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Abstract. Thermal expansion of seawater is one of the most important contributors to global sea

level rise (SLR) over the past 100 years. Yet, observational estimates of this volumetric response of

the world ocean to temperature changes are sparse and mostly limited to the ocean’s upper 700 m.

Furthermore, only a part of the available climate model data is sufficiently diagnosed to complete our

quantitative understanding of thermosteric SLR (thSLR). Here, we extend the available set of thSLR5

diagnostics from the Coupled Model Intercomparison Project Phase 5 (CMIP5), analyse those model

results in order to complement upper-ocean observations and enable the development of surrogate

techniques to project thSLR using vertical temperature profile and ocean heat uptake time series.

Specifically, based on CMIP5 temperature and salinity data, we provide a compilation of thermal

expansion time series that comprise 30% more simulations than currently published within CMIP5.10

We find that 21st century thSLR estimates derived solely based on observational estimates from the

upper 700 m (2000 m) would have to be multiplied by a factor of 1.39 (1.17) with 90% uncertainty

ranges of 1.24 to 1.58 (1.05 to 1.31) in order to account for thSLR contributions from deeper levels.

Half (50%) of the multi-model total expansion originates from depths below 490±90 m, with the

range indicating scenario-to-scenario variations. To support the development of surrogate methods to15

project thermal expansion, we calibrate two simplified parameterisations against CMIP5 estimates of

thSLR: One parameterisation is suitable for scenarios where hemispheric ocean temperature profiles

are available, the other, where only the total ocean heat uptake is known (goodness-of-fit: ±5% and

±9%, respectively).
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1 Introduction20

Sea level rise due to anthropogenic climate change constitutes a major impact to the world’s coast-

lines, low-lying deltas and small island states. The climate system is warming and during the rela-

tively well-sampled recent 40-year period (1970-2010) the world ocean stored 70% of the net oceanic

heat gain in depths above and 30% below 700 m (Rhein et al., 2013). As the ocean takes up heat, the

thermal expansion of seawater is a major driver behind sea level rise (SLR). Church et al. (2013a)25

note that 40% of the observed global mean SLR over 1971-2010 can be attributed to thermal ex-

pansion. This volumetric response of the ocean to temperature changes is expressed by its thermal

expansion coefficient α (e.g., Griffies et al., 2014) and is due to nonlinearities of the thermodynamic

properties (potential temperature, Θ, salinity, S, and pressure, p) in the equation of state of seawater

density, ρ (e.g., Jackett et al., 2006). Thus, changes in heat fluxes at the sea surface and heat re-30

distribution in the ocean’s interior by advection, eddies and diffusion, lead to non-zero temperature

differences altering the sea level even if the global mean potential temperature changes equal zero

(Lowe and Gregory, 2006; Piecuch and Ponte, 2014). In turn, processes in the interior ocean cause

spatial patterns of ocean heat uptake at the sea surface which define regional and global warming

rates (Rose et al., 2014). Sea level is often defined as the height of the sea surface relative to the35

geoid − the surface of equal gravitational potential of a hypothetical ocean at rest − also called the

geocentric sea level according to Church et al. (2013a). Therefore sea level changes integrate all

volume changes of the world ocean.

Aside from thermal expansion, SLR is also induced by changes in ice-sheet as well as glacier

mass and land water storage that combined amount to 60% of the observed global mean SLR over40

1971-2010 (Church et al., 2013a). Over the last century, these mass changes in the ocean (termed

“barystatic” sea level changes by Gregory et al., 2013a) together with ocean’s thermal expansion

are the main contributors to global mean SLR. Some other influences, such as salinity variations

associated with freshwater tendencies at the sea surface and redistributed in the ocean’s interior have

a negligible effect on seawater density and thus sea level changes on the global scale (e.g., Lowe and45

Gregory, 2006); on regional to basin-scales, however, the role of salinity should not be neglected in

sea level studies (e.g., Durack et al., 2014a). In the long term, the mass contribution might become

substantially larger than thermal expansion contribution to SLR because of the larger efficiency of

land-ice melting for a given amount of heat (Trenberth and Fasullo, 2010). However, the current

climate models of the Coupled Model Intercomparison Project phase 5 (CMIP5) do not include land50

ice-sheet discharge dynamics and their contributions to the global mean SLR budget (Church et al.,

2013b). Furthermore, simulating land ice-sheet discharge dynamics from the Antarctic Ice Sheets

might translate into large uncertainties in climate models, since non-linear processes may be trig-

gered that could alter the sea level rise contribution dramatically (e.g., Joughin et al., 2014; Rignot

et al., 2014; Mengel and Levermann, 2014). For the observational record with satellite altimeter data55

since 1993, the observed and simulated contribution of thermosteric expansion to global mean SLR
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amounts to 34% and 47%, respectively (see Table 13.1 in Church et al., 2013a). Down to the present

day, the observed thSLR contribution from thermal expansion is limited in the space and time dimen-

sion: Available observed long-term (decadal) time series of thermosteric sea level rise (thSLR) are

mainly globally-averaged values using different spatio-temporal interpolation/reconstruction meth-60

ods and cover the upper 2000 m at maximum (Domingues et al., 2008; Ishii and Kimoto, 2009;

Levitus et al., 2012). Observed contributions to thSLR from depths below 2000 m are assumed to

increase monotonically and linearly in time (Purkey and Johnson, 2010; Kouketsu et al., 2011). For

details on the spatial as well as temporal coverage and quality of oceanic temperature measurements

that underlie thSLR estimates we refer to Abraham et al. (2013) and references therein.65

The objective of the present study is both to complement observed and existing simulated thSLR

estimates in a number of ways and to enable the development of surrogate techniques for long-

term thSLR projections. We begin by introducing the observed and simulated datasets as well as the

method to arrive at thSLR estimates. Subsequently, we calculate the simulated thermal expansion

over the entire ocean grid for a number of CMIP5 models that have not published those time series70

yet. Section 3 and Section 4 present both the extended CMIP5 thSLR (zostoga) dataset and depth-

dependent results that can complement upper ocean layer observations. Section 5 and Section 6

investigate hemispheric and global averages of calibrated thSLR mimicking CMIP5 estimates. In

Section 7 we discuss and summarize our results focussing on the extent to which the observations

might underestimate the contribution to thSLR from depths below the main thermocline.75

2 Methods and Models

The volumetric response to changes in the ocean’s heat budget, the thermosteric sea level, ηΘ, at any

horizontal grid point and any arbitrary time step is defined by the vertically integrated product of

the thermal expansion coefficient, α, and the potential temperature deviation from a reference state,

Θexp−Θref ,80

ηΘ(x,y, t) =

0∫
−H

α(Θexp−Θref )dz (1)

where the spatial 3-D thermal expansion coefficient, α is defined by:

α =
−1

ρ(Sref ,Θref ,p)
ρ(Sref ,Θexp,p)− ρ(Sref ,Θref ,p)

(Θexp−Θref )
(2)

CMIP5 publishes time series of global mean (0-D) ηΘ, called zostoga and represents the integral

value of ocean’s thermal expansion, α (Θexp−Θref ), at each grid point, over the entire ocean85

volume. For the majority of the fully coupled climate models, sea level changes due to net gain

of heat need to be diagnosed offline as a result of using the Boussinesq approximation, conserving

ocean’s volume and not mass (Greatbatch, 1994). Here, we derive global mean yearly depth profiles
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of thermal expansion by using independent Θ and S prognostics of CMIP5 model simulations in

Equation 2.90

In order to derive thermal expansion estimates, and zostoga, from hemispherically or globally

averaged vertical temperature profiles, rather than from sparsely observed and computationally ex-

pensive spatial 3-D fields of temperature, salinity and pressure, we use a simplified parameterisation

of a thermal expansion coefficient, α1.5, as a polynomial of Θ and p:

α1.5 = (c0 + c1 Θ0 (12.9635− 1.0833p) − c2 Θ1 (0.1713− 0.019263p) (3)95

+ c3 Θ2 (10.41− 1.1338p) + c4 p − c5 p
2 ) × 10−6,

with Θ0 = Θexp, Θ1=Θ2
0 and Θ2=Θ3

0/6000 and calibration parameters cn=0−5. This polynomial

algorithm is based on a simplification of the equation of state of seawater given in Gill (1982),

assuming a constant salinity of 35 PSS-78. It is, for example, included in the reduced-complexity

Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC) (Raper et al.,100

1996; Wigley et al., 2009; Meinshausen et al., 2011). The depth profile, z, is expressed by the pres-

sure profile p= 0.0098(0.1005z +10.5exp((−1.)z/3500)−1.0), assuming a mean ocean depth of

3500 m. As a first step, we use time-dependent vertical global and hemispheric profiles of Θ from

the CMIP5 models to test the reliability of thermal expansion estimates based on this simplified ap-

proach (Eq. 3). With these time-series of vertical temperature profiles we calibrate α1.5 in Eq. (3)105

with calibration parameters cn against globally and hemispherically averaged vertical profiles of α

in Eq. (2) (using squared differences as goodness-of-fit statistic).

We name this parameterisation the 1.5-D simplification, as it uses two hemispherically averaged

depth profiles. In addition, we use the CMIP5 data to estimate the zero-dimensional (0-D) thermal

expansion coefficient α0. Divided by ocean’s specific heat capacity, reference density and area, it110

gives the “expansion efficiency of heat” (in m YJ−1, 1 YJ ≡ 1024 J) and allows the comparison

of thermal expansion from models with different spatial dimensions (Russell et al., 2000). This

constant quantifies the proportionality between global mean thSLR and ocean heat uptake (OHU)

(cf. Kuhlbrodt and Gregory, 2012).

We examine a broad range of CMIP5 scenarios, namely the historical (post-1850) climate simula-115

tions, the idealized 1% CO2 per year increase (1pctCO2) and the response to abrupt 4× pre-industrial

CO2 increase (abrupt4xCO2). But as we aim to complement observed and existing simulated thSLR

estimates and to design surrogate techniques to project long-term thSLR, we focus on the four sce-

narios defining future change in radiative forcing, namely rcp2.6, rcp4.5, rcp6.0 and rcp8.5. These

scenarios specify four greenhouse gas concentration trajectories and their Representative Concentra-120

tion Pathways (RCP). They are named after the amount of radiative forcing (in W m−2) realised in

the year 2100 relative to values of the pre-industrial (pre-1850) control scenario (piControl) (for de-

tails see Taylor et al., 2012; Moss et al., 2010, and Table S1). However, recent literature suggests that

the rapid adjustment primarily due to clouds generates forcing variations that cause differences in the
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projected surface warming among the CMIP5 models even if radiative forcing is equally prescribed125

for each individual CMIP5 model (Forster et al., 2013).

Independent of the model and estimation method, a “full linear drift" is removed from all simu-

lated thermosteric sea level time series, zostoga and temperature time series by subtracting a linear

trend based on the entire corresponding (piControl) scenario in order to allow for comparison with

observational time series. For our globally and hemispherically averaged thSLR time series the sen-130

sitivity to the method of drift correction is less than 1% due to small low-frequency (inter-annual to

inter-decadal) variability present in the evolution of this integral oceanic property. This contrasts the

large low-frequency variability, e.g. in the sea surface temperature evolution (Palmer et al., 2009).

For details about methods of climate drift correction in CMIP5 models see Taylor et al. (2012), Sen

Gupta et al. (2013) and the supplementary by Church et al. (2013a). Additionally, we correct the135

historical time series by adding the suggested thSLR trend of 0.1±0.05 mm yr−1 by Church et al.

(2013b) to take into account that the CMIP5 piControl scenario might be conducted without volcanic

forcing and thus underestimate the oceanic thermal expansion in the historical scenario (Gregory et

al., 2013b). The adjustment of global mean SLR to changes in ocean mass is fast and linear (Lor-

bacher et al., 2012); thus in the longer term, impacts of changing ocean mass on SLR may well140

become the primary contribution to the trend in SLR. For projected time series beyond the historical

simulations, we use the rcp4.5 simulations consistent with Church et al. (2013a).

3 Extended CMIP5 zostoga dataset

For CMIP5 models that report zostoga, we calculate the RMS-error between published zostoga val-

ues and our recalculated values based on the provided Θ and initial S depth profiles. Averaged over145

all CMIP5 models and scenarios and normalised by the mean zostoga value, the RMS-error amounts

to±1%, providing confidence that our 3-D equation of state implementation is consistent with those

of CMIP5 modelling groups. As not all CMIP5 models that provide Θ and S also provide zostoga,

our recalculated dataset comprises 30% more modelled zostoga time series than previously published

within CMIP5 (compare Table S1 and Fig. 1a, e.g., to Fig. 13.8 in Church et al. (2013a)). These com-150

plementing zostoga time-series are available at http://climate-energy-college.net/complementing-

thermosteric-sea-level-rise-estimates and as supplementary material; time-series of zostoga pub-

lished by the individual model groups are available e.g. here http://pcmdi9.llnl.gov/esgf-web-fe.

For the RCPs, our extended dataset implies a maximum thSLR of 40 cm for the 21st century. For

rcp4.5 in year 2100, the projected model median thSLR and its 90% confidence interval amounts to155

0.28±.06 m (see Table 1 for more scenario results). The corresponding thSLR published by Church

et al. (2013a) is 0.27±06 m. For all four RCP-scenarios, our results indicate that previous CMIP5

multi-model ensemble estimates by Church et al. (2013a) have been robust, despite being based on

30% less models than used here (Table 1, S1 and Table 13.5 in Church et al. (2013a)). The idealized
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scenarios reveal a concave thSLR up to 40 cm in 1pctCO2 and a convex sea level rise up to 80 cm160

in abrupt4xCO2 over the first 100 years.

4 Complementing Observations

For the upper 700 m, our extended CMIP5 multi-model median rate of thSLR and its standard

deviation globally amounts to 0.57±0.03 mm yr−1 from 1971 onward to 2010 (Fig. 1b and Fig.

S3b) and is similar to the observed arithmetic mean 0.53±0.02 mm yr−1 of the three individual165

trends 0.63±0.02 mm yr−1 (Domingues et al., 2008), 0.45±0.02 mm yr−1 (Ishii and Kimoto, 2009)

and 0.50±0.03 mm yr−1 (Levitus et al., 2012) (cf. Figure 13.4 in Church et al., 2013a). For the

same period, around half of the models underestimate the ocean’s thermal expansion in simulations,

even after the correction for missing volcanic forcing in the piControl scenario (Gregory et al.,

2013b). Nevertheless, the majority of the historical scenarios capture the main volcanic eruptions170

in the years 1963 (Agung), 1982 (El Chichon) and 1991 (Pinatubo) with a sea level drop 1-2 years

later. Generally, differences in the observed and interannual variability suggest that the underlying

spatial patterns of interannual thermosteric sea level variability are different (Fyfe et al., 2010). For

the altimetry period (1993−2010), our multi-model median is 1.45 mm yr−1, with 1.02 to 1.97 mm

yr−1 as 90 % uncertainty, taking into account the contribution of thermal expansion to the global175

mean SLR from the entire ocean depth. This rate of thSLR equals the corresponding rate of 1.49

mm yr−1 and its uncertainty range of 0.97 to 2.02 mm yr−1 listed in Table 13.1 by Church et al.

(2013a) and confirms again the robustness of simulated thSLR estimated presented by Church et al.

(2013a) with 30% less models for a multi-model estimate than used here.

The model median contribution to thSLR from the layer between 700-to-2000 m suggests a slight180

underestimation in the observational data (Fig. 1c and Fig. S3c). For ocean depths below 2000 m,

the model median trend for the years 1990-2000 of 0.11 mm yr−1 in the historical scenario seems to

reliably represent the thSLR contribution which Purkey and Johnson (2010) estimated (Fig. 1d and

Fig. S3c). For an ocean warming occurring at depth below 3000 m Kouketsu et al. (2011) estimate a

similar thSLR over a 40-year period; based on observed and assimilated data it amounts to 0.10 mm185

yr−1 and 0.13 mm yr−1, respectively. For the upper 2000 m, the depth profiles of thermodynamic

properties across CMIP5 models are largely aligned with observational depths profiles for Θ and

S of the modern day (2005−2013) ocean provided by the Argo program (Roemmich and Gilson,

2009). The same is true for the derived thermal expansion coefficient (see Fig. 2 and depth profiles

of potential temperatures in the piControl scenario by Kuhlbrodt and Gregory, 2012). The simulated190

salinity profile shows the observed maximum at around 200 m that reflects evaporation zones and

a minimum at around 500 m that reflects mode water regions. For depths below 500 m, the model

spread of Θ and S amounts to 2 degC and 0.4 PSS-78, with only a few model outliers. Indepen-

dent of the model and scenario, the thermal expansion coefficient α at the sea surface decreases
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from 4×10−4 degC−1 in tropical, to near zero in polar regions and, globally-averaged, shows the195

familiar concave vertical profile (e.g., Griffies et al., 2014) with a minimum around 1500 m (Fig.

2). The minimum global mean climatological value of α amounts to 1.3×10−4 degC−1 for the his-

torical scenario and agrees well with the observed one. Averaged over the entire water column,

α (1.56×10−4 degC−1) compares well with the corresponding value from ocean-only simulations

(1.54×10−4 degC−1, Griffies et al., 2014). In the northern hemisphere, α is 1% higher than in the200

southern hemisphere because average temperatures tend to be higher above 2000 m in the northern

hemisphere (not shown). For details on the horizontal and vertical behaviour of α see e.g. Griffies et

al. (2014) and Palter et al. (2014).

Observed thSLR estimates with a vertical integration limit that is not the entire ocean depth due to

data sparsity will need to be complemented by an approximation for the thSLR contributions orig-205

inating by changes in deeper layers. Our CMIP5 analysis derives those deeper layer contributions

as percentage shares of total thSLR across our range of scenarios (see multi-model median in Fig.

3). The contributions relevant to a global sea level budget clearly depend on the scenario and hence

the atmospheric forcing. The higher the radiative forcing gradient of the scenario, the lower is the

contribution from depths below 2000 m. The stronger the warming signal in the ocean’s upper layers210

the more enhanced is the stratification in the upper layers. Noticeable is the abrupt4xCO2 scenario

where 90% of the thermal expansion is confined to and that the evolution of thSLR contributions

from depth below 2000 m (as share of total thSLR) shows an opposing trend compared to the 21st

century evolution of the multi-gas scenarios. Firstly, the idealized experiments are started from pre-

industrial control equilibrium conditions and hence miss the initial stratification and upper layer215

expansion between historical’s start year (usually 1850) and the start year of our analysis (1900 for

the historical and 2006 for the RCP scenarios) (cf. Russell et al., 2000). Secondly, the initial warm-

ing pulse in abrupt4xCO2 is extreme: Already within the first year of the model scenario, thermal

expansion in the upper 300 m shows a clear increase in the global mean, for all CMIP5 models, and

amounts to a magnitude of thermal expansion corresponding to the last twenty years (1986−2005)220

of the historical scenario (Fig. 2d,h and Fig. S3a). After twenty years, the thermal expansion for the

abrupt4xCO2 scenario in this upper layer equals almost the thermal expansion of the rcp2.6 sce-

nario at the end of the 21st century (not shown). Both characteristics of abrupt4xCO2 define a large

vertical temperature gradient between surface and deeper water almost instantaneously. Mixing and

advection erodes this large vertical temperature gradient, so that after 90 years the contribution be-225

low 700 m increased to 33% and below 2000 m to 7%. At the beginning of the 21st century, the

initial thSLR contribution for the four RCP scenarios shows high levels around 40% (20%) for depth

below 700 m (2000 m) and then decreases in layers below 2000 m. For the lower and intermediate

forcing scenarios, rcp2.6 and rcp4.5, the 700 m upper layer’s proportion decreases, too. In all multi-

gas scenarios, the middle layer’s share of total thSLR, i.e. between 700 m-2000 m (light grey band230

in Fig. 3), tends to increase over the 21st century. The explanation for this tendency of middle and
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deeper layer thSLR contributions to the total thSLR is likely related to multiple effects. The warm-

ing induced intensified stratification in the upper 700 m seems the obvious effect for the decreasing

contributions from layers below 2000 m. Additionally, we propose the effect of the cessation of

sporadic volcanic forcing in the RCP scenarios compared to the historical simulations. Towards the235

end of the historical scenario, i.e. the start of the RCP scenarios, the volcanic forcing in historical

might suppress the thermal expansion of middle layers (700 m-2000 m) and might therefore lead to a

certain rebound effect of the middle layer thSLR contributions in the mid-21st century (cf. Fig. S3).

However, for the multi-gas scenarios, the overall 21st century multi-model median thSLR contribu-

tion of the deep ocean is 39% from depth below 700 m with 24 to 58% as 90% uncertainty and 17%240

from depth below 2000 m with 5 to 31% as 90% uncertainty (see Fig. 3a−d). The contributions for

the RCP reference period (1986−2005, Church et al., 2013a) taken from the historical simulations

are 46% [21 to 73%] (and 21% [4 to 44%]) (Fig. 3e).

5 The 1.5-D parameterisation

We obtain 6 calibration parameters cn for each CMIP5 model through our optimisation scheme that245

minimises the RMS errors from iteration to iteration. When comparing our extended set of CMIP5

thSLR (zostoga) time series with the thSLR time series obtained by using potential temperatures

and standard pressure profiles with Equation 3, we then obtain an average error of ±5%, ranging in

between 1% and 17% across the CMIP5 model suite (see Table S2). The hemispherically-averaged

percentage contributions to thSLR based on the 1.5-D simplified thermal expansion coefficient (Eq.250

3) for all seven scenarios compare well with our extended CMIP5 dataset (Fig. 4). The thSLR con-

tribution from depths below 2000 m is larger in the southern hemisphere than in the northern hemi-

sphere. This might be due to model dependent mixing rates forming Antarctic bottom water, that

Wang et al. (2014) assigned to CMIP5 model biases in the Southern Ocean’s sea surface tempera-

ture. Strong outliers (values far outside the whiskers and the 90% confidence interval) are found in255

the depth range below the main thermocline between 700−2000 m independent of the scenario and

spatial averaging.

6 The 0-D parameterisation

Our findings complement Kuhlbrodt and Gregory (2012) who analysed the “expansion efficiency

of heat” as constant of proportionality between thSLR and OHU for the 1pctCO2 scenarios and260

concluded that model differences in the stratification below the main thermocline largely explain

the differences between the individual models. Based on the original CMIP5 ensemble with 30%

less CMIP5 models than used here, the constant for global mean (0-D) time series estimated by

Kuhlbrodt and Gregory (2012) amounts to 0.11±0.01 m YJ−1. Our median and its 90% confidence

interval amounts to 0.12 m YJ−1 [0.10 to 0.14] as integral over the entire water depths, 0.14 m YJ−1265
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[0.12 to 0.15] for the upper 700 m and 0.10 m YJ−1 [0.08 to 0.11] below 700 m (Table S4.1). The

constant depends on the 3-D-pattern of heat redistribution with the main contribution arising from

the upper 700 m. This pattern depends in equal measure on the individual model and on the scenario

for a given model (see Tables S4.1 and S4.2). Our 0-D approach results in a normalized difference

between thSLR estimates based on a 3-D (in Eq. 2) and spatially constant (0-D) thermal expansion270

coefficients of 9%.

7 Discussion and Summary

The present study aims to complement our quantitative understanding of thSLR using CMIP5 re-

sults. Firstly, based on CMIP5 temperature and salinity data for a range of scenarios, we calculate

a compilation of thermal expansion time series that comprise 30% more simulations than currently275

published within CMIP5. Our results indicate that previous CMIP5 multi-model ensemble estimates

by Church et al. (2013a) have been robust, despite being based on 30% less models than used here.

Secondly, we quantify the thSLR contribution from the entire ocean depth in order to complement

observational estimates that are primarily available for the upper ocean layers down to 700 m (cf.

Domingues et al., 2008). Sparse observational evidence points to non-significant contributions to280

global mean thSLR from depths below 2000 m during 2005 to 2013 (Llovel et al., 2014). Our results

suggest that 21st century thSLR estimates derived solely based on observational estimates from the

upper 700 m would have to be multiplied by a factor of 1.39 (with a 90% uncertainty range of 1.24 to

1.58) in order to be used as approximation for total thSLR originating from the entire water column.

Correspondingly, our CMIP5 model analysis suggests that partial thSLR contribution based on hy-285

drographic measurements from the upper 2000 m can be expected to account already for around 85%

of the total thSLR and consequently have to be multiplied only by 1.17 (with a 90% uncertainty range

of 1.05 to 1.31). In fact, our results indicate that half (50%) of the thSLR contributions can come

from depths below 570 m in the historical simulations and from slightly shallower levels (490±90

m) in the future RCP scenarios, when averaged across the last 20 years of the scenario period (Fig.290

5 and Table S5). Here, we define “half-depth” as the median of the depths distribution of OHU and

thSLR contributions. We find that those “half-depths” are located within the thermocline. The OHU

half-depth is around 100 m deeper than the thSLR half-depth due to nonlinearities in the seawater

equation of state (not shown). Furthermore, those half-depths seem to be deeper in the southern than

in the northern hemisphere because the layers above 2000 m are warmer in the northern hemisphere295

and less stratified below the main thermocline. The recent study by Durack et al. (2014b) corrobo-

rates the relevance for hemispheric partitioning of model results to adjust for the poor sampling of

the Southern Hemisphere’s upper ocean temperatures. The mean depths are 100 (300) m lower than

the medians for the idealized (RCP) scenarios and 400 m for the historical scenario (Table S5). This

indicates a positive skewness of the vertical distribution of thermal expansion because of its long300

9



tail towards depths below 700 m. For climatological temperature and salinity profiles (Boyer et al.,

2013), the difference between the mean (1200 m) and median (700 m) depth in is even greater com-

pared to our model diagnostic results of the historical scenario. This can be explained by a reduced

vertical temperature gradient within the main thermocline and a weaker stratification above the main

thermocline induced by the absent end of 20th-century warming in the climatological profiles. In305

case of the historical scenario, the difference between mean and median depth of thermal expansion

shows that the amount of thSLR due to the externally-forced warming during the period 1986−2005

is small compared to the underlying interannual variability that is generated by the internal variabil-

ity of ocean dynamics (Palmer et al., 2009; Palter et al., 2014). However, these findings highlight the

importance of the thSLR contribution from deeper ocean layers (e.g. Palmer et al., 2011). Present310

and projected thSLR is not predominantly (>50%) attributable to the layers above the depth of 700

m, the depth most observational based estimated are still limited to (Domingues et al., 2008; Ishii

and Kimoto, 2009; Levitus et al., 2012).

Lastly, in order to support the development of surrogate methods to project thermal expansion,

we calibrate two simplified parameterisations against CMIP5 estimates of thSLR: One parameter-315

isation is suitable for scenarios where hemispheric ocean temperature profiles are available (1.5-D

approach), the other, where only the total OHU (0-D approach) is known. Generally, expanding a

mass of warm, salty subtropical water is more efficient for a given temperature increase than a mass

of cold, fresh subpolar water for the same temperature increase. In upper tropical waters a warming

signal persists longer than in upper high-latitude waters due to the weaker, temperature dominated320

stratification in higher latitudes, except in the Southern Ocean around Antarctica where salinity

changes play a fundamental role in determining the strength of stratification (Bindoff and Hobbs,

2013; Rye et al., 2014). Our diagnosis of CMIP5 profiles confirms the large variations in α, the 3-D

thermal expansion coefficient, due to strong meridional (not shown) and vertical density gradients

originating from strong temperature gradients (see Eq. (2) and Fig. 2). These strong vertical as well325

as meridional gradients in the thermal expansion efficiency raise the question whether simplified ap-

proaches that collapse either the merdional component (our 1.5-D simplification) or both dimensions

(the 0-D approach) are sufficiently reliable. The introduced errors of ±5% (1.5-D) and ±9% (0-D)

compared to the CMIP5 data based on the entire ocean grid, suggest that the simplifications are suf-

ficiently accurate for long-term SLR projections, when other uncertainties (land ice-sheet response,330

climate sensitivity or radiative forcing (e.g., Hallberg et al., 2013) dominate the final result.
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Table 1. Median and its 90% confidence interval for projections of global mean thSLR (in m) in

2046−2065 and 2081−2100 relative to 1986−2005 for the four RCP scenarios.

Figure 1. Time series of observed and simulated global mean yearly thSLR (in cm). (a/) Simu-335

lated thSLR (zostoga) relative to year 1900 for seven CMIP5 scenarios: historical (31/47), 1pctCO2

(19/32), abrupt4xCO2 (17/30), rcp2.6 (18/26), rcp4.5 (27/40), rcp6.0 (13/20), rcp8.5 (27/40); the

ratio in brackets indicates the number of models of published (solid lines) zostoga and recalculated

(dashed lines) zostoga in this study based on simulated temperature and salinity fields. Bars indicate

the thSLR of the four RCP-scenarios in year 2100 relative to 1986-2005 (see also Table 1). (b/) Ob-340

served contribution to yearly thermosteric sea level of the upper 700 m by Domingues et al. (2008),

Ishii and Kimoto (2009) and Levitus et al. (2012) relative to year 1961 and corresponding simulated

time series of the historical and rcp8.5 scenarios, whereby the solid light (dark) grey lines represent

the model mean (median). Observed contribution to yearly thermosteric sea level (in cm) from layers

(c/) between 700-2000 m by Levitus et al. (2012) and Roemmich and Gilson (2009) and (d/) below345

2000 m by Purkey and Johnson (2010). Corresponding simulated time series are indicated as in (b/).

Figure 2. Global mean vertical profiles for all models of historical in year 1900 (upper panels,

(a/)−(c/)), historical in year 2005 relative to year 1986 (d/), rcp8.5 in year 2100 relatitve to the

historical mean over 1986 to 2005 (lower panels, (e/)−(g/)) and abrupt4xCO2 within the furst year

(h/): (a/) potential temperature (in degC, 0 to 20), (b/) salinity (in PSS-78, 32 to 36) and (c/) thermal350

expansion coefficient α (in 10−4 degC−1, 1.2 to 2.8); (d/) thermal expansion per layer (in mm/m,

-0.1 to 0.2), (e/) temperature deviation (in degC, -1 to 5), (f/) thermal expansion per layer (in mm/m,

-0.2 to 1.2) and (g/) thermal expansion coefficient α (in 10−4 degC−1, 1.2 to 2.8), (h/) thermal

expansion per layer (in mm/m, -0.2 to 1.2). Observed profiles (grey lines) are based on the Argo-

data as an average over the period 2005 to 2013, except for the thermal expansion in (d/). Model355

outliers are indicated in (a/).

Figure 3. Model median percentage contribution to global mean thSLR for the entire water col-

umn from depths below 700 m (light grey) and below 2000 m (dark grey) for the historical scenario,

for projections for the four RCP scenarios and the two idealized CO2 scenarios derived from Equa-

tion 2. Whisker plots quantify the temporal average distribution of the contribution to thSLR of the360

first 20 years, the entire time series and the last 20 years, respectively: 2006−2025 / 2006−2100

/ 2081−2100 for RCPs (a/)−(d/); 1901−1920 / 1900−2005 / 1981−2005 for the historical sce-

nario (e/); and 1−20 / 1−100 / 81−100 for the 1pctCO2 and abrupt4xCO scenarios (f/),(g/). Bars

and whiskers represent the 25-75% and 5-95% uncertainties of the median, respectively; the central

mark of the bar indicates the model median, the asterisk the model mean.365

Figure 4. Whisker plots of percentage thermal expansion from the layers between 700-2000 m,

below 700 m and below 2000 m, respectively, relative to the total thermal expansion integrated

over the entire water column, for seven scenarios. Thermal expansion estimates are derived from
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Equation 2 (left bar) and Equation 3 (right bar) used in simpler climate models (here with the opti-

mized calibration parameters in Table S2) and based on (a/) globally, (b/) northern and (c/) southern370

hemispherically-averaged vertical potential temperature profiles, followed by a temporal averaging

over the entire time series (see Fig. 3). Bars and whiskers represent the 25−75% and 5−95% un-

certainties of the median, respectively; the central mark of the bar indicates the model median, the

asterisk the model mean. The number of models available for these statistical estimates are crosses

on the left of the box, at which crosses above and below the whiskers indicate model outliers.375

Figure 5. CMIP5 multi-model mean depth and standard deviation (in m) where the individual

model mean (left bar) and median (right bar) depth of thSLR originates for the four RCP scenar-

ios, as well as the historical scenario and the two idealized CO2-forcing scenarios. Thermal expan-

sion estimates are derived from Equation 2 based on (a/) globally, (b/) northern and (c/) southern

hemispherically-averaged vertical potential temperature profiles, followed by a temporal averaging380

over the last twenty years (see Fig. 3 and 4). Table S5 summarizes the estimates.
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Table 1. Median and its 90% confidence interval for projections of global mean thSLR (in m) in 2046−2065

and 2081−2100 relative to 1986−2005 for the four RCP scenarios.

period 
scenario 

1986-2005 2046-2065 2081-2100 2100 2081-2100 
IPCC-AR5 

historical 0.04  [0.01 to 0.07]     
rcp2.6  0.10  [0.06 to 0.13] 0.15 [0.10 to 0.20] 0.20 [0.15 to 0.20] 0.14 [0.10 to 0.18] 
rcp4.5  0.11  [0.08 to 0.14] 0.19 [0.14 to 0.24] 0.23 [0.19 to 0.26] 0.19 [0.14 to 0.23] 
rcp6.0  0.10  [0.08 to 0.14] 0.20 [0.15 to 0.25] 0.26 [0.20 to 0.29] 0.19 [0.15 to 0.24] 
rcp8.5  0.13  [0.10 to 0.16] 0.28 [0.22 to 0.34] 0.32 [0.25 to 0.40] 0.27 [0.21 to 0.33] 
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Figure 1. Time series of observed and simulated global mean yearly thSLR (in cm). (a/) Simulated thSLR

(zostoga) relative to year 1900 for seven CMIP5 scenarios: historical (31/47), 1pctCO2 (19/32), abrupt4xCO2

(17/30), rcp2.6 (18/26), rcp4.5 (27/40), rcp6.0 (13/20), rcp8.5 (27/40); the ratio in brackets indicates the number

of models of published (solid lines) zostoga and recalculated (dashed lines) zostoga in this study based on

simulated temperature and salinity fields. Bars indicate the thSLR of the four RCP-scenarios in year 2100

relative to 1986-2005 (see also Table 1). (b/) Observed contribution to yearly thermosteric sea level of the upper

700 m by Domingues et al. (2008), Ishii and Kimoto (2009) and Levitus et al. (2012) relative to year 1961 and

corresponding simulated time series of the historical and rcp8.5 scenarios, whereby the solid light (dark) grey

lines represent the model mean (median). Observed contribution to yearly thermosteric sea level (in cm) from

layers (c/) between 700-2000 m by Levitus et al. (2012) and Roemmich and Gilson (2009) and (d/) below 2000

m by Purkey and Johnson (2010). Corresponding simulated time series are indicated as in (b/).
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Figure 2. Global mean vertical profiles for all models of historical in year 1900 (upper panels, (a/)−(c/)),

historical in year 2005 relative to year 1900 (d/), rcp8.5 in year 2100 relatitve to the historical mean over 1986

to 2005 (lower panels, (e/)−(g/)) and abrupt4xCO2 within the furst year (h/): (a/) potential temperature (in

degC, 0 to 20), (b/) salinity (in PSS-78, 32 to 36) and (c/) thermal expansion coefficient α (in 10−4 degC−1,

1.2 to 2.8); (d/) thermal expansion per layer (in mm/m, -0.1 to 0.2), (e/) temperature deviation (in degC, -1 to

5), (f/) thermal expansion per layer (in mm/m, -0.2 to 1.2) and (g/) thermal expansion coefficient α (in 10−4

degC−1, 1.2 to 2.8), (h/) thermal expansion per layer (in mm/m, -0.2 to 1.2). Observed profiles (grey lines) are

based on the Argo-data as an average over the period 2005 to 2013, except for the thermal expansion in (d/).

Model outliers are indicated in (a/).
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Figure 3. Model median percentage contribution to global mean thSLR for the entire water column from depths

below 700 m (light grey) and below 2000 m (dark grey) for the historical scenario, for projections for the

four RCP scenarios and the two idealized CO2 scenarios derived from Equation 2. Whisker plots quantify the

temporal average distribution of the contribution to thSLR of the first 20 years, the entire time series and the last

20 years, respectively: 2006−2025 / 2006−2100 / 2081−2100 for RCPs (a/)−(d/); 1901−1920 / 1900−2005

/ 1981−2005 for the historical scenario (e/); and 1−20 / 1−100 / 81−100 for the 1pctCO2 and abrupt4xCO

scenarios (f/),(g/). Bars and whiskers represent the 25-75 and 5-95 % uncertainties of the median, respectively;

the central mark of the bar indicates the model median, the asterisk the model mean.

16



0

20

40

60

(a/) global
upper 700-2000 m

0

20

40

60

80
th

e
rm

a
l 
e
x
p
a
n
s
io

n
 (

in
 p

e
rc

e
n
ta

g
e
)

below 700 m

rcp8.5
rcp6.0 rcp4.5

rcp2.6
historical

1pctCO2

abrupt4xCO2
0

20

40

60
below 2000 m

0

20

40

60

(b/) northern hemisphere
upper 700-2000 m

0

20

40

60

80

th
e
rm

a
l 
e
x
p
a
n
s
io

n
 (

in
 p

e
rc

e
n
ta

g
e
)

below 700 m

rcp8.5
rcp6.0 rcp4.5

rcp2.6
historical

1pctCO2

abrupt4xCO2
0

20

40

60
below 2000 m

0

20

40

60

(c/) southern hemisphere
upper 700-2000 m

0

20

40

60

80

th
e
rm

a
l 
e
x
p
a
n
s
io

n
 (

in
 p

e
rc

e
n
ta

g
e
)

below 700 m

rcp8.5
rcp6.0 rcp4.5

rcp2.6
historical

1pctCO2

abrupt4xCO2
0

20

40

60
below 2000 m

Figure 4. Whisker plots of percentage thermal expansion from the layers between 700-2000 m, below 700 m

and below 2000 m, respectively, relative to the total thermal expansion integrated over the entire water column,

for seven scenarios. Thermal expansion estimates are derived from Equation 2 (left bar) and Equation 3 (right

bar) used in simpler climate models (here with the optimized calibration parameters in Table S2) and based on

(a/) globally, (b/) northern and (c/) southern hemispherically-averaged vertical potential temperature profiles,

followed by a temporal averaging over the entire time series (see Fig. 3). Bars and whiskers represent the 25-75

and 5-95% uncertainties of the median, respectively; the central mark of the bar indicates the model median,

the asterisk the model mean. The number of models available for these statistical estimates are crosses on the

left of the box, at which crosses above and below the whiskers indicate model outliers.
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Figure 5. CMIP5 multi-model mean depth and SD (in m) where individual model mean (left bar) and median

(right bar) depth of thSLR originates for the four RCP scenarios, as well as the historical scenario and the two

idealized CO2-forcing scenarios. Thermal expansion estimates are derived from Equation 2 based on (a/) glob-

ally, (b/) northern and (c/) southern hemispherically-averaged vertical potential temperature profiles, followed

by a temporal averaging over the last twenty years (see Fig. 3 and 4). Table S5 summarizes the estimates.
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