that allow for faster GA performances. More in 
detail: 

 a ratio between the number of elitist individuals and the whole population of ne/N=10/20 or 
8/15 allow for the fastest GA performances (min_Λi ~ 41% of the reference value). 
Nevertheless, for increasing both ne and N, this effect seems to vanish (e.g. ne/N=12/25). 

 with respect to the benchmark experiment, the explored changes in pc, pm, pmh1, pme, and pmtb do 
not substantially affect the GA performances with respect to min_Λi. 

 with respect to the benchmark experiment, the explored changes of parameters determine 
variation of tb from 66 to 219%.  

 in case of civil protection applications, the combination of parameters with pmh1=55 allows for 
activating early-warning procedures with the greatest advance. 

 concerning max_ Δzcr, the best result (increase by 10 times) is obtained when reducing N to 15.  
 The calibration experiments discussed in this paper were performed on a standard PC platform 
(CPU 3 GHz, RAM 4 GB, standalone system SQL and application process). For the study cases of 
Sorrento Peninsula and Uncino landslide, 2.5 and 1.1 GA-iterations were respectively performed 
per minute, reaching Φmax in 11h40m and 10h20m. Depending on availability of High-Performance 
Computing Clusters, the mentioned durations may strongly be reduced, thus allowing for prompt 
Civil Protection applications, e.g. based on short-term weather forecasts. By the way, the time 
needed to calibrate the model can profitably be shortened by properly initializing the kernel, based 
on expected characteristics of the phenomena under consideration (e.g. the range of tb strongly 
depends on landslide size). 
In this study, a 2-steps efficiency criterion was employed: the relative position of the peaks of the 
mobility function with respect to the dates of landslide activation was first considered, and the 
fitness computed. Based on the value of Δzcr, the obtained solutions were further ranked. Average, 
synthetic filter functions can then be computed by selecting the best 100 kernels for successive 
validation purposes. Alternative metrics (cf., among the others, Krause et al., 2005) for the fitness 
function are being tested. However, due to uncertainties concerning input data (i.e. rainfall and 
dates of landslide activation), the adoption of sophisticated techniques does not sound very 
promising. In addition, problems of over-fitting may depend on both data uncertainties and number 
of parameters. Commonly, kernels characterized by a complex pattern (and then by many 
parameters) are needed for simulating groundwater dynamics (Pinault et al., 2001). Nevertheless, 
more complex kernels do not necessarily imply higher predictive uncertainties (Fienen et al., 2010; 
Long, 2015). Still, the adopted discrete approach allows focusing only on the timing of the peaks of 
the mobility function, thus somehow relieving the computational effort. Due to the cited 
uncertainties in input data, a “temporal window” was in fact employed to help matching dates of 
activation with the peaks of the mobility function. Further attempts of defining the fitness function 
by different metrics, and the analysis of its effects on calibration and validation, are being 
considered against another case study (San Benedetto Ullano, in Calabria, Southern Italy), whose 
mobility phases have been recently monitored by the same authors (Iovine et al., 2010; Capparelli et 
al., 2012). 



As mentioned above, model calibration may be hampered by either quality or completeness of input 
data. Commonly, missing dates of activation (mainly in remote periods or in isolated areas) and 
unsuitability of the rain gauge network (e.g. due to excessive distance of gauges from the 
landslides) negatively affect model results. Depending on availability of new dates of activation, 
stemming from further mobilizations or improvement of historical investigations, the predictive 
capability of the model can be increased through additional calibrations, hence providing new 
families of optimal solutions, constituted by fewer, higher-significance kernels. 
The above considerations suggest an indirect link between the model – despite empirical in type – 
and the physical characteristics of the slope movements (e.g. dimensions, permeability, initial water 
content of the slope, length of subsurface water paths). In general, to select the kernel to be applied, 
it is rather preferable to consider a set of optimal kernels or the average one, instead of a single 
solution.  
Further efforts are in progress to improve the model and its chances of practical application, mainly 
concerning the implementation of different GA techniques of optimization (in addition to the elitist 
here employed), the parallelization of the model, and the adoption of a Genetic Programming 
approach. Finally, through the analytical study of the optimal kernels, a mathematical formulation 
of discrete filter functions is presently being attempted, aiming at synthetizing optimal and average 
kernels for an easier comparison with the results of other models available in literature.   
 
8 CODE AVAILABILITY 
The release GASAKe of the Self-Adapting Kernel model, discussed in this paper, has been developed 
by scientists working at CNR-IRPI under Microsoft Windows and Visual Studio integrated 
development environment. The above release can be requested by the public to the corresponding 
author of the paper, together with examples of input data and technical support (a user manual is not 
available yet, but it should be released soon). The model is presently undergoing further refinements 
and developments, mainly concerning types of GA-selection techniques, the post-processing of 
results in terms of continuous analytical functions, and the implementation of a library of case 
studies. Authors are willing to cooperate with external users to further improving the model through 
applications to case studies from different geo-environmental contexts. 
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Table 1. Dates of activation of the shallow landslides in the Sorrento Peninsula. Key: date = day of occurrence; type = 
widespread (multiple) or few (single) activation; site = municipality including the affected location; period employed = 
dates used for calibration (except for #11); rank = relative position of the corresponding maximum of the mobility 
function obtained by calibration. An asterisk marks the date employed for validation. In Italics, the activation date (#0) 
excluded due to hydrological constraints.  
 

# Date type site reference 
period 
employed 

rank 

1 17 February 1963 
multiple;  
single 

Gragnano, Pimonte; Castellammare Del Prete et al. 1998 17 Feb 1963 17 Feb 1963 (1) 

2 23 November 1966 single 
Vico Equense (Scrajo), Arola, 
Ticciano 

Del Prete et al. 1998 23 Nov 1966 24 Nov 1966 (4) 

0 14 April 1967 single Castellammare (Pozzano) 
Del Prete et al. 1998; 
AMRA, 2012 

- - 

3 
15 March 1969; 
24 March 1969 

multiple; 
multiple 

Cava de' Tirreni, Agerola, Scrajo 
Seiano  

Del Prete et al. 1998; 
AMRA, 2012 

15-24 Mar 1969 
25 Mar 1969 
(65) 

4 02 January 1971 single Gragnano Del Prete et al. 1998 02 Jan 1971 3 Jan 1971 (3) 
5 21 January 1971 single Gragnano Del Prete et al. 1998 21 Jan 1971 21 Jan 1971 (7) 
6 04 November 1980 single Vico Equense (Scrajo) Del Prete et al. 1998 04 Nov 1980 6 Nov 1980 (94) 

7 14 November 1982 single Pozzano Del Prete et al. 1998 14 Nov 1982 
15 Nov 1982 
(151) 

8 22 February 1986 multiple 
Palma Campania, Castellammare, 
Vico Equense 

Del Prete et al. 1998 22 Feb 1986 
24 Feb 1986 
(120) 

9 23 February 1987 single Gragnano, Castellammare  
Del Prete et al. 1998; 
AMRA, 2012 

23 Feb 1987 
23 Feb 1987 
(73) 

10 23 November 1991 single Pozzano Del Prete et al. 1998 23 Nov 1991 
24 Nov 1991 
(43) 

11 10 January 1997 multiple 
Pozzano;  
Castellammare, Nocera, Pagani, 
Amalfitana Coast 

Del Prete et al. 1998 
AMRA, 2012 

10 Jan 1997 * 

 

  



Table 2. Average monthly rainfall and number of rainy days at the Montalto Uffugo rain gauge (468 m a.s.l.). 

 
 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug year 
rainfall (mm) 70.4 125.1 187.9 220.8 198.1 160.3 132.8 98.9 64.6 27.8 18.3 28.6 1333.6 
rainy days 6.9 10.6 12.8 14.3 14.3 12.5 12.6 10.7 8.26 4.7 2.62 3.84 114.0 

 

  



Table 3. Dates of activation of the Uncino landslide. Periods (instead of singular dates) were considered in case of 
uncertain timing of activation. Key = #: Identification number of the date (in bold, used for calibration); dates/periods 
derived from literature; dates/periods employed for calibration or validation; references: sources of information on 
activation dates; rank: relative position and dates of the maxima of the mobility function during calibration. An asterisk 
marks the activation employed for validation. In Italics, the activation date (#0) excluded due to hydrological 
constraints. 
 

# date reference period rank 

1 16, 21 January 1960 Sorriso-Valvo et al., 1996 16-21 Jan 1960 18 Jan 1960 (5) 

2 Winter 1963 Sorriso-Valvo et al., 1994 
01 Nov 1962 –  
14 Apr 1963 

29 Mar 1963 (1) 

3 15 April 1964 (h 22:00) Sorriso-Valvo et al., 1994 15 Apr 1964 14 Apr 1964 (3) 

4 14 December 1966 
Lanzafame and Mercuri, 
1975 

14 Dec 1966 16 Dec 1966 (2) 

5 10-14, 21 February 1979 Sorriso-Valvo et al., 1994 10-21 Feb 1979 15 Feb 1979 (4) 
6 December 1980 Sorriso-Valvo et al., 1994 01-31 Dec 1980 * 

0 23 November 1988 Sorriso-Valvo et al., 1996 - - 

 

  



Table 4. Values of the parameters of GASAKe adopted in the calibration procedure (benchmark experiment). 
 

symbol parameter value 
N individuals of each GA population 20 

tb 
base time (Uncino landslide) 
base time (shallow landslides in the Sorrento Peninsula) 

30 ÷ 180 days 
2 ÷ 30 days 

pmh1  
pmh2  

percentages of the maximum height of the kernel,  
used to defining the range in which dh is randomly obtained 

50%, 150% 

pc probability of crossover  75% 
pm probability of mutation 25% 
pme number of mutated elements of the kernel, expressed as a percentage of tb 25% 
pmtb factor defining the range in which dtb is selected 0.2 ÷ 5 

Λ 
number of GA-iterations (Uncino landslide case study) 
number of GA-iterations (Sorrento Peninsula case study) 

5000 
3000 

ne number of "elitist" individuals 8 

 

  



Table 5. Sorrento Peninsula case study. Statistics for the best 100 kernels. 
 

 Δzcr tb μ0 

min 0.806 3.82E-05 26.0 9.460 
average 0.806 0.00418 30.4 9.567 
max 0.807 0.00801 31.0 10.448 
median 0.806 0.00499 31.0 9.567 
mode 0.806 0.00499 31.0 9.567 
dev. st. 7.65E-05 0.00183 0.862 0.146 

 

  



Table 6. Uncino landslide case study. Statistics for the best 100 kernels. 
Δzcr tb

min 0.0524 57.0 
average 0.0581 69.5 
max 0.0692 82.0 
median 0.0581 69.0 
mode 0.0558 69.0 
dev. st. 0.00373 3.12 

 

  



Table 7. Uncino landslide case study. Results of progressive calibration. Key: L, tb, zj-min, zcr, Δzcr): model parameters 
concerning calibration (for explanation, cf. text); Φv) fitness obtained by validating the “average kernel”, obtained in 
calibration, against the 6 dates of activation. In Italics, results obtained when calibrating the model by using all the 6 
available dates (no validation performed). 
 

L tb zj-min zcr zcr Φv 

2 30 13.93 13.89 0.0029 0.59 
3 54 11.05 11.04 0.0009 0.78 
4 55 10.21 10.20 0.0010 0.87 
5 80 16.44 16.34 0.0061 0.95 

6 80 18.63 17.43 0.0644 1.00 

 

  



Table 8. Uncino landslide case study. Values of the parameters adopted in the sensitivity analyses. In bold, the 
experiments with Φmax = 1. Boxes evidence the worst experiment (in Italics), and the best one (underlined).  
 

symbol values 

ne 6 7 a) 8 9 10  

pc 60% 67.5% a) 75% 82.5% 90% 

pm 20% 22.5% a) 25% 27.5% 30% 

pmh1, 
pmh2 

60%,  
140% 

55%, 
145% 

a) 50%,
a) 150% 

45%, 
155% 

40%,  
160% 

pme 20% 22.5% a) 25% 27.5% 30% 

pmtb 0.25 ÷ 4 0.22 ÷ 4.5 a) 0.2 ÷ 5 0.18 ÷ 5.5 0.17 ÷ 6 

N, ne   25,  8 a) 20,  8 15,  8  

N, ne  25,  12 25,  10 25,  8  

a) Reference values (i.e., those of the benchmark experiment - cf. Table 4) 

 

  



Table 9. Minimum (min_Λ i) and maximum (max_Λ i) numbers of GA iterations needed to reach Φmax (only experiments 
with Φmax = 1 are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. 
An asterisk marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of 
parameters of the benchmark experiment (cf. Table 4).  
 

§ N parameter min_Λ i max_Λi 

a 20 ne=8  684 
a 20 ne=10 279  
c 25 ne=8 469  
c 25 ne=12  1477 
e 20 pc=75 684*  
g 20 pm=25 684  
g 20 pm=27.5  1086 
i 20 pmh1=50 684  
i 20 pmh1=55  836 
k 20 pme=25 684  
k 20 pme=30  996 
m 20 pmtb=5 684  
m 20 pmtb=5.5  1052 
o 15 ne=8 405  

 

  



Table 10. Minimum (min_tb) and maximum (max_tb) base time of the average kernel (only experiments with Φmax = 1 
are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. An asterisk 
marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of parameters of the 
benchmark experiment (cf. Table 4). 
 

§ N parameter min_tb max_tb 

a 20 ne=8 66,59  
a 20 ne=10  144,85 
c 25 ne=8  132,00 
c 25 ne=12 56,17  
e 20 pc=75 66,59*  
g 20 pm=25 66,59  
g 20 pm=27.5  139,20 
i 20 pmh1=50  66,59 
i 20 pmh1=55 44,00  
k 20 pme=25 66,59  
k 20 pme=30  146,93 
m 20 pmtb=5 66,59  
m 20 pmtb=4  136,06 
o 15 ne=8  145,79 

 

  



Table 11. Minimum (min_ Δzcr) and maximum (max_Δzcr) safety margin of the average kernel (only experiments with 
Φmax = 1 are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. An 
asterisk marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of parameters of 
the benchmark experiment (cf. Table 4). 
 

§ N parameter min_ Δzcr max_ Δzcr 

a 20 ne=7  0.007 
a 20 ne=9 0.002  
c 25 ne=8  0.014 
c 25 ne=12 0.002  
e 20 pc=75 0.005*  
g 20 pm=22.5  0.006 
g 20 pm=27.5 0.001  
i 20 pmh1=50  0.005 
i 20 pmh1=55 0.004  
k 20 pme=25 0.005  
k 20 pme=30  0.006 
m 20 pmtb=5 0.005  
m 20 pmtb=4  0.009 
o 15 ne=8  0.055 
o 20 ne=8 0.005  

 

  



Figure 1. Scheme of the calibration procedure of the model GASAKe. 

 
  



Figure 2. Scheme of the adopted Genetic Algorithm. 

 
  



Figure 3. Example of crossover. The genetic codes of the parents (elements in orange and green) are first mixed; then, 
the children are normalized (black elements) to ensure validity of equation 2. 

 
  



Figure 4. Examples of mutation. On the left, the genetic code of the parent individual (elements in blue). In the second 
histogram, mutation is applied to some elements of the parent (in red, added amounts; in grey, subtracted amounts). 
Then, the base time can either be decreased (upper sequence) or increased (lower sequence). Finally, the children is 
normalized (black elements) to ensure validity of equation 2. 

 
  



Figure 5. Scheme of the validation procedure of the model GASAKe. 

 
  



Figure 6. Geological map of the Sorrento Peninsula (after Di Crescenzo and Santo, 1999, mod.). Key: 1) beach deposit 
(Holocene); 2) pyroclastic fall deposit (Late Pleistocene-Holocene); 3) Campanian ignimbrite (Late Pleistocene); 4) 
detrital alluvial deposit (Pleistocene); 5) flysch deposit (Miocene); 6) limestone (Mesozoic); 7) dolomitic limestone 
(Mesozoic). Red squares mark sites affected by shallow landslide activations; blue circles, the rain gauges; black 
squares, the main localities; yellow triangles, the highest mountain peaks. 

 
  



Figure 7. Cumulative daily rainfall (in mm) during the 14 days preceding landslide occurrences. Key: in blu, red, and 
green = values from the Tramonti, Castellammare, and Tramonti-Chiunzi rain gauges, respectively. Numbers refer to id. 
in Table 1 (cf. first column). 

 
  



Figure 8. Location of the study area (red square: San Fili village; blue circle: Montalto Uffugo rain gauge). On bottom 
left, an extract from the geological map of Calabria (CASMEZ, 1967). Key: sbg) gneiss and biotitic schist with garnet 
(Palaeozoic); sbm) schist including abundant granite and pegmatite veins, forming migmatite zones (Palaeozoic); M3

ar) 
arenite and silt with calcarenite (Late Miocene); M3

a) marly clay with arenite and marls (Late Miocene); m3
cl) reddish 

conglomerate with arenite (Late Miocene); qcl) loose conglomerate of ancient fluvial terraces (Pleistocene). The site 
affected by the Uncino landslide is marked by a red star. 

 
  



Figure 9. Cumulative daily rainfall (in mm) from 30 to 180 days before landslide occurrences (Montalto Uffugo 
gauge). Numbers refer to identification number (#) in Table 3 (cf. first column). 

 
  



Figure 10. Sorrento Peninsula case study. Average kernel obtained from the best 100 filter functions. 

 
  



Figure 11. Sorrento Peninsula case study. Mobility function, z(t), of the average kernel. The red line (zcr = 22.53) shows 
the maximum value of the mobility function (critical condition) that is unrelated to known landslide activations. The 
green line (zj-min = 22.63) – almost overlapping with the red line in this case – shows the minimum value of the mobility 
function related to known landslide activations. When the mobility function exceeds the threshold marked by the red 
line, landslide activation may occur. The red dots represent the maxima of the mobility function corresponding to the 
dates of landslide activation considered for calibration.  

 
  



Figure 12. Sorrento Peninsula case study. Kernels providing (a) the best fitness (Φmax = 0.807), (b) the minimum base 
time tb min (26 days), (c) the Δzcr max (0.00801), and (d) the minimum first order momentum, μ0 min (9.460). 

 
  



Figure 13. Sorrento Peninsula case study. a) Validation of the average kernel against the #11 event. b) Particular of 
Fig.13a, limited to the period ±tb, including the date of validation. Key as in Fig.11. The blue label indicates the date of 
validation. Grey background marks the period after the event that may be employed for re-calibration.  

. 
  



Figure 14. Uncino landslide case study. Average kernel obtained from the best 100 filter functions. 

 
  



Figure 15. Uncino landslide case study. Mobility function, z(t), of the average kernel. The red line (zcr = 17.85) shows 
the maximum value of the mobility function (critical condition) that is unrelated to known activations. The green line 
(zj-min = 18.98) shows the minimum value of the mobility function related to known activations. When the mobility 
function exceeds the threshold marked by the red line, landslide activation may occur. The red dots represent the 
maxima of the mobility function corresponding to dates of landslide activation considered for calibration. 

 
  



Figure 16. Uncino landslide case study. Kernel providing the best fitness. 

 
  



Figure 17. Uncino landslide case study. a) Validation of the average kernel against the #6 event. b) Particular of 
Fig.17a, limited to the period ±tb including the date of validation. Key as in Fig. 15. The blue label indicates the date of 
validation. Grey background marks the period after the event that may be employed for re-calibration.  

 
  



Figure 18. Uncino landslide case study. Average kernels obtained in calibration against the 2, 3, 4, 5, and 6 dates of 
activation.  

 
  



Figure 19. Maximum fitness (Φmax), safety margin (Δzcr), number (ni) of iterations needed to first reach Φmax, and base 
time (tb) of the average kernel, based on GA parameters listed in Table 8. 

 



Figure 19

 

  



Figure 20. Uncino landslide case study. Results of progressive calibration. Variation of Δzcr and Φv for L increasing 
from 2 to 6. 

 
 

 

 
 


