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ABSTRACT 13 
GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is 14 
based on Genetic Algorithms and allows to obtain thresholds for the prediction of slope failures 15 
using dates of landslide activations and rainfall series. It can be applied to either single landslides or 16 
set of similar slope movements in a homogeneous environment.  17 
Calibration of the model provides families of optimal, discretized solutions (kernels) that maximize 18 
the fitness function. Starting from the kernels, the corresponding mobility functions (i.e., the 19 
predictive tools) can be obtained through convolution with the rain series. The base time of the 20 
kernel is related to the magnitude of the considered slope movement, as well as to the hydro-21 
geological complexity of the site. Generally, shorter base times are expected for shallow slope 22 
instabilities compared to larger-scale phenomena. Once validated, the model can be applied to 23 
estimate the timing of future landslide activations in the same study area, by employing measured or 24 
forecasted rainfall series.  25 
Examples of application of GASAKe to a medium-size slope movement (the Uncino landslide at San 26 
Fili, in Calabria, Southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, 27 
Campania, Southern Italy) are discussed. In both cases, a successful calibration of the model has 28 
been achieved, despite unavoidable uncertainties concerning the dates of occurrence of the slope 29 
movements. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by 30 
calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e., 31 
neither missing nor false alarms) has been achieved using 5 activations. As for temporal validation, 32 
the experiments performed by considering further dates of activation have also proved satisfactory. 33 
In view of early-warning applications for civil protection, the capability of the model to simulate the 34 
occurrences of the Uncino landslide has been tested by means of a progressive, self-adaptive 35 
procedure. Finally, a sensitivity analysis has been performed by taking into account the main 36 
parameters of the model.  37 
The obtained results are quite promising, given the high performance of the model against different 38 
types of slope instabilities characterized by several historical activations. Nevertheless, further 39 
refinements are still needed for application to landslide risk mitigation within early-warning and 40 
decision-support systems. 41 
 42 
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1 INTRODUCTION 46 
A nationwide investigation, carried out by the National Geological Survey, identified approximately 47 
5×105 slope movements in Italy, with an average of 1.6 failures per square kilometre (Trigila, 48 
2007). According to other investigations, this figure would rather be a low estimate (cf. Servizio 49 
Geologico, Sismico dei Suoli, 1999; Guzzetti et al., 2008). In the period 1950–2009, at least 6349 50 
persons were killed, went missing, or were injured by landslides, with an average of 16 harmful 51 
events per year, thus confirming the notable risk posed to population (Guzzetti, 2000; Salvati et al., 52 
2010).  53 
Petley (2008) estimated that about 90% of worldwide casualties can be attributed to landslides 54 
triggered by rainfall. With reference to the Italian territory, about 70% of landslides result to be 55 
triggered by rainfall (cf. CNR-GNDCI AVI Project, Alfieri et al., 2012). Slope instability conditions 56 
are in fact influenced by rainfall that, infiltrating into the slopes, cause temporary changes in 57 
groundwater dynamics (Van Asch et al., 1999). The combination of infiltration and runoff may 58 
cause different types of mass-movements (either slope failure or erosion processes) depending on 59 
the intensity and duration of the rainfall and the values of soil suction (Cuomo and Della Sala, 60 
2013). Concentration of water deriving from either contemporary or antecedent storms at specific 61 
sites plays a major role in triggering landslides – as testified by slope instabilities that commonly 62 
follow the heaviest phases of rainfall events.  63 
To model the relationships between rainfall and landslide occurrence, two distinct approaches are 64 
generally adopted in literature. The first, named “complete” or “physically-based”, attempts to 65 
determine the influence of rainfall on slope stability by modelling its effects in terms of overland 66 
flow, groundwater infiltration, pore pressure and related balance of shear stress and resistance (cf. 67 
e.g., Montgomery and Dietrich, 1994; Wilson and Wieczorek, 1995; Crosta, 1998; Terlien, 1998; 68 
Crosta et al., 2003; Pisani et al., 2010). With regard to this latter purpose, numerical models are 69 
employed, and a notable (and expensive) amount of detailed data is commonly required to define 70 
the geological scheme of the slope in litho-structural, hydrogeological, morphologic and 71 
geotechnical terms. The second approach (adopted in the present study), named “empirical” or 72 
“hydrological” (Cascini and Versace, 1988), is based on a statistical-probabilistic analysis of 73 
rainfall series and of dates of occurrence of slope movements (see, among the others, Campbell, 74 
1975; Caine, 1980; UNDRO, 1991; Sirangelo and Versace, 1996; Guzzetti et al., 2007; 2008, 75 
Brunetti et al. 2010, Gariano et al., 2015). In literature, methodological examples generally focus on 76 
thresholds obtained for i) single phenomena or ii) given types of landslides within a homogeneous 77 
geo-environmental setting (cf. e.g., Jakob and Weatherly, 2003). 78 
In this study, the hydrological model GASAKe (i.e., the Genetic-Algorithms based release of the 79 
model Self Adaptive Kernel), developed to forecast the triggering of slope movements, is described. 80 
The model can be applied to either single landslides or to a set of similar phenomena within a 81 
homogeneous study area. Model calibration is performed by means of Genetic Algorithms: in this 82 
way, a family of optimal, discretized kernels can iteratively be obtained from initial tentative 83 
solutions. In a different release of the model (CMSAKe – i.e., Cluster model SAKe) the calibration is 84 
instead performed through an iterative procedure (Terranova et al., 2013).  85 
Examples of application of the model to a medium-size landslide (the Uncino landslide at San Fili) 86 
and to shallow slope movements in the Sorrento Peninsula are discussed in the following sections. 87 
Temporal validation is discussed for both cases, in view of early-warning applications of GASAKe 88 
for Civil Protection purposes. Moreover, a progressive, self-adaptive procedure of calibration and 89 
validation is discussed, by considering the Uncino case study, to verify changes in fitness, 90 
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predictive ability and base time when an increasing number of dates of activation is employed. 91 
Finally, the results of preliminary, parametric analyses are presented, aimed at investigating the role 92 
of the main parameters of the model.  93 
 94 
2 BACKGROUND 95 
Physical systems evolve in time due to their own inner dynamics and/or as a consequence of 96 
external causes. Suitable observational tools can be employed to monitor their evolution, and 97 
arranged to promptly send reports or warnings to authorities of civil protection to support the 98 
management of emergencies (Cauvin et al., 1998; for applications to landslides, cf. also Keefer et 99 
al., 1987; Iovine et al., 2009; Capparelli and Versace, 2011; Pradhan and Buchroithner, 2012).  100 
In the case of complex systems (e.g., nuclear power stations, telecommunication networks, etc.), 101 
many parameters, in part interdependent, have to be monitored. Missing an automated phase of 102 
analysis and proper filtering, a great number of reports may be delivered by the monitoring 103 
apparatus in few seconds. At this purpose, the concepts of threshold (Carter, 2010), event and 104 
warning must therefore be suitably defined. 105 
Regarding slope movements, the notions of threshold and warning have long been investigated. In 106 
particular, a threshold constitutes a condition - generally expressed in quantitative terms or through 107 
a mathematical law - whose occurrence implies a change of state (White et al., 1996). According to 108 
the ALARM study group (Cauvin et al., 1998), an event is i) a portion of information extracted 109 
from either continuous or discrete signals (i.e., a significant variation), transmitted by a component 110 
of the monitoring network; or ii) a set of data concerning the considered context (e.g., restorations, 111 
actions, observations). According to such definition, an event must be instantaneous and dated. As 112 
for warning, its definition derives from that of event: it is a discrete indicator aimed at triggering a 113 
human or an automated reaction. The warning can be classified into distinct levels (e.g., in terms of 114 
security) or by type (e.g., related to a distinct component of the dynamic system under 115 
consideration), to be transmitted by the monitoring system.  116 
In complex systems, causal factors responsible for emergency conditions may be difficult to 117 
identify. Therefore, warnings may be issued according to pre-fixed thresholds related to suitable 118 
physical properties of the system. In these cases, the timing of data sampling of the monitoring 119 
instruments should be progressively adapted to the evolution of the phenomenon. A further issue 120 
concerns the chances of missing and false alarms, as well as the camouflage of an alarm among 121 
simultaneous others.  122 
In physical terms, slope instability can occur when the shear strength gets lower than a given 123 
threshold (Terzaghi, 1962). Rain infiltration may temporarily change the dynamics of groundwater 124 
(Van Asch et al., 1999): due to an increase in pore water pressure, the effective shear strength of the 125 
material decreases, and a slope movement can be triggered. Groundwater may reach a given 126 
location within the slope by different paths. The main natural mechanisms include: i) surface flow, 127 
strongly influenced by morphology; ii) direct infiltration from the surface; iii) flow within the soil 128 
mantle (throughflow) from upslope and sideslopes; iv) seepage from the bedrock toward the 129 
overlying colluvium. The length of the different paths may be quite different, and characterized by 130 
distinct velocities: as a consequence, aliquots of the same rainfall event may reach a given site at 131 
different times, variously combining with other groundwater amounts (Ellen, 1988). 132 
To apply a hydrological approach, empirical relations have to be determined by means of thresholds 133 
to distinguish among conditions which likely correspond to landslide occurrence or not. To this 134 
aim, different hydrological parameters can be selected (Guzzetti et al., 2007; 2008 and 135 
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http://rainfallthresholds.irpi.cnr.it/): the cumulative rain recorded in a given temporal window 136 
(hours/days/months) before landslide activation; the average rain intensity in the same temporal 137 
window; rains normalized to reference values (e.g., annual averages). Simplified hydrological 138 
balances can also be adopted in empirical approaches, by considering losses of aliquots of rains by 139 
run-off, evapo-transpiration, etc.  140 
As concerns superficial landslides, triggering thresholds can be derived from relations between the 141 
“triggering” rain (daily, hourly or shorter), corresponding to the onset of the slope movement, and 142 
the rain cumulated over an “antecedent period” (usually, few days to two weeks before landslide 143 
activation) (e.g., Campbell, 1975; Cannon and Ellen, 1985; Wieczorek, 1987; Terlien, 1996; Crosta, 144 
1998; Zêzere and Rodrigues, 2002). In other cases, thresholds refer to relations between rain 145 
intensity, I, and duration, D (e.g., Brunetti et al., 2010, Berti et al., 2012, Peres and Cancelliere, 146 
2014). In some studies, antecedent rains are also considered, allowing to obtain better results (e.g., 147 
Campbell, 1975). Larger amounts of antecedent rain should allow slope movements to be activated 148 
by less severe triggering storms. In general, a direct relationship between antecedent rain and 149 
landslide dimension can be observed (Cascini and Versace, 1986); though, in some peculiar 150 
conditions (e.g., Hong Kong case studies, caused by suction reduction - Brand et al., 1984) this is 151 
not the case, and the role of antecedent rains looks less important. In addition, as underlined by 152 
Cuomo and Della Sala (2013), time to runoff, time to failure and runoff rates strongly depend on 153 
soil water characteristic curves, soil initial conditions, rainfall intensity and slope angle in 154 
unsaturated shallow deposits. Moreover, soil mechanical parameters affect the time to failure, 155 
which can result either shorter or longer than time to runoff. 156 
Due to physical and economic issues, difficulties in hydrological modelling of landslides generally 157 
increase when dealing with deeper and larger phenomena (Cascini and Versace, 1986). In such 158 
cases, landslide activation depends on the dynamics of deeper groundwater bodies. By the way, it is 159 
not by chance that most studies do refer to small and superficial slope movements. Large landslides 160 
usually show complex relationships with rains, as different groundwater aliquots may combine and 161 
reach the site of triggering. Depending on type (cf. dimension, material, kinematics, etc.), different 162 
hydrological mechanisms should be considered, thus limiting the possibility of generalization of the 163 
thresholds (Dikau and Schrott, 1999; Corominas, 2001; Marques et al., 2008). Again, the 164 
mobilization of deeper phenomena commonly requires greater rainfall amounts, spanned over 165 
longer periods, with respect to shallow landslides (Aleotti, 2004; Terranova et al., 2004; Guzzetti et 166 
al., 2007; 2008;). In these cases, rain durations responsible for landslide activations commonly 167 
range from ca. 30 days to several months, even beyond a single rainy season (Brunsden, 1984; Van 168 
Asch et al., 1999; Gullà et al., 2004; Trigo et al., 2005). 169 
To analyse the triggering conditions of slope movements – either shallow or deep-seated – a 170 
threshold-based modelling approach can be employed. Empirical thresholds (e.g., Aleotti, 2004; 171 
Wieczorek and Glade, 2005; Terranova et al., 2004; Vennari et al., 2014) can be expressed in terms 172 
of curves, delimiting the portion of the Cartesian plane which contains “all and only” the 173 
hydrological conditions related to known activations (cf. e.g., the I-D chart proposed by Caine, 174 
1980). A further improvement to this approach can be obtained by considering hydrological 175 
conditions not related to landslide activations (Crozier, 1997; Sengupta et al., 2010; Gariano et al., 176 
2015). In general, no changes of state are assumed to occur below the threshold (zt), while they do 177 
happen above it. Alternatively, a range of conditions can be defined (Crozier, 1997), delimited by:  178 
 a lower threshold (zlow), below which changes of state do never occur, and  179 
 an upper threshold (zupp), above which changes always happen.  180 
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For values between zupp and zlow, the probability that the state changes can be defined, essentially 181 
depending on i) the incompleteness of knowledge on the physical process under investigation, and 182 
ii) the incapacity of the model to fully replicate the behaviour of the same process. In probabilistic 183 
terms: 184 

P(Et)  = 0 for z(t) < zlow 
P(Et) = 1 for z(t) > zupp 
P(Et) = G[z(t)] for zlow ≤ z(t) ≤ zupp 

(1) 

in which: P is the probability of occurrence (1=success, 0=unsuccess); Et is a process (succession of 185 
events) whose state changes with time t; z(t) is the value assumed, at time t, by the variable that 186 
determines the change of state; zlow and zupp are the minimum and maximum thresholds, 187 
respectively; G[z(t)] is a probability function, monotonically increasing with t in the range ]0,1[. 188 
In hydrological models, to express the influence of rainfall on runoff and groundwater dynamics, a 189 
“kernel” (also named “filter function”) can be employed, usually defined in terms of simple, 190 
continuous analytical function (Chow et al., 1988). In such a way, suitable weights can be assigned 191 
to the precipitations occurred in the last hours/days before a given geo-hydrological process (e.g., 192 
discharge, measured at a generic river cross section; landslide activation), as well as to earlier rains 193 
recorded weeks/months before. The mostly employed types of kernels are Beta, Gamma, Nash, 194 
negative exponential distribution. Furthermore, the “base time” (tb) expresses a sort of memory with 195 
respect to rainfall: in classic rainfall-runoff modelling, tb defines the time of concentration, while in 196 
slope stability analyses it represents the time interval, measured backward from landslide activation, 197 
during which rainfall is deemed to effectively affect groundwater dynamics, and contributes to 198 
destabilization.  199 
To modelling slope stability, both the shape and the base time of the kernel must be properly 200 
selected depending on type and dimension of the investigated phenomena, as well as geo-structural 201 
and hydrogeological characteristics. Unfortunately, in several real cases, the above-mentioned 202 
analytical functions may fail in properly capturing the complexity of groundwater dynamics, as well 203 
as the related landslide activations. In this respect, the adoption of discretized kernels, automatically 204 
calibrated through iterative computational techniques, may offer effective solutions. 205 
 206 
3 THE MODEL GASAKe 207 
GASAKe is an empirical-hydrological model for predicting the activation of slope movements of 208 
different types. It is based on a classic threshold scheme: the exceedance of the threshold 209 
determines a change of state, i.e. the triggering of the landslide. The scheme is inspired from the 210 
FLaIR model (Forecasting Landslides Induced by Rainfall), proposed by Sirangelo and Versace 211 
(1996): through changes of state in time, the variable z(t) assumes the meaning of “mobility 212 
function”. In other terms, the values of z(t) depend on the amount of rain stored in the aquifer.  213 
In hydrology, rainfall-runoff modelling is commonly performed by adopting a linear, steady scheme 214 
(Chow et al., 1988). Such approach implies that the transformation of rainfall in runoff can be 215 
described by an integral of convolution between a unitary impulsive response of the basin – the 216 
kernel, h(t) – and the rainfall, p(t).  217 
The kernel (filter function) represents the unitary volume influx in an infinitesimal period, and is 218 
defined as: 219 

� ℎ(𝑡)𝑑𝑡 = 1
∞

0
 (2) 
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in which h(t)=h(-t), h(t) ≥ 0,  ∀𝑡.  220 
In practical applications, the lower bound (t=0) corresponds to the beginning of the flood-wave 221 
rising, and the kernel assumes a finite duration (tb). The integral of convolution is therefore 222 
expressed as:  223 

𝑧(𝑡) =  � ℎ(𝑡 − 𝜏) 𝑝(𝜏)𝑑𝜏 
𝑡𝑏

0
=  � ℎ(𝜏) 𝑝(𝑡 − 𝜏)𝑑𝜏 

𝑡𝑏

0
 (3) 

in which z(t) represents the discharge at the time t. For a specific case study, the kernel can be 224 
determined by means of calibration procedures, by relating discharge measurements to rains.  225 
In discretized terms, the elements of the kernel are characterized by width Δt and height hi, and 226 
equation (3) can be written as: 227 

𝑧𝑢 = �ℎ𝑖 ∙ 𝑝𝑢−𝑖+1 ∙ ∆𝑡
𝑢

𝑖=1

 (4) 

 228 
Sirangelo and Versace (1996) proved that the same approach may turn out promising also in slope-229 
stability modelling. Capparelli and Versace (2011) stressed that the I-D chart of Caine (1980) 230 
corresponds to a kernel defined by a power function ℎ(𝑡) = 𝑎 𝑡𝑏 , with b<0. Exporting the well-231 
established knowledge of rainfall-runoff modelling (usually based on many measurements) to 232 
rainfall-landslide modelling is not trivial, due to scarcity of adequate information for proper 233 
calibration. Only few dates of activation are, in fact, commonly available in rainfall-landslide 234 
modelling (often with unsatisfactory details on location and phenomena), and the values of z(t) are 235 
unknown. From a mathematical point of view, such a problem can be handled by assuming that the 236 
timing of the maxima of z(t) corresponds to the dates of landslide activation. When studying the 237 
triggering conditions of landslides, calibration can be therefore performed by maximizing the 238 
mobility function in correspondence to the dates of activation.  239 
Scarcity of information inevitably reflects on the resulting kernel, whose shape may turn out highly 240 
indeterminate: different functions, or different parameters of the same function, can in fact 241 
maximize z(t) in correspondence to the dates of mobilization. Model optimization – and its reliable 242 
utilization for early-warning purposes – can turn out an awkward issue.  243 
In this work, an innovative modelling approach – based on discretized kernels, automatically 244 
calibrated through iterative computational techniques – is proposed, which may help in facing the 245 
above-cited difficulties. For modelling purposes, the rainfall series and a coherent set of dates of 246 
landslide occurrence – either related to a given slope movement, or to a set of landslides of the same 247 
type in a homogeneous geo-environmental zone – must be given as input.  248 
Unfortunately, when dealing with the timing of occurrence, historical notices may refer either to 249 
portions of the considered phenomena or to entire landslide bodies. Therefore, dates should be 250 
properly selected to consider only consistent cases. Moreover, dates of activation are usually known 251 
with only a broad approximation: with respect to the reports, the actual timing of occurrence may be 252 
located backward (documents may assign a later date) or forward (in case of later, more relevant 253 
movements). For modelling purposes, it is then useful to specify a temporal window, lasting from 254 
an initial (dt-from) to a final date (dt-to), containing the presumable timing of occurrence.  255 
Rainfall series are commonly reconstructed from data recorded at rain gauges located within a 256 
reasonable proximity of the study site. The temporal window of the hydrological analysis is defined 257 
by the intersection of i) the period of observation of the rains and ii) the period delimited by the 258 
ancientmost and the recentmost dates of activation of the landslide. A potential source of 259 
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uncertainty lies in the fact that, occasionally, the recorded rainfall amounts notably differ from those 260 
actually experienced at landslide location. Furthermore, landslide triggering may also be due to 261 
other causes (e.g., human activity, earthquakes): a thorough preliminary analysis has always to be 262 
performed to verify the significance of rainfall preceding landslide activation, to detecting cases not 263 
to be considered in the hydrological study. 264 
In the model, rains older than tb are neglected. Suitable maximum and minimum values (tb-max and 265 
tb-min) have to be initialized to allow the model to determine optimal values. Commonly, tb ranging 266 
from few hours to some weeks are suggested for shallow landslides, while greater values (up to 267 
several months) sound suitable for deep-seated phenomena. 268 
Based on the geological knowledge of the phenomenon under investigation, the initial shape of the 269 
kernel can be assumed among a set of basic types. Among these, i) a “rectangular” shape can be 270 
adopted if older precipitations have the same weight of more recent rains; ii) a “decreasing 271 
triangular”, if older precipitations have a progressively smaller weight than more recent rains; iii) 272 
“increasing triangular”, if older precipitations have a progressively greater weight than more recent 273 
rains. A casual shape or any other function can also be implemented in the model (e.g., Beta, 274 
Gamma, Nash, Negative exponential distribution).  275 

 276 
3.1 Model Calibration  277 
In GASAKe, model calibration is performed against real case studies through Genetic Algorithms 278 
(GAs). These latter are general-purpose, iterative search algorithms inspired by natural selection 279 
and genetics (Holland, 1975). Since 1970’s, GAs have been applied to several fields of research, 280 
from applied mathematics (Poon and Sparks, 1992), to evolution of learning (Hinton and Nowlan, 281 
1987), evolutionary robotics (Nolfi and Marocco, 2001), and debris-flow modelling (Iovine et al., 282 
2005; D’Ambrosio et al., 2006). GAs simulate the evolution of a population of candidate solutions 283 
to a given problem by favouring the reproduction of the best individuals. The candidate solutions 284 
are codified by genotypes, typically using strings, whose elements are called genes.  285 
GAs explore the solution space, defined as the set of possible values of the genes. At the beginning 286 
of a given optimization experiment, the members of the initial population of genotypes (in this 287 
study, the kernels) are usually generated at random. The performance of each solution, in terms of 288 
phenotype (i.e., the mobility function), is evaluated by applying a suitable fitness function, so 289 
determining its “adaptability”, i.e. the measure of its goodness in resolving the problem.  290 
The sequence of random genetic operators selection, crossover and mutation, constrained by 291 
prefixed probabilities, constitutes a single GA-iteration that generates a new population of candidate 292 
solutions. At each iteration, best individuals are in fact chosen by applying the selection operator. 293 
To form a new population of offspring, crossover is employed by combining parents’ genes. 294 
Mutation is successively applied to each gene, by randomly changing its value within the allowed 295 
range. Thanks to the GA approach, better individuals (i.e., those characterized by higher fitness 296 
values) can be obtained over time. In fact, according to individual probabilities of selection, any 297 
change that increases the fitness tends to be preserved over GA iterations (Holland, 1975). For 298 
further details on GAs, cf. Goldberg (1989) and Mitchell (1996). 299 
In the present study, a steady-state and elitist GA (cf. De Jong, 1975) was employed to obtain the 300 
family of optimal kernels that maximize the mobility function in correspondence to known dates of 301 
landslide activations. The procedure employed for calibration of GASAKe is schematized in Figure 1.  302 
At the beginning of an optimization experiment, the initial population of N kernels is generated at 303 
random, and the fitness of the related mobility functions is evaluated (cf. below). In order to evolve 304 
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the initial population of candidate solutions, and to progressively obtain better solutions, a total 305 
number of Λ GA-iterations follows.  306 
At each iteration of the GA, the operators selection, crossover and mutation are applied as follows 307 
(Fig. 2): 308 
• selection  309 

i. ne “elitist” individuals are merely copied in a “mating pool” from the previous generation, by 310 
choosing the best ones;  311 

ii. the remaining N-ne candidate solutions are chosen by applying the “tournament without 312 
replacement” selection operator. More in detail, a series of tournaments are performed by 313 
selecting two individuals at random from the previous generation: the winner (i.e., the one 314 
characterized by the highest fitness) is copied into the mating pool, according to a prefixed 315 
surviving probability (ps), which is set greater for the fittest individual. Note that, when 316 
choosing the N-ne candidate solutions, a given individual cannot be selected more than once.  317 

• crossover  318 
After the mating pool is filled with N individuals, the crossover operator is applied, according to 319 
a prefixed probability (pc):   320 

i. two parent individuals are chosen from the mating pool at random;  321 
ii. a cutting point (crossover point) is then selected at random in the range ]tb-min, tb-max[; 322 

iii. the obtained portions of parents’ strings are exchanged, thus mixing the genetic information 323 
and resulting in two children (Fig. 3).  324 

When the crossover is not applied, the two parents are merely copied into Pnew.  325 
• mutation 326 

Based on a prefixed probability (pm), a random number of elements of the kernel (pme, expressed 327 
as a percentage of tb) is mutated, by adding to each element an amount dh that is randomly 328 
obtained in the range [pmh1, pmh2], as a function of the maximum value of the kernel (hmax). Then 329 
dh ranges from dh1 to dh2:  330 
dh1 = pmh1 · hmax 
dh2 = pmh2 · hmax 

(5) 

Furthermore, the base time is also mutated (increased or decreased) within the bounds [tb-min, tb-331 
max], according to a random factor dtb selected in the range [1/pmtb, pmtb] (Fig. 4). 332 

Children obtained by either crossover or mutation must be normalized before being included in the 333 
population Pnew, by properly scaling the elements of the kernels to ensure validity of equation 2. 334 
During calibration, the shape of the kernel and its tb are iteratively refined. Note that the shape is not 335 
subject to any constraint, while tb is allowed to vary in the range [tb-min - tb-max]. The fitness is 336 
computed for each examined mobility function, and new populations of kernels are generated as 337 
described above.  338 
As for the fitness function, in GASAKe it is defined as follows: 339 
• the L available dates of landslide activation – as derived from the historical analyses – are 340 

arranged in a vector S = {S1, S2, …, Si, …, SL}; 341 
• the vector of the relative maxima of the mobility function, Z = {z1, z2, …, zj, …, zM}, is sorted 342 

in decreasing order (M = number of relative maxima); 343 
• the vector of the partial fitness is φ = {φ1, φ2, …, φi, ... φL}, where φi = k-1 depends on the rank k 344 

of the relative maxima of zj that coincide with known dates of activation, Si. In case Si does not 345 
correspond to any relative maximum, it is φi = 0. 346 
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With reference to a given kernel, the resulting fitness is expressed by Φ𝑢 = ∑ 𝜑𝐿
𝑖=1 𝑖. To generalize 347 

the results for an easier comparison with other study cases, a normalized fitness index is adopted, Φ 348 
= Φu /Φmax, defined in the range [0,1], being Φ𝑚𝑚𝑚 =  ∑ 1/𝑖𝐿

𝑖=1 . 349 
For instance, if two dates of activation are available and both are well captured by the mobility 350 
function (i.e., they correspond to the highest peaks), the obtained fitness is Φ𝑢 = 1 + ½ = 1.5. On the 351 
other hand, in case only one of the dates is captured and the remaining one ranks fifth, Φ𝑢 = 1 + ⅕ 352 
= 1.2. 353 
Thanks to the above procedure, a family of “optimal kernels” which maximizes the fitness can be 354 
determined. The mobility function is, in fact, forced toward a shape characterized by relative 355 
maxima (zj) coinciding with the dates of landslide occurrence (Si). An optimal solution leads to a 356 
mobility function having the highest peaks in correspondence to such dates; further peaks may also 357 
be present, characterized by lower values. Nevertheless, kernel solutions generally determine 358 
mobility functions whose highest peaks only partly match with the dates of landslide occurrence 359 
(i.e., some dates may neither correspond to the highest peaks nor to any peak at all).  360 
To select the most suitable kernel from a given family of optimal ones, let’s define:  361 
• zj-min as the lowest of the peaks of the mobility function in correspondence to one of the dates of 362 

activation (Si);  363 
• zcr as the “critical threshold”, i.e. the highest peak of the mobility function just below zj-min;  364 
• the “safety margin”, Δzcr = ( zj-min - zcr ) / zj-min.  365 
When applying the fitness function to evaluate a given kernel, either incompleteness or low 366 
accuracy of input data may lead to “false alarms” – i.e., peaks of the mobility function (zj) which are 367 
greater than the threshold zcr, but do not correspond to any of the known dates of activation. Such 368 
alarms can actually be of two different types: 1) “untrue false”, due to an informative gap in the 369 
archive (i.e., correct prediction); 2) “true false”, in case of real misprediction of the model. On such 370 
cases, further historical investigations may help to discriminating between the mentioned types of 371 
false alarms. 372 
Also depending on the specific purpose of the analysis, the most suitable kernel can therefore be 373 
selected by one or more of the following criteria: i) the greatest Δzcr; ii) the shortest tb; iii) the 374 
smallest µ0 = ∑  (𝑖 − 0.5) ℎ𝑖 𝛥𝑡𝑖≤𝑡𝑏 , i.e. the first-order momentum of the kernel with respect to the 375 
vertical axis. The first criterion allows for the activation of early-warning procedures with greatest 376 
advance; the remaining ones (to be employed when Δzcr is too small) generally correspond to more 377 
impulsive responses to rainfall.  378 
Differently from what usually experienced in rainfall-runoff models, GASAKe therefore provide 379 
multiple equivalent solutions – i.e., a number of optimal kernels with same fitness, Φ𝑢, despite 380 
different shapes. This may depend on the limited number of available dates of activations, and on 381 
other noises in input data (e.g., rain gauges located too far from the site of landslide activation; 382 
inaccurate information on dates of activation or on the phenomenon). The adoption of synthetic 383 
kernels – e.g., obtained by averaging a suitable set of optimal kernels – permits to synthetize the 384 
family of results for successive practical applications: in this work, the best 100 kernels obtained for 385 
each case study were in fact utilized to synthetize “average kernels” (see below) to be employed for 386 
validation purposes. 387 

 388 
4 CASE STUDIES 389 
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The case studies considered in this paper are: i) a set of shallow landslides in the Sorrento Peninsula 390 
between Gragnano and Castellammare di Stabia (Campania, Southern Italy); and ii) the Uncino 391 
landslide at San Fili (Calabria, Southern Italy).  392 
Note that, as the numbers of known historical activations in the study areas were adequate, some 393 
dates could be excluded from calibration, and were successively employed for validation purposes. 394 
In particular, the recentmost dates of landslide activation (cf. Tables 1 and 2) were employed to 395 
validate the average kernels (these latter obtained from the families of optimal solutions defined 396 
through calibration). The procedure employed for validation is schematized in Figure 5. 397 
 398 
4.1 Shallow landslides in the Sorrento Peninsula - Campania 399 
The Sorrento Peninsula is located in western Campania, Southern Italy (Fig. 6). In the area, 400 
Mesozoic limestone mainly crop out, covered by Miocene flysch, Pleistocene volcanic deposits 401 
(pyroclastic fall, ignimbrite), and Pleistocene detrital-alluvional deposits (Di Crescenzo and Santo, 402 
1999). The carbonate bedrock constitutes a monocline, gently dipping towards WNW, mantled by 403 
sedimentary and volcanoclastic deposits, with thickness ranging from few decimetres to tens of 404 
meters.  405 
Rainfall-induced shallow landslides are widespread in the pyroclastic soils covering the slopes of 406 
the study area. Among the various factors affecting the spatial distribution and the type of slope 407 
instabilities, Cascini et al. (2014) pointed out that both the rainfall conditions and the consequent 408 
seasonal variations of soil suction play a significant role. In particular, when suction is low and 409 
frontal rainfall occurs (from November to May), first time shallow landslides are triggered; when 410 
suction is high or very high and convective or hurricane-type rainfall occurs (from June to October), 411 
mostly erosion phenomena occur, often turning into hyperconcentrated flows. 412 
The study area is characterized by hot, dry summers and moderately cold and rainy winters. 413 
Consequently, its climate can be classified as Mediterranean (Csa in the Köppen-Geiger's 414 
classification). In particular, the mean annual temperature ranges from 8-9°C, at the highest 415 
elevations of M. Faito and M. Cerreto, to 17-18°C along coasts and valleys. Average annual rainfall 416 
varies from 900 mm west of Sorrento to 1500 mm at M. Faito; moving inland to the East, it reaches 417 
1600 mm at M. Cerreto and 1700 mm at the Chiunzi pass (Ducci and Tranfaglia, 2005). On 418 
average, annual totals are concentrated in about 95 rainy days. During the driest six months (from 419 
April to September), only 30% of the annual rainfall is recorded in about 30 rainy days. During the 420 
three wettest months (November, October, and December), a similar amount is recorded in about 34 421 
rainy days (Servizio Idrografico, 1948-1999). In the area, convective rainstorms may occur, 422 
characterized by a very high intensity, at the beginning of the rainy season (from September to 423 
October). In Autumn-Winter, either high intensity or long duration rainfall are usually recorded, 424 
while uniformly distributed rains generally occur in Spring (Fiorillo and Wilson, 2004). As for 425 
annual maxima of daily rainfall recorded at the sea level, the Amalfi coast (southern border of the 426 
Sorrento Peninsula) is characterized by smaller values (59 mm) of average annual maxima of daily 427 
rainfall than the Sorrento coast (86 mm), on the northern border. Such difference seems to persist 428 
even at higher elevations (up to 1000 m a.s.l.), with 84 mm vs. 116 mm for the southern and 429 
northern mountain slopes, respectively (Rossi and Villani, 1994). 430 
Severe storms frequently affect the study area, triggering shallow landslides that propagate seaward, 431 
often causing casualties and serious damage to urbanized areas and transportation facilities (Mele 432 
and Del Prete, 1999; Calcaterra and Santo, 2004; Di Crescenzo and Santo, 2005). In the second half 433 
of the XX century, several shallow landslides activated nearby Castellammare di Stabia: in Table 1, 434 
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the major events recorded between Vico Equense and Gragnano are listed, with details on types of 435 
events, affected sites and references. Shallow landslides listed in Table 1 occurred between 436 
November and March, a period characterised by a medium to low suction range and included in the 437 
rainy season (October to April), according to Cascini et al. (2014). The same Authors pointed out 438 
that, in this period, frontal rainfall typically occurs and may trigger widespread first-time shallow 439 
landslides, later propagating as debris flow or debris avalanches. 440 
Rainfall responsible for landslide occurrences in the Sorrento Peninsula are shown in Fig. 7, in 441 
terms of cumulated antecedent rains, extracted from the records of the nearest gauges (Tramonti, 442 
Castellammare, and Tramonti-Chiunzi – cf. Fig. 6). The trends of antecedent rains look quite 443 
different, ranging from abrupt (cf. curves 5, 6, 7) to progressive increases (cf. 2, 4, 10). On the other 444 
hand, the curve 0 does not highlight significant amounts of rainfall in the 14 days preceding 445 
landslide activation: therefore, the occurrence recorded on 14 April 1967 was excluded by the 446 
hydrological analysis. Quite moderate amounts of cases 6 and 7 (occurred on 4 November 1980 and 447 
14 November 1982, resp.) were instead recorded in short periods, thus resulting into high-intensity 448 
events that could be considered as triggering factor of the observed landslides. 449 
As a result, the dates of activation from #1 to #10 were selected for calibration, whilst #11 was 450 
employed for validation. As shallow landslides were being considered, the rainfall period employed 451 
for calibration spanned from 17 January 1963 to 10 December 1996; for validation, the rainfall 452 
series extended from 11 December 1996 to 10 February 1997 – i.e., to the validation date +tb (this 453 
latter as obtained from calibration). 454 
 455 
4.2 The Uncino landslide - San Fili (Northern Calabria) 456 
San Fili (Fig. 8) is located on the western margin of the Crati graben, a tectonic depression along 457 
the active Calabrian-Sicilian Rift Zone (Monaco and Tortorici, 2000). In the area, vicarious, N-S 458 
trending normal faults mark the base of the Coastal Chain, at the transition between Palaeozoic 459 
metamorphic rocks, to the West, and Pliocene-Quaternary sediments, to the East (Amodio Morelli 460 
et al., 1976). Nearby San Fili, Palaeozoic migmatitic gneiss and biotitic schist, generally weathered, 461 
are mantled by a Late Miocene sedimentary cover of reddish continental conglomerate, followed by 462 
marine sandstone and clays (CASMEZ, 1967). In particular, the village lies in the intermediate 463 
sector between two faults, marked by a NE-SW trending connection fault, delimiting Miocene 464 
sediments, to the North, from gneissic rocks, to the South.  465 
In Calabria, the Tyrrhenian sector (including the study area) results rainier than the Ionian (about 466 
1200-2000 mm vs. 500 mm). Nevertheless, the most severe storms occur more frequently in the 467 
Ionian sector (Terranova, 2004). The average annual temperature is about 15°C: the coldest months 468 
are January and February (on average, 5°C), followed by December (8°C); the hottest months are 469 
July and August (24°C), followed by June (22°C).  470 
As in most of the region, the climate at San Fili is Mediterranean (Csa, according to Köppen, 1948). 471 
Being located on the eastern side of a ridge, the area is subject to Föhn conditions with respect to 472 
perturbations coming from the Tyrrhenian sea. It is characterized by heavy and frequent Winter 473 
rainfall, caused by cold fronts mainly approaching from North-West, and Autumn rains, determined 474 
by cold air masses from North-East. In Spring, rains show lower intensities than in Autumn, whilst 475 
strong convective storms are common at the end of Summer. The average monthly rains recorded at 476 
the Montalto Uffugo gauge (the closest to San Fili) are listed in Table 3. From October to March 477 
(i.e., the wet semester), 77% of the annual rainfall is totalized in about 77 rainy days; 36% of the 478 
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annual rainfall is recorded in 38 days during the three wettest months; finally, from June to August 479 
(i.e., the three driest months), 6% of the annual rains fall in 11 days. 480 
The Uncino landslide is located at the western margin of San Fili (Fig. 8). It is a medium-size rock 481 
slide (maximum width = 200 m, length > 650 m, estimated maximum vertical depth = 25 m), with a 482 
deep-seatedness factor (sensu Hutchinson, 1995) that may be classified as “intermediate”. The slope 483 
movement involves Late Miocene conglomerate, arenite and marly clay overlaying Palaeozoic 484 
gneiss and biotitic schist. It repeatedly affected the village, damaging the railway and the local road 485 
network, besides some buildings: the ancientmost known activation dates back to the beginning of 486 
the XX Century (Sorriso-Valvo et al., 1996); from 1960 to 1990, seven dates of mobilization are 487 
known (as listed in Table  2). On such events, the railroad connecting Cosenza to Paola was 488 
damaged or even interrupted. By the way, on 28 April 1987, the railway was put out of service, 489 
hence the relevance of the infrastructure decreased, together with media attention. Usually, such 490 
type of information is collected from archives not compiled by landslide experts, and is therefore 491 
affected by intrinsic uncertainty (e.g., concerning the dates of activity, and the partial or total 492 
activation of the phenomenon), with unavoidable problems of homogeneity of the data employed 493 
for model calibration.  494 
The informative content of the Uncino case study is quite high, and allows for a more accurate 495 
calibration of the kernel with respect to the Sorrento Peninsula case: consequently, a smaller family 496 
of optimal solutions is expected. Nevertheless, the known activations still suffer from uncertainties 497 
related to dates and affected volumes.  498 
Cumulated antecedent rains, corresponding to the Uncino landslide occurrences, are shown in Fig. 499 
9. Rainfall data were extracted from the records of the Montalto Uffugo rain gauge (cf. Fig. 8). The 500 
trends of antecedent rains may be distinguished into 3 main patterns: the curve 2 shows a constant 501 
increase of rainfall in time, totalizing the greatest amounts from ca. 90 to 180 days. On the other 502 
hand, the case 0 shows the lowest values throughout the considered accumulation period. The 503 
curves 1, 3, 4, and 5 totalize intermediate values, with abrupt increases from 120 to 180 days for 504 
curves 3 and 5. Finally, the case 6 looks similar to case 2 between 30 and 90 days, but shows no 505 
more increases in the remaining period (analogously to 1 and 4).  506 
As the curve 0 does not highlight significant amounts of rainfall in the 30-180 days preceding the 507 
landslide activation, the occurrence recorded on 23 November 1988 was excluded from the 508 
hydrological analysis. Of the remaining curves, case 1 generally shows the lowest amounts from ca. 509 
40 to 180 days. Consequently, the dates of activation from #1 to #5 were selected for calibration, 510 
whilst #6 was employed for validation. Since a medium-size landslide was being considered, the 511 
rainfall period employed for calibration spans from 1 September 1959 to 31 August 1980; for 512 
validation, it ranges from 1 September 1980 to 31 March 1981 – i.e., including the validation date 513 
by ±tb (this latter as obtained from calibration). 514 
 515 
5  RESULTS 516 
GASAKe was applied to shallow-landslide occurrences in the Sorrento Peninsula and to a medium-517 
size slope movement at San Fili, by considering the dates of activation and the daily rainfall series 518 
mentioned in section §4.1 and §4.2, and adopting the values of parameters listed in Table 4.  519 
Among the kernels obtained from calibration, several provided similar fitness values. Thus, 520 
“average kernels” were computed for the considered case studies, by averaging the best 100 kernels. 521 
 522 
5.1 Application to shallow landslides in the Sorrento Peninsula 523 
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In Table 5, the statistics related to the best 100 filter functions obtained from calibration (optimal 524 
kernels) are summarized. From such values, a low variability of Φ , tb and μ0 can be appreciated; 525 
instead, Δzcr shows a greater range of values. The average kernel is shown in Figure 10: it is 526 
characterized by fitness = 0.806, Δzcr = 0.00282, and tb = 28 days. From such kernel, antecedent 527 
rainfall mostly affecting landslide instability range from 1 to 12 days, and subordinately from 25 to 528 
26 days (negligible weights refer to rains occurred in the remaining period). 529 
The mobility function related to the average kernel is shown in Fig. 11. In this case, 4 out of 10 530 
dates of landslide activation are well captured by the model (being ranked at the first 7 positions of 531 
the mobility function maxima); the remaining 6 dates do also correspond to relative maxima of the 532 
function, but are ranked from the 43rd to the 151st position. When considering the remaining relative 533 
maxima, several false positives can be recognized, mainly up to 1979. 534 
During calibration, the best fitness (Φ =0.807) was first reached after 1749 iterations (at 6th 535 
individual), with Δzcr = 0.00441 and tb = 26 days. The kernel corresponding to such individual looks 536 
similar to the best one in terms of tb, Δzcr, and μ0 (Fig. 12). The pattern of the best kernel is only 537 
slightly dissimilar from the average one: significant weights can, in fact, be appreciated up to 14 538 
days, and then between 20-22 and 25-26 days. 539 
By applying the average kernel, a validation was performed against the remaining date of activation 540 
(cf. Table 1, #11, multiple event occurred on 10 January 1997). Validation resulted fully satisfied, 541 
as shown in Fig. 13: the value of the mobility function for the event #11 is well above the zcr 542 
threshold (49.01 vs. 18.05), and is ranked as the second highest value among the function maxima 543 
(Fig. 13a). The same peak can also be appreciated as the maximum of the period ±tb (Fig. 13b). 544 
Accordingly, if adopting the average kernel, the event #11 of landslide activation could properly be 545 
predicted by the model. 546 
 547 
5.2 Application to the Uncino landslide 548 
In Table 6, the statistics related to the family of optimal kernels are summarized. From such values, 549 
a low variability of tb and Δzcr can be appreciated. The average kernel (Fig. 14) is characterized by 550 
fitness = 1, Δzcr = 0.0644, and tb = 66 days. Based on such kernel, antecedent rains from 1 to 17 551 
days, and from 27 to 45 days, mainly affect landslide instability. Relatively smaller weights pertain 552 
to the rains occurred more than 53 days before the triggering; for periods older than 66 days, the 553 
weights are negligible. 554 
In Fig. 15, the mobility function related to the average kernel highlights that all the 5 dates of 555 
activation are well captured by the model (they are ranked at the first 5 positions among the 556 
function maxima). When considering the remaining relative maxima of the function, only 4 of them 557 
evidence quasi-critical situations (between 1965 and 1966, and subordinately in 1970 and 1977). 558 
During calibration, the best fitness (Φ =1) was first reached after 684 iterations (at 13th individual) 559 
with Δzcr = 0.0595. The best kernel (Fig. 16) was obtained at iteration 993, at 8th individual, with 560 
Δzcr = 0.0631. Its pattern results very similar to the average one, with a tb of 66 days. 561 
By applying the average kernel, a validation was performed against the last known date of 562 
activation (cf. Table 2, #6, occurred on December 1980). Validation resulted fully satisfied, as 563 
shown in Fig. 17: the value of the mobility function for the event #6, in fact, is well above the zcr 564 
threshold (17.49 vs. 16.87), and is ranked as the sixth highest value among the function maxima 565 
(Fig. 17a). The same peak can be appreciated as the maximum of the period ±tb (Fig. 17b). 566 
Accordingly, if adopting the average kernel, the event #6 could properly be predicted by the model. 567 
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 568 
6 SELF-ADAPTIVE PROCEDURE AND SENSITIVITY ANALYSES 569 
The capability of the model to react and self-adapt to input changes, such as new dates of landslide 570 
activation, was evaluated by a progressive, self-adaptive procedure of calibration and validation, 571 
using the information available for the Uncino case study. To simulate the adoption of GASAKe in a 572 
landslide warning system, the model was iteratively calibrated by the first 2, 3, 4, and 5 dates of 573 
activation (L), and validated against the remaining 4, 3, 2, 1 dates, respectively. In each experiment, 574 
the GA-parameters listed in Table 4 were adopted. Finally, the model was merely calibrated by 575 
considering all the 6 dates of activation. The results of the self-adaptive procedure are listed in 576 
Table 7. The related kernels are shown in Fig. 18. As a result, a progressive increase in fitness and 577 
predictive ability (∆zcr), together with the base time (ranging from 30 to 80 days), can be 578 
appreciated when employing a greater number of dates of activation. 579 
Furthermore, aiming at evaluating the sensitivity of the model with respect to the GA parameters, a 580 
series of analyses was performed by considering again the Uncino case study. The experiments 581 
carried out are listed in Table 8. Each simulation stopped after 1500 iterations: GA-parameters were 582 
initialized by considering the “benchmark experiment” (cf. values in Table 4), except for the 583 
parameter that was in turn varied, as indicated in Table 8. The obtained maximum fitness (Φmax), 584 
safety margin (Δzcr), number (ni) of iterations needed to first reach Φmax, and base time (tb) of the 585 
average kernel are shown in Fig. 19. If experiments with Φmax = 1 are only taken into account, the 586 
minimum and maximum numbers of GA-iterations needed to reach Φmax (min_Λ, max_Λ), the 587 
minimum and maximum base times of the average kernel (min_tb, max_tb), and the minimum and 588 
maximum safety margins of the average kernel (min_ Δzcr, max_Δzcr) are listed in Tables 9, 10 and 589 
11, respectively. 590 
 591 
7 DISCUSSION E CONCLUSIONS 592 
In the present paper, the model GASAKe is presented with examples of application to shallow-593 
landslides in Sorrento Peninsula (Campania), and to the medium-size Uncino landslide at San Fili 594 
(Calabria). Furthermore, the capability of the model to simulate the occurrence of known landslide 595 
activations was evaluated by a progressive, self-adaptive procedure of calibration and validation 596 
against the Uncino case study. Finally, the sensitivity of the model with respect to the GA 597 
parameters was analysed by a series of experiments, performed again by considering the latter 598 
landslide. 599 
As concerns the Sorrento Peninsula case study, the maximum fitness obtained during calibration is 600 
smaller than unity. For the best 100 kernels, Φmax, Δzcr and tb vary in a small range (ca. 0.1%, 4.8%, 601 
and 13%, respectively). Furthermore, as mentioned above, for specific types of application (e.g., 602 
civil protection), the observed small values of Δzcr would imply short warning times. Consequently, 603 
a suitable kernel should be rather selected by privileging the shortest tb or the smallest µ0. From Fig. 604 
12, it can be noticed that the greatest weights for the first 12-15 days are obtained by selecting the 605 
kernel characterized by the smallest µ0, thus allowing for the most timely advice if used within an 606 
early-warning system. In the average kernel, the greatest weight can be attributable to the first 12 607 
days, with a maximum base time of about 4 weeks, reflecting the general shape of the curves in Fig. 608 
7, and in good agreement with the shallow type of slope instability considered. Furthermore, the 609 
validation of the average kernel is satisfactory, as the validation date (#11 in Table 1) corresponds 610 
to the second highest peak of the mobility function. In addition, no missing alarms and only four 611 
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false alarms in about 5 years are to be found (i.e., in the period from the last date used for 612 
calibration to the one for validation). The peaks of the mobility function corresponding to the 613 
activation dates can roughly be grouped in two sets, characterized by distinct values: a first set, with 614 
z(t)>40, generally includes the ancientmost plus the validation dates (#1, #2, #4, #5, #6, and #11); a 615 
second set (#3, #7, #8, #9, and #10), with 18<z(t)<25. False alarms result more frequent and higher 616 
in the first period (from 1963 to 1980), presumably due to a lack of information on landslide 617 
activations. 618 
Regarding the Uncino case study, the maximum fitness in calibration reaches unity. With respect to 619 
the Sorrento Peninsula case study, Δzcr and tb of the best 100 kernels vary in a greater range (ca. 620 
25%, and 30.5%, respectively), with Δzcr one order of magnitude greater. In this case, the kernel 621 
would in fact allow for a safety margin of ca. 5%. In the average kernel, three main periods can be 622 
recognized with heavier weights, attributable to i) the first 17 days, ii) 27-45 days, and iii) 54-58 623 
days. The base time ranges from about 8 to 12 weeks, in good agreement with the medium-size type 624 
of the considered slope instability. Furthermore, the validation of the average kernel performed 625 
successfully: in fact, the validation date (#6 in Table 2) corresponds to the third highest peak of the 626 
mobility function; even in this case, neither missing alarms nor false alarms in about 2 years (from 627 
the last date calibration date to the validation one) are to be found. The peaks of the mobility 628 
function corresponding to the activation dates are characterized by z(t)>18. 629 
In the self-adaptive procedure applied to the Uncino case study, values for L=6 merely refer to 630 
calibration, whilst the ones for 2≤L≤5 concern validation. With regard to Table 7 and Fig. 20, it can 631 
be noticed that:  632 
• for 2≤L≤5, tb increases 2.7 times with L, and then remains constant for L≥5; 633 
• from L=2 to L=4, zj-min and zcr slightly decrease, and then abruptly increase for L≥5; 634 
• for L≥4, Δzcr monotonically increases 72 times with L (being almost constant in the 2-4 635 

transition); 636 
• Φv monotonically increases 1.7 times with L. 637 

As a whole, a satisfying performance is obtained starting from 3 dates (i.e., correct predictions in 638 
more than 3 out of 4 times). For L=5, only one false alarm is observed. Finally, the calibration 639 
performed by considering all the 6 dates of activation provided fully satisfying results. Accordingly, 640 
the results of the progressive procedure underlined how GASAKe can easily self-adapt to external 641 
changes by optimizing its performances, providing increasing fitness values. 642 
The average kernels obtained by considering from 2 to 6 dates of landslide activation show 643 
increasing base times, with significant weights for the ancientmost rains of the temporal range (Fig. 644 
18). Such result is in good accordance with the extent of the slope movement and, therefore, with 645 
the expected prolonged travel times of the groundwater affecting landslide activation.  646 
In the sensitivity analyses, again performed by considering the Uncino landslide, Φmax = 1 was 647 
obtained in 60% of the experiments (cf. Table 8). The results (cf. Fig. 19 and Tables 9, 10, and 11) 648 
permit to select the set of parameters that allow for faster GA performances. More in detail: 649 
• a ratio between the number of elitist individuals and the whole population of ne/N=10/20 or 650 

8/15 allow for the fastest GA performances (min_Λi ~ 41% of the reference value); 651 
nevertheless, for increasing both ne and N, this effect seems to vanish (e.g., ne/N=12/25); 652 

• with respect to the benchmark experiment, the explored changes in pc, pm, pmh1, pme, and pmtb do 653 
not substantially affect the GA performances with respect to min_Λi; 654 
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• with respect to the benchmark experiment, the explored changes of parameters determine 655 
variation of tb from 66 to 219%;  656 

• in case of civil protection applications, the combination of parameters with pmh1=55 allows for 657 
activating early-warning procedures with the greatest advance; 658 

• concerning max_ Δzcr, the best result (increase by 10 times) is obtained when reducing N to 15.  659 
The calibration experiments discussed in this paper were performed on a standard PC platform 660 
(CPU 3 GHz, RAM 4 GB, standalone system SQL and application process). For the study cases of 661 
Sorrento Peninsula and Uncino landslide, 2.5 and 1.1 GA-iterations were respectively performed 662 
per minute, reaching Φmax in 11h40m and 10h20m. Depending on availability of High-Performance 663 
Computing Clusters, the mentioned durations may strongly be reduced, thus allowing for prompt 664 
Civil Protection applications, e.g. based on short-term weather forecasts. By the way, the time 665 
needed to calibrate the model can profitably be shortened by properly initializing the kernel, based 666 
on expected characteristics of the phenomena under consideration (e.g., the range of tb strongly 667 
depends on landslide size). 668 
In this study, a 2-steps efficiency criterion was employed: the relative position of the peaks of the 669 
mobility function with respect to the dates of landslide activation was first considered, and the 670 
fitness computed. Based on the value of Δzcr, the obtained solutions were further ranked. Average, 671 
synthetic filter functions could then be computed by selecting the best 100 kernels for successive 672 
validation purposes. Alternative metrics (cf., among the others, Krause et al., 2005) for the fitness 673 
function are being tested. However, due to uncertainties concerning input data (i.e., rainfall and 674 
dates of landslide activation), the adoption of sophisticated techniques does not sound very 675 
promising. In addition, problems of over-fitting may depend on both data uncertainties and number 676 
of parameters. Commonly, kernels characterized by a complex pattern (and then by many 677 
parameters) are needed for simulating groundwater dynamics (Pinault et al., 2001). Nevertheless, 678 
more complex kernels do not necessarily imply higher predictive uncertainties (Fienen et al., 2010; 679 
Long, 2015). Still, the adopted discrete approach allows focusing only on the timing of the peaks of 680 
the mobility function, thus somehow relieving the computational effort. Due to the cited 681 
uncertainties in input data, a “temporal window” was in fact employed to help matching dates of 682 
activation with the peaks of the mobility function. Further attempts of defining the fitness function 683 
by different metrics, and the analysis of its effects on calibration and validation, are being 684 
considered against another case study (San Benedetto Ullano, in Calabria, Southern Italy), whose 685 
mobility phases have been recently monitored by the same authors (Iovine et al., 2010; Capparelli et 686 
al., 2012). 687 
As mentioned above, model calibration may be hampered by either quality or completeness of input 688 
data. Commonly, missing dates of activation (mainly in remote periods or in isolated areas) and 689 
unsuitability of the rain gauge network (e.g., due to excessive distance of gauges from the 690 
landslides) negatively affect model results. Depending on availability of new dates of activation, 691 
stemming from further mobilizations or improvement of historical investigations, the predictive 692 
capability of the model can be increased through additional calibrations, hence providing new 693 
families of optimal solutions, constituted by fewer, highly significant kernels. 694 
The above considerations suggest an indirect link between the model – despite empirical in type – 695 
and the physical characteristics of the slope movements (e.g., dimensions, permeability, initial 696 
water content of the slope, length of subsurface water paths). In general, to select the kernel to be 697 
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applied, it is rather preferable to consider a set of optimal kernels or the average one, instead of a 698 
single solution.  699 
Further efforts are in progress to improve the model and its chances of practical application, mainly 700 
concerning the implementation of different GA techniques of optimization (in addition to the elitist, 701 
here employed), the parallelization of the model, and the adoption of a Genetic Programming 702 
approach. Finally, through the analytical study of the optimal kernels, a mathematical formulation 703 
of discrete filter functions is presently being attempted, aiming at synthetizing optimal and average 704 
kernels for an easier comparison with the results of other models available in literature.   705 
 706 
8 CODE AVAILABILITY 707 
The release GASAKe of the Self Adaptive Kernel model, discussed in this paper, has been developed 708 
by scientists working at CNR-IRPI under Microsoft Windows, Visual Studio, and SQL Server 709 
integrated development environment. It can be requested by the public to the corresponding author 710 
of the paper, together with examples of input data and technical support (a user manual is not 711 
available yet, but it should be released soon). The model is presently undergoing further refinements 712 
and developments, mainly concerning types of GA-selection techniques, the post-processing of the 713 
results in terms of continuous analytical functions, and the implementation of a library of case 714 
studies. Authors are willing to cooperate with external users to further improving the model through 715 
applications to case studies from different geo-environmental contexts. 716 
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Table 1. Dates of activation of the shallow landslides in the Sorrento Peninsula. Key: date = day of occurrence; type = 957 
widespread (multiple) or few (single) activation; site = municipality including the affected location; period employed = 958 
dates used for calibration (except for #11); rank = relative position of the corresponding maximum of the mobility 959 
function obtained by calibration. An asterisk marks the date employed for validation. In Italics, the activation date (#0) 960 
excluded due to hydrological constraints.  961 
 962 

# Date type site reference period 
employed rank 

1 17 February 1963 multiple;  
single Gragnano, Pimonte; Castellammare Del Prete et al. 1998 17 Feb 1963 17 Feb 1963 (1) 

2 23 November 1966 single Vico Equense (Scrajo), Arola, 
Ticciano Del Prete et al. 1998 23 Nov 1966 24 Nov 1966 (4) 

0 14 April 1967 single Castellammare (Pozzano) Del Prete et al. 1998; 
AMRA, 2012 - - 

3 
15 March 1969; 
24 March 1969 

multiple; 
multiple 

Cava de' Tirreni, Agerola, Scrajo 
Seiano  

Del Prete et al. 1998; 
AMRA, 2012 15-24 Mar 1969 25 Mar 1969 

(65) 
4 02 January 1971 single Gragnano Del Prete et al. 1998 02 Jan 1971 3 Jan 1971 (3) 
5 21 January 1971 single Gragnano Del Prete et al. 1998 21 Jan 1971 21 Jan 1971 (7) 
6 04 November 1980 single Vico Equense (Scrajo) Del Prete et al. 1998 04 Nov 1980 6 Nov 1980 (94) 

7 14 November 1982 single Pozzano Del Prete et al. 1998 14 Nov 1982 15 Nov 1982 
(151) 

8 22 February 1986 multiple Palma Campania, Castellammare, 
Vico Equense Del Prete et al. 1998 22 Feb 1986 24 Feb 1986 

(120) 

9 23 February 1987 single Gragnano, Castellammare  Del Prete et al. 1998; 
AMRA, 2012 23 Feb 1987 23 Feb 1987 

(73) 

10 23 November 1991 single Pozzano Del Prete et al. 1998 23 Nov 1991 24 Nov 1991 
(43) 

11 10 January 1997 multiple 
Pozzano;  
Castellammare, Nocera, Pagani, 
Amalfitana Coast 

Del Prete et al. 1998 
AMRA, 2012 10 Jan 1997 * 

 963 
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Table 2. Dates of activation of the Uncino landslide. Periods (instead of singular dates) were considered in case of 965 
uncertain timing of activation. Key = #: Identification number of the date (in bold, used for calibration); dates/periods 966 
derived from literature; dates/periods employed for calibration or validation; references: sources of information on 967 
activation dates; rank: relative position and dates of the maxima of the mobility function during calibration. An asterisk 968 
marks the activation employed for validation. In Italics, the activation date (#0) excluded due to hydrological 969 
constraints. 970 
 971 

# date reference period rank 
1 16, 21 January 1960 Sorriso-Valvo et al., 1996 16-21 Jan 1960 18 Jan 1960 (5) 

2 Winter 1963 Sorriso-Valvo et al., 1994 
01 Nov 1962 –  
14 Apr 1963 29 Mar 1963 (1) 

3 15 April 1964 (h 22:00) Sorriso-Valvo et al., 1994 15 Apr 1964 14 Apr 1964 (3) 

4 14 December 1966 Lanzafame and Mercuri, 
1975 14 Dec 1966 16 Dec 1966 (2) 

5 10-14, 21 February 1979 Sorriso-Valvo et al., 1994 10-21 Feb 1979 15 Feb 1979 (4) 
6 December 1980 Sorriso-Valvo et al., 1994 01-31 Dec 1980 * 
0 23 November 1988 Sorriso-Valvo et al., 1996 - - 

 972 
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Table 3. Average monthly rainfall and number of rainy days at the Montalto Uffugo rain gauge (468 m a.s.l.). 974 
 975 

 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug year 
rainfall (mm) 70.4 125.1 187.9 220.8 198.1 160.3 132.8 98.9 64.6 27.8 18.3 28.6 1333.6 
rainy days 6.9 10.6 12.8 14.3 14.3 12.5 12.6 10.7 8.26 4.7 2.62 3.84 114.0 

 976 

977 
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Table 4. Values of the parameters of GASAKe adopted in the calibration procedure (benchmark experiment). 978 

 979 
symbol parameter value 
N individuals of each GA population 20 

tb 
base time (Uncino landslide) 
base time (shallow landslides in the Sorrento Peninsula) 

30 ÷ 180 days 
2 ÷ 30 days 

pmh1  
pmh2  

percentages of the maximum height of the kernel,  
used to defining the range in which dh is randomly obtained 50%, 150% 

pc probability of crossover  75% 
pm probability of mutation 25% 
pme number of mutated elements of the kernel, expressed as a percentage of tb 25% 
pmtb factor defining the range in which dtb is selected 0.2 ÷ 5 

Λ 
number of GA-iterations (Uncino landslide case study) 
number of GA-iterations (Sorrento Peninsula case study) 

5000 
3000 

ne number of "elitist" individuals 8 

 980 
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Table 5. Sorrento Peninsula case study. Statistics for the best 100 kernels. 982 
 983 

 Φ Δzcr tb μ0 
min 0.806 3.82E-05 26.0 9.460 
average 0.806 0.00418 30.4 9.567 
max 0.807 0.00801 31.0 10.448 
median 0.806 0.00499 31.0 9.567 
mode 0.806 0.00499 31.0 9.567 
dev. st. 7.65E-05 0.00183 0.862 0.146 

 984 
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Table 6. Uncino landslide case study. Statistics for the best 100 kernels. 986 
 Δzcr tb 
min 0.0524 57.0 
average 0.0581 69.5 
max 0.0692 82.0 
median 0.0581 69.0 
mode 0.0558 69.0 
dev. st. 0.00373 3.12 

 987 

  988 
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Table 7. Uncino landslide case study. Results of progressive calibration. Key: L, tb, zj-min, zcr, Δzcr): model parameters 989 
concerning calibration (for explanation, cf. text); Φv) fitness obtained by validating the “average kernel”, obtained in 990 
calibration, against the 6 dates of activation. In Italics, results obtained when calibrating the model by using all the 6 991 
available dates (no validation performed). 992 
 993 

L tb zj-min zcr ∆zcr Φv 
2 30 13.93 13.89 0.0029 0.59 
3 54 11.05 11.04 0.0009 0.78 
4 55 10.21 10.20 0.0010 0.87 
5 80 16.44 16.34 0.0061 0.95 
6 80 18.63 17.43 0.0644 1.00 

 994 

  995 



 

30 of 54 
 

Table 8. Uncino landslide case study. Values of the parameters adopted in the sensitivity analyses. In bold, the 996 
experiments with Φmax = 1. Boxes evidence the worst experiment (in Italics), and the best one (underlined).  997 
 998 

symbol values 
ne 6 7 a) 8 9 10  

pc 60% 67.5% a) 75% 82.5% 90% 

pm 20% 22.5% a) 25% 27.5% 30% 
pmh1, 
pmh2 

60%,  
140% 

55%, 
145% 

a) 50%, 
a) 150% 

45%, 
155% 

40%,  
160% 

pme 20% 22.5% a) 25% 27.5% 30% 

pmtb 0.25 ÷ 4 0.22 ÷ 4.5 a) 0.2 ÷ 5 0.18 ÷ 5.5 0.17 ÷ 6 

N, ne   25,  8 a) 20,  8 15,  8  

N, ne  25,  12 25,  10 25,  8  
a) Reference values (i.e., those of the benchmark experiment - cf. Table 4) 

 999 
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Table 9. Minimum (min_Λ i) and maximum (max_Λ i) numbers of GA iterations needed to reach Φmax (only experiments 1001 
with Φmax = 1 are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. 1002 
An asterisk marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of 1003 
parameters of the benchmark experiment (cf. Table 4).  1004 
 1005 

§ N parameter min_Λ i max_Λi 
a 20 ne=8  684 
a 20 ne=10 279  
c 25 ne=8 469  
c 25 ne=12  1477 
e 20 pc=75 684*  
g 20 pm=25 684  
g 20 pm=27.5  1086 
i 20 pmh1=50 684  
i 20 pmh1=55  836 
k 20 pme=25 684  
k 20 pme=30  996 
m 20 pmtb=5 684  
m 20 pmtb=5.5  1052 
o 15 ne=8 405  

 1006 

  1007 
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Table 10. Minimum (min_tb) and maximum (max_tb) base time of the average kernel (only experiments with Φmax = 1 1008 
are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. An asterisk 1009 
marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of parameters of the 1010 
benchmark experiment (cf. Table 4). 1011 
 1012 

§ N parameter min_tb max_tb 
a 20 ne=8 66,59  
a 20 ne=10  144,85 
c 25 ne=8  132,00 
c 25 ne=12 56,17  
e 20 pc=75 66,59*  
g 20 pm=25 66,59  
g 20 pm=27.5  139,20 
i 20 pmh1=50  66,59 
i 20 pmh1=55 44,00  
k 20 pme=25 66,59  
k 20 pme=30  146,93 
m 20 pmtb=5 66,59  
m 20 pmtb=4  136,06 
o 15 ne=8  145,79 

 1013 

  1014 
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Table 11. Minimum (min_ Δzcr) and maximum (max_Δzcr) safety margin of the average kernel (only experiments with 1015 
Φmax = 1 are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. An 1016 
asterisk marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of parameters of 1017 
the benchmark experiment (cf. Table 4). 1018 
 1019 

§ N parameter min_ Δzcr max_ Δzcr 
a 20 ne=7  0.007 
a 20 ne=9 0.002  
c 25 ne=8  0.014 
c 25 ne=12 0.002  
e 20 pc=75 0.005*  
g 20 pm=22.5  0.006 
g 20 pm=27.5 0.001  
i 20 pmh1=50  0.005 
i 20 pmh1=55 0.004  
k 20 pme=25 0.005  
k 20 pme=30  0.006 
m 20 pmtb=5 0.005  
m 20 pmtb=4  0.009 
o 15 ne=8  0.055 
o 20 ne=8 0.005  

 1020 

  1021 
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Figure 1. Scheme of the calibration procedure of the model GASAKe. 1022 

 1023 
  1024 
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Figure 2. Scheme of the adopted Genetic Algorithm. 1025 

 1026 
  1027 
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Figure 3. Example of crossover. The genetic codes of the parents (elements in orange and green) are first mixed; then, 1028 
the children are normalized (black elements) to ensure validity of equation 2. 1029 

 1030 
  1031 
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Figure 4. Examples of mutation. On the left, the genetic code of the parent individual (elements in blue). In the second 1032 
histogram, mutation is applied to some elements of the parent (in red, added amounts; in grey, subtracted amounts). 1033 
Then, the base time can either be decreased (upper sequence) or increased (lower sequence). Finally, the children is 1034 
normalized (black elements) to ensure validity of equation 2. 1035 
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Figure 5. Scheme of the validation procedure of the model GASAKe. 1038 

 1039 
  1040 
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Figure 6. Geological map of the Sorrento Peninsula (after Di Crescenzo and Santo, 1999, mod.). Key: 1) beach deposit 1041 
(Holocene); 2) pyroclastic fall deposit (Late Pleistocene-Holocene); 3) Campanian ignimbrite (Late Pleistocene); 4) 1042 
detrital alluvial deposit (Pleistocene); 5) flysch deposit (Miocene); 6) limestone (Mesozoic); 7) dolomitic limestone 1043 
(Mesozoic). Red squares mark sites affected by shallow landslide activations; blue circles, the rain gauges; black 1044 
squares, the main localities; yellow triangles, the highest mountain peaks. 1045 
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Figure 7. Cumulative daily rainfall (in mm) during the 14 days preceding landslide occurrences. Key: in blu, red, and 1048 
green = values from the Tramonti, Castellammare, and Tramonti-Chiunzi rain gauges, respectively. Numbers refer to id. 1049 
in Table 1 (cf. first column). 1050 
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Figure 8. Location of the study area (red square: San Fili village; blue circle: Montalto Uffugo rain gauge). On bottom 1053 
left, an extract from the geological map of Calabria (CASMEZ, 1967). Key: sbg) gneiss and biotitic schist with garnet 1054 
(Palaeozoic); sbm) schist including abundant granite and pegmatite veins, forming migmatite zones (Palaeozoic); M3

ar) 1055 
arenite and silt with calcarenite (Late Miocene); M3

a) marly clay with arenite and marls (Late Miocene); m3
cl) reddish 1056 

conglomerate with arenite (Late Miocene); qcl) loose conglomerate of ancient fluvial terraces (Pleistocene). The site 1057 
affected by the Uncino landslide is marked by a red star. 1058 
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Figure 9. Cumulative daily rainfall (in mm) from 30 to 180 days before landslide occurrences (Montalto Uffugo 1061 
gauge). Numbers refer to identification number (#) in Table 2 (cf. first column). 1062 
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Figure 10. Sorrento Peninsula case study. Average kernel obtained from the best 100 filter functions. 1065 
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Figure 11. Sorrento Peninsula case study. Mobility function, z(t), of the average kernel. The red line (zcr = 22.53) shows 1068 
the maximum value of the mobility function (critical condition) that is unrelated to known landslide activations. The 1069 
green line (zj-min = 22.63) – almost overlapping with the red line in this case – shows the minimum value of the mobility 1070 
function related to known landslide activations. When the mobility function exceeds the threshold marked by the red 1071 
line, landslide activation may occur. The red dots represent the maxima of the mobility function corresponding to the 1072 
dates of landslide activation considered for calibration.  1073 
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Figure 12. Sorrento Peninsula case study. Kernels providing (a) the best fitness (Φmax = 0.807), (b) the minimum base 1076 
time tb min (26 days), (c) the Δzcr max (0.00801), and (d) the minimum first order momentum, μ0 min (9.460). 1077 
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Figure 13. Sorrento Peninsula case study. a) Validation of the average kernel against the #11 event. b) Particular of 1080 
Fig.13a, limited to the period ±tb, including the date of validation. Key as in Fig.11. The blue label indicates the date of 1081 
validation. Grey background marks the period after the event that may be employed for re-calibration.  1082 

. 1083 
  1084 
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Figure 14. Uncino landslide case study. Average kernel obtained from the best 100 filter functions. 1085 
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Figure 15. Uncino landslide case study. Mobility function, z(t), of the average kernel. The red line (zcr = 17.85) shows 1088 
the maximum value of the mobility function (critical condition) that is unrelated to known activations. The green line 1089 
(zj-min = 18.98) shows the minimum value of the mobility function related to known activations. When the mobility 1090 
function exceeds the threshold marked by the red line, landslide activation may occur. The red dots represent the 1091 
maxima of the mobility function corresponding to dates of landslide activation considered for calibration. 1092 
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Figure 16. Uncino landslide case study. Kernel providing the best fitness. 1095 
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Figure 17. Uncino landslide case study. a) Validation of the average kernel against the #6 event. b) Particular of 1098 
Fig.17a, limited to the period ±tb including the date of validation. Key as in Fig. 15. The blue label indicates the date of 1099 
validation. Grey background marks the period after the event that may be employed for re-calibration.  1100 
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Figure 18. Uncino landslide case study. Average kernels obtained in calibration against the 2, 3, 4, 5, and 6 dates of 1103 
activation.  1104 
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Figure 19. Maximum fitness (Φmax), safety margin (Δzcr), number (ni) of iterations needed to first reach Φmax, and base 1107 
time (tb) of the average kernel, based on GA parameters listed in Table 8. 1108 

 1109 
1110 
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Figure 191111 

 1112 

  1113 
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Figure 20. Uncino landslide case study. Results of progressive calibration. Variation of Δzcr and Φv for L increasing 1114 
from 2 to 6. 1115 

 1116 
 1117 
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