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ABSTRACT 13 
GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is 14 

based on Genetic-Algorithms and allows to obtaining thresholds of landslide activation from the set 15 

of historical occurrences and from the rainfall series. 16 
GASAKe can be applied to either single landslides or set of similar slope movements in a 17 

homogeneous environment. Calibration of the model is based on Genetic Algorithms, and provides 18 

for families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting 19 

from these latter, the corresponding mobility functions (i.e. the predictive tools) can be obtained 20 

through convolution with the rain series. The base time of the kernel is related to the magnitude of 21 

the considered slope movement, as well as to hydro-geological complexity of the site. Generally, 22 

smaller values are expected for shallow slope instabilities with respect to large-scale phenomena. 23 

Once validated, the model can be applied to estimate the timing of future landslide activations in the 24 

same study area, by employing recorded or forecasted rainfall series.  25 

Example of application of GASAKe to a medium-size slope movement (the Uncino landslide at San 26 

Fili, in Calabria, Southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, 27 

Campania, Southern Italy) are discussed. In both cases, a successful calibration of the model has 28 

been achieved, despite unavoidable uncertainties concerning the dates of landslide occurrence. In 29 

particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the 30 

model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e. neither missing 31 

nor false alarms) has been achieved against 5 activations. As for temporal validation, the 32 

experiments performed by considering the extra dates of landslide activation have also proved 33 

satisfactory. 34 

In view of early-warning applications for civil protection purposes, the capability of the model to 35 

simulate the occurrences of the Uncino landslide has been tested by means of a progressive, self-36 

adaptive procedure. Finally, a sensitivity analysis has been performed by taking into account the 37 

main parameters of the model.  38 

The obtained results are quite promising, given the high performance of the model obtained against 39 

different types of slope instabilities, characterized by several historical activations. Nevertheless, 40 

further refinements are still needed for applications to landslide risk mitigation within early-warning 41 

and decision-support systems. 42 
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1 INTRODUCTION 46 

A nationwide investigation, carried out by the National Geological Survey, identified approximately 47 

5×105 slope movements in Italy, an average of 1.6 failures per square kilometre (Trigila, 2007). 48 

According to other investigations, this figure would rather be a lower estimate (cf. Servizio 49 

Geologico, Sismico dei Suoli, 1999; Guzzetti et al., 2008). In the period 1950–2009, at least 6349 50 

persons were killed, went missing, or were injured by landslides, with an average of 16 harmful 51 

events per year, thus confirming the notable risk posed to population (Guzzetti, 2000; Salvati et al., 52 

2010).  53 

Petley (2008) estimated that about 90% of worldwide casualties can be attributed to landslides 54 

triggered by rainfall. With reference to the Italian territory, about 70% of landslides result to be 55 

triggered by rainfall (cf. CNR-GNDCI AVI Project, Alfieri et al., 2012).  56 

In more general terms, slope instability conditions are influenced by rainfall that, allowing 57 

infiltration into the slopes, cause temporary changes in groundwater dynamics (Van Asch et al., 58 

1999). Actually, rainfall infiltrates the slopes only partially, the remaining aliquots being involved 59 

into evapo-transpiration and runoff processes. The combination of rainfall infiltration and runoff 60 

may cause different types of mass-movements (either slope failure or erosion processes) depending 61 

on the intensity and duration of the rainfall and the values of soil suction (Cuomo and Della Sala, 62 

2013). Concentration of water deriving from either contemporary or antecedent storms at specific 63 

sites plays a major role in triggering landslides – as testified by slope instabilities that commonly 64 

follow the heaviest phases of rainfall events.  65 

To model the relationships between rainfall and landslide occurrence, two distinct approaches are 66 

generally adopted in literature. The first, “complete” or “physically-based”, attempt to determine 67 

the influence of rainfall on slope stability by modelling its effects in terms of overland flow, 68 

groundwater infiltration, pore pressures and related balance of shear stress and resistance (cf. e.g. 69 

Montgomery and Dietrich, 1994; Wilson and Wieczorek, 1995; Crosta, 1998; Terlien, 1998; Crosta 70 

et al., 2003; Pisani et al., 2010). At this latter purpose, numerical models are employed, and a 71 

notable (and expensive) amount of detailed data is commonly required to define the geological 72 

scheme of the slope in litho-structural, hydrogeological, morphologic and geotechnical terms. The 73 

second approach (adopted in the present study), named “empirical” or “hydrological” (Cascini and 74 

Versace, 1988), is based on a statistical-probabilistic analysis of rainfall series and of dates of 75 

occurrence of landslide activation (see, among the others, Campbell, 1975; Caine, 1980; UNDRO, 76 

1991; Sirangelo and Versace, 1996; Guzzetti et al., 2007; 2008, Brunetti et al. 2010, Gariano et al., 77 

2015). Methodological examples in literature generally focus on thresholds obtained for i) single 78 

phenomena or ii) given types of slope movements within a homogeneous geo-environmental setting 79 

(cf. e.g. Jakob and Weatherly, 2003). 80 

In this study, the hydrological model GASAKe (i.e., the Genetic-Algorithm based release of the 81 

model Self Adaptive Kernel) to forecast the triggering of slope movements is described. The model 82 

can be applied to either single landslides or to a set of similar phenomena within a homogeneous 83 

study area. Model calibration is performed by means of Genetic Algorithms: in this way, a family of 84 

optimal, discretized kernels can iteratively be obtained from initial tentative solutions. In another 85 

release of the model (CMSAKe – i.e., Cluster model SAKe) the calibration could instead be 86 

performed through an iterative procedure (Terranova et al., 2013).  87 

Examples of application of the model to a medium-size landslide (the Uncino landslide at San Fili) 88 

and to shallow slope movements in the Sorrento Peninsula are discussed in the following sections. 89 

Temporal validation is discussed for both cases, in view of early-warning applications of GASAKe 90 
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for Civil Protection purposes. Moreover, a progressive, self-adaptive procedure of calibration and 91 

validation is discussed, by considering the Uncino case study, to verify changes in fitness, 92 

predictive ability and base time when an increasing number of dates of activation is employed. In 93 

addition, the results of preliminary, parametric analyses are presented, aimed at investigating the 94 

role of the main parameters of the model.  95 

 96 

2 BACKGROUND 97 

Physical systems evolve in time due to their own inner dynamics and/or as a consequence of 98 

external causes. Suitable observational tools can be employed to monitor their evolution. They can 99 

be arranged to promptly send reports or warnings to the authorities of civil protection to support the 100 

management of emergencies (Cauvin et al., 1998; for applications to landslides, cf. also Keefer et 101 

al., 1987; Iovine et al., 2009; Capparelli and Versace, 2011; Pradhan and Buchroithner, 2012).  102 

In the case of complex systems (e.g. nuclear power stations, telecommunication networks, etc.), 103 

many parameters, in part interdependent, have to be monitored. Missing an automated phase of 104 

analysis and proper filtering, a great number of reports may be delivered by the monitoring 105 

apparatus in few seconds. At this purpose, the concepts of threshold (Carter, 2010), event and 106 

warning must therefore be suitably defined. 107 

Regarding slope movements, the notions of threshold and warning have long been investigated. In 108 

particular, a threshold constitutes a condition - generally expressed in quantitative terms or through 109 

a mathematical law - whose occurrence implies a change of state (White et al., 1996). According to 110 

the ALARM study group (Cauvin et al., 1998), an event is i) a portion of information extracted 111 

from either continuous or discrete signals (i.e. a significant variation), transmitted by a component 112 

of the monitoring network; or ii) a set of data concerning the considered context (e.g. restorations, 113 

actions, observations). According to such definition, an event must be instantaneous and dated. As 114 

for warning, its definition derives from that of event: it is a discrete indicator aimed at triggering a 115 

human or an automated reaction. The warning can be classified into distinct levels (e.g. in terms of 116 

security) or by type (e.g. related to a distinct component of the dynamic system under 117 

consideration), to be transmitted by the monitoring system.  118 

In complex systems, causal factors responsible for emergency conditions may be difficult to 119 

identify. Therefore, warnings may be issued according to pre-fixed thresholds related to suitable 120 

physical properties of the system. In these cases, the timing of data sampling of the monitoring 121 

instruments should be progressively adapted to the evolution of the phenomenon. A further issue 122 

concerns the chances of missing alarms and of false alarms, as well as the camouflage of an alarm 123 

among simultaneous others.  124 

In physical terms, slope instability can occur when the shear strength gets lower than a given 125 

threshold (Terzaghi, 1962). Rain infiltration may temporarily change the dynamics of ground water 126 

(Van Asch et al., 1999): due to an increase in pore water pressure, the effective shear strength of the 127 

material decreases, and a slope movement can be triggered.  128 

Groundwater may reach a given location within the slope by different paths. The main natural 129 

mechanisms include: i) surface flow, strongly influenced by morphology; ii) direct infiltration from 130 

the surface; iii) flow within the soil mantle (throughflow) from upslope and sideslopes; iv) seepage 131 

from the bedrock toward the overlying colluvium. The length of the different paths may be quite 132 

different, and characterized by distinct velocities: as a consequence, aliquots of the same rainfall 133 

event may reach a given site at different times, variously combining with other groundwater 134 

amounts (Ellen, 1988). 135 
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Aiming at applying a hydrological approach, empirical relations have to be determined by means of 136 

thresholds to distinguish among conditions which likely correspond to landslide occurrence or not. 137 

To this aim, different hydrological parameters can be selected (Guzzetti et al., 2007; 2008 and 138 

http://rainfallthresholds.irpi.cnr.it/): the cumulative rain recorded in a given temporal window 139 

(hours/days/months) before landslide activation; the average rain intensity in the same temporal 140 

window; normalized rains to reference values (e.g. annual averages). Simplified hydrological 141 

balances can also be adopted in empirical approaches, by considering losses of aliquots of rains by 142 

run-off, evapo-transpiration, etc.  143 

As concerns superficial landslide, triggering thresholds can be derived from relations between the 144 

“triggering” rain (daily, hourly or shorter), corresponding to the onset of the slope movement, and 145 

the cumulative rain in an antecedent period (usually, few days to two weeks before landslide 146 

activation) (e.g. Campbell, 1975; Cannon and Ellen, 1985; Wieczorek, 1987; Terlien, 1996; Crosta, 147 

1998; Zêzere and Rodrigues, 2002). In other cases, thresholds refer to relations between rain 148 

intensity, I, and duration, D, (e.g., Brunetti et al., 2010, Berti et al., 2012, Peres and Cancelliere, 149 

2014). In some studies, antecedent rains were also considered, allowing to obtain better results (e.g. 150 

Campbell, 1975). Larger amounts of antecedent rain should allow slope movements to be activated 151 

by less severe triggering storms. In general, a direct relationship between antecedent rain and 152 

landslide dimension can be observed (Cascini and Versace, 1986); though, in some peculiar 153 

conditions (e.g. Hong Kong case studies, caused by suction reduction - Brand et al., 1984) this is 154 

not the case, and the role of antecedent rains looks less important. In addition, as underlined by 155 

Cuomo and Della Sala (2013), among other authors, in unsaturated shallow deposits, time to runoff, 156 

time to failure and runoff rates strongly depend on soil water characteristic curves, soil initial 157 

conditions, rainfall intensity and slope angle. Moreover, soil mechanical parameters affect the time 158 

to failure that can result either shorter or longer than time to runoff. 159 

Difficulties in hydrological modelling of landslides generally increase, due to physical and 160 

economic issues, when dealing with deeper and larger phenomena (Cascini and Versace, 1986). In 161 

such cases, landslide activation depends on the dynamics of deeper groundwater bodies. By the 162 

way, it is not by chance that most studies do refer to small and superficial slope movements. Large 163 

slope movements usually show complex relationships with rains, as different groundwater aliquots 164 

may combine and reach the site of landslide triggering. Depending on type (cf. dimension, material, 165 

kinematics, etc.), different hydrological mechanisms should be considered, thus limiting the 166 

possibility of generalization of the thresholds (Dikau and Schrott, 1999; Corominas, 2001; Marques 167 

et al., 2008). Again, the mobilization of deeper phenomena commonly requires greater rainfall 168 

amounts with respect to shallow landslides, spanned over longer periods (Aleotti, 2004; Terranova 169 

et al., 2004; Guzzetti et al., 2007; 2008;). In these cases, rain durations responsible for landslide 170 

activations commonly range from ca. 30 days to several months, even beyond a single rainy season 171 

(Brunsden, 1984; Van Asch et al., 1999; Gullà et al., 2004; Trigo et al., 2005). 172 

To analyse the triggering conditions of slope movements – either shallow or deep-seated – a 173 

modelling approach can be employed that is based on the threshold concept. For landslides (e.g. 174 

Aleotti, 2004; Wieczorek and Glade, 2005; Terranova et al., 2004; Vennari et al., 2014), empirical 175 

thresholds can be expressed in terms of curves, delimiting the portion of the Cartesian plane which 176 

contains “all and only” the hydrological conditions related to known activations (cf. e.g. the I-D 177 

chart proposed by Caine, 1980). A further improvement to this approach can be obtained by 178 

considering hydrological conditions not related to landslide activations (Crozier, 1997; Sengupta et 179 

al., 2010; Gariano et al., 2015).  180 
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In general, no changes of state are assumed to occur below the threshold (zt), while they do happen 181 

above it. Alternatively (Crozier, 1997), a range of conditions can be defined, delimited by:  182 

 a lower threshold (zlow), below which changes of state do never occur, and  183 

 an upper threshold (zupp), above which changes always happen.  184 

For values between zupp and zlow, a probability of state change can be defined, essentially depending 185 

on i) the incompleteness of knowledge on the physical process under investigation, and ii) the 186 

incapacity of the model to fully replicate the behaviour of the same process. In probabilistic terms: 187 

P(Et)  = 0 for z(t) < zlow 
P(Et) = 1 for z(t) > zupp 
P(Et) = G[z(t)] for zlow ≤ z(t) ≤ zupp 

(1)

in which: P is the probability of occurrence (1=success, 0=unsuccess); Et is a process (succession of 188 

events) whose states change with time t; z(t) is the value assumed, at time t, by the variable that 189 

determines the change of state; zlow and zupp are the minimum and maximum thresholds, 190 

respectively; G[z(t)] is a probability function, monotonically increasing with t in the range ]0,1[. 191 

In hydrological models, to express the influence of rainfalls on runoff and groundwater dynamics, a 192 

“kernel” (also named “filter function”) can be employed, usually defined in terms of simple, 193 

continuous analytical functions (Chow et al., 1988). In such a way, suitable weights can be assigned 194 

to the precipitations occurred in the last hours/days before a given geo-hydrological process (e.g. 195 

discharge, measured at a generic river cross section; landslide activation), as well as to earlier rains 196 

recorded weeks/months before. The following types of kernels are among the most utilized: Beta, 197 

Gamma, Nash, negative exponential distribution. Furthermore, in this type of models, the “base 198 

time” (tb) expresses a sort of memory with respect to rainfalls. For instance, in classic rainfall-199 

runoff modelling, tb defines the time of concentration, while in slope stability analyses it represents 200 

the time interval, measured backward from landslide activation, during which rainfall is deemed to 201 

effectively affect groundwater dynamics, contributing to destabilization.  202 

To modelling slope stability, both the shape and the base time of the kernel must be properly 203 

selected by considering type and dimension of the investigated phenomena, as well as geo-structural 204 

and hydrogeological characteristics. Unfortunately, in several real cases, the above-mentioned 205 

analytical functions may fail in capturing the complexity of groundwater dynamics properly, as well 206 

as the related landslide activations. In this respect, the adoption of discretized kernels, automatically 207 

calibrated through iterative computational techniques, may offer effective solutions. 208 

 209 

3 THE MODEL GASAKe 210 
GASAKe is an empirical-hydrological model for predicting the activation of slope movements of 211 

different types. It is based on a classic threshold scheme: the exceedance of the threshold 212 

determines a change of state, i.e. the triggering of the landslide. The scheme is inspired from the 213 

FLaIR model (Forecasting Landslides Induced by Rainfall), proposed by Sirangelo and Versace 214 

(1996): through changes of state in time, the variable z(t) assumes the meaning of “mobilization 215 

function”. In other terms, the values of z(t) depend on the amount of rain stored in the aquifer.  216 

In hydrology, rainfall-runoff modelling is commonly performed by adopting a linear, steady scheme 217 

(Chow et al., 1988). Such approach implies that the transformation of rainfall in runoff can be 218 

described by an integral of convolution between a unitary impulsive response of the basin – the 219 

kernel, h(t) – and the rainfall, p(t).  220 

The kernel (filter function) represents the unitary volume influx in an infinitesimal period, and is 221 

defined as: 222 
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න ݄ሺݐሻ݀ݐ ൌ 1
ஶ

଴
 (2)

in which h(t)=h(-t), h(t) ≥ 0, 	∀223  .ݐ 

In practical applications, the lower bound (t=0) corresponds to the beginning of the flood-wave 224 

rising, and the kernel assumes a finite duration (tb). The integral of convolution is therefore 225 

expressed as:  226 

ሻݐሺݖ ൌ 	න ݄ሺݐ െ ߬ሻ	݌ሺ߬ሻ݀߬	
௧್

଴
ൌ 	න ݄ሺ߬ሻ ݐሺ݌ െ ߬ሻ݀߬

௧್

଴
 (3)

in which z(t) represents the discharge at the time t. For a specific case study, the kernel can be 227 

determined by means of calibration procedures, by relating discharge measurements to rains.  228 

In discretized terms, the elements of the kernel are characterized by width Δt and height hi, and 229 

equation (3) can be written as: 230 

௨ݖ ൌ෍݄௜ ∙ ௨ି௜ାଵ݌ ∙ ݐ∆

௨

௜ୀଵ

 (4)

 231 

Sirangelo and Versace (1996) proved that the same approach may turn out promising also for slope-232 

stability modelling. Capparelli and Versace (2011) stressed that the I-D chart of Caine (1980) 233 

corresponds to a kernel defined by a power function ݄ሺݐሻ ൌ  ௕ , with b<0. The main difficulty in 234ݐ	ܽ

exporting the well-established knowledge of rainfall-runoff modelling, usually based on many 235 

measurements, to rainfall-landslide modelling lies in the scarcity of adequate information for proper 236 

calibration. In the latter case, only few dates of activation are in fact commonly available (often 237 

with unsatisfactory details on location and phenomena), and the values of z(t) are unknown. From a 238 

mathematical point of view, such a problem can be handled by assuming that the timing of the 239 

maxima of z(t) corresponds to the dates of landslide activation. When studying the triggering 240 

conditions of landslides, calibration can be therefore performed by maximizing the mobilization 241 

function in correspondence of the dates of activation.  242 

Scarcity of information inevitably reflects on the resulting kernel, whose shape may turn out highly 243 

indeterminate: different functions, or different parameters of the same function, can in fact 244 

maximize z(t) in correspondence of the dates of mobilization. Model optimization – and its reliable 245 

utilization for early-warning purposes – can turn out an awkward issue.  246 

In this work, an innovative modelling approach – based on discretized kernels, automatically 247 

calibrated through iterative computational techniques – is proposed, which may help in facing the 248 

above-cited difficulties. For modelling purposes, the rainfall series and a coherent set of dates of 249 

landslide occurrence – either related to a given slope movement, or to a set of landslides of the same 250 

type in a homogeneous geo-environmental zone – must be given as input to GASAKe.  251 

Unfortunately, when dealing with the timing of occurrence, historical notices may refer either to 252 

portions of the considered phenomena or to entire landslide bodies. Therefore, dates should be 253 

properly selected to consider only consistent cases. Moreover, dates of activation are usually known 254 

with only a broad approximation: with respect to the reports, the actual timing of occurrence may be 255 

located backward (documents may assign a later date) or forward (in case of later, more relevant 256 

movements). For modelling purposes, it is then useful to specify a temporal window, lasting from 257 

an initial (dt-from) to a final date (dt-to), containing the presumable date of occurrence.  258 

Rainfall series are commonly reconstructed from data recorded at rain gauges located in a 259 

reasonable proximity of the study area. The temporal window of the hydrological analysis is 260 
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defined by the intersection of i) the period of observation of the rains and ii) that delimited by the 261 

ancientmost and the recentmost dates of activation of the landslide. A potential source of 262 

uncertainty lies in the fact that, occasionally, the considered rain gauge records amounts that 263 

notably differ from those actually experienced at landslide location. Furthermore, landslide 264 

triggering may also be due to causes different from rainfall (e.g. human activity, earthquakes): a 265 

thorough preliminary analysis must always be performed to verify the significance of rainfall 266 

preceding landslide activation, to detecting cases not to be considered in the hydrological study. 267 

In the model, rains older than tb are neglected. Suitable maximum and minimum values (tb-max and 268 

tb-min) must be initialized to allow the model to determine optimal values. Commonly, tb ranging 269 

from few hours to some weeks are suggested for shallow landslides, while greater values (up to 270 

several months) sound suitable for deep-seated phenomena. 271 

Based on the geological knowledge of the phenomenon under investigation, the initial shape of the 272 

kernel can be selected among a set of basic types. Among these, i) a “rectangular” shape can be 273 

adopted if older precipitations must have the same weight of more recent rains; ii) a “decreasing 274 

triangular”, if older precipitations are assumed to have a progressively smaller weight than more 275 

recent rains; iii) “increasing triangular”, if older precipitations are assumed to have a progressively 276 

greater weight than more recent rains. A casual shape or any other function can also be 277 

implemented in the model (e.g., Beta, Gamma, Nash, Negative exponential distribution).  278 

 279 

3.1 Model Calibration  280 

In GASAKe, model calibration is performed against real case studies through Genetic Algorithms 281 

(GAs). These latter are general-purpose, iterative search algorithms inspired by natural selection 282 

and genetics (Holland, 1975). Since 1970’s, GAs have been applied to several fields of research, 283 

from applied mathematics (Poon and Sparks, 1992), to evolution of learning (Hinton and Nowlan, 284 

1987), evolutionary robotics (Nolfi and Marocco, 2001), and debris-flow modelling (Iovine et al., 285 

2005; D’Ambrosio et al., 2006). GAs simulate the evolution of a population of candidate solutions 286 

to a given problem by favouring the reproduction of the best individuals. The candidate solutions 287 

are codified by genotypes, typically using strings, whose elements are called genes.  288 

GAs explore the solution space, defined as the set of all possible values of the genes. At the 289 

beginning of a given optimization experiment, the members of the initial population of genotypes 290 

(in this study, the kernels) are usually generated at random. The performance of each solution, in 291 

terms of phenotype (i.e. the mobilization function), is evaluated by applying a suitable fitness 292 

function, so determining its “adaptability”, i.e. the measure of its goodness in resolving the problem.  293 

The sequence of random genetic operators “selection, crossover and mutation”, constrained by 294 

prefixed probabilities, constitutes a single GA-iteration that generates a new population of candidate 295 

solutions. At each iteration, best individuals are in fact chosen by applying the selection operator. 296 

To form a new population of offspring, crossover is employed by combining parents’ genes. 297 

Mutation is successively applied to each gene, by randomly changing its value within the allowed 298 

range.  299 

Thanks to the GA approach, better individuals (i.e. characterized by higher fitness values) can be 300 

obtained over time. In fact, according to individual probabilities of selection, any change that 301 

increases the fitness tends to be preserved over the GA iterations (Holland, 1975). For further 302 

details on GAs, cf. Goldberg (1989) and Mitchell (1996). 303 

In the present study, a steady-state and elitist GA (cf. De Jong, 1975) was employed to obtain the 304 

family of optimal kernels that maximize the mobility function in correspondence with known dates 305 
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of landslide activations. The procedure employed for calibration of GASAKe is schematized in Figure 306 

1.  307 

At the beginning of an optimization experiment, the initial population of N kernels is generated at 308 

random, and the fitness of the related mobility functions is evaluated (cf. below). In order to evolve 309 

the initial population of candidate solutions and progressively obtaining better solutions, a total 310 

number of Λ GA-iterations follows.  311 

At each iteration of the GA, the operators selection, crossover and mutation are applied as follows 312 

(Fig. 2): 313 

 selection  314 

i. ne “elitist” individuals are merely copied in a “mating pool” from the previous generation, by 315 

choosing the best ones;  316 

ii. the remaining N-ne candidate solutions are chosen by applying the “tournament without 317 

replacement” selection operator. More in detail, a series of tournaments are performed by 318 

selecting two individuals at random from the previous generation: the winner (i.e. the one 319 

characterized by the highest fitness) is copied into the mating pool, according to a prefixed 320 

surviving probability (ps), which is set greater for the fittest individual. Note that, when 321 

choosing the N-ne candidate solutions, a given individual cannot be selected more than once.  322 

 crossover  323 

After the mating pool is filled with N individuals, the crossover operator is applied, according to 324 

a prefixed probability (pc):   325 

i. two parent individuals are chosen from the mating pool at random;  326 

ii. a cutting point (crossover point) is then selected at random in the range ]tb-min, tb-max[; 327 

iii. the so-obtained portions of parents’ strings are exchanged, thus mixing the genetic information 328 

and resulting in two children (Fig. 3).  329 

When the crossover is not applied, the two parents are merely copied into Pnew.  330 

 mutation 331 

Based on a prefixed probability (pm), a random number of elements of the kernel (pme, expressed 332 

as a percentage of tb) is mutated, by adding to each element an amount dh that is randomly 333 

obtained in the range [pmh1, pmh2], as a function of the maximum value of the kernel (hmax). Then 334 

dh ranges from dh1 to dh2:  335 

dh1 = pmh1 · hmax 
dh2 = pmh2 · hmax 

(5)

Furthermore, the base time is also mutated (increased or decreased) within the bounds [tb-min, tb-336 

max], according to a random factor dtb selected in the range [1/pmtb, pmtb] (Fig. 4). 337 

Note that the children obtained after both crossover and mutation must be normalized, before they 338 

can be included in the population Pnew, by properly scaling the elements of the kernels to ensure 339 

validity of equation 2. 340 

During calibration, the shape of the kernel and its tb are iteratively refined. Note that the shape is not 341 

subject to any constraint, while tb is allowed to vary in the range [tb-min - tb-max]. The fitness is 342 

computed for each examined mobilization function, and new populations of kernels are generated as 343 

described above.  344 

As for the fitness function, in GASAKe it is defined as follows: 345 

 the L available dates of landslide activation – as derived from the historical analyses – are 346 

arranged in a vector S = {S1, S2, …, Si, …, SL}; 347 
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 the vector of the relative maxima of the mobility function, Z = {z1, z2, …, zj, …, zM}, is sorted 348 

in decreasing order (M = number of relative maxima); 349 

 the vector of the partial fitness is φ = {φ1, φ2, …, φi, ... φL}, where φi = k-1 depends on the rank k 350 

of the relative maxima of zj that coincide with known dates of activation Si. In case Si does not 351 

correspond to any relative maximum, it is φi = 0. 352 

With reference to a given kernel, the resulting fitness is expressed by ௨ ൌ ∑ ߮௅
௜ୀଵ ௜. Aiming at 353 

generalizing the results for easier comparison to other study cases, a normalized fitness index is 354 

adopted,  = u /max, defined in the range [0,1], being ௠௔௫ ൌ 	∑ 1/݅௅
௜ୀଵ . 355 

For instance, if two dates of activation are available, the obtained fitness is ௨ = 1 + ½ = 1.5 if both 356 

are well captured by the mobility function (i.e. they correspond to the highest peaks). On the other 357 

hand, in case only one of the dates is captured and the remaining one ranks fifth, ௨ = 1 + ⅕ = 1.2. 358 

Thanks to the above procedure, a family of “optimal kernels” which maximizes the fitness can be 359 

determined. The mobility function is in fact forced toward a shape characterized by relative maxima 360 

(zj) coinciding with the dates of landslide occurrence (Si). An optimal solution leads to a mobility 361 

function having the highest peaks in correspondence with such dates; further peaks may also be 362 

present, characterized by lower values. Nevertheless, kernel solutions generally determine mobility 363 

functions whose highest peaks only partly match with the dates of landslide occurrence (i.e. some 364 

dates may not correspond to the highest peaks nor to any peak at all).  365 

To selecting the most suitable kernel from a given family of optimal ones, let’s define:  366 

 zj-min as the lowest of the peaks of the mobility function in correspondence with one of the dates 367 

of activation (Si);  368 

 zcr as the “critical threshold”, i.e. the highest peak of the mobility function just below zj-min;  369 

 the “safety margin”, Δzcr = ( zj-min - zcr ) / zj-min.  370 

When applying the fitness function to evaluate a given kernel, either incompleteness or low 371 

accuracy of input data may lead to “false alarms” – i.e. peaks of the mobility function (zj) which are 372 

greater than the threshold zcr, but do not correspond to any of the known dates of activation. Such 373 

alarms can actually be of two different types: 1) “untrue false”, due to an informative gap in the 374 

archive (i.e. correct prediction); 2) “true false”, in case of real misprediction of the model. On such 375 

cases, further historical investigations may help to discriminating between the mentioned types of 376 

false alarms. 377 

Also depending on the specific purpose of the analysis, the most suitable kernel can therefore be 378 

selected by one or more of the following criteria: i) the greatest Δzcr; ii) the shortest tb; iii) the 379 

smallest 0 = ∑ 	ሺ݅ െ 0.5ሻ	݄௜	ݐ߂௜ஸ௧௕
, i.e. the first-order momentum of the kernel with respect to the 380 

vertical axis. The first criterion allows for activating early-warning procedures with greatest 381 

advance; the remaining ones (to be employed when Δzcr is too small) generally correspond to more 382 

impulsive responses to rainfall.  383 

Differently from what usually experienced in rainfall-runoff models, GASAKe therefore provide 384 

multiple equivalent solutions - i.e. a number of optimal kernels with same fitness, ௨, despite 385 

different shapes. This may depend on the limited number of available dates of activations, and on 386 

other noises in input data (e.g. rain gauges located too far from the site of landslide activation; 387 

inaccurate information on dates of activation or on the phenomenon). The adoption of synthetic 388 

kernels – e.g. obtained by averaging a suitable set of optimal kernels – allows to synthetize the 389 

family of results for successive practical applications: in this work, the best 100 kernels obtained for 390 
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each case study were in fact utilized to synthetize average kernels to be employed for validation 391 

purposes. 392 

 393 

4 CASE STUDIES 394 

The case studies considered in this paper are: i) a set of shallow landslides in the Sorrento Peninsula 395 

between Gragnano and Castellammare di Stabia (Campania, Southern Italy); and ii) the Uncino 396 

landslide at San Fili (Calabria, Southern Italy).  397 

Note that, as the numbers of known historical activations in the study areas were adequate, some 398 

dates could be excluded from calibration, and were successively employed for validation purposes. 399 

In particular, the recentmost dates of landslide activation (cf. Tables 1 and 2) were considered to 400 

validating the “average kernels” (see below), as obtained from the families of optimal solutions 401 

defined through calibration. The procedure employed for validation is schematized in Figure 5. 402 

 403 

4.1 Shallow landslides in the Sorrento Peninsula - Campania 404 

The Sorrento Peninsula is located in western Campania, Southern Italy (Fig. 6). In the area, 405 

Mesozoic limestone mainly crop out, covered by Miocene flysch, Pleistocene volcanic deposits 406 

(pyroclastic fall, ignimbrite), and Pleistocene detritical-alluvional deposits (Di Crescenzo and 407 

Santo, 1999). The carbonate bedrock constitutes a monocline, gently dipping towards WNW, 408 

mantled by sedimentary and volcanoclastic deposits, with thickness ranging from few decimetres to 409 

tens of meters.  410 

Rainfall-induced shallow landslides are widespread in the pyroclastic soils covering the slopes of 411 

the study area. Among the various factors affecting the spatial distribution and the type of slope 412 

instability, Cascini et al. (2014) pointed out that both the rainfall conditions and the consequent 413 

seasonal variations of soil suction play a significant role. In particular, when suction is low and 414 

frontal rainfall occurs (from November to May) first time shallow landslides are triggered; when 415 

suction is high or very high and convective or hurricane-type rainfall occurs (from June to October) 416 

mostly erosion phenomena occur, often turning into hyperconcentrated flows. 417 

The study area is characterized by hot, dry summers and moderately cold and rainy winters. 418 

Consequently, its climate can be classified as Mediterranean (Csa in the Köppen-Geiger's 419 

classification). In particular, the mean annual temperature ranges from 8-9°C, at the highest 420 

elevations of M. Faito and M. Cerreto, to 17-18°C along coasts and valleys. Average annual rainfall 421 

varies from 900 mm west of Sorrento to 1500 mm at M. Faito; moving inland to the East, it reaches 422 

1600 mm at M. Cerreto and 1700 mm at the Chiunzi pass (Ducci and Tranfaglia, 2005). On 423 

average, annual totals are concentrated in about 95 rainy days. During the driest six months (from 424 

April to September), only 30% of the annual rainfall is recorded in about 30 rainy days. During the 425 

three wettest months (November, October, and December), a similar amount is recorded in about 34 426 

rainy days (Servizio Idrografico, 1948-1999). In the area, convective rainstorms may occur, 427 

characterized by a very high intensity, at the beginning of the rainy season (from September to 428 

October). In Autumn-Winter, either high intensity or long duration rainfall are usually recorded, 429 

while uniformly distributed rains generally occur in Spring (Fiorillo and Wilson, 2004). As for 430 

annual maxima of daily rainfall recorded at the sea level, the Amalfi coast (southern border of the 431 

Sorrento Peninsula) is characterized by smaller values (59 mm) of average annual maxima of daily 432 

rainfall than the Sorrento coast (86 mm), on the northern border. Such difference seems to persist 433 

even at higher elevations (up to 1000 m a.s.l.), with 84 mm vs. 116 mm for the southern and 434 

northern mountain slopes, respectively (Rossi and Villani, 1994). 435 



 

11 of 55 

 

Severe storms frequently affect the study area, triggering shallow landslides that propagate seaward, 436 

often causing casualties and serious damage to urbanized areas and transportation facilities (Mele 437 

and Del Prete, 1999; Calcaterra and Santo, 2004; Di Crescenzo and Santo, 2005). In the second half 438 

of the XX century, several shallow landslides activated nearby Castellammare di Stabia: in Table 1, 439 

the major events recorded between Vico Equense and Gragnano are listed, with details on types of 440 

events, affected sites and references. Shallow landslides listed in Table 1 occurred between 441 

November and March, a period characterised by a medium to low suction range and included in the 442 

rainy season (October to April) according to Cascini et al. (2014). The same Authors pointed out 443 

that, in this period, frontal rainfall typically occurs and may trigger widespread first-time shallow 444 

landslides later propagating as debris flow or debris avalanches. 445 

Rainfall responsible for landslide occurrences in the Sorrento Peninsula are shown in Fig. 7, in 446 

terms of cumulated antecedent rains, extracted from the records of the nearest gauges (Tramonti, 447 

Castellammare, and Tramonti-Chiunzi – cf. Fig. 6). The trends of antecedent rains look quite 448 

differentiated, ranging from abrupt (cf. curves 5, 6, 7) to progressive increases (cf. 2, 4, 10). On the 449 

other hand, the curve 0 does not highlight significant amounts of rainfall in the 14 days preceding 450 

landslide activation: therefore, the occurrence recorded on 14 April 1967 was excluded by the 451 

hydrological analysis. Quite moderate amounts of cases 6 and 7 (occurred on 4 November 1980 and 452 

14 November 1982, resp.) were instead recorded in short periods, thus resulting into high-intensity 453 

events that could be considered as triggering factor of the observed landslides. 454 

As a result, the dates of activation from #1 to #10 were selected for calibration, whilst #11 was 455 

employed for validation. As shallow landslides were being considered, the rainfall period employed 456 

for calibration spanned from 17 January 1963 to 10 December 1996; for validation, the rainfall 457 

series terminates on 10 February 1997 – i.e. the validation date +tb (this latter as obtained from 458 

calibration). 459 

 460 

4.2 The Uncino landslide - San Fili (Northern Calabria) 461 

San Fili (Fig. 8) is located on the western margin of the Crati graben, a tectonic depression 462 

belonging to the active Calabrian-Sicilian Rift Zone (Monaco and Tortorici, 2000). In the area, 463 

vicarious, N-S trending normal faults mark the base of the Coastal Chain, at the transition between 464 

Palaeozoic metamorphic rocks, to the west, and Pliocene-Quaternary sediments, to the east 465 

(Amodio Morelli et al., 1976). Nearby San Fili, Palaeozoic migmatitic gneiss and biotitic schist, 466 

generally weathered, are mantled by a Late Miocene sedimentary cover of reddish continental 467 

conglomerates, followed by marine sandstone and clays (CASMEZ, 1967).  468 

In particular, the village lies in the intermediate sector between the two faults, marked by a NE-SW 469 

trending connection fault, delimiting the Miocene sediments on the north from the gneissic rocks on 470 

the South.  471 

The Calabrian Tyrrhenian sector (including the study area) results rainier than the Ionian (about 472 

1200-2000 mm vs. 500 mm), although the most severe storms are more frequently recorded on the 473 

Ionian sector (Terranova, 2004). The average annual temperature is about 15°C: the coldest months 474 

are January and February (in average 5°C), followed by December (8°C); the hottest months are 475 

July and August (24°C), followed by June (22°C).  476 

The climate at San Fili, like in most of Calabria, is Mediterranean (Csa), according to Köppen 477 

(1948). Being located on the Eastern side of a ridge, the area is subject to Staü conditions with 478 

respect to perturbations coming from the Tyrrhenian sea. It is characterized by heavy and frequent 479 

Winter rainfall, caused by cold fronts mainly approaching from North-West, and Autumn rains, 480 
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determined by cold air masses from North-East. In Spring, rains show lower intensities than in 481 

Autumn, whilst strong convective storms are common at the end of Summer.  482 

The average monthly rains recorded at the Montalto Uffugo gauge (the closest to San Fili) are listed 483 

in Table 2. From October to March (i.e. the wet semester), 77% of the annual rainfall is totalized in 484 

about 77 rainy days and 36% is recorded in 38 days, during the three wettest months; finally, from 485 

June to August (i.e. the three driest months), 6% of the annual rains fall in 11 days. 486 

The Uncino landslide is located at the western margin of San Fili (Fig. 8). The rock slide is of 487 

medium-size (maximum width = 200 m, length > 650 m, estimated maximum vertical depth = 25 488 

m), with a deep-seatedness factor (sensu Hutchinson, 1995) that may be classified as 489 

“intermediate”. It involves Late Miocene conglomerate, arenite and marly clay overlaying 490 

Palaeozoic gneiss and biotitic schist. The slope movement repeatedly affected the village, damaging 491 

the railway and the local road network, in addition to some buildings: the ancientmost known 492 

activation dates back to the beginning of the XX Century (Sorriso-Valvo et al., 1996); from 1960 to 493 

1990, a set of 7 dates of mobilization are listed in Table  3. On such events, the railroad connecting 494 

Cosenza to Paola was damaged or even interrupted. Note that, having not been recorded by 495 

landslide experts, such type of information is usually affected by intrinsic uncertainty (e.g. 496 

concerning the dates of activity) and may be related to either partial or total activations of the 497 

phenomenon, with unavoidable problems of homogeneity of the set employed for model calibration. 498 

By the way, on 28 April 1987, the railway was put out of service, hence the relevance of the 499 

infrastructure decreased, together with media attention. 500 

The informative content of the Uncino case study is quite high, and allows for a more accurate 501 

calibration of the kernel with respect to the Sorrento Peninsula case: consequently, a smaller family 502 

of optimal solutions are expected. Nevertheless, the known activations still suffer from uncertainties 503 

related to dates and affected volumes.  504 

Cumulated antecedent rains, corresponding to the Uncino landslide occurrences, are shown in Fig. 505 

9. Rainfall data were extracted from the records of the nearest rain gauge, located at Montalto 506 

Uffugo (cf. Fig. 8). The trends of antecedent rains may be distinguished into 3 main patterns: the 507 

curve 2 shows a constant increase of rainfall in time, totalizing the greatest amounts from ca. 90 to 508 

180 days. On the other hand, the case 0 shows the lowest values throughout the considered 509 

accumulation period. The curves 1, 3, 4, and 5 totalize intermediate values, with abrupt increases 510 

shown by 3 and 5 from 120 to 180 days. Finally, the case 6 looks similar to case 2 between 30 and 511 

90 days, but shows no more increases in the remaining period (analogously to 1 and 4).  512 

The curve 0 does not highlight significant amounts of rainfall in the 30-180 days preceding the 513 

landslide activation: for this reason, the occurrence recorded on 23 November 1988 was excluded 514 

from the hydrological analysis. Of the remaining curves, case 1 generally shows the lowest amounts 515 

from ca. 40 to 180 days. 516 

As a result, the dates of activation from #1 to #5 were selected for calibration, whilst #6 was 517 

employed for validation. As a medium-size landslide was being considered, the rainfall period 518 

employed for calibration spans from 1 September 1959 to 31 August 1980; for validation, it ranges 519 

from 1 September 1980 to 31 March 1981 - i.e. including the validation date by ca. ±tb (this latter  520 

as obtained from calibration). 521 

 522 

5  RESULTS 523 



 

13 of 55 

 

GASAKe was applied to shallow-landslide occurrences in the Sorrento Peninsula and to a medium-524 

size slope movement at San Fili, by considering the dates of activation and the daily rainfall series 525 

mentioned in section §4.1 and §4.2, and adopting the values of parameters listed in Table 4.  526 

As several kernels, among those obtained from calibration, usually allow obtaining similar fitness 527 

values, “average kernels” were computed for the considered case studies, by averaging the best 100 528 

kernels. 529 

 530 

5.1 Application to shallow landslides in the Sorrento Peninsula 531 

In Table 5, the statistics related to the family of optimal kernels (made of the best 100 filter 532 

functions, as obtained from calibration) are summarized. From such values, a low variability of  , 533 

tb and μ0 can be appreciated; Δzcr shows instead a greater range of values. The average kernel for the 534 

Sorrento Peninsula case study is shown in Figure 10: it is characterized by fitness = 0.806, with Δzcr 535 

= 0.00282, and tb = 28 days. From such kernel, antecedent rainfall mostly affecting landslide 536 

instability range from 1 to 12 days, and subordinately from 25 to 26 days. Negligible weights refer 537 

to rains occurred in the remaining period. 538 

In Fig. 11, the mobility function related to the average kernel is shown. In this case, 4 out of 10 539 

dates of landslide activation are well captured by the model (being ranked at the first 7 positions of 540 

the mobility function maxima); the remaining 6 dates do also correspond to relative maxima of the 541 

function, but are ranked from the 43rd to the 151st position. When considering the remaining relative 542 

maxima, several false positives can be recognized, mainly up to 1979. 543 

During calibration, the best fitness ( =0.807) was first reached after 1749 iterations (at 6th 544 

individual), with Δzcr = 0.00441 and tb = 26 days. The kernel corresponding to such individual looks 545 

similar to the best one in terms of tb, Δzcr, and μ0 (Fig. 12). The pattern of the best kernel is only 546 

slightly dissimilar from the average one: significant weights can in fact be appreciated up to 14 547 

days, and then between 20-22 and 25-26 days. 548 

By applying the average kernel, a validation was performed against the remaining date of activation 549 

(cf. Table 1, #11, multiple event occurred on 10 January 1997). Validation resulted fully satisfied, 550 

as shown in Fig. 13: the value of the mobilization function for the event #11, in fact, is well above 551 

the zcr threshold (49.01 vs. 18.05), and is ranked as II highest value among the function maxima 552 

(Fig. 13a). The same peak can also be appreciated as the maximum of the period ±tb (Fig. 13b). 553 

Accordingly, if adopting the average kernel, the event #11 of landslide activation could properly be 554 

predicted by the model. 555 

 556 

5.2 Application to the Uncino landslide 557 

In Table 6, the statistics related to the family of optimal kernels are summarized. From such values, 558 

a low variability of tb and Δzcr can be appreciated. The average kernel for the Uncino case study is 559 

shown in Fig. 14. 560 

The average kernel is characterized by fitness = 1, Δzcr = 0.0644, and tb = 66 days. Based on such 561 

kernel, antecedent rains from 1 to 17 days, and from 27 to 45 days, mainly affect landslide 562 

instability. Relatively smaller weights pertain to the rains occurred more than 53 days before the 563 

triggering; for periods older than 66 days, the weights are negligible. 564 

In Fig. 15, the mobility function related to the average kernel highlights that all the 5 dates of 565 

activation are well captured by the model (they are ranked at the first 5 positions among the 566 
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function maxima). When considering the remaining relative maxima of the function, only 4 of them 567 

evidence quasi-critical situations (between 1965 and 1966, and subordinately in 1970 and 1977). 568 

During calibration, the best fitness ( =1) was first reached after 684 iterations (at 13th individual) 569 

with Δzcr = 0.0595. The best kernel (Fig. 16) was obtained at iteration 993, at 8th individual, with 570 

Δzcr = 0.0631. Its pattern results very similar to the average one, with a tb of 66 days. 571 

By applying the average kernel, a validation was performed against the last known date of 572 

activation (cf. Table 3, #6, occurred on December 1980). Validation resulted fully satisfied, as 573 

shown in Fig. 17: the value of the mobilization function for the event #6, in fact, is well above the 574 

zcr threshold (17.49 vs. 16.87), and is ranked as the sixth highest value among the function maxima 575 

(Fig. 17a). The same peak can be appreciated as the maximum of the period ±tb (Fig. 17b). 576 

Accordingly, if adopting the average kernel, the event #6 could properly be predicted by the model. 577 

 578 

6 SELF-ADAPTIVE PROCEDURE AND SENSITIVITY ANALYSES 579 

The capability of the model to react and self-adapt to input changes, like new dates of landslide 580 

activation, was evaluated by a progressive, self-adaptive procedure of calibration and validation, 581 

using the information available for the Uncino case study. To simulate the adoption of GASAKe in a 582 

landslide warning system, the model was iteratively calibrated by the first 2, 3, 4, and 5 dates of 583 

activation (L), and validated against the remaining 4, 3, 2, 1 dates, respectively. In each experiment, 584 

the GA-parameters listed in Table 4 were adopted. Finally, the model was merely calibrated by 585 

considering all the 6 dates of activation. The results of the self-adaptive procedure are listed in 586 

Table 7. The related kernels are shown in Fig. 18. As a result, a progressive increase in fitness and 587 

predictive ability (zcr), together with the base time (ranging from 30 to 80 days), can be 588 

appreciated when employing a greater number of dates of activation. 589 

Furthermore, aiming at evaluating the sensitivity of the model with respect to the GA parameters, a 590 

series of analyses was performed by considering the Uncino case study. More in detail, the 591 

experiments carried out are listed in Table 8. Each simulation stopped after 1500 iterations: GA-592 

parameters were initialized by considering the “benchmark experiment” (cf. values in Table 4), 593 

except for the parameter that was in turn varied as indicated in Table 8. 594 

By varying the GA parameters listed in Table 8, the maximum fitness (Φmax), the safety margin 595 

(Δzcr), the number (ni) of iterations needed to first reach Φmax, and the base time (tb) of the average 596 

kernel are shown in Fig. 19. If experiments with Φmax = 1 are only taken into account, the minimum 597 

and maximum numbers (min_Λ, max_Λ) of GA-iterations needed to reach Φmax, the minimum and 598 

maximum base times (min_tb, max_tb) of the average kernel, and the minimum and maximum safety 599 

margins (min_ Δzcr, max_Δzcr) of the average kernel are listed in Tables 9, 10 and 11. 600 

 601 

7 DISCUSSION E CONCLUSIONS 602 

In the present paper, the model GASAKe is presented with examples of application to shallow-603 

landslides in Sorrento Peninsula (Campania), and to the medium-size Uncino landslide at San Fili 604 

(Calabria). Furthermore, the capability of the model to simulate the occurrence of known landslide 605 

activations was evaluated by a progressive, self-adaptive procedure of calibration and validation 606 

against the Uncino case study. Finally, the sensitivity of the model with respect to the GA 607 

parameters was analysed by a series of experiments, performed again by considering the latter 608 

landslide. 609 
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As concerns the Sorrento Peninsula case study, the maximum fitness obtained during calibration is 610 

smaller than unity. For the best 100 kernels, Φmax, Δzcr and tb vary in a small range (ca. 0.1%, 4.8%, 611 

and 13%, respectively). Furthermore, as mentioned above, for specific types of application (e.g. 612 

civil protection), the observed small values of Δzcr would imply short warning times. Consequently, 613 

a suitable kernel should be rather selected by privileging the shortest tb or the smallest 0. In Fig. 614 

12, the four kernels point out that the greatest weights for the first 12-15 days are obtained by 615 

selecting the kernel with smallest 0, thus allowing for the most timely advice if used within an 616 

early-warning system. 617 

In the average kernel, the greatest weight can be attributable to the first 12 days, with a maximum 618 

base time of about 4 weeks, reflecting the general shape of the curves in Fig. 7, and in good 619 

agreement with the shallow type of slope instability considered.  620 

Furthermore, the validation of the average kernel is satisfactory, as the validation date (#11 in Table 621 

1) corresponds to the second highest peak of the mobility function. In addition, no missing alarms 622 

and only four false alarms in about 5 years are to be found (i.e. in the period from the last date used 623 

for calibration to the one for validation). The peaks of the mobility function corresponding to the 624 

activation dates can roughly be grouped in two sets, characterized by distinct values: a first set, with 625 

z(t)>40, generally includes the ancientmost plus the validation dates (#1, #2, #4, #5, #6, and #11); a 626 

second set (#3, #7, #8, #9, and #10), with 18<z(t)<25. False alarms result more frequent and higher 627 

in the first period (from 1963 to 1980), presumably due to lack of information on landslide 628 

activations. 629 

Regarding the Uncino case study, the maximum fitness in calibration reaches unity. With respect to 630 

the Sorrento Peninsula case study, Δzcr and tb of the best 100 kernels vary in a greater range (ca. 631 

25%, and 30.5%, respectively), with Δzcr one order of magnitude greater. In this case, the kernel 632 

would in fact allow for a safety margin of ca. 5%.  633 

In the average kernel, three main periods can be recognized with heavier weights, attributable to i) 634 

the first 17 days, ii) 27-45 days, and iii) 54-58 days. The base time ranges from about 8 to 12 weeks, 635 

in good agreement with the medium-size type of slope instability considered.  636 

Furthermore, the validation of the average kernel performed successfully: in fact, the validation date 637 

(#6 in Table 3) corresponds to the third highest peak of the mobility function; even in this case, 638 

neither missing alarms nor false alarms in about 2 years (from the last date calibration date to the 639 

validation one) are to be found. The peaks of the mobility function corresponding to the activation 640 

dates are characterized by z(t)>18. 641 

In the self-adaptive procedure applied to the same Uncino case study, values for L=6 merely refer to 642 

calibration, whilst the ones for 2≤L≤5 concern validation. With regard to Table 7 and Fig. 20, it can 643 

be noticed that:  644 

 for 2≤L≤5, tb increases 2.7 times with L, and then remains constant for L≥5; 645 

 from L=2 to L=4, zj-min and zcr slightly decrease, and then abruptly increase for L≥5; 646 

 for L≥4, Δzcr monotonically increases 72 times with L (being almost constant in the 2-4 647 

transition); 648 

 Φv monotonically increases 1.7 times with L. 649 

As a whole, a satisfying performance is obtained starting from 3 dates (i.e. correct predictions in 650 

more than 3 out of 4 times). For L=5, only one false alarm is observed. Finally, the calibration 651 

performed by considering all the 6 dates of activation provided fully satisfying results. Accordingly, 652 
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the results of the progressive procedure underlined how GASAKe can easily self-adapt to external 653 

changes by optimizing its performances, providing increasing fitness values. 654 

The average kernels obtained by considering from 2 to 6 dates of landslide activation point out 655 

increasing base times, with significant weights for the ancientmost rains of the temporal range (Fig. 656 

18). Such results is in good accordance with the extent of the slope movement and, therefore, with 657 

the expected prolonged travel times of the groundwater affecting landslide activation.  658 

In the sensitivity analyses, again performed by considering the Uncino landslide, Φmax = 1 was 659 

obtained in 60% of the experiments (cf. Table 8). The results, shown in Fig. 19, and listed in Tables 660 

9, 10, and 11, permit to select the set of parameters that allow for faster GA performances. More in 661 

detail: 662 

 a ratio between the number of elitist individuals and the whole population of ne/N=10/20 or 663 

8/15 allow for the fastest GA performances (min_Λi ~ 41% of the reference value). 664 

Nevertheless, for increasing both ne and N, this effect seems to vanish (e.g. ne/N=12/25). 665 

 with respect to the benchmark experiment, the explored changes in pc, pm, pmh1, pme, and pmtb do 666 

not substantially affect the GA performances with respect to min_Λi. 667 

 with respect to the benchmark experiment, the explored changes of parameters determine 668 

variation of tb from 66 to 219%.  669 

 in case of civil protection applications, the combination of parameters with pmh1=55 allows for 670 

activating early-warning procedures with the greatest advance. 671 

 concerning max_ Δzcr, the best result (increase by 10 times) is obtained when reducing N to 15.  672 

 The calibration experiments discussed in this paper were performed on a standard PC platform 673 

(CPU 3 GHz, RAM 4 GB, standalone system SQL and application process). For the study cases of 674 

Sorrento Peninsula and Uncino landslide, 2.5 and 1.1 GA-iterations were respectively performed 675 

per minute, reaching Φmax in 11h40m and 10h20m. Depending on availability of High-Performance 676 

Computing Clusters, the mentioned durations may strongly be reduced, thus allowing for prompt 677 

Civil Protection applications, e.g. based on short-term weather forecasts. By the way, the time 678 

needed to calibrate the model can profitably be shortened by properly initializing the kernel, based 679 

on expected characteristics of the phenomena under consideration (e.g. the range of tb strongly 680 

depends on landslide size). 681 

In this study, a 2-steps efficiency criterion was employed: the relative position of the peaks of the 682 

mobility function with respect to the dates of landslide activation was first considered, and the 683 

fitness computed. Based on the value of Δzcr, the obtained solutions were further ranked. Average, 684 

synthetic filter functions can then be computed by selecting the best 100 kernels for successive 685 

validation purposes. Alternative metrics (cf., among the others, Krause et al., 2005) for the fitness 686 

function are being tested. However, due to uncertainties concerning input data (i.e. rainfall and 687 

dates of landslide activation), the adoption of sophisticated techniques does not sound very 688 

promising. In addition, problems of over-fitting may depend on both data uncertainties and number 689 

of parameters. Commonly, kernels characterized by a complex pattern (and then by many 690 

parameters) are needed for simulating groundwater dynamics (Pinault et al., 2001). Nevertheless, 691 

more complex kernels do not necessarily imply higher predictive uncertainties (Fienen et al., 2010; 692 

Long, 2015). Still, the adopted discrete approach allows focusing only on the timing of the peaks of 693 

the mobility function, thus somehow relieving the computational effort. Due to the cited 694 

uncertainties in input data, a “temporal window” was in fact employed to help matching dates of 695 

activation with the peaks of the mobility function. Further attempts of defining the fitness function 696 
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by different metrics, and the analysis of its effects on calibration and validation, are being 697 

considered against another case study (San Benedetto Ullano, in Calabria, Southern Italy), whose 698 

mobility phases have been recently monitored by the same authors (Iovine et al., 2010; Capparelli et 699 

al., 2012). 700 

As mentioned above, model calibration may be hampered by either quality or completeness of input 701 

data. Commonly, missing dates of activation (mainly in remote periods or in isolated areas) and 702 

unsuitability of the rain gauge network (e.g. due to excessive distance of gauges from the 703 

landslides) negatively affect model results. Depending on availability of new dates of activation, 704 

stemming from further mobilizations or improvement of historical investigations, the predictive 705 

capability of the model can be increased through additional calibrations, hence providing new 706 

families of optimal solutions, constituted by fewer, higher-significance kernels. 707 

The above considerations suggest an indirect link between the model – despite empirical in type – 708 

and the physical characteristics of the slope movements (e.g. dimensions, permeability, initial water 709 

content of the slope, length of subsurface water paths). In general, to select the kernel to be applied, 710 

it is rather preferable to consider a set of optimal kernels or the average one, instead of a single 711 

solution.  712 

Further efforts are in progress to improve the model and its chances of practical application, mainly 713 

concerning the implementation of different GA techniques of optimization (in addition to the elitist 714 

here employed), the parallelization of the model, and the adoption of a Genetic Programming 715 

approach. Finally, through the analytical study of the optimal kernels, a mathematical formulation 716 

of discrete filter functions is presently being attempted, aiming at synthetizing optimal and average 717 

kernels for an easier comparison with the results of other models available in literature.   718 

 719 

8 CODE AVAILABILITY 720 

The release GASAKe of the Self-Adapting Kernel model, discussed in this paper, has been developed 721 

by scientists working at CNR-IRPI under Microsoft Windows and Visual Studio integrated 722 

development environment. The above release can be requested by the public to the corresponding 723 

author of the paper, together with examples of input data and technical support (a user manual is not 724 

available yet, but it should be released soon). The model is presently undergoing further refinements 725 

and developments, mainly concerning types of GA-selection techniques, the post-processing of 726 

results in terms of continuous analytical functions, and the implementation of a library of case 727 

studies. Authors are willing to cooperate with external users to further improving the model through 728 

applications to case studies from different geo-environmental contexts. 729 
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Table 1. Dates of activation of the shallow landslides in the Sorrento Peninsula. Key: date = day of occurrence; type = 970 
widespread (multiple) or few (single) activation; site = municipality including the affected location; period employed = 971 
dates used for calibration (except for #11); rank = relative position of the corresponding maximum of the mobility 972 
function obtained by calibration. An asterisk marks the date employed for validation. In Italics, the activation date (#0) 973 
excluded due to hydrological constraints.  974 
 975 

# Date type site reference 
period 
employed 

rank 

1 17 February 1963 
multiple;  
single 

Gragnano, Pimonte; Castellammare Del Prete et al. 1998 17 Feb 1963 17 Feb 1963 (1) 

2 23 November 1966 single 
Vico Equense (Scrajo), Arola, 
Ticciano 

Del Prete et al. 1998 23 Nov 1966 24 Nov 1966 (4) 

0 14 April 1967 single Castellammare (Pozzano) 
Del Prete et al. 1998; 
AMRA, 2012 

- - 

3 
15 March 1969; 
24 March 1969 

multiple; 
multiple 

Cava de' Tirreni, Agerola, Scrajo 
Seiano  

Del Prete et al. 1998; 
AMRA, 2012 

15-24 Mar 1969 
25 Mar 1969 
(65) 

4 02 January 1971 single Gragnano Del Prete et al. 1998 02 Jan 1971 3 Jan 1971 (3) 
5 21 January 1971 single Gragnano Del Prete et al. 1998 21 Jan 1971 21 Jan 1971 (7) 
6 04 November 1980 single Vico Equense (Scrajo) Del Prete et al. 1998 04 Nov 1980 6 Nov 1980 (94) 

7 14 November 1982 single Pozzano Del Prete et al. 1998 14 Nov 1982 
15 Nov 1982 
(151) 

8 22 February 1986 multiple 
Palma Campania, Castellammare, 
Vico Equense 

Del Prete et al. 1998 22 Feb 1986 
24 Feb 1986 
(120) 

9 23 February 1987 single Gragnano, Castellammare  
Del Prete et al. 1998; 
AMRA, 2012 

23 Feb 1987 
23 Feb 1987 
(73) 

10 23 November 1991 single Pozzano Del Prete et al. 1998 23 Nov 1991 
24 Nov 1991 
(43) 

11 10 January 1997 multiple 
Pozzano;  
Castellammare, Nocera, Pagani, 
Amalfitana Coast 

Del Prete et al. 1998 
AMRA, 2012 

10 Jan 1997 * 

 976 

  977 
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Table 2. Average monthly rainfall and number of rainy days at the Montalto Uffugo rain gauge (468 m a.s.l.). 978 

 979 
 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug year 
rainfall (mm) 70.4 125.1 187.9 220.8 198.1 160.3 132.8 98.9 64.6 27.8 18.3 28.6 1333.6 
rainy days 6.9 10.6 12.8 14.3 14.3 12.5 12.6 10.7 8.26 4.7 2.62 3.84 114.0 

 980 

  981 
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Table 3. Dates of activation of the Uncino landslide. Periods (instead of singular dates) were considered in case of 982 
uncertain timing of activation. Key = #: Identification number of the date (in bold, used for calibration); dates/periods 983 
derived from literature; dates/periods employed for calibration or validation; references: sources of information on 984 
activation dates; rank: relative position and dates of the maxima of the mobility function during calibration. An asterisk 985 
marks the activation employed for validation. In Italics, the activation date (#0) excluded due to hydrological 986 
constraints. 987 
 988 

# date reference period rank 

1 16, 21 January 1960 Sorriso-Valvo et al., 1996 16-21 Jan 1960 18 Jan 1960 (5) 

2 Winter 1963 Sorriso-Valvo et al., 1994 
01 Nov 1962 –  
14 Apr 1963 

29 Mar 1963 (1) 

3 15 April 1964 (h 22:00) Sorriso-Valvo et al., 1994 15 Apr 1964 14 Apr 1964 (3) 

4 14 December 1966 
Lanzafame and Mercuri, 
1975 

14 Dec 1966 16 Dec 1966 (2) 

5 10-14, 21 February 1979 Sorriso-Valvo et al., 1994 10-21 Feb 1979 15 Feb 1979 (4) 
6 December 1980 Sorriso-Valvo et al., 1994 01-31 Dec 1980 * 

0 23 November 1988 Sorriso-Valvo et al., 1996 - - 

 989 

  990 
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Table 4. Values of the parameters of GASAKe adopted in the calibration procedure (benchmark experiment). 991 
 992 

symbol parameter value 
N individuals of each GA population 20 

tb 
base time (Uncino landslide) 
base time (shallow landslides in the Sorrento Peninsula) 

30 ÷ 180 days 
2 ÷ 30 days 

pmh1  
pmh2  

percentages of the maximum height of the kernel,  
used to defining the range in which dh is randomly obtained 

50%, 150% 

pc probability of crossover  75% 
pm probability of mutation 25% 
pme number of mutated elements of the kernel, expressed as a percentage of tb 25% 
pmtb factor defining the range in which dtb is selected 0.2 ÷ 5 

Λ 
number of GA-iterations (Uncino landslide case study) 
number of GA-iterations (Sorrento Peninsula case study) 

5000 
3000 

ne number of "elitist" individuals 8 

 993 

  994 
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Table 5. Sorrento Peninsula case study. Statistics for the best 100 kernels. 995 
 996 

 Δzcr tb μ0 

min 0.806 3.82E-05 26.0 9.460 
average 0.806 0.00418 30.4 9.567 
max 0.807 0.00801 31.0 10.448 
median 0.806 0.00499 31.0 9.567 
mode 0.806 0.00499 31.0 9.567 
dev. st. 7.65E-05 0.00183 0.862 0.146 

 997 

  998 
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Table 6. Uncino landslide case study. Statistics for the best 100 kernels. 999 
Δzcr tb

min 0.0524 57.0 
average 0.0581 69.5 
max 0.0692 82.0 
median 0.0581 69.0 
mode 0.0558 69.0 
dev. st. 0.00373 3.12 

 1000 

  1001 
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Table 7. Uncino landslide case study. Results of progressive calibration. Key: L, tb, zj-min, zcr, Δzcr): model parameters 1002 
concerning calibration (for explanation, cf. text); Φv) fitness obtained by validating the “average kernel”, obtained in 1003 
calibration, against the 6 dates of activation. In Italics, results obtained when calibrating the model by using all the 6 1004 
available dates (no validation performed). 1005 
 1006 

L tb zj-min zcr zcr Φv 

2 30 13.93 13.89 0.0029 0.59 
3 54 11.05 11.04 0.0009 0.78 
4 55 10.21 10.20 0.0010 0.87 
5 80 16.44 16.34 0.0061 0.95 

6 80 18.63 17.43 0.0644 1.00 

 1007 

  1008 
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Table 8. Uncino landslide case study. Values of the parameters adopted in the sensitivity analyses. In bold, the 1009 
experiments with Φmax = 1. Boxes evidence the worst experiment (in Italics), and the best one (underlined).  1010 
 1011 

symbol values 

ne 6 7 a) 8 9 10  

pc 60% 67.5% a) 75% 82.5% 90% 

pm 20% 22.5% a) 25% 27.5% 30% 

pmh1, 
pmh2 

60%,  
140% 

55%, 
145% 

a) 50%,
a) 150% 

45%, 
155% 

40%,  
160% 

pme 20% 22.5% a) 25% 27.5% 30% 

pmtb 0.25 ÷ 4 0.22 ÷ 4.5 a) 0.2 ÷ 5 0.18 ÷ 5.5 0.17 ÷ 6 

N, ne   25,  8 a) 20,  8 15,  8  

N, ne  25,  12 25,  10 25,  8  

a) Reference values (i.e., those of the benchmark experiment - cf. Table 4) 

 1012 

  1013 
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Table 9. Minimum (min_Λ i) and maximum (max_Λ i) numbers of GA iterations needed to reach Φmax (only experiments 1014 
with Φmax = 1 are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. 1015 
An asterisk marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of 1016 
parameters of the benchmark experiment (cf. Table 4).  1017 
 1018 

§ N parameter min_Λ i max_Λi 

a 20 ne=8  684 
a 20 ne=10 279  
c 25 ne=8 469  
c 25 ne=12  1477 
e 20 pc=75 684*  
g 20 pm=25 684  
g 20 pm=27.5  1086 
i 20 pmh1=50 684  
i 20 pmh1=55  836 
k 20 pme=25 684  
k 20 pme=30  996 
m 20 pmtb=5 684  
m 20 pmtb=5.5  1052 
o 15 ne=8 405  

 1019 

  1020 
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Table 10. Minimum (min_tb) and maximum (max_tb) base time of the average kernel (only experiments with Φmax = 1 1021 
are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. An asterisk 1022 
marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of parameters of the 1023 
benchmark experiment (cf. Table 4). 1024 
 1025 

§ N parameter min_tb max_tb 

a 20 ne=8 66,59  
a 20 ne=10  144,85 
c 25 ne=8  132,00 
c 25 ne=12 56,17  
e 20 pc=75 66,59*  
g 20 pm=25 66,59  
g 20 pm=27.5  139,20 
i 20 pmh1=50  66,59 
i 20 pmh1=55 44,00  
k 20 pme=25 66,59  
k 20 pme=30  146,93 
m 20 pmtb=5 66,59  
m 20 pmtb=4  136,06 
o 15 ne=8  145,79 

 1026 

  1027 
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Table 11. Minimum (min_ Δzcr) and maximum (max_Δzcr) safety margin of the average kernel (only experiments with 1028 
Φmax = 1 are considered). In the first column, the letters refer to Fig. 19. In bold, the best and worst experiments. An 1029 
asterisk marks the experiment e, in which Φmax was reached only for pc=75. In Italics, the combinations of parameters of 1030 
the benchmark experiment (cf. Table 4). 1031 
 1032 

§ N parameter min_ Δzcr max_ Δzcr 

a 20 ne=7  0.007 
a 20 ne=9 0.002  
c 25 ne=8  0.014 
c 25 ne=12 0.002  
e 20 pc=75 0.005*  
g 20 pm=22.5  0.006 
g 20 pm=27.5 0.001  
i 20 pmh1=50  0.005 
i 20 pmh1=55 0.004  
k 20 pme=25 0.005  
k 20 pme=30  0.006 
m 20 pmtb=5 0.005  
m 20 pmtb=4  0.009 
o 15 ne=8  0.055 
o 20 ne=8 0.005  

 1033 

  1034 
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Figure 1. Scheme of the calibration procedure of the model GASAKe. 1035 

 1036 
  1037 



 

36 of 55 

 

Figure 2. Scheme of the adopted Genetic Algorithm. 1038 

 1039 
  1040 
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Figure 3. Example of crossover. The genetic codes of the parents (elements in orange and green) are first mixed; then, 1041 
the children are normalized (black elements) to ensure validity of equation 2. 1042 

 1043 
  1044 
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Figure 4. Examples of mutation. On the left, the genetic code of the parent individual (elements in blue). In the second 1045 
histogram, mutation is applied to some elements of the parent (in red, added amounts; in grey, subtracted amounts). 1046 
Then, the base time can either be decreased (upper sequence) or increased (lower sequence). Finally, the children is 1047 
normalized (black elements) to ensure validity of equation 2. 1048 

 1049 
  1050 
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Figure 5. Scheme of the validation procedure of the model GASAKe. 1051 

 1052 
  1053 
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Figure 6. Geological map of the Sorrento Peninsula (after Di Crescenzo and Santo, 1999, mod.). Key: 1) beach deposit 1054 
(Holocene); 2) pyroclastic fall deposit (Late Pleistocene-Holocene); 3) Campanian ignimbrite (Late Pleistocene); 4) 1055 
detrital alluvial deposit (Pleistocene); 5) flysch deposit (Miocene); 6) limestone (Mesozoic); 7) dolomitic limestone 1056 
(Mesozoic). Red squares mark sites affected by shallow landslide activations; blue circles, the rain gauges; black 1057 
squares, the main localities; yellow triangles, the highest mountain peaks. 1058 

 1059 
  1060 
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Figure 7. Cumulative daily rainfall (in mm) during the 14 days preceding landslide occurrences. Key: in blu, red, and 1061 
green = values from the Tramonti, Castellammare, and Tramonti-Chiunzi rain gauges, respectively. Numbers refer to id. 1062 
in Table 1 (cf. first column). 1063 

 1064 
  1065 
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Figure 8. Location of the study area (red square: San Fili village; blue circle: Montalto Uffugo rain gauge). On bottom 1066 
left, an extract from the geological map of Calabria (CASMEZ, 1967). Key: sbg) gneiss and biotitic schist with garnet 1067 
(Palaeozoic); sbm) schist including abundant granite and pegmatite veins, forming migmatite zones (Palaeozoic); M3

ar) 1068 
arenite and silt with calcarenite (Late Miocene); M3

a) marly clay with arenite and marls (Late Miocene); m3
cl) reddish 1069 

conglomerate with arenite (Late Miocene); qcl) loose conglomerate of ancient fluvial terraces (Pleistocene). The site 1070 
affected by the Uncino landslide is marked by a red star. 1071 

 1072 
  1073 



 

43 of 55 

 

Figure 9. Cumulative daily rainfall (in mm) from 30 to 180 days before landslide occurrences (Montalto Uffugo 1074 
gauge). Numbers refer to identification number (#) in Table 3 (cf. first column). 1075 

 1076 
  1077 



 

44 of 55 

 

Figure 10. Sorrento Peninsula case study. Average kernel obtained from the best 100 filter functions. 1078 

 1079 
  1080 
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Figure 11. Sorrento Peninsula case study. Mobility function, z(t), of the average kernel. The red line (zcr = 22.53) shows 1081 
the maximum value of the mobility function (critical condition) that is unrelated to known landslide activations. The 1082 
green line (zj-min = 22.63) – almost overlapping with the red line in this case – shows the minimum value of the mobility 1083 
function related to known landslide activations. When the mobility function exceeds the threshold marked by the red 1084 
line, landslide activation may occur. The red dots represent the maxima of the mobility function corresponding to the 1085 
dates of landslide activation considered for calibration.  1086 

 1087 
  1088 
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Figure 12. Sorrento Peninsula case study. Kernels providing (a) the best fitness (Φmax = 0.807), (b) the minimum base 1089 
time tb min (26 days), (c) the Δzcr max (0.00801), and (d) the minimum first order momentum, μ0 min (9.460). 1090 

 1091 
  1092 
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Figure 13. Sorrento Peninsula case study. a) Validation of the average kernel against the #11 event. b) Particular of 1093 
Fig.13a, limited to the period ±tb, including the date of validation. Key as in Fig.11. The blue label indicates the date of 1094 
validation. Grey background marks the period after the event that may be employed for re-calibration.  1095 

. 1096 
  1097 
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Figure 14. Uncino landslide case study. Average kernel obtained from the best 100 filter functions. 1098 

 1099 
  1100 
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Figure 15. Uncino landslide case study. Mobility function, z(t), of the average kernel. The red line (zcr = 17.85) shows 1101 
the maximum value of the mobility function (critical condition) that is unrelated to known activations. The green line 1102 
(zj-min = 18.98) shows the minimum value of the mobility function related to known activations. When the mobility 1103 
function exceeds the threshold marked by the red line, landslide activation may occur. The red dots represent the 1104 
maxima of the mobility function corresponding to dates of landslide activation considered for calibration. 1105 

 1106 
  1107 
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Figure 16. Uncino landslide case study. Kernel providing the best fitness. 1108 

 1109 
  1110 



 

51 of 55 

 

Figure 17. Uncino landslide case study. a) Validation of the average kernel against the #6 event. b) Particular of 1111 
Fig.17a, limited to the period ±tb including the date of validation. Key as in Fig. 15. The blue label indicates the date of 1112 
validation. Grey background marks the period after the event that may be employed for re-calibration.  1113 

 1114 
  1115 
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Figure 18. Uncino landslide case study. Average kernels obtained in calibration against the 2, 3, 4, 5, and 6 dates of 1116 
activation.  1117 

 1118 
  1119 
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Figure 19. Maximum fitness (Φmax), safety margin (Δzcr), number (ni) of iterations needed to first reach Φmax, and base 1120 
time (tb) of the average kernel, based on GA parameters listed in Table 8. 1121 

 1122 
1123 
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Figure 191124 

 1125 

  1126 
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Figure 20. Uncino landslide case study. Results of progressive calibration. Variation of Δzcr and Φv for L increasing 1127 
from 2 to 6. 1128 

 1129 
 1130 


