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Abstract 19 

While standalone satellite and model aerosol products see wide utilization, there is a significant 20 

need in numerous climate and applied applications for a fused product on a regular grid.  21 

Aerosol data assimilation is an operational reality at numerous centers, and like meteorological 22 

reanalyses, aerosol reanalyses will see significant use in the near future.  Here we present a 23 
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standardized 2003 - 2013 global 1x1 degree and 6-hourly modal aerosol optical thickness (AOT) 24 

reanalysis product. This dataset can be applied to basic and applied earth system science 25 

studies of significant aerosol events, aerosol impacts on numerical weather prediction, and 26 

electro-optical propagation and sensor performance, among other uses.  This paper describes 27 

the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a 28 

modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates 29 

quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer 30 

(MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. 31 

The aerosol source functions, including dust and smoke, were regionally tuned to obtain the 32 

best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network 33 

(AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the 34 

AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is 35 

driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed 36 

fine and coarse mode AOT at 550nm is shown to have good agreement with AERONET 37 

observations, with global mean root mean square error around 0.1 for both fine and coarse 38 

mode AOTs.  This paper includes a discussion of issues particular to aerosol reanalyses that 39 

make them distinct from standard meteorological reanalyses, considerations for extending such 40 

a reanalysis outside of the NASA A-Train era, and examples of how the aerosol reanalysis can be 41 

applied or fused with other model or remote sensing products. Finally, the reanalysis is 42 

evaluated in comparison with other available studies of aerosol trends, and the implications of 43 

this comparison are discussed.   44 



3 
 

1.0 Introduction 45 

The importance of aerosol particles in the atmosphere and climate system is recognized across the 46 

earth sciences.  Long implicated in climate change investigations (e.g., IPCC 2007; 2013), aerosol 47 

particles influence countless other aspects of science and society.  Obvious impacts include biologic and 48 

visual air quality, including health outcomes (Laden et al., 2000; Kappos, et al., 2004), defense 49 

operations, and transportation (Wilkinson et al., 2012).  Further, aerosol particles interfere with many 50 

aspects of earth system surveillance, such retrievals of sea surface temperature (e.g., May et al., 1992; 51 

Reynolds, 1989; Robock, 1989) and ocean color (e.g., Gordon, 1997) and land use systems (Song et al., 52 

2001).  Aerosols can also affect atmospheric retrievals or radiances used to constrain temperature, 53 

water vapor, and CO2 in numerical weather prediction models (Houweling, et al., 2005).  In all of the 54 

above cases, contiguous spatial and temporal sampling of aerosol loadings is critical.  Monitoring 55 

solutions using satellite data alone must cope with variable orbits (polar, high inclination or 56 

geostationary) and sampling times. Based on this large basic applied science need, there is considerable 57 

demand for consistent gridded aerosol products constructed for numerous applications.    58 

To meet aerosol monitoring requirements, the climate and earth systems science community has 59 

historically presented aerosol data as either a free-running model (with the advantage of regularly 60 

gridded and timed products, e.g., Tanaka et al., 2003; Miller et al.,2006; Morcrette et al., 2009; Colarco 61 

et al., 2010; Pérez et al., 2011), or irregularly-timed and located satellite data (e.g., Mishchenko et al., 62 

1999; Torres et al., 2002; Hsu et al., 2004; Levy et al., 2010; Kahn et al., 2010). In both cases, the 63 

products are underdetermined. Models have poorly-resolved emissions, evolution, and sinks, and can be 64 

affected by errors in the underlying meteorological model, whereas satellite data has limited coverage 65 

and underdetermined retrievals based on assumptions that lead to a series of spatially and temporally-66 

correlated biases (e.g., Shi et al., 2011a). Ultimately, models and remote sensing products present 67 
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different aspects of atmospheric characteristics.  When model and satellite products are compared, 68 

contextual and sampling biases appear (e.g., Zhang and Reid, 2009).  For daily and more rapid analysis, 69 

such as for many specific earth system science process study questions or intersensor correction, 70 

neither approach can adequately represent the full state of the aerosol system.   71 

To bridge modeling and remote sensing data sources, numerous operational numerical weather 72 

prediction centers have embarked on sophisticated aerosol data assimilation efforts of both passive and 73 

lidar satellite sensors (e.g, Collins et al., 2001; Weaver et al., 2007; Zhang et al., 2008, 2011; Benedetti et 74 

al., 2009; Sekiyama et al., 2010). Satellite products are screened, empirically corrected and assimilated 75 

into models to provide systematic best-available analyses of the aerosol environment. The next step in 76 

this process is to develop best-available reanalyses for community use. Just as meteorological reanalysis 77 

such as the NCAR/NCEP (eg., Kalnay et. al., 1996) and ECMWF (eg., Uppala et. al., 2005; Dee et. al., 2011) 78 

are commonly applied for meteorological applications, aerosol reanalyses are likely to be destined to be 79 

useful data sources for initial analysis or systematic global studies for aerosol sciences.  80 

Like meteorological reanalyses, aerosol reanalyses are generated through a rerun of a model that 81 

assimilates historical observational data.  Aerosol reanalyses aim to be a best-available, contiguous, 82 

gridded product with consistent temporal reporting. It combines advantages of data accuracy from 83 

satellite products and data consistency from modelling. The data should have good spatial and temporal 84 

coverage and be easy to use. But an aerosol reanalysis is not simply just a rerunning of the model with 85 

aerosol data assimilation. First, strict quality assurance and quality control processes need to be applied 86 

to the satellite data that goes into an assimilation system, such that the model input is as consistent as 87 

possible over the reanalysis period. Biased retrievals in the data assimilation system could result in 88 

erroneous features that can propagate in the short term. Lack of consistency in the model or data can 89 

lead to artifacts that could be mistaken for climatological trends or spurious aerosol events.   Second, 90 
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the performance of the underlying aerosol forward model should be optimized to its upper limit through 91 

a series of tunings to the aerosol sources and wet/dry removal processes. This helps to avoid large and 92 

frequent corrections via the data assimilation cycle, so that the natural model field is as close as possible 93 

to the satellite product and the final reanalysis product is smooth and fluent in space and time.  94 

In this paper, we present the Naval Research Laboratory’s development of an aerosol reanalysis 95 

product for applied science use through the assimilation of NASA Terra and A-train satellite sensors into 96 

the Navy Aerosol Analysis and Prediction System (NAAPS). The goal is to provide a best available AOT 97 

product for applications that require this parameter. As the system develops and verification datasets 98 

become available, the publically-released analysis will include many other aspects of the aerosol system, 99 

including three dimensional concentrations and radiative effects such as fluxes and heating rates. Our 100 

goals for the initial development of the NAAPS reanalysis and this paper are threefold. 101 

a) Development of a baseline applications dataset: NAAPS has always been operationally focused, 102 

with frequent operational transitions. In support of basic research and climatology applications, 103 

however, the NAAPS model often requires re-runs with updated parameterizations.  With 104 

individual case studies being examined dozens of times per year, we wish to support such 105 

endeavors by developing an accurate AOT product that is consistent in quality and time. 106 

b) Development of a baseline verification dataset: Any application of the baseline dataset will 107 

require a comprehensive description of the NAAPS model when run in reanalysis mode, and 108 

how this differs from the operational version of NAAPS. The methods and data for characterizing 109 

the reanalysis performance must be carefully examined and documented.  110 

c) Development of a framework for future development:  We wish to investigate the degree a 111 

reanalysis represents the true atmospheric state and the extent that it can be used to study 112 

climatologically-relevant aerosol features like trend and radiative impacts.   As more satellite 113 
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products mature, they can also be incorporated into the reanalysis. The analysis presented here 114 

is intended to be a template for characterization of future reanalysis datasets as they become 115 

available.  116 

While the aerosol system is a highly complex internal mixture of anthropogenic, biogenic, open 117 

burning and wind driven emissions, ultimately it is AOT and its simple partition into fine and coarse 118 

mode contributions that we can actually measure and verify globally. Reanalyses on atmospheric gas 119 

composition and/or aerosols are also in development at ECMWF (Inness et al., 2013) and NASA (Buchard 120 

et al., 2015). The aerosol models used for generating these reanalyses are independent in their 121 

underlying meteorology, as well as aerosol sources, sinks, microphysics and chemistry. The AOT 122 

assimilation methodologies, the observed AOT data to be assimilated, and the pre-assimilation 123 

treatments of input data are also different. Validation of multivariate reanalyses of atmospheric 124 

composition is a very complex task, and a comprehensive evaluation is needed. This study focuses 125 

exclusively on the development and validation of a 550nm modal (fine mode, coarse mode and total) 126 

AOT reanalysis.   127 

In this paper, we provide an up-to-date description of the primary NAAPS model, noting differences 128 

between the reanalysis and operational versions. Our emphasis is on the development of a modal 129 

NAAPS AOT analysis. We describe the methods used to tune modeled aerosol processes. The data 130 

assimilation system used to fuse the model and observations is described, as well as the satellite data 131 

products used in the reanalysis. This is followed by a basic description of the reanalyzed global fine and 132 

coarse mode 550nm AOT fields and their verification. We conclude with a brief synopsis and discussion 133 

of our findings. We provide documentation of strengths and pitfalls of reanalysis products including 134 

advice on interpreting like products. For example, we discuss how the data assimilation system affects 135 

diurnal aerosol representation or how long term trends are represented in the simulation that has static 136 
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industrial emissions. We also discuss the difficulty in keeping meteorological input consistent at decadal 137 

levels.  We conclude with a project synopsis and outlook for future experiments.   138 

 139 

2.0 Description of Model: NAAPS and NAVDAS-AOT 140 

The foundation of this AOT reanalysis is the Navy Aerosol Analysis and Prediction System (NAAPS) 141 

and its associated aerosol data assimilation components.  NAAPS is an offline aerosol transport model, 142 

which has seen wide use in the community for global aerosol lifecycle research, contextual information, 143 

field mission planning, and operations.  144 

The original NAAPS model was based on the Danish Eulerian Hemispheric Model (Christensen, 145 

1997), although since then there have been a number of upgrades to model advection and microphysics. 146 

NAAPS has been run quasi-operationally at NRL since 1998, and became the world’s first operational 147 

global aerosol model in 2006 with implementation at the Fleet Numerical Meteorology and 148 

Oceanography Center (FNMOC).  The Navy Atmospheric Variational Data Assimilation System (NAVDAS) 149 

for Aerosol Optical Thickness (NAVDAS-AOT; Zhang et al., 2008) was operationally implemented in 2010. 150 

The system assimilates quality assured and quality controlled 2-dimensional MODIS AOT at 550 nm.   In 151 

its current operational configuration, NAAPS makes 6-day forecasts, 4 times a day at 1080x540 global 152 

(1/3 degree) spatial resolution and 42 vertical levels driven by truncated T425L60 resolution Navy Global 153 

Environmental Model (NAVGEM) meteorology (Hogan et al., 2014). Papers describing the development 154 

of the operational NAAPS include Witek et al. (2007) for sea salt, Reid et al. (2009) for biomass burning 155 

smoke and Westphal et al. (2009) for dust.  Updates to the operational model can be found at 156 

http://www.nrlmry.navy.mil/aerosol/. 157 

In converting NAAPS from a forecast model to a reanalysis system for the A-train 2003-2013 158 

time period, we desire a system that is consistent spatially and temporally in time and fits within our 159 

computational constraints. This requires, at times, significant departures from the operational model, 160 

http://www.nrlmry.navy.mil/aerosol/
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and some reduction in resolution. In this section, we describe the NAAPS model configured for 161 

reanalysis mode, its AOT assimilation package and the associated MODIS, MISR and precipitation 162 

satellite data used to initialize and assimilate into the model. We also describe the tuning processes 163 

necessary to help ensure spatial and temporal consistency within the reanalysis period.  164 

2.1 Meteorology fields 165 

The current operational version of NAAPS is driven by NAVGEM (Hogan et al., 2014), a global 166 

T425L60 spectral model that is only available since September 2013. The NAAPS reanalysis described in 167 

this paper is driven by the recently-decommissioned Navy Operational Global Atmospheric Prediction 168 

System (NOGAPS) analysis fields for 2003-2013.  A full NAVGEM reanalysis is under construction that will 169 

allow higher horizontal and vertical resolution to better constrain future runs of the reanalysis. The 170 

NOGAPS model is a global model that is spectral horizontally and energy-conserving finite-difference 171 

(sigma coordinate) in the vertical (Hogan and Rosmond, 1991; Hogan and Brody, 1993). Four times a day, 172 

the weather forecast models provide 6-day forecasts of the dynamical and surface analysis fields to 173 

NAAPS at 3-hr intervals. The reanalysis uses only the 00, 06, 12, and 18Z analyses with the associated 3-174 

hr forecast fields to make up the 3-hr time series of dynamical forcing.  NOGAPS variables used by 175 

NAAPS are the topography, sea ice, surface stress, surface heat flux, surface moisture flux, surface 176 

temperature, surface wetness, snow cover, stratiform precipitation, convective precipitation, lifting 177 

condensation level, cumulus fractional coverage, cumulus cloud height, surface pressure, three 178 

components of the wind, temperature, and relative humidity. For data assimilation, NOGAPS uses the 179 

NRL Atmospheric Variational Data Assimilation System (NAVDAS), which is still used operationally for 180 

assimilation of a large variety of conventional and satellite-based observations (Daley et al., 2001). While 181 

NOGAPS has had some resolution changes over the 2003-2013 study period (ranging from T159 to T319), 182 
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spectrally truncated NOGAPS meteorology data is incorporated into the NAAPS reanalysis for each 6 183 

hour time step at the prescribed 1x1 degree resolution. 184 

As the primary sink of aerosol particles, the precipitation component of NOGAPS is worth special 185 

attention. Often in large scale models the parametrized precipitation schemes for tropical regimes 186 

generate widespread light precipitation, while the long-term total precipitation amount is comparable 187 

to observations (Dai, 2006, Sun et al., 2007). Similarly, global models also have difficulty placing 188 

significant convective cells, particularly moderately-sized squall lines or coastal thunderstorms. Diurnal 189 

precipitation cycles are also poorly represented by numerical models. These characteristics of model 190 

precipitation are shown to affect removal of aerosol particles and can have significant impact on 191 

regional AOT simulations (Wilcox and Ramanathan, 2004; Xian et al., 2009).  For the reanalysis, tropical 192 

precipitation from NOAA Climate Prediction Center (CPC) MORPHing technique (CMORPH, Joyce et al., 193 

2004) is used whenever available to improve aerosol wet deposition in the manner described in Xian et 194 

al., (2009), in which cloud structure from the model is retained but precipitation flux is changed 195 

accordingly. CMORPH combines infrared (IR) and passive microwave data (PMW) retrieved from 196 

instruments onboard multiple geostationary and lower-orbiter satellites. CMORPH was chosen for this 197 

role as it appears to have the best representation of temporal and spatial patterns of tropical 198 

precipitation among satellite precipitation products (Janowiak et. al, 2005; Sapiano and Arkin, 2009).  199 

 200 

2.2 Aerosol Model 201 

As noted above, NAAPS is a global aerosol model originated in the mid-1990’s from a 202 

hemispheric sulfate chemistry model developed by Christensen (1997).  Dust, sea salt and smoke have 203 

been added to the original model, and are documented in Westphal et al., (2009), Witek et al., (2007) 204 

and Reid et al., (2009), respectively. Given that what is commonly referred to as regional pollution or 205 
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haze is a result of complex anthropogenic and biogenic emissions and chemistry, here we replaced the 206 

simplified Christensen (1997) SO2 and sulfate chemistry.  As elaborated in Section 2.2.6, anthropogenic 207 

SO2, sulfate and organics, are combined with biogenic emissions to form an anthropogenic and biogenic 208 

fine (ABF) aerosol particle species.  209 

2.2.1 Aerosol Model Dynamics 210 

The equations solved in the model have the form 211 

𝜕𝑞𝑖
𝜕𝜕

= −� 𝑢 𝜕𝑞𝑖
𝜕𝜕

+ 𝑣 𝜕𝑞𝑖
𝜕𝜕

+ 𝜎̇ 𝜕𝑞𝑖
𝜕𝜕
� + �𝐾𝑥

𝜕2𝑞𝑖
𝜕𝜕2

+ 𝐾𝑦
𝜕2𝑞𝑖
𝜕𝜕2

+ 𝐾𝑧
𝜕(Γ2𝐾𝑧

𝜕𝑞𝑖
𝜕𝜕 )

𝜕𝜕
� + 𝑃𝑖 − 𝑄𝑖  ,         (1) 212 

where qi is the mass mixing ratio (kg kg-1) for the species i, qi = ci/ρ, where ci is the mass concentration 213 

(kg m-3) and ρ is the density of air (kg m-3), x and y are the horizontal coordinates (longitude and latitude), 214 

σ is the terrain-following vertical coordinate that ranges from 1 at the surface to 0 at the model top, 215 

𝑢, 𝑣, 𝜎̇ are the advection velocity in the x, y and the vertical directions of the σ-coordinates, Kx and Ky are 216 

horizontal diffusion coefficients that are assumed to be constant (Kx = Ky = 6×104 m2 s-1), And Kz is the 217 

vertical diffusion coefficient based on the Monin-Obukhov similarity theory for the surface layer 218 

(Obukhov, 1971). The Kz profile is extended to the whole boundary layer by using a simple extrapolation 219 

(Hertel et al., 1995).  Finally, dzdσ=Γ  (m-1). Pi are the sources and Qi are the sinks for the species i. 220 

Equation 1 is solved on a spherical grid with 1° x 1° horizontal resolution and 25 vertical irregular 221 

σ-coordinate levels in the reanalysis product presented here. The average depth of the first layer is ~30 222 

meters, and consecutive layers gradually increase in depth towards the top layer, which ends at ~18 km 223 

(70hpa). Advection is calculated using a semi-Lagrangian scheme (Staniforth and Cote, 1991), with 224 

departure points calculated using the method of Ritchie (1987). Horizontal and vertical diffusion are 225 

calculated with a finite-element method (e.g., Bathe, 2006). 226 

2.2.2 Aerosol Optical Properties in NAAPS 227 
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Aerosol microphysics are treated relatively simply in NAAPS. This is in response to the 228 

computational needs of an efficient operational forecast model, its operational requirements (e.g., 229 

forecast severe visibility reducing events) and the fact that in comparison with the uncertainties in 230 

source functions as well as transport meteorology, microphysics is relatively well constrained. Dry mass 231 

concentrations are forecasted with Equation 1 and AOT for each aerosol species is computed assuming 232 

an effective particle size with respect to mass.  Aerosol particles in NAAPS are treated as external 233 

mixture of the aforementioned species and do not interact with each other. With these assumptions, 234 

extinction and AOT can be calculated using bulk values of optical properties that have been derived from 235 

theory and observations. The calculations for scattering (bscat, m-1), absorption (babs, m-1) and extinction 236 

coefficients (bext, m-1), plus the integrated optical depth (τ, unitless) are, respectively 237 

                          )]),,([)(),,(),,,( ,, σλασσλ yxrfyxcyxb iiscatiiscat =              ,             (2) 238 

)(),,(),,,( ,, λασλ iabsiiabs zyxcyxb =      , (3) 239 

),,,(),,,(),,,( ,,, σλσλσλ yxbyxbyxb iabsiscatiext +=    , and (4) 240 

∫ Γ
=

0

1 ,
1),,,(),,( σσλλτ dyxbyx iexτi      , (5) 241 

where αext, αscat, and αabs are the mass extinction, scattering, and absorption efficiencies respectively 242 

(m2 g-1), and fi is a scattering hygroscopic growth factor.  243 

The bulk mass extinction, scattering, and absorption efficiencies, along with single scattering 244 

albedo and asymmetry factor for the four aerosol species at wavelength λ = 550 nm are given in Table 1. 245 

For ABF, dust and sea salt, the values are taken from the optical properties of aerosol and clouds-OPAC 246 

database (Hess et al., 1994).  The chosen coefficients for ABF are weighted towards the more-absorbing 247 

aerosol particles that are generated by less-developed countries that dominate global aerosol fields 248 
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(Dubovik et al., 2002).  Optical properties for smoke are treated similarly, with both empirical 249 

derivations and theory derived from Reid et al. (2005a, b).  250 

The effect of humidity on particle light scattering for each aerosol species is represented by the 251 

Hanel (1976) formulation of the hygroscopic growth factor fi(r) (unitless), defined as 252 

                           
i

o
i r

rrf
Γ−









−
−

=
)1(
)1()( , (6) 

where r is the relative humidity, Гi is an empirical species-dependent exponent and ro is the reference 253 

relative humidity that is set equal to 30%.  In NAAPS, Гi is taken as 0.5 for ABF particles assuming 40% 254 

sulfate and 60% organic aerosols.  In comparison, Гi  is 0.63 for sulfate (Hanel, 1976),   0.18 for smoke 255 

(Reid et al., 2005b), 0.46 for sea salt (Hegg et al. 2002; Ming and Russell, 2001), and zero for dust (Li-256 

Jones et al., 2002).  A maximum allowed r is 95%.  We assume absorption αabs is not affected by 257 

humidity. 258 

2.2.3 Sink processes in NAAPS 259 

Dry deposition to the surface is accounted for through a decrease of the aerosol concentration 260 

in the lowermost model layer, assuming a dry deposition flux 261 

𝐹𝐷𝐷𝐷 = 𝑐1𝑖𝑣𝑑𝑑    ,                                                                       (7) 262 

where c1i is the mass concentration (kg m-3) in the first layer above the surface for the species i, and 𝑣𝑑𝑑 263 

is the dry deposition velocity, which is a function of aerosol type and surface type.  264 

For particle deposition over water, the dry deposition velocity vd is set to 0.0002 m s-1 for 265 

anthropogenic and biogenic fine particles, 0.0003 m s-1 for smoke loosely following the theoretical 266 

relation between over water vd and particle radius in Slinn and Slinn (1980), assuming bulk effective 267 

radius listed in Table 1 for the two types of aerosols. vd is set to 0.001 m s-1 over water for dust particles 268 

after tuning to minimize AOT corrections through the data assimilation process (more details in section 269 
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2.4.2). Dry deposition of sea salt to open water is given by the formula in Slinn and Slinn (1980), 270 

assuming a dry mass mean radius near 1.5 µm, and written as 271 

 𝑣𝑑𝑑𝑑 = 𝐶𝑑𝑈10, (8) 

where 𝐶𝑑 = 1.3 × 10−3 is the drag coefficient, and U10 the wind speed at 10 meters above the sea 272 

surface in m s-1.  273 

For particle deposition over land, the method of Walcek et al. (1986) is used and the explicit 274 

expression for vd is the same as in Christensen (1997; Eq. (9)), which is a function of surface friction 275 

velocity and Monin-Obukhov length, which is a measure of the stability of the surface layer (Obukhov, 276 

1971, Eq. 26).   This is written as 277 
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(9) 

where 𝑢∗ is the surface friction velocity in m s-1, a = 500 (except for a forest with leaves, where a = 100), 278 

and L is the Monin-Obukhov length. vd is calculated using Eq. (9) for all the aerosol species in the model.    279 

Gravitational settling is also applied to the aerosol particles in the model. Dry deposition is only 280 

applied in the lowermost model layer, whereas gravitational sedimentation takes place within the whole 281 

vertical domain except the lowermost model layer, as it is taken into account in vd.   282 

The wet deposition of particles is assumed to be similar to that for sulfate aerosol, based on a 283 

simple scavenging ratio formulation (e.g. Iversen, 1989). The scavenging coefficient is calculated in the 284 

same way as in Witek et al. (2007), as a function of the precipitation mass flux with different below-285 

cloud and in-cloud scavenging ratios, written as    286 
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𝑊(𝜎) =

⎩
⎪
⎨

⎪
⎧ ( )

w

abc P
H ρ

σΛ
   below cloud scavenging

( )
w

c P
H ρ

σΛ
    in cloud scavening           

                 ,                   (10) 287 

where ( )σaP  and ( )σP  (kg m-2s-1) are the total downward flux densities of precipitation mass at a 288 

given σ-level below or in a precipitating cloud, respectively. H is an effective thickness for scavenging 289 

(set to 1000 m), Λbc =  5101×  is the below-cloud scavenging ratio, Λc = 5107×  is the in-cloud 290 

scavenging ratio, and ρw is the density of water. 291 

2.2.4  Dust 292 

Dust emissions occur whenever the friction velocity exceeds a threshold value, snow depth is 293 

less than a critical value, and the surface moisture is less than a critical value (Westphal et al., 1988).  294 

The dust emission flux follows the equation  295 

𝐹𝑑𝑑𝑑𝑑 = 𝑐 𝑒𝑓𝑢∗4                                                ,                                (11) 296 

where ef is the erodible fraction of a grid box (unitless), 𝑢∗ is the surface friction velocity with the 297 

threshold value of 0.6 m s-1 for dust mobility, and 𝑐 is a scaling constant of 4.5 x10-7 g m-2 s-1. In the 298 

operational version of NAAPS, the erodibility map is empirically derived from the United States 299 

Geological Survey Land Cover Characteristic Database and Total Ozone Mapping Spectrometer Aerosol 300 

Index values (Walker et al., 2009). While in general the operational version of NAAPS has good dust 301 

scores, NAAPS clearly has a high bias for dust for the Sahara. For the reanalysis, the use of Ginoux et al. 302 

(2001) dust sources mitigated much of this bias. The Ginoux et al. (2001) erodibility map associates dust 303 

sources with topographic depressions and has many of the same features as seen in Westphal et al. 304 

(1988), yet its geologic input data tightened individual source areas.  305 

Regional source tuning is also applied in the NAAPS reanalysis, which is described in Section 2.4. 306 

Dust is emitted into the bottom two layers of the model (below 100m) when friction velocity exceeds 307 

the threshold and surface wetness is below a critical value (0.4).  Then, dust is transported by model 308 
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dynamics both horizontally and vertically in the boundary layer and the free troposphere. Dust removal 309 

includes sedimentation, dry deposition and wet removal, which is constrained with CMORPH 310 

precipitation within the tropics. Dust is assumed to be totally hydrophobic and hence the hygroscopic 311 

growth factor is set to 1.    312 

2.2.5  Sea Salt  313 

The sea salt component for operational NAAPS and the NAAPS reanalysis was developed by 314 

Witek et al. (2007). Sea salt emissions are driven dynamically by sea surface wind. The sea salt dry mass 315 

flux Fssa  (kg m-2s-1) from the surface is based on the whitecap method and the Monahan’s formulation of 316 

the source function (Monahan et al., 1986), and has the empirical form   317 

 𝐹𝑠𝑠𝑠 = 𝑎𝑠𝑈10
𝑏𝑠  , (12)  

where U10 is the wind speed at 10 meters above the sea surface in m s-1, as = 1.37 x 10-13 and bs = 3.41. 318 

Dry deposition of sea salt over water is proportional to the sea surface wind speed, following Slinn and 319 

Slinn (1980) and over land follows Eq. (9). Sea salt particles are assumed to undergo hygroscopic growth 320 

depending on ambient atmospheric relative humidity, following the growth rate shown in Eq. (6). Sea 321 

salt scattering coefficient is based on swelled particles, while absorption coefficient is assumed not 322 

effected by the swell.   323 

2.2.6 Anthropogenic and biogenic fine particles (ABF) 324 

The most significant change to NAAPS microphysics for the reanalysis is the development of a 325 

method to account for complex anthropogenic and biogenic species while not significantly increasing 326 

the computational cost of the model. Originally, the only anthropogenic emissions and predictive 327 

variables within NAAPS were SO2 and sulfate. However, organic species constitute one of the most 328 

important contributors to the mass of atmospheric aerosols (Zhang et al, 2007, Jimenez et al, 2009), and 329 

indeed commonly dominate the submicron aerosol mass and AOT. This organic aerosol mass, while 330 
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having a significant component attributable to primary organic aerosol (POA) emission, is predominantly 331 

secondary organic  aerosol (SOA; i.e., created in the atmosphere from volatile organic carbon (VOC) 332 

precursors in the gas phase, such as, isoprene, terpenes and aromatics; e.g., Zhang et al, 2007).  These 333 

precursors are largely biogenic in origin. Ultimately, the complex chemical interactions between 334 

anthropogenic and biogenic emissions result in a photochemical soup that cannot be directly linked to a 335 

single origin.   336 

For realistic simulation of AOT, primary and secondary organic aerosols must both be included in 337 

the NAAPS model in some form. To be consistent with the NAAPS reanalysis’ philosophy of simple and 338 

tractable physics, the sulfur-related species has been replaced with a bulk anthropogenic and biogenic 339 

fine (ABF) mass category to account for the entire class of anthropogenic and biogenic emissions and 340 

their secondary particle products. This species class includes all accumulation mode particles, including 341 

biogenic marine, outside of open biomass burning, as described in Section 2.2.7.  The first component of 342 

this mixture is the original sulfur chemistry. Sulfate aerosols are produced by chemical processes in the 343 

atmosphere from gaseous precursors, mainly sulfur dioxide (SO2) from anthropogenic sources and 344 

dimethylsulfide (DMS) from biogenic sources. For NAAPS reanalysis, SO2 emissions are updated from 345 

GEIA Version 1A (i.e., 1985) (Benkovitz, 1996) to Monitoring Atmospheric Composition & 346 

Climate/CityZen EU projects (MACCity) inventory 2005-2010 average (Granier et al., 2011, Diehl et al., 347 

2012), which reflects the increased emission in India and China over the past decade and also includes 348 

monthly variation. DMS emission fluxes at the air-sea interface are computed using the Saltzman (1993) 349 

parameterization, with the monthly DMS seawater concentrations from Lana et al. (2011). DMS are 350 

immediately converted to 95% sulfur dioxide and 5% sulfate in the model.  SO2 chemistry follows 351 

Hoffmann and Calvert (1985), in which oxidation of sulfur solution (S(IV)) by hydrogen peroxide (H2O2) 352 

and dissolved ozone (O3) are considered climatologically. We assume background oxidants H2O2 and O3 353 
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are not depleted by reactions. Ultimately, sulfur chemistry accounts for roughly one half of all non-354 

biomass burning fine mode AOT.    355 

Inclusion of POA in the NAAPS reanalysis is straightforward, including the major VOC species 356 

that act as precursors for the SOA. We apply the 2005-2010 monthly-mean MACCity data base for 357 

anthropogenic (industrial and transport) emissions of POA and SOA precursors (Granier et al, 2011), the 358 

Bond et al (2004) biofuels data with a monthly scaling factor based on Jeong (2011), and the Precursors 359 

of Ozone and their Effects in the Troposphere (POET) climatological monthly emissions inventory for 360 

biogenic VOC’s (Olivier et al, 2003). For the actual SOA formation process, the Volatility Basis Set (VBS) 361 

approach has been adopted (Donahue et al, 2006; Ahmadov et al, 2012). This greatly reduces both the 362 

number of necessary precursor species and the number of SOA products from the vast numbers needed 363 

to explicit represent SOA formation and evolution by formulating the conversion process in terms of a 364 

limited number of precursor species and volatility classes (four in our case) for the reaction products. 365 

The reaction yields for the various VBS classes, upon which the approach ultimately depends, are 366 

derived from numerous chamber studies as cited, for example, in Ahmadov et al (2012) and Donahue et 367 

al (2006).  Phase partitioning is done as per Pankow (1994).    368 

To further simplify the inclusion of organic aerosols in the NAAPS model, both the POA and SOA 369 

are calculated in a “preprocessor” at model initialization. For the SOA, this includes calculation of the 370 

yield of SOA product mass from the emissions inventory VOC’s, based on the VBS model, and the 371 

treatment of this mass as a primary aerosol emission, similar to the POA. Utilizing the similarity in 372 

microphysical and optical properties of OA and sulfate, the model carries POA and SOA together with 373 

sulfate as aforementioned “anthropogenic and biogenic fine”. This approach has some obvious 374 

shortcomings, but it carries minimal computational cost and has much improved the simulation of AOT, 375 

especially the model bias and correlation with AERONET over India, China and Eastern United States.  376 
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2.2.7 Biomass Burning Smoke 377 

Biomass burning has a wide coverage globally, from the tropics to the high latitudes, and it 378 

significantly impacts the total light absorption budget (Bond et al., 2013). Unlike other aerosol sources 379 

that are meteorologically driven (e.g., dust and sea salt) or prescribed in a seasonal or monthly inventory 380 

(e.g., pollution), smoke emissions have significant variability that hinders easy parameterization. 381 

Configuring the NAAPS model with biomass burning aerosols as a separate species permits explicit 382 

hypothesis testing about the sources, sinks, and optical properties of these aerosols. Operational NAAPS 383 

has adopted the satellite active fire hotspot based approach through the Fire Locating and Modeling of 384 

Burning Emissions (FLAMBE1.0; Reid et al., 2009; Hyer et al., 2013). The model converts the smoke 385 

emission to total mass injected by multiplying by the fire size. This value is then divided by the area of 386 

the grid cell and the fire duration to create a flux as an hourly input to the model. FLAMBE can use 387 

satellite fire products from either geostationary sensors, which offer faster refresh rates and 388 

observation of the full diurnal cycle, or polar orbiters, which have greater sensitivity. Polar orbiting 389 

satellites have significant biases not only in their daily sampling pattern, but also additional artifacts 390 

from day to day shifts in the orbital pattern (e.g., Heald et al., 2003, Hyer et al., 2013). Over the 391 

reanalysis period, multiple changes in the geostationary constellation posed a challenge for consistency 392 

of the smoke source function. Therefore, a polar-only version of FLAMBE was created for the reanalysis.  393 

Given that the NAAPS reanalysis coincides with the NASA EOS system, MODIS-based fire 394 

products and emissions are applied. MODIS orbits have a 16-day repeat cycle, with daily coverage of the 395 

globe excepting small gaps between orbits at the equator.  Areas that are not covered one day are 396 

centered on the orbit the next.  The Fire Inventory from NCAR (FINN, Wiedinmyer et al. 2011), which is 397 

also based on MODIS active fire detections, uses a 3-day moving average to account for gaps and orbital 398 

variations. After testing multiple coverage corrections, we found that for the reanalysis a simple two-day 399 

maximum (previous day and present day) fire signal largely mitigated orbital effects and thick clouds in a 400 
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tractable way.  This correction is consistent with the self-sustained nature of regional fire emissions, and 401 

further improves upon the scores presented in Reid et al. (2009). 402 

Smoke injection height combined with boundary layer mixing has a strong influence on how 403 

smoke is dispersed. Most plumes are observed as constrained within the planetary boundary layers, 404 

especially within the tropics and subtropics (Tosca et al., 2011, Campbell et al., 2013). Large boreal fires 405 

can pump smoke to higher altitudes, though these fires constitute only a very small portion of the total 406 

fires and global budget of AOT (Fromm and Servranckx, 2003; Kahn et al., 2008). In NAAPS, smoke is 407 

injected into the bottom four layers of the model, which is approximately the bottom 400 m of the 408 

model. Tuning of injection height to match observed aerosol vertical profiles is feasible in regional 409 

studies (e.g., Wang, et al., 2013). However, we use the uniform injection height in NAAPS, considering 410 

that boundary layer processes generally quickly mix aerosols well within the boundary layer or below 411 

the models significant inversion height to produce a result similar to the observations of Kahn et al. 412 

(2008).    413 

 414 

2.3  AOT assimilation  415 

The core of the NAAPS AOT reanalysis is AOT assimilation using the Navy Atmospheric 416 

Variational Data Assimilation System for Aerosol Optical Thickness (NAVDAS-AOT; Zhang et al., 2008). 417 

NAVDAS-AOT is a system that, by default, assimilates quality-controlled two-dimensional MODIS AOT at 418 

550 nm into NAAPS. It additionally has the ability to perform three-Dimensional (3DVAR) assimilation 419 

using the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) product of Campbell et al. (2010) in 420 

Zhang et al. (2011). The main impact of 3DVAR assimilation is redistribution of aerosol mass vertically, 421 

while conserving the total column mass and AOT. CALIOP data is available for only part (2006-2013) of 422 

the reanalysis period, therefore, in this first study we perform 2DVAR AOT assimilation only.  423 

 424 
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2.3.1 Formulation of NAVDAS-AOT 425 

The NAAPS prognostic variable is the 3D aerosol mass concentration. A 2DVAR approach is 426 

adopted for AOT assimilation simply because AOT retrievals from MODIS and MISR are a column-427 

integrated aerosol optical property. The 2DVAR AOT assimilation is realized through three steps:  428 

(1) Convert NAAPS mass concentration AOT: 429 

 𝜏𝑏𝜆 = 𝐻𝑚_𝜏(𝐶𝑚) + 𝜖𝑏𝜆                                                                              , (13)  

where τbλ is the background (prior analysis) AOT vector, Cm is the NAAPS mass concentration, and Hm_τ is 430 

the forward operator that represents the conversion of NAAPS mass concentration to AOT. εbλ is the 431 

error in τbλ introduced by the Hm_τ operator; 432 

(2) 2-D variational assimilation of the AOT field: 433 

 𝜏𝑎𝜆 = 𝜏𝑏𝜆 + 𝑃𝑏𝐻𝑇[𝐻𝑃𝑏𝐻𝑇 + 𝑅]−1[𝜏𝑜𝜆 −𝐻(𝜏𝑏𝑏)] , (14)  

where τaλ is the analysis AOT vectors, τoλ is the observation AOT vector, and H is the observation 434 

operator that represents any necessary spatial and temporal interpolations from the background to  435 

observational space. Pb and R are the background error covariance and observational error covariance 436 

matrices, respectively. The analysis field can be considered as the background (τbλ) plus a correction 437 

term (the second term on the right hand side of Eq. 14), which is the difference between the 438 

observation and background vectors weighted by the ratio of background error covariance matrix to 439 

total error covariance matrix in the observational space; 440 

(3) Convert the analysis AOT vectors to NAAPS mass concentration: 441 

 𝐶𝑚 = 𝐻𝜏_𝑚(𝜏𝑎𝑎 ) + 𝜖𝑚 , (15) 

where Hτ_m is the backward operator that performs the conversions from AOT to NAAPS mass 442 

concentration. In the backward operation, a scaling factor is applied to the vertical profile of aerosol 443 

mass based on the ratio of the AOT correction and background AOT, while keeping the hygroscopic 444 
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growth rate (Eq. 6) unchanged. εm is the error in Cm introduced by the Hτ_m operator. Both εm and εbλ can 445 

be transformed as part of the error term of τbλ, which is assumed to be zero for this study.  446 

 447 

2.3.2 Observational and background model error covariance matrices 448 

Both observational and model errors could contain systematic bias, either of which could be 449 

removed or minimized through pre-processing. For example, our quality assurance (QA) and quality 450 

control (QC) methodology (Section 2.3.3) attempts to remove systematic bias as much as possible from 451 

the AOT observations. Likewise the tuning process described in Section 2.4 attempts to remove 452 

systematic bias from the model background. Thus, both model background and observations are 453 

assumed to be unbiased in NAVDAS-AOT. 454 

In NAVDAS-AOD, observational errors are assumed to be uncorrelated. Thus, only observational 455 

error variances are needed. The error variances for the gridded satellite AOT data are computed by the 456 

summation of instrumentational error variances and sample error variances (Zhang et al., 2008). The 457 

instrumentational error variance is estimated through the comparison of satellite and ground-based 458 

sun-photometer data as shown in Zhang and Reid (2006) and Shi et al., (2011a) for MODIS “Dark Target”, 459 

and Shi et al., (2014) for MISR aerosol products. The sample error variance measures the variance in the 460 

gridded mean (or the representative error variance). For a 1o latitude by 1o longitude grid, the sample 461 

error variance is derived by the spatial variance of the AOT data of the grid divided by the number of 462 

observations that are used in computing the gridded mean value.  463 

The background error covariance is computed for any given two horizontal model grids m and n 464 

based on the following equation  465 

2/12/12/1 ][][ n
bb

m
b

mn
b SCSP =                                                                 , (16) 466 
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where mn
bP is the background error variance for horizontal grid locations of m and n.  m

bS and n
bS are 467 

the model error variances at grid locations m and n, respectively. bC is the horizontal background error 468 

correlation between the two grid locations. Similar to observational error variances, model error 469 

variances are also estimated using ground based sun-photometer data, and the values are reported in 470 

Zhang et al., (2008). The bC values are computed using the second order auto-regressive (SOAR) 471 

approximation (Daley and Barker, 2001), 472 

)/exp()/1(),( LRLRnmC mnmnb −+=                                . (17) 473 

Here mnR is the great circle distance between m and n. L is the horizontal error correlation length. The 474 

horizontal error correlation length is estimated through evaluating the differences in AOT between 475 

satellite observations and 6-hour model forecasts as a function of horizontal distance. L is set to 200 km 476 

for this study based on Zhang et al., (2008). 477 

 478 

2.3.3 Input data for NAVDAS-AOT and its preprocessing treatment 479 

The basis of input data for the reanalysis is operational MODIS Collection 5 AOT (Levy et al., 480 

2007; 2010; Remer et al., 2005; 2008) and Multi-angle Imaging SpectroRadiometer (MISR) AOT products 481 

(Martonchik et al., 2009, Kahn et al., 2009, Kahn et al., 2010). MODIS Deep Blue for Collection 5 is not 482 

used here due to bias issues, but it is expected that improvements in Collection 6 will be made and the 483 

data could be assimilated (Shi et al., 2013).  Extensive quality assurance (QA) and quality control (QC) 484 

procedures applied to the MODIS C5 AOT are conducted as described in Zhang et al. (2006)  and Shi et al. 485 

(2011a) for over water and Hyer et al. (2011) for over land.  These QA/QC procedures are especially 486 

important for this application, because the analysis must be heavily weighted to the observations to 487 

allow assimilation for correct for errors such as missing dust and smoke sources. Under these 488 
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circumstances, the impact of noisy data is large and proper filtering and correction of data is critical. 489 

QA/QC procedures implemented for MODIS and MISR AOT include a) strict checks for removal of 490 

possible cloud contamination, b) corrections for the lower boundary condition, such as wind speed to 491 

correct for white caps and specular reflection over water and surface albedo over land, and c) aerosol 492 

micro-physical corrections based on derived fine mode fraction over water and regionally over land. This 493 

strict quality assuring and quality control procedure is necessary to remove outliers and minimize 494 

erroneous aerosol features in MODIS that would adversely impact the model and propagate through the 495 

system. Currently, the total global data loss through screening of MODIS is about 40%, with a reduction 496 

of absolute errors of 10–30% over water (Zhang et al., 2006; Shi et al., 2011a).  Over-land, the QA/QC 497 

procedures reduce data volume by ~60% and improve the global fraction of MODIS AOT within 0.05 ± 20% 498 

of AERONET (Hyer et al., 2011). The data are aggregated into a 1o x1o grid that matches the model 499 

resolution where additional buddy checks are applied.  500 

A benefit of a reanalysis is that observations that are not timely enough to be incorporated into 501 

an operational run can be utilized. Thus, while MODIS products are used in all versions of NAAPS, for the 502 

reanalysis we can make use of MISR.  Though narrower in swath than MODIS, and thus providing less 503 

relative coverage, MISR has two key benefits. First, MISR is on Terra and its imaging swath is in the 504 

MODIS sun-glint region.  Hence, MODIS plus MISR completes the MODIS swath with full coverage.  505 

Second, the MISR over-land algorithm has an advantage over retrievals conducted with other sensors in 506 

its handling of the lower boundary condition, provided that AOT<0.8. In particular, there are large 507 

spatially-correlated discrepancies between the retrieved MODIS and MISR AOT in regions of high albedo 508 

as a result of deficiencies in the MODIS lower boundary condition (Shi et al., 2011b).  Notable regions of 509 

discrepancy between MODIS and MISR include the Andes Mountains, Saharan Africa, the Arabian 510 

Peninsula and Central Asia (Shi, et al., 2011b). Further, MISR can retrieve AOT in desert region at high 511 

efficacy where the operational MODIS Collection 5 “Dark Target” products cannot, thus providing 512 
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further coverage in desert regions. Quality-assuring (QA) and quality control (QC) procedures, including 513 

the use of MODIS cloud mask products to reduce cloud contamination in MISR data sets and applying 514 

various quality checks and empirical corrections on MISR Level 2 aerosol products, are conducted to 515 

generate data assimilation (DA) quality data sets (Shi et al., 2011c, 2014).  Then the data are aggregated 516 

into a 1o latitude by 1o longitude grid.  517 

Data assimilation using NAVDAS-AOT is used to produce a new analysis after every six hours of 518 

NAAPS integration time. The MODIS and MISR Level 2 aerosol products are typically acquired in a 6-hr 519 

range centered on the nominal valid time of the analysis (i.e., 0, 6, 12 and 18 UTC) from NASA data 520 

servers. Then QA/QC processes convert MODIS and MISR level 2 data into filtered, corrected, and 521 

aggregated AOT observations with associated uncertainty estimates for assimilation in NAVDAS-AOT. 522 

After QA/QC processes, the general pattern of data coverage from MODIS and MISR for each 523 

assimilation cycle is shown in Fig. 1. The observed geographic pattern is attributed to the fact that 524 

MODIS and MISR AOT retrievals are limited to daytime and a limited range of sun-sensor geometries. 525 

The longitudinal range for which MODIS and MISR data is available in a given assimilation cycle is limited 526 

because Terra and Aqua are in sun-synchronous orbits with equatorial overpass time of 10:30 and 13:30 527 

local solar time, respectively.  528 

For the MODIS sensors, overlapping coverage between Terra and Aqua over the 6-hr data 529 

acquisition period does occur and a mean of Terra and Aqua weighted to the number of Level 2 530 

retrievals from each sensor. The contribution of each individual sensor to the total volume of the MODIS 531 

DA quality data is about 50% on average, although this number is highly variable on the 6-hrly basis, 532 

with the variability depending on the observability of the sensors (e.g., cloudy vs. non-cloudy, land vs. 533 

ocean, etc…). Because of its narrower swath compared to MODIS, the data volume of the MISR DA-534 

quality data is only about 22% on average of that of MODIS. Approximately half of the MISR DA-quality 535 
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data overlaps with MODIS. When overlapping of MISR and MODIS 1°x1° 6-hrly DA-quality data occurs, 536 

the mean of the two is taken for final assimilation purpose.  537 

The seasonal geographic distribution of the total number of 6-hrly 1°x1°  fused MODIS and MISR 538 

DA quality AOT data averaged over 2003-2013 is shown in Fig. 2 (left column). Areas with high cloud 539 

coverage, including the ITCZ and the subtropical stratus cloud deck regions, have relatively less data. In 540 

the polar regions, cloud contamination often exists in satellite-retrieved AOT data, leading to elevated 541 

AOTs. The Southern Oceans is an example of cloud-enhanced MODIS AOT, for instance (Toth et al., 542 

2013).  As a result, high-latitude AOT data are filtered out in the QA/QC process. The cut-off latitudes for 543 

AOT data to be assimilated are 40°S over water for the southern hemisphere and 80°N for the northern 544 

hemisphere. In addition, because MODIS and MISR AOT observations are only available during daylight, 545 

and thus there are no observations during polar nights, this results in more data counts in boreal 546 

summer than in boreal winter. Fig. 2 also shows that areas with bright desert (e.g., Saharan Africa, the 547 

Arabian Peninsula and Central Asia), or snowy/icy surfaces (e.g., Andes Mountains, Greenland and high 548 

latitude in boreal winter) have relatively less data to be assimilated, as these regions are mainly filled in 549 

by MISR retrievals that have a revisit time of seven days on average rather than a revisit time of one day 550 

by MODIS.  551 

The start date of the reanalysis is 1 January 2003, based on the availability of the observational 552 

data used in the reanalysis. Terra MODIS and MISR AOT data are first available in March, 2000, and Aqua 553 

MODIS AOT is first available in July 2002. An additional consideration is CMORPH precipitation data, 554 

which is used to replace model precipitation within the tropics, is not available until December 2002. 555 

Since the required spin-up time for the aerosol model is one month, the reanalysis starts at 1 January, 556 

2003. Figure 3 shows the time evolution of 6-hrly data counts of the global MODIS, MISR and the fused 557 

1°x1° grid DA quality AOT in dots and their center-point thirty-day running average in solid lines. 558 

Throughout the reanalysis time period (2003-2013), the data counts of the DA quality data are relatively 559 
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stable, despite small dips in December 2003 in both MISR and MODIS and October 2008 in MISR due to 560 

the upstream data being unavailable. The data count of the fused MODIS and MISR DA quality data is 561 

about 3800 during boreal summer and 2400 during boreal winter, on average.  This essentially follows 562 

the seasonal variation of the MODIS DA quality data count, which makes up about 80% of the total fused 563 

MODIS and MISR DA quality data. Half of the remaining 20% is attributed to MISR alone and half is 564 

attributed to the overlapping MISR and MODIS DA quality data. The seasonal variation of data volume is 565 

mainly related to the fact that more AOT data are discarded for the southern hemisphere high latitudes 566 

than the northern hemisphere high latitudes as a result of cloud contamination, and no observations are 567 

available during polar nights (Fig. 2).  568 

 569 

2.4 Tuning studies   570 

While AOT data assimilation from sensors such as MODIS and MISR improves NAAPS 571 

performance (Zhang et al. 2014), the natural NAAPS model performance is equally important for 572 

generating a final reanalysis product that aims to match observations. Previous studies have shown that 573 

aerosol source functions, inherent within the natural runs, are one of the largest uncertainties with 574 

respect to aerosol modeling of AOT (e.g., Kinne et al., 2003).  As a result, a series of source-tuning 575 

exercises have been carried out on the natural model, using AERONET and satellite AOT observations for 576 

constraint. The tuning exercises consisted of running the model multiple times while iteratively adjusting 577 

model source and sink parameters. Smoke emissions and dust erodibility, for regions as shown in Fig. 4 578 

with some additional divisions as shown in Table S1, were tuned by iterative comparison between 579 

NAAPS model output without data assimilation and AERONET data, as described in Section 2.4.1. 580 

Emissions for some regions not covered by AERONET, as well as aerosol sink parameters, were 581 

constrained using the AOT assimilation correction field as described in Section 2.4.2. A list of the 582 

corrections applied is given in Table S1. The range of variation in optical properties of dry aerosols 583 
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reported in the literature (e.g., Hess et al., 1998; Kinne et al., 2003) is small compared to other 584 

uncertainties, therefore we adopted the optical properties described in section 2.2.2 without additional 585 

tuning. 586 

2.4.1 Tuning of aerosol sources with AERONET 587 

The AErosol RObotic NETwork (AERONET, http://aeronet.gsfc.nasa.gov), a ground-based global 588 

scale sun photometer network, has been providing high-accuracy measurements of aerosol properties 589 

since the 1990s (Holben et al., 1998; Holben et al., 2001). AERONET instruments measure sun and sky 590 

radiance at several wavelengths, ranging from the near ultraviolet to near infrared during daytime. It is 591 

often used as the primary standard for validating satellite products and model simulations (e.g., Kahn et 592 

al., 2010; Levy et al., 2010; Colarco et al., 2010).  Since there are no AERONET data at 550nm, 593 

measurements from multiple wavelengths (380nm to 1020nm) were used to estimate both fine and 594 

coarse mode AOTs at 550nm, based on the Spectral Deconvolution Method (SDA) of O’Neill et al. (2001, 595 

2003).  Extracted fine and coarse mode AOTs from AERONET AOTs are then compared to ABF plus 596 

smoke and sea salt plus dust, respectively. The SDA product has been verified using in situ 597 

measurements (Kaku et al., 2014) and has been shown to be able of capturing the full modal 598 

characteristics of fine and coarse particles while avoiding the uncertainties that come from using static 599 

diameter thresholds, at 0.8 or 1.0 µm for example.  Further, the SDA has also been shown to eliminate 600 

any potential cloud bias in fine mode AOTs from AERONET (Chew et al., 2011), although thin cirrus 601 

contamination into the coarse model AOT can still be problematic in some regions such as Southeast 602 

Asia and  Equatorial Africa (Chew et al., 2011; Huang et al. 2011).  603 

Only cloud-screened, quality-assured Level 2 AERONET data are used in this study (Smirnov et al., 604 

2000), and the sites are marked with black dots in Fig. 4. Within the reanalysis time period, nearly 600 605 

regular sites provided valid observational data. AERONET Distributed Regional Aerosol Gridded 606 
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Observation Networks (DRAGON) observations are concentrated over a small area and a short period of 607 

time, and they are excluded from this study to avoid the effect of uneven sampling on the results from 608 

the statistical analysis.  Spatially, the 1x1 degree grids in which the AERONET Level 2 data fall within are 609 

identified, and the model AOT is sampled from these identified model grids. Temporally, AERONET Level 610 

2 data are binned into 6-hrly intervals centered at the model synoptic output times of 00, 06, 12 and 18 611 

UTC and then averaged within the bins. The model AOT at 550nm is sampled consistently with AERONET: 612 

we extract the model AOT at a site using only times when AERONET had measurements. A second 613 

approach is tested, in which the model data is interpolated onto AERONET observation times.  614 

Validation results from the two methodologies are similar.   615 

Empirical regional tuning of smoke and dust emissions is based on the fine and coarse mode 616 

AOT comparisons with AERONET. The globe is divided into sixteen regions, as shown in Fig. 4, each 617 

having their own distinct aerosol characteristics. For example, South America, South Africa, Peninsular 618 

Southeast Asia, and Insular Southeast Asia have a prevailing smoke aerosol species during burning 619 

seasons, while North Africa and Southwest Asia are dust dominated.  East Asia and Indian Peninsular 620 

have mixed dust and pollution. Regional emission tuning factors were generated by using the regional 621 

bias and slope of the linear regression between pair-wise NAAPS and AERONET AOT. This is done for 622 

2009-2011 when AERONET data is more abundant than earlier years. Seasonally, data are grouped into 623 

the boreal winter/spring (December to next-May) and boreal summer/fall (June to November) time 624 

periods. These bi-seasonal temporal stratifications account for the major monsoonal and climatic shifts 625 

in the atmosphere while preserving major aerosol seasons such as, for the boreal summer/fall, the 626 

August-October biomass burning seasons in South Africa, South America, and Maritime Continent, the 627 

June-August African dust season, and the U.S. and European summer haze seasons.  628 

Regional emission factors, in the form of linear scaling factors applied to the original source 629 

functions for smoke and dust, are derived for each aerosol active season for the three years. For a single 630 

http://aeronet.gsfc.nasa.gov/new_web/DRAGON-USA_2013_Houston.html


29 
 

tuning factor, it differs slightly from year to year and season to season to a certain range. An average 631 

over the six seasons is taken to generalize this tuning factor for the reanalysis. The model is then run 632 

using the corrected emissions and the results are validated regionally against AERONET to determine 633 

whether the tuning improved bias, correlation, and root mean square error (RMSE).  Additionally, the 634 

fine/coarse mode AOT time series of NAAPS and AERONET are reviewed for each site in the region to 635 

ensure the tuning is sensible. This process is repeated iteratively to refine the tuning.  In the 636 

supplemental Table 1, the values of the regional multipliers for smoke emission based on the two-day 637 

maximum MODIS-only FLAMBE data base are listed. Also provided are the regional multipliers for soil 638 

erodibility, which are used to modify the dust source (Ginoux et. al., 2001). The tuning factor for soil 639 

erodibility changes twice over the 11 years to accommodate the land surface parameterization changes 640 

in the meteorological analysis.  641 

 642 

2.4.2 Tuning with AOT assimilation correction/increment field  643 

The total number of operational AERONET sites has grown to over 300 in recent years. However, 644 

the network’s global coverage is uneven with the majority of sites located over land where they are 645 

easily accessible. The available AERONET data is often not representative of major aerosol impact 646 

regions, and it does not optimally sample for the biases that remote sensing products may have (Shi et 647 

al., 2011b). In particular, open oceans have few AERONET sites.  648 

In regions with sparse AERONET data coverage, aerosol sources and parameters, such as 649 

sedimentation and dry deposition for ocean regions, are tuned using satellite AOT assimilation 650 

correction/increment fields. The monthly means of the daily AOT corrections (i.e., the difference 651 

between the assimilation posterior and the model prior) are a good indicator of the model performance 652 

globally. The correction maps can be used to quickly identify geographic regions where the model 653 

succeeds or does poorly. A region in which the data assimilation consistently suppresses aerosol mass 654 
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could indicate a region with excessive aerosol emissions, or deficient removal, with the assumption that 655 

aerosol transport has much smaller uncertainty.  656 

Since satellite products have uncertainties, especially over land, we rely on source corrections 657 

inferred from AERONET except where there are no representative sites close to the known source area 658 

(e.g., southern African biomass burning region). Over the ocean where AERONET has only a few sites 659 

globally, satellite data assimilation plays an irreplaceable role, not only because of the good spatial and 660 

temporal coverage of satellite AOT data, but also because of its much smaller uncertainty compared to 661 

the over-land AOT product (Hyer et al., 2011). Dust dry deposition velocity over water is tuned based on 662 

the AOT correction over the tropical Atlantic where African continent dust outflow is located, and is set 663 

to 0.001 m s-1. To minimize the AOT correction over global ocean, especially high-latitude regions where 664 

surface wind is large, we also update the sea salt dry deposition velocity over water from a constant to a 665 

function of surface wind speed following Eq. (8). This effectively reduces the negative AOT correction 666 

over high-wind regions. This approach does not account for possible sources of error, including sea salt 667 

emission parameterization, biases in surface wind that drives emission and biases in boundary layer 668 

relative humidity that affects hygroscopic growth of the sea salt particles. In particular, our approach 669 

assumes that meteorological fields are correct, and implements correction solely to the uncertain 670 

parameters of aerosol sources and sinks. 671 

 672 

3.0 Reanalyzed Aerosol Optical Thickness   673 

In this section, we focus on evaluating the reanalysis AOT at 550 nm apportioned into fine and 674 

coarse mode contributions. The sum of the fine and coarse mode AOTs constitutes the total AOT. These 675 

are what we consider the key reanalysis output variables. Dust and sea salt are considered coarse-mode 676 

aerosols and the ABF and smoke aerosols are considered fine-mode aerosols, given the simple 677 

microphysics of the NAAPS model. Seasonally, the boreal winter/spring (December to next-May, ie., 678 
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DJFMAM) and boreal summer/fall (June to November, ie., JJASON) time periods are investigated. When 679 

performing bi-seasonal long-term averaging, we use only data in June 2003-May 2013 time period, so 680 

that each individual month has an even weighting.    681 

 682 

3.1 Global distribution of AOT and seasonal variability 683 

The bi-seasonally averaged total, fine, and coarse mode AOTs at 550nm for the 2003-2013 time 684 

period are presented in Fig. 5.  Results are shown for the reanalysis and a parallel model run using tuned 685 

source and sink parameters but without AOT data assimilation. The fused MODIS-MISR DA-quality AOT 686 

for the same time period are shown in Fig. 2 (right column) for comparison. The total AOTs for both the 687 

NAAPS runs with and without AOT data assimilation look very similar to the fused DA-quality MODIS-688 

MISR AOT.  Prominent fine mode features include pollution over East Asia and India, as well as biomass 689 

burning in South Africa, South America and the Maritime Continent in JJASON.  Distinguishable coarse 690 

mode features include Saharan dust, Arabian and central Asian dust, and the circumpolar sea salt belt 691 

over the Southern Ocean.  For DJFMAM, the total AOTs for both the NAAPS runs with and without AOT 692 

data assimilation also look very similar to the fused DA-quality MODIS-MISR AOT. As for the fine-mode 693 

AOT, in addition to the year-round pollution over East Asia and India, biomass burning in central Africa 694 

and Peninsular Southeast Asia shows up for the DJFMAM season. As for the coarse-mode AOT, dust over 695 

Sahara, Sahel, Arabian Peninsula and East Asia are clear and the circumpolar sea salt belt over the 696 

southern ocean is persistent. The seasonal global average total AOTs for over-ocean and over-land from 697 

the reanalysis are also similar to those of the fused DA-quality MODIS-MISR AOT. The NAAPS run 698 

without AOT assimilation has slightly higher global average total AOTs for over-ocean and over land, 699 

mainly attributed to higher fine mode AOT averages.     700 
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The similarity between the NAAPS runs with and without AOT data assimilation implies that the 701 

AOT correction by the data assimilation process is small and the whole model tuning process is effective.  702 

The resemblance between the reanalysis (NAAPS with AOT data assimilation) AOT and the fused MODIS-703 

MISR AOT indicates that the data assimilation system works well in adjusting model fields to the closest 704 

observations. In this study, the model tuning process is considered equally as significant as the AOT data 705 

assimilation in influencing the final reanalysis. As the DA-quality satellite AOT data can reflect relatively 706 

small global coverage (Fig. 1, Fig. 2), areas not covered by the DA-quality satellite AOT would be highly 707 

impacted by the natural model (NAAPS without data assimilation). More details on the impact of tuning 708 

versus the DA on the model performance are provided in Appendix.  709 

For this type of comparison (Fig. 5), which is done with all available model and satellite data, we 710 

should also expect some difference between the satellite retrievals and the reanalysis, resulting from 711 

contextual biases in satellite products such as clear sky biases (Zhang and Reid, 2009). Satellite retrievals 712 

for AOT mainly occur over clear sky, while the model depicts both clear and cloudy situations. Aerosol 713 

conditions can be very different between clear and cloudy sky, which is often associated with weather 714 

systems. For example, during the South America and Africa burning season (corresponding to JJASON), 715 

the southeast outflow regions from the southeast coast of the continents into the southern oceans are 716 

found to have lower seasonal average AOT for clear sky compared to cloudy/all sky, as smoke plumes 717 

are often transported along with the cloud system (Zhang and Reid, 2009). This clear sky bias is also 718 

discernable comparing MODIS AOT and the reanalysis AOT (Fig. 2 and Fig. 5).   719 

 720 

3.2   Validation with AERONET 721 

For validation purposes, we use the quality-assured AERONET Level-2 product. The reanalysis 722 

AOTs are compared with AERONET 6-hrly total, fine and coarse mode AOTs at 550nm.   723 
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3.2.1  Global overview 724 

Over the reanalysis period (2003-2013), the number of AERONET observations that can be 725 

paired with model data gradually increases with time (Fig. 6a). The daily volume of global 6-hrly 726 

AERONET data has more than doubled in 2012 compared with 2003. The data count in 2013 decreases 727 

slightly due to the long processing time required for validating AERONET Level 2 data (instruments need 728 

to be removed from the field and recalibrated (Smirnov et al., 2000)). As there are more AERONET sites 729 

in the northern hemisphere than in the southern hemisphere and AERONET measurement only occurs 730 

during daytime, there are more AERONET observations during boreal summers than winters. Polar and 731 

high-latitude sites have few or no observations in winter, which raises a temporal sampling issue in 732 

validation for these regions. AERONET sampling also covaries with the seasonal AOT assimilation cycle, 733 

as high-latitude regions are less influenced by AOT assimilation during the wintertime.  734 

Despite the uneven seasonal sampling, the ninety-day running average of the root mean square 735 

error (RMSE) of reanalysis AOTs is quite stable throughout the reanalysis time period (Fig. 6b), at around 736 

0.1 for both fine and coarse mode AOTs and 0.14 for the total AOTs. Daily average RMSE can 737 

occasionally exceed 0.4.  738 

Figure 7 provides the comparison of the pair-wise 6-hrly reanalysis AOT and AERONET AOT for 739 

all of the available global sites during the reanalysis time period. The normalized data density is shown 740 

in color. AOT data from AERONET and the reanalysis are binned at a resolution of 0.01 and density of 741 

each bin is colored relative to the maximum density in the sample. Also shown are the basic statistics of 742 

the comparison: the total number of stations and the 6-hrly observations, bias, root-mean-square error 743 

(RMSE), square of the Pearson correlation coefficient ( r2 ), and the linear regression parameters of the 744 

Theil-Sen method (Theil, 1950; Sen, 1968). The slope of the Theil-Sen linear regression is defined as the 745 

median of the slopes determined by all pairs of two-dimensional sample points. It is a robust linear 746 
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regression that is insensitive to outliers and more accurate than the least-squares regression for 747 

potentially skewed data. For reference, also shown is the linear least square regression line, which is 748 

more sensitive to outliers.  749 

For both JJASON and DJFMAM, the global reanalysis fine-mode AOT has a small positive bias of 750 

slightly less than 0.01, while the coarse-mode AOT has a negative bias close to -0.02.  The resulting bias 751 

for total AOT is -0.01. It is noteworthy that perhaps a portion of the AERONET coarse mode bias is due to 752 

cirrus contamination (Chew et al., 2011), which will be mitigated in the next major revision of AERONET 753 

data. The RMSE values for both fine and coarse mode 6-hrly AOTs are ~ 0.1, except that the RMSE of the 754 

coarse AOT is a little higher (0.11) during DJFMAM and a little lower during JJASON (0.08). The 755 

seasonality of RMSE for coarse mode AOT is more apparent than that of the fine mode AOT, which is 756 

consistent with Fig. 6.  RMSE for the total AOT is 0.14 for both seasons, consistent with Fig. 6 as well.  r2 757 

is close to 0.65 for fine mode AOT and close to 0.61 for coarse mode AOT for both seasons. r2 for the 758 

total AOT is about 0.7, which is slighter better than the individual fine/coarse mode AOTs.  The slope of 759 

the Theil-Sen regression lines is greater than 1 (around 1.3) for the fine mode AOT, less than 1 (around 760 

0.8) for the coarse mode AOT, and very close to 1 for the total AOT for both seasons. All of the above 761 

statistical numbers indicate that the fine mode AOT has a small high bias while the coarse mode AOT has 762 

a small low bias on average and globally. There is little seasonal difference in the mode statistics (fine, 763 

coarse and total modes) for the whole globe.       764 

As monthly data is often used in climate studies, we also evaluate the reanalysis monthly 765 

averaged AOTs (Fig. 8). Monthly averages are obtained only when the total number of 6-hrly AERONET 766 

data exceeds ten. For validation purposes, the monthly average reanalysis AOT is calculated based on 767 

the available 6-hrly data that can be paired with AERONET data. With the high frequency signals (e.g., 768 

daily variability) smoothed out, the monthly average exhibits a better match with AERONET data over all. 769 
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For both seasons and all modal AOTs, the monthly averages in the scatter plots are more aligned with 770 

the 1:1 lines, RMSE is roughly 50% lower (0.07 for total AOT, 0.05 for fine and coarse mode AOTs), and r2 771 

about 0.2 higher on average (with a maximum of 0.90 for the total AOT in DJFMAM and a minimum of 772 

0.74 for the coarse AOT in JJASON). While absolute bias is unaffected by averaging, there appears a 773 

slope bias in linear regression results. Sites that may have a low background punctuated by severe 774 

events will appear in the regression differently from sites with a consistent but high background. This 775 

results in slope bias in regression of monthly averaged AOT values, demonstrating the dangers of 776 

applying monthly mean data to downstream calculations such as radiative forcing.  Such calculations 777 

need to be conducted at the finest spatial and temporal scales achievable, with accounting for 778 

resolution effects.   779 

Figure 9 shows the cumulative distribution function (CDF) of AOT errors compared with 780 

AERONET for total, fine and coarse AOTs, respectively, using 6-hrly data. As a reassurance, the CDF of 781 

AOT errors compared with MODIS and MISR DA quality data is also shown. Because the seasonal 782 

differences for the global validation statistics are small, the two seasons are combined for the CDF 783 

analysis. As expected, the reanalysis total AOT is in good agreement with MODIS and MISR DA quality 784 

AOTs, though slightly less agreement with MISR than MODIS is found as the relative number of MISR 785 

data involved in AOT assimilation is much less. More than 95% of the reanalysis total AOT has an AOT 786 

error falling in the AOT error range of [-0.05, 0.05] compared with MODIS or MISR. The reanalysis AOT 787 

has larger errors with respect to AERONET. The crossing points of the CDF curves and the zero AOT error 788 

line (and the -0.1/+0.1 error lines) show that about 35% fine mode AOT has a low bias (4% with error 789 

less than -0.1) and the other 65% has a high bias (6% with error greater than 0.1) compared to AERONET. 790 

For coarse mode AOT, about 60% has a low bias (7% with error less than -0.1) and 40% has a high bias (2% 791 

with error greater than 0.1). For the total AOT, about 44% has a low bias (10% with error less than -0.1) 792 



36 
 

and 56% has a high bias (8% with error greater than 0.1). On average the fine AOT has a slight high bias 793 

and the coarse AOT has a slight low bias, which is consistent with the scatter plot result (Fig. 7).  794 

3.2.2 Regional Evaluation 795 

Figures 10, 11, and 12 show box-whisker plots of the pair-wise comparisons of regional 796 

reanalysis 6-hrly modal AOT vs AERONET: percentiles marked in the plots are 95%, 90%, 75%, 50%, 25%, 797 

10% and 5%, for the regions defined in Fig. 4 for 2003-2013. Also shown are regional mean AOTs 798 

designated by a diamond for AERONET and “+” for the reanalysis.  Detailed statistics associated with Fig. 799 

10-12 (including separation into two seasons) are provided in the supplemental material.  These include 800 

seasonal means and medians of the reanalysis and AERONET, along with reanalysis bias, RMSE, r2, Theil-801 

Sen linear regression parameters and number of valid data points for each region and the globe.   802 

In general, the reanalysis follows the regional variation found in AERONET for fine-mode, coarse-803 

mode and total AOTs.  For the fine mode AOT, the reanalysis matches well with AERONET with respect 804 

to the regional means, medians, and variance.  However, the results vary by region (Fig. 10). The 805 

regional means and medians are the same or slightly larger than those of  AERONET for all regions, 806 

except East Asia and insular Southeast Asia, where the means are smaller than AERONET. The high AOT 807 

regions are the developing East Asia, Indian subcontinents, Peninsular and Insular Southeast Asia. These 808 

regions also have the highest RMSE values varying between 0.15 and 0.2, while RMSE values of other 809 

regions are all below 0.1.  The low bias in mean fine mode AOT in East Asia and insular Southeast Asia is 810 

mostly due to the model’s inability to capture the magnitude of large fine aerosol events (e.g. extreme 811 

pollution and biomass burning events). The correlation coefficients (r2) of most regions fall between 0.5 812 

and 0.9. The best performing region is South America, whose r2 is greater than 0.8, indicating the 813 

reanalysis captures the temporal variation in fine mode aerosols, which are attributed mostly to biomass 814 
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burning smoke. Regions with worse r2 include West Continental United States (W. CONUS), North Africa, 815 

SW Asia and insular Southeast Asia, with  r2 around 0.4-0.5.      816 

The coarse mode AOT, overall, agrees less well with AERONET than the fine mode AOT with 817 

respect to the regional means, medians, variances and correlations (Fig. 11).  Many regions have 818 

generally very low coarse AOT; RMSE for these regions will be low, but r2 will also be low due to the 819 

small dynamic range. The most prominent high coarse mode AOT regions are the dusty North Africa and 820 

Southwest Asia domains. The moderate coarse mode AOT regions are dust-influenced Indian 821 

subcontinent, East Asia and Central America. These regions have relatively large RMSE (between 0.1 and 822 

0.2), except central America (<0.1), compared to other regions (<0.1). Except for Southwest Asia, the 823 

oceanic region, North America boreal, W. CONUS and Australia, where the reanalysis mean coarse mode 824 

AOT is comparable to that of AERONET, other regions show mean low biases. The low bias, relative to 825 

the mean AOT, is generally small, except for Peninsular and insular Southeast Asia. The bias over these 826 

regions is attributed largely to the known thin cirrus contamination in AERONET L2 data (Chew et al., 827 

2011; Huang et al., 2011). Thin cirrus cloud is a significant challenge for sun photometer aerosol optical 828 

depth measurement, as it is easily miscategorized as coarse-mode aerosols by the instrument. The 829 

persistent occurrence of high thin cirrus cloud over these regions elevates the mean coarse mode AOT 830 

and thus the mean total AOT substantially.  For example, at Singapore, a representative site for the 831 

insular Southeast Asia, 34% of AERONET L2 AOT data is found to be coincident with Micro-Pulse Lidar 832 

Network (MPLNET)-observed cirrus clouds (Chew et al, 2011). The estimated range of positive AOT bias 833 

in AERONET L2 data over Singapore, due to unscreened cloud presence, ranges from 0.03 to 0.06. Taking 834 

this estimated AOT bias of AERONET L2 data into account, the reanalysis coarse-mode AOT would be 835 

very close to reality. A similar situation exists for the peninsular Southeast Asia, based on the estimated 836 

cirrus cloud contamination in AERONET data at the regionally representative Pimai, Thailand site (Huang 837 

et al., 2011).  838 
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The correlation coefficients r2 of the coarse mode AOT are less than those of the fine mode AOT 839 

for most regions, except for north Africa, SW Asia, Europe-Mediterranean and India, which have strong 840 

dust influence. Insular and Peninsula SE Asia have the worst correlations as expected, mostly because of 841 

the cirrus cloud contamination in AERONET data. Other regions which have small AOT variations (e.g. 842 

dynamical data range less than 0.1) tend to have small r2 s, e.g., north American Boreal and W. CONUS.   843 

The total AOT, which is the sum of the coarse-mode AOT and fine-mode AOT, has a validation 844 

feature that combines the validation properties of the two AOT modes (Fig. 12). The regional variation 845 

of total AOT follows that of AERONET well. The variance of the reanalysis for each region is smaller 846 

overall than that of AERONET, suggesting the difficulty in capturing extreme events with the model and 847 

assimilation system and a tendency to underestimate the magnitude of extreme events and 848 

overestimate in very clean conditions. A smaller AOT variance is known to be a typical model behavior 849 

among aerosol models (Kinne et al., 2006; Sessions et al., 2015) and is a persistent challenge to the 850 

aerosol modelling community. The reanalysis does not perform as well with respect to mean bias and 851 

RMSE over East Asia, Indian subcontinent, insular and peninsular Southeast Asia, where complicated 852 

aerosol environments often exist. For example, dust is often mixed with various kinds of pollutants over 853 

East Asia and the Indian subcontinent, which hinders satellite AOT retrievals and impacts model 854 

performance through AOT data assimilation. Over insular Southeast Asia, constant high cloud cover 855 

poses significant observability issues (Reid et al., 2013), reducing the availability of successful satellite 856 

retrievals of AOT, in addition to artificial high AOTs caused by cirrus contamination in AERONET data. 857 

This region also has a complicated fire regime that is systematically undersampled by the observations 858 

used to drive the smoke emissions in the model (Miettinen et al., 2013). The large discrepancies 859 

between the reanalysis and AERONET for coarse AOTs over insular and peninsular Southeast Asia affect 860 

the reanalysis means and medians for total AOTs, but to a lesser degree, since fine mode aerosols are 861 

the dominant aerosol type for the these regions. Most regions have r2 between 0.5 and 0.8. W. CONUS 862 



39 
 

has the smallest r2, which is about 0.376, among all regions, reflecting the challenge for the model to 863 

simulate the small variance of the AOT there.    864 

3.2.3 Site-by-site validation  865 

Site-by-site validation of the NAAPS reanalysis was conducted relative to the International 866 

Cooperative for Aerosol Prediction (ICAP) Multi Model Ensemble (ICAP-MME, Sessions et al., 2015) as a 867 

baseline.  Overall, ICAP-MME was shown to outperform any individual models with regard to RMSE in 868 

550nm AOT forecast (Sessions et al., 2015). By ranking, the ICAP-MME was typically first or second 869 

against all models at individual sites using one-year worth of data.  Since most of the ICAP models 870 

include AOT assimilation as well, the NAAPS reanalysis was compared to the ICAP-MME. The twenty-one 871 

AERONET sites used in the ICAP-MME study were agreed upon by the world’s major center developers, 872 

as the most representative of each region. The same two seasonal periods (DJFMAM and JJASON of 873 

2012) are used. In Fig. 4, these sites are marked with red squares. The ICAP-MME is run daily at 00 UTC 874 

for 6-hrly forecasts out to 120 hr. The best available ICAP MME data (closest to analysis) for this 875 

comparison is the consensus mean of 6-hr forecast at 00 UTC; thus, the NAAPS reanalysis is at an 876 

advantage in this comparison due to the lagged AOT assimilation cycle in the ICAP-MME.    877 

Table 2 shows the name of each site, its location and the prevailing aerosol type, along with all 878 

statistics relating to the total AOT at 550nm for the two seasons.  The same statistics for fine and coarse 879 

mode AOTs are listed in Tables 3 and 4, respectively. The values of bias and RMSE are in bold, bold with 880 

underline, and italic, depending on whether the reanalysis performance is the same, better, or worse  881 

than the ICAP MME mean 6-hr forecast, respectively. Over a majority of the sites, the total AOT of the 882 

reanalysis is the same or better than the ICAP-MME with respect to bias and RMSE.  The exceptions are 883 

the Beijing and Solar Village AERONET sites. Singapore is uncertain, as the low biases in fine mode AOT 884 

contributes less than half of the total low bias, implying the dominant bias is the coarse mode AOT bias, 885 
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which is affected by thin cloud contamination in AERONET data. Cases, where the reanalysis is the same 886 

or better than the ICAP-MME in bias and RMSE occur less for the coarse-mode AOT than for the total 887 

AOT. On the one hand, the total AOT is assimilated in the reanalysis while the coarse mode AOT is not.  888 

So, the total AOT is better constrained with satellite observations. On the other hand, the ICAP-MME 889 

consensus mean for dust/coarse mode AOT includes an additional independent aerosol model relative 890 

to the total AOT consensus (five vs. four models), which makes the dust AOT ensemble exhibit better 891 

performance among all the models compared with the total AOT ensemble performance (Sessions, et. 892 

al. 2015).    893 

 The AOT seasonal difference is very clear for sites with outstanding seasonal aerosol features.  894 

For example, higher total and fine AOT values attributed to biomass burning are observed in JJASON 895 

over Alta Floresta, Rio Branco, and Singapore and in DJFMAM over Chiang Mai.  Seasonal differences are 896 

also found over Ilorin with higher AOT in DJFMAM relative to JJASON, due to both dust and biomass 897 

burning activities.  It is generally true that absolute bias and RMSE increase with increasing values of 898 

AOT, so a seasonal variation in bias and RMSE is also discernable for the sites with large seasonal AOT 899 

variations. r2 of the above sites in their biomass burning seasons are generally very good (above 0.8 900 

except for Singapore), indicating that the reanalysis captures the timing and variability of large smoke 901 

episodes quite well.     902 

Overall, the sign of the bias and the order of magnitude of the bias and RMSE values for the 903 

selected sites are consistent with the regional evaluations in Fig. 10-12 (and the supplemental tables). 904 

For high AOT sites (e.g., Banizoumbou, Beijing, Chiang Mai, Gandhi College, Ilorin and Kanpur), the 905 

reanalysis generally has a low bias, as a result of the model and/or the data assimilation system being 906 

incapable of capturing the amplitude of high AOT events.  An exception is Solar Village, though its 907 

dominant aerosol species, which is dust/coarse mode aerosol, is also biased low in AOT during DJFMAM.  908 
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Low bias in high AOT events is quite common among aerosols models (Kinne et al., 2006; Sessions et al., 909 

2015). The discrepancy can arise solely as a function of spatial and temporal resolution: the average AOT 910 

for a grid cell in an aerosol plume will be systematically lower than the peak observed point AOT in that 911 

plume. However, shortcomings of aerosol sources or insufficient representation of near-source aerosol 912 

processes can also cause bias. Sometimes the discrepancy can be reduced by AOT assimilation, but the 913 

probability of a successful retrieval declines for higher AOT events, and this phenomenon is amplified by 914 

the application of AOT QA/QC procedures. The largest departure for both seasons in total AOT occurs 915 

over Beijing, where the coarse mode bias contributes a little more to the total bias in DJFMAM and the 916 

fine mode bias contributes a little more in JJASON. Among all sites, the maximum RMSE occurs over 917 

Beijing in both seasons for the total and the fine mode AOT and in DJFMAM for coarse mode AOT. 918 

JJASON RMSE is smaller for the reanalysis than for the ICAP-MME, implying that global models uniformly 919 

don’t do well here. Correlation coefficient r2 of the coarse mode AOT at Beijing is also the worst for both 920 

seasons, while r2 values for the fine and total AOTs are reasonable (0.54 in DJFMAM and 0.76 in JJASON 921 

for total AOT, and a little better for fine AOT). The frequent mixture of pollution, dust, and clouds, along 922 

with varying surface properties also hinders satellite retrievals, not only reducing the number of 923 

successful retrievals but also contributing to large errors in retrieved AOT (e.g, Shi et al., 2011b; Zhang et 924 

al., 2014). Similar situations exist for Ilorin, where Sahelian biomass burning system is often mixed with 925 

dust episodes in DJFMAM, and for Gandhi College and Kanpur, the two Indian sites, in both seasons.      926 

For moderate to low AOT sites, including Cart Site, Chapais, GSFC, Minsk, Moldova, Monterey 927 

and Palma de Mallorca, the reanalysis performs well, with the biases falling between -0.02 and 0.02, 928 

RMSE values less than  half of their site mean AOTs for all modes (all less than 0.07), and r2 between 929 

0.42 and 0.85. Over Crozet Island, a remote oceanic site in the Southern Indian Ocean, the reanalysis has 930 

a relative large high bias (compared to its very low mean) likely due to overestimation of sea salt. On the 931 
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contrary, the fine mode AOT has a slight low bias, which may be an indication of insufficient DMS 932 

emission or too much removal.     933 

Several sites are affected by similar aerosol sources at different distances, allowing us to 934 

examine transport phenomena using these sites. Banizoumbou, which is located deep in the Sahara, has 935 

the largest bias (negative) and RMSE, and the lowest r2 for the coarse and total AOT modes among all 936 

the African-dust-impacted sites. Capo Verde, located on an island off the west coast of North Africa, has 937 

high coarse mode AOT, but with much smaller bias and RMSE and high correlation (r2 is ~0.88 for 938 

DJFMAM and ~0.77 for JJASON for both total and coarse AOTs), benefiting from AOT assimilation. 939 

Farther downwind of north Africa and across the Atlantic Ocean, Ragged Point in Barbados, shows even 940 

smaller biases and RMSEs and very high correlation (r2 greater than 0.81 for total AOT in both season, 941 

and for coarse AOT in JJASON). Palma de Mallorca, which is a receptor site for Saharan dust transported 942 

across the Mediterrean Sea, has bias, RMSE and correlation similar to Ragged Point.  943 

The performance of the reanalysis has a tendency to increase with the distance from the source 944 

region, especially over water. The main reasons for this are 1) aerosol models normally have larger 945 

uncertainties in aerosol sources than aerosol transports (Kinne et al., 2003), 2) there is limited satellite 946 

AOT data over the bright desert regions for the model to assimilate (Fig. 2), while there are a lot more 947 

opportunities for the model AOT to be corrected by assimilation along dust transport paths, and 3) the 948 

atmosphere acts to smooth out near-source variability that is often at finer scales than the effective 949 

resolution of the model. These effects can also be seen when comparing the reanalysis performance 950 

over Beijing and Baengyueong, an island site in South Korea downwind of Beijing, for both fine and 951 

coarse mode AOTs.     952 

3.3 AOT trend  953 
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There is debate over the use of AOT renanalyses to document and understand climatic trends, 954 

similar to the debate associated with meteorological reanalysis.  However, the decadal trends derived 955 

from the reanalysis are largely in line with other studies using stand-alone satellite products (Zhang and 956 

Reid, 2010; Hsu et al., 2012) for a similar time period. This helps to evaluate the reanalysis from another 957 

perspective. Figure 13 shows the trend of the deseasonalized total AOT over the whole reanalysis period 958 

(2003-2013), using the same calculation method as in Zhang and Reid (2010), where the significance of 959 

the trend analysis is estimated following the method of Weatherhead et al. (1998). Many areas show 960 

trends consistent with the satellite-only results of Zhang and Reid (2010) and Hsu et al. (2012): Indian 961 

Bay of Bengal, Arabian Peninsula and Arabian Sea, Bohai Sea in East Asia and the downwind region of 962 

South African biomass burning area, which have a positive trend, and the east coast of North America, 963 

Europe, central South America biomass burning area and Southern Indian Ocean, which have a negative 964 

trend.  The reanalysis also exhibits a weak negative trend off the coast of dusty West Africa that is 965 

similar to other studies, though not statistically significant. The non-trend (zero trend) region with 966 

statistical significance in the south subtropical Pacific Ocean is also consistent with other studies.  967 

An arguable trend appears in the Maritime Continent, where Zhang and Reid (2010) report a 968 

non-significant positive trend while Hsu et al. (2012) and our reanalysis here report a non-significant or 969 

significant negative trend based on slightly different study periods (Study periods are 2000-2010, 1998-970 

2010, and 2003-2013 in Zhang and Reid, Hsu et al. and this paper, respectively). Because 1997-1998 was 971 

a strong El Nino period and 2010-2012 are La Nina years, corresponding to strong and weak fire 972 

activities in the Maritime Continent, respectively, trends for these different periods can be expected to 973 

differ systematically. Studies show that the climate and the associated fire/smoke activity in the 974 

Maritime Continent are controlled by ENSO on the inter-annual time scale (e.g., Reid et al., 2012; van 975 

der Werf et al., 2004). The Maritime Continent is anomalously dry during El Nino years and experiences 976 

more fire activity and thus smoke aerosols compared to La Nina years, and there is a good correlation 977 



44 
 

between ENSO and AOT there (e.g., Hsu et al., 2012; Xian et al, 2013). The different AOT trends over the 978 

maritime continents obtained with the use of slightly different time periods suggest the importance of 979 

checking the possible controlling climate variability on aerosol trend analysis depending on the time 980 

scales of interest. Similarly, the negative AOT trend in north Africa and off the coast of West Africa is 981 

likely impacted by the Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO) and 982 

ENSO activities as Saharan dust is also shown to be correlated with these climate variabilities (Evan et al., 983 

2006; Hsu et al. 2012; Wang et al., 2012).  984 

This reanalysis uses non-trending source functions for sulfate, DMS, organic aerosol emissions 985 

and dust erodibility. It is worth noting that even with static source functions and no volcanic source, the 986 

data assimilation has successfully picked up the positive trend downwind of the Hawaiian Islands due to 987 

the enhanced degassing activity of the Kilauea volcano since 2008 (e.g. Beirle et al., 2014). In a parallel 988 

model run, where AOT data assimilation is turned off, trends disappear over the east coast of North 989 

America and Europe or change sign over the Bay of Bengal while retaining their signs in most other 990 

regions (not shown). This indicates that AOT trends over the eastern US, Europe and Bay of Bengal are 991 

related to anthropogenic emission changes. Opposite to the trend shown in the DA run, West African 992 

and the downwind subtropical Atlantic region show a strong positive trend in the natural run. There 993 

could be many possible reasons, such as an artifact of stronger surface wind in the meteorological 994 

model over the study period, or changes in vegetation which are not captured in the meteorological 995 

model or the dust source function. 996 

The positive trend over the Southern African biomass burning area and its downwind 997 

subtropical Atlantic region and the negative trend over central South America biomass burning region 998 

are by and large a result of increasing fire emissions over Southern Africa and decreasing fire emissions 999 

over South America exhibited in FLAMBE (not shown). The smoke emission trends in the above regions 1000 



45 
 

are consistent with the trends found with other satellite fire detection products for the same time 1001 

period (Giglio et al., 2013). Trends over other regions are most likely relevant to climate variability or 1002 

changes in climate, especially changes in meteorological variables that covary with aerosol processes. 1003 

For example, the aforementioned negative trend over the Maritime Continent is very likely closely 1004 

related to ENSO cycles. In another example, the decreasing dust trend in the North Africa dust outflow 1005 

region of the tropical Atlantic is shown to be caused mainly by a reduction in surface winds over dust 1006 

source regions rather than changes in land surface properties in modeling studies (Chin et al., 2014; 1007 

Ridley et al., 2014).  1008 

The Arabian Peninsula experiences increasing AOT, which may result from the observed 1009 

decreasing precipitation for the similar time period (Almazroui et. al., 2012). The negative AOT trend 1010 

over the Southern Indian Ocean is consistent with the trend analysis using MISR AOT data (Murphy, 1011 

2013). However, this trend in our analysis results solely from trends in the source and sink function, 1012 

because AOT is not assimilated in this region in our system. The decreasing trend in the southern Indian 1013 

Ocean AOT in the model is mainly caused by a decreasing trend in the surface winds in the 1014 

meteorological model, NOGAPS (not shown). Observational studies, however, have found that wind 1015 

speed over the southern oceans has increased in the past two decades (Young et al., 2011; Hande et al., 1016 

2012). The question of why the surface wind in NOGAPS decreases and AOT decreases in the southern 1017 

oceans during the 2003-2013 time period requires additional investigation but beyond the scope of this 1018 

study.      1019 

Figure 14 shows the monthly mean NAAPS reanalysis and AERONET L2 modal AOT at six AERONET 1020 

sites chosen for their relatively long-term record under different aerosol regimes: Alta Floresta in the 1021 

Amazon, dominated by biomass burning smoke during the burning season; Beijing in East Asia, 1022 

dominated by anthropogenic fine mode aerosols year round with mixed dust and pollutions in the spring 1023 
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time; Capo Verde off the west coast of North Africa, dominated by Sahara/Sahel dust, GSFC in east 1024 

CONUS, dominated by anthropogenic fine mode aerosols, Solar Village in the Arabian Peninsula, 1025 

dominated by dust, and Venise in Italy, dominated by pollution-related fine mode aerosols and 1026 

influenced by Saharan dust in spring time. Also shown are linear regression lines based on the total AOTs, 1027 

indicative of AOT trends. Annotations in each time series show bias, RMSE and r2 of the total AOT and 1028 

the dominant modal AOT, calculated with reanalysis monthly averages (unpaired). Statistics from a 1029 

paired comparison using reanalysis data sampled to match available AERONET data are shown in 1030 

parentheses. 1031 

Overall, the reanalysis follows the seasonal and interannual variability in AERONET data for the 1032 

total AOT quite well, and to a lesser extent for the coarse and fine mode AOTs. The pairwise comparison 1033 

shows better correlation with AERONET than that calculated with all data, and, generally smaller 1034 

absolute bias and RMSE. The decreasing trends over Alta Floresta, GSFC and Venise, the increasing trend 1035 

over Beijing (slight) and Solar Village, and the insignificant trend over Capo Verde are consistent with the 1036 

regional trends shown in Fig. 13, and qualitatively agree with AERONET.  Over GSFC, the reanalysis 1037 

captures the evident decrease in total and fine mode AOT since 2008. The June-July-August average AOT 1038 

drops about 0.14 (from 0.37 to 0.23) for the total AOT and 0.12 (from 0.29 to 0.17) for the fine mode 1039 

AOT comparing the years before and after 2008. It drops about 0.09 (from 0.31 to 0.22) for the total 1040 

AOT and 0.08 (from 0.27 to 0.19) for the fine mode AOT in the reanalysis, with a low bias in total AOT 1041 

and a minimal bias in fine mode AOT for the season.           1042 

4 Summary and discussion 1043 

This paper describes a near 11-year global 550nm modal AOT reanalysis product developed at the 1044 

Naval Research Laboratory, with a spatial resolution of 1x1 degree and a temporal resolution of 6 hours.  1045 

The reanalysis uses the Navy Aerosol Analysis and Prediction System (NAAPS) with regionally-tuned 1046 
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source functions at its core and assimilates quality-controlled Terra and Aqua Collection 5 Moderate 1047 

Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR) AOT. 1048 

Aerosol wet deposition in the tropics is constrained with satellite retrieved precipitation. Dry deposition 1049 

parameters over ocean are also adjusted by minimizing AOT corrections in AOT assimilation. By 1050 

validating the reanalysis fine and coarse mode AOTs and total AOT with Aerosol Robotic Network 1051 

(AERONET) Level-2 product, we report the following findings:  1052 

4.1 Global representation: Compared with 6-hr-average AERONET data, global mean RSME values for 1053 

both fine and coarse mode AOTs are around 0.1, and the RMSE for the total AOT is ~ 0.14. AOT 1054 

RMSE decreases 50% when monthly averaging is applied. On a global average, coarse-mode AOT has 1055 

a slight negative bias (-0.02) which is partially compensated by a slight positive bias of the fine mode 1056 

AOT (0.01). In general, the fine mode AOT matches AERONET slightly better than the coarse mode 1057 

AOT, reflected in the bias, RMSE and correlation. These numbers vary among different regions 1058 

presumably because of regionally specific aerosol features.  1059 

Since total AOT is being assimilated, the total AOT has a smaller uncertainty relative to the 1060 

coarse and fine mode AOT.  Currently, there is no way to validate speciated AOTs if two or more 1061 

aerosol species are present in the same size mode. We would expect the relative uncertainty of the 1062 

speciated AOTs to be larger than the modal AOTs.  The data quality of satellite-retrieved AOT is 1063 

generally better over water than over land because of the relatively simple surface optical 1064 

properties of water (e.g., Levy et al., 2005, Remer et al., 2005). Under the same AOT data 1065 

assimilation frequency (or same amount of data to be assimilated), the reanalysis performs 1066 

relatively better over oceanic and coastal regions/sites than land regions/sites.      1067 

4.2 Regional representation: The reanalysis captures the regional and seasonal AOT variations skillfully. 1068 

The range of the regional reanalysis AOT values are generally smaller than those of AERONET (i.e., 1069 

high bias for small AOTs and low bias for high AOTs), which is commonly seen among aerosol models, 1070 
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especially with coarse spatial and temporal resolution (e.g., Kinne et al., 2006; Sessions et. al., 2015).  1071 

Challenging regions for the reanalysis are East Asia, Indian subcontinent and Sahel, where there are 1072 

often mixed fine and coarse mode aerosols. The reanalysis generally performs better in the long-1073 

range transport regions than the source regions. For example, the reanalysis AOT of the Caribbean 1074 

islands sites, which are the receptor sites of African dust, matches AERONET observations better 1075 

than the land sites within the African continent. A field campaign analysis of remotely transported 1076 

smoke aerosols from Borneo and Sumatra islands found good agreement between the reanalysis 1077 

AOT and the smoke concentrations therein and in-situ measurements taken in the open ocean west 1078 

of the Philippines (Reid, et al., 2014).  1079 

4.3 Trends:  The trends calculated from the reanalysis are similar to other studies using standalone 1080 

satellite products (Zhang and Reid, 2010; Hsu et al., 2012) in both aerosol transport regions and 1081 

source regions. Over regionally representative sites, the reanalysis trend in modal AOT also agrees 1082 

qualitatively well with the trend in AERONET data. This provides a reassurance of the quality of the 1083 

reanalysis product.  It is also worth noting that without trending source functions for sulfate and 1084 

organic aerosols precursors, the data assimilation system has successfully reproduced regional AOT 1085 

trends that are related to emission changes in the past decade.  For example, a positive trend over 1086 

India is attributed to emission growth. Signals of other low-frequency climate variability are also 1087 

discernable in the reanalysis AOT.  For example, using an earlier version of the NAAPS AOT analysis, 1088 

the modulation effect of the Madden-Julian Oscillation on smoke AOT over the Maritime Continent 1089 

is found (Reid, et al., 2012).  1090 

4.4 Role of AOT data assimilation:  Overall, the data assimilation system is very effective in correcting 1091 

the modeled AOT and bringing it as close as possible to the satellite observations, and spreading the 1092 

information to the neighboring grid cells through a correlation length scale. In the time steps 1093 

following assimilation, the information is further propagated downstream. The data assimilation 1094 
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system plays an indispensable role in picking up AOT trends in the regions affected by emission 1095 

changes that are not represented in the model.  However, the data assimilation system, associated 1096 

with the assimilatable data, also has limitations. Satellite AOT retrievals characterize the optical 1097 

properties of a column, and it does not carry any information about aerosol vertical profiles or 1098 

speciation. So the total AOT is constrained through AOT data assimilation. The relative vertical 1099 

profile in 3-D extinction and speciation of the aerosols are uniformly varied to match the posterior 1100 

AOT. The geographical coverage of the MODIS+MISR data to be assimilated can cover only up to 1101 

about a quarter of the Earth in one data assimilation cycle (Fig. 1). AOT of one area can be updated 1102 

by the data assimilation system only once per day on average (at most twice per day) and only 1103 

during the local daytime. This affects the aerosol diurnal cycle in the reanalysis, as all the nighttime 1104 

AOT are purely driven by the natural model while daytime AOT can be controlled by the data 1105 

assimilation system. Repetitively adding or shedding aerosol mass and thus AOT in one area through 1106 

data assimilation can make the AOT evolution unphysical. Because AERONET measurements occur 1107 

during the local daytime, the validation results here may not represent the reanalysis skill for other 1108 

times of day. 1109 

4.5 Data consistency in time: Even though the data assimilation system has the capability of capturing 1110 

the trend observed in stand-alone satellite or AERONET AOT analyses, the inconsistency in the 1111 

meteorological analysis of Navy Operational Global Atmospheric Prediction System (NOGAPS) in the 1112 

past decade poses a big challenge in the development of a long term global AOT reanalysis product. 1113 

NOGAPS experienced several upgrades in the reanalysis period, including improved land surface 1114 

parameterization, which impacts dust production trends.  1115 

A meteorological reanalysis is intended to provide a more consistent atmospheric state for 1116 

aerosol simulations. But meteorological reanalyses have a data consistency issue as well, because 1117 

observations being assimilated change significantly with time (e.g., Dee et al., 2011). For example, 1118 
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with the ever-increasing satellite observations of the past two decades, more and more satellite 1119 

data are being assimilated for one or more meteorological variables. With the demise or periodic 1120 

malfunction of some satellite instruments, some data became unavailable. This impacts the final 1121 

meteorological reanalysis, and consequently the AOT reanalysis. The NOAA Climate Prediction 1122 

Center MORPHing (CMORPH) precipitation data, which is used to replace NOGAPS precipitation in 1123 

the Tropics, is only available after December 2002. Its usage can impact regional AOT significantly in 1124 

a natural model run (Xian et al., 2009). For areas not covered by the CMORPH product, any model 1125 

precipitation performance change in time can be a potential issue for AOT trend analysis. 1126 

4.6 Recommendations for application 1127 

a) It is ideal for quick and consistent identification of large aerosol events globally or regionally. It 1128 

can serve as a reference and provide the general background aerosol information without 1129 

temporal or spatial discontinuity for field campaign analysis.  1130 

b) The reanalysis AOT can be used to provide global and regional AOT climatologies for climate and 1131 

applied science applications.  1132 

c) The reanalysis AOT can be used in different scale analysis, from daily to inter-annual. The diurnal 1133 

AOT analysis should be performed with caution considering the possible artifact feature 1134 

introduced by the AOT assimilation cycle.   1135 

Our future direction for the NAAPS aerosol reanalysis will be focused on 3-D extinction and mass 1136 

concentration of single aerosol species, with special emphasis on the vertical dimension. The ability of 1137 

NAAPS assimilating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar backscatter 1138 

coefficient data (Campbell et al., 2010; Zhang et al., 2011, 2014) will aid in this effort.  1139 

 1140 

Code and data availability: 1141 
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The NAAPS model code is a property of the U.S. Naval Research Laboratory and is not available to the 1142 
public. However, the NAAPS reanalysis data is available at http://usgodae.org/cgi-1143 
bin/datalist.pl?dset=nrl_naaps_reanalysis&summary=Go . The data on this server are updated as model 1144 
improvements are made and reruns are completed.   1145 
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Table 1. Optical properties for dry aerosol particles at 550nm in NAAPS. 1159 

Species 𝑎𝑒𝑒𝑒(µm) αext (m2 g-1) αscat (m2 g-1) αabs (m2 g-1) ω◦ g 
ABF 0.14 3.48 3.13 0.35 0.90 0.60 
Dust 2.50 0.59 0.52 0.07 0.88 0.73 

Smoke 0.17 4.48 3.99 0.50 0.89 0.58 
Sea Salt 1.50 1.42 1.41 0.01 0.99 0.68 

where αext, αscat, and αabs are the bulk mass extinction, scattering, and absorption efficiencies, ω◦ the 1160 
single scattering albedo and g the asymmetry factor.  𝑎𝑒𝑒𝑒is the bulk effective radius. “ABF” stands for 1161 
anthropogenic and biogenic fine particles.   1162 

  1163 
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Table 2. List of AERONET sites for further validation and statistics of the reanlaysis total AOT at 550nm 1164 
compared with AERONET at these sites for December 2011-November 2012 breaking into two seasons 1165 
DJFMAM (winter) and JJASON (summer). The selected sites and time periods match Sessions et al. 1166 
(2015), where the International Cooperative for Aerosol Prediction (ICAP) Multi Model Ensemble (ICAP-1167 
MME) AOT is described and evaluated. The mean of total AOT of AERONET L2 data, the paired 1168 
reanalaysis data bias, root mean square error (RMSE), square of the Pearson correlation coefficient (r2) 1169 
and the total number of AERONET 6-hrly data (N) are shown. Values in bold, bold with underline and 1170 
italic mean that the reanalysis is equally good, better and worse than the ICAP MME mean respectively 1171 
(Such comparison is not available in terms of r2 or for the fine mode AOT).  1172 

Note: Correlation is not calculated for sites with dynamical range of the AOT data less than 0.1; 1173 
correlation is marked with “N/A*” for these sites. “N/A” means data is not available.      1174 

Seasonal AOT means for sites with only a few AERONET data (N) may not be representative.    1175 
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 1176 

  1177 

Site Location Main Aerosol 
type 

Mean AERONET 
total 550nm AOT  
winter|summer 

Bias  RMSE r2 

N    
winter | summer winter | summer winter | summer winter | summer 

Alta Floresta Brazil, 9S, 56W Smoke 0.12 0.29 0.00 -0.03 0.05 0.11 0.49 0.82 35 203 

Baengnyeong  Yellow Sea, 37N, 
124E ABF, Dust 0.39 0.34 0.04 0.00 0.16 0.18 0.77 0.75 213 215 

Banizoumbou Sahel, 13N, 2E Dust 0.67 0.42 -0.11 -0.08 0.35 0.21 0.53 0.51 493 396 

Beijing China, 39N, 116E ABF, Dust 0.60 0.62 -0.14 -0.17 0.50 0.45 0.54 0.76 322 110 

Capo Verde Sub-tro. Atlantic, 
16N, 22W Dust 0.36 0.39 0.02 0.00 0.12 0.12 0.88 0.77 283 312 

Cart Site Great Plains, 36N, 
97W Clean  0.10 0.14 0.00 -0.01 0.05 0.05 0.65 0.63 335 419 

Chapais Quebec, 49N, 74W Clean N/A 0.12 N/A 0.00 N/A 0.05 N/A 0.72 0 112 

Chiang Mai Thailand, 18N, 98E Smoke  0.63 0.23 -0.14 -0.05 0.27 0.11 0.82 0.44 297 161 

Crozet Island Southern Ocean, 
46S, 51E Sea Salt 0.04 0.05 0.03 0.03 0.05 0.05 N/A* N/A* 18 41 

Gandhi College Rural India, 25N, 
84E Dust, ABF 0.60 0.70 -0.08 -0.08 0.15 0.30 0.71 0.35 315 311 

GSFC EAST CONUS, 38N, 
76W ABF 0.11 0.18 0.00 -0.01 0.05 0.07 0.63 0.71 272 297 

Ilorin Sahel, 8N, 4E Smoke, Dust 0.99 0.30 -0.09 0.02 0.31 0.13 0.75 0.55 411 182 

Kanpur Urban India, 26N, 
80E ABF, Dust 0.61 0.70 -0.08 -0.02 0.19 0.27 0.61 0.21 385 281 

Minsk Western Asia, 53N, 
27E ABF, Smoke 0.14 0.15 0.00 -0.01 0.06 0.07 0.52 0.51 156 180 

Moldova Eastern Europe, 
47N, 28E ABF 0.19 0.17 0.00 0.00 0.07 0.07 0.42 0.59 197 347 

Monterey WEST CONUS, 36N, 
121W Clean 0.08 0.07 0.02 -0.01 0.04 0.03 0.53 0.31 80 77 

Palma de Mallorca Mediterranean, 
39N, 2E Dust, ABF 

0.08 0.20 0.00 -0.02 0.02 0.06 0.85 0.85 24 401 

Ragged Point Caribbean, 13N, 
59W African Dust 0.15 0.21 0.00 0.01 0.05 0.06 0.81 0.87 285 227 

Rio Branco Brazil, 9S, 67W Smoke 0.08 0.22 0.00 -0.02 0.04 0.08 N/A* 0.86 144 328 

Singapore Maritime Cont., 1N, 
103E ABF, Smoke 0.31 0.47 -0.12 -0.16 0.20 0.24 0.15 0.55 71 192 

Solar Village Southwest Asia, 
24N, 46E Dust 0.63 0.38 0.02 0.07 0.27 0.13 0.25 0.68 77 318 
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 1178 

Table 3. Same as Table 2, except for fine-mode AOT at 550nm.  1179 

Site 
Mean AERONET fine 

AOT  
 winter|summer 

Bias  RMSE r2 
N    

winter | summer winter | summer winter | summer winter | summer 

Alta Floresta 0.07 0.21 0.02 0.02 0.04 0.11 0.49 0.77 35 203 

Baengnyeong 0.26 0.25 0.04 0.01 0.14 0.16 0.75 0.74 213 215 

Banizoumbou 0.15 0.07 -0.03 0.07 0.14 0.11 0.17 0.16 493 396 

Beijing 0.37 0.47 -0.05 -0.10 0.32 0.34 0.57 0.79 322 110 

Capo Verde 0.08 0.06 0.01 0.03 0.07 0.05 0.33 0.30 283 312 

Cart Site 0.06 0.09 0.01 0.02 0.03 0.04 0.69 0.70 335 419 

Chapais N/A 0.08 N/A 0.02 N/A 0.05 0.00 0.73 0 112 

Chiang Mai 0.50 0.14 -0.04 0.02 0.22 0.08 0.82 0.48 297 161 
Crozet Island 0.01 0.02 -0.01 -0.01 0.01 0.01 N/A* N/A* 18 41 

Gandhi College 0.31 0.43 0.02 0.05 0.11 0.23 0.71 0.41 315 311 

GSFC 0.07 0.13 0.01 0.01 0.04 0.06 0.59 0.72 272 297 

Ilorin 0.36 0.13 0.00 0.08 0.15 0.13 0.50 0.23 411 182 

Kanpur 0.34 0.41 0.01 0.06 0.14 0.26 0.71 0.27 385 281 

Minsk 0.09 0.10 0.01 0.01 0.04 0.05 0.53 0.47 156 180 

Moldova 0.11 0.11 0.02 0.02 0.06 0.06 0.44 0.59 197 347 

Monterey 0.03 0.04 0.02 0.00 0.02 0.02 N/A* N/A* 80 77 

Palma de Mallorca 0.05 0.09 0.00 0.00 0.02 0.03 0.91 0.61 24 401 

Ragged Point 0.03 0.03 0.02 0.01 0.03 0.02 N/A* N/A* 285 227 

Rio Branco 0.04 0.16 0.01 0.03 0.02 0.08 N/A* 0.86 144 328 

Singapore 0.21 0.34 -0.04 -0.07 0.14 0.18 0.13 0.58 71 192 

Solar Village 0.11 0.13 0.07 0.06 0.09 0.07 0.09 0.36 77 318 

 1180 

  1181 
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 1182 

Table 4, same as Table 2, except for coarse-mode AOT at 550nm and for sites in which the coarse mode 1183 
is dominated by dust.  1184 

1185 

Site 
Mean AERONET coarse 

AOT Bias  RMSE r2 N           
winter | summer 

 winter | summer winter | summer winter | summer winter | summer 

Baengnyeong 
0.13 0.09 0.00 -0.01 0.07 0.05 0.47 0.63 213 215 

Banizoumbou 
0.52 0.35 -0.08 -0.15 0.29 0.23 0.50 0.55 493 396 

Beijing 
0.24 0.15 -0.09 -0.07 0.31 0.16 0.12 0.37 322 110 

Capo Verde 
0.28 0.33 0.01 -0.04 0.09 0.12 0.89 0.74 283 312 

Gandhi College 
0.29 0.27 -0.10 -0.13 0.14 0.23 0.50 0.57 315 311 

Ilorin 
0.63 0.17 -0.09 -0.06 0.30 0.11 0.65 0.49 411 182 

Kanpur 
0.27 0.29 -0.09 -0.09 0.14 0.15 0.65 0.69 385 281 

Palma de Mallorca 
0.03 0.11 0.00 -0.02 0.01 0.05 0.53 0.83 24 401 

Ragged Point 
0.12 0.18 -0.02 -0.01 0.06 0.06 0.72 0.85 285 227 

Solar Village 
0.52 0.25 -0.05 0.01 0.24 0.10 0.24 0.71 77 318 



65 
 

 1186 

 1187 

Figure 1. An example of the general pattern of data coverage from MODIS (Aqua + Terra) and MISR for 1188 
each AOT assimilation cycle at the valid time of the analysis, ie., 0, 6 , 12 and 18 UTC, in NAVDAS-AOT. 1189 
The MODIS and MISR AOT data displayed here is after strict QA/QC processes for Aug 11, 2011. The 1190 
MODIS and MISR data assimilated in each NAVDAS-AOT cycle were acquired in a 6-hour range centered 1191 
on the nominal valid time of the analysis.    1192 
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 1193 

 1194 

Figure 2.  Properties of the 6-hrly 1x1 degree MODIS+MISR data assimilation quality AOT data for 1195 
JJASON (June-November, upper) and DJFMAM (Previous year December-May, lower) averaged over 1196 
2003-2013 (June 2003-May 2013): Left) total number of the DA-quality data, Right) seasonal mean of 1197 
the total AOT at 550nm. Blank area indicates no available data. Annotations at the bottom left in the 1198 
AOT figures show the area mean AOTs over ocean and over land averaged for 40°S-60°N.     1199 
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 1201 

 1202 

 1203 

Figure 3. The time series of 6-hrly data count of the global 1x1 grid MODIS (Terra+Aqua) (red), MISR 1204 
(green), and fused MODIS-MISR data assimilation quality AOT (blue). Dots show 6-hrly data counts, and 1205 
the solid lines represent the 30-day running average. The seasonal variation of the data volume is mainly 1206 
related to the fact that more AOT data are discarded for the southern hemisphere high latitudes than 1207 
the northern hemisphere high latitudes considering cloud contamination (see text for details). 1208 

 1209 
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 1210 

Figure 4. Selection of regions for this study. Antarctica is excluded. All AERONET sites that have valid L2 1211 
data for the study period (2003-2013) are in black dots. The selected sites for detailed validation 1212 
(Section 3.2.3) are highlighted with red diamonds.     1213 
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 1215 

Figure 5. 2003-2013 averaged biseasonal (June-November, ie., JJASON, and December-May, ie., 1216 
DJFMAM) total (upper), fine (middle) and coarse (bottom) AOTs at 550nm from NAAPS with and without 1217 
AOT data assimilation. Annotations at the bottom left in the figures show the area mean AOTs over 1218 
ocean and over land averaged for 40°S-60°N.     1219 
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 1221 

Figure  6. a) Time series of the daily total number of global regular AERONET L2 observations (excluding 1222 
observations at DRAGON sites) binned into 6-hrly intervals (to match the model output resolution) for 1223 
the AOT reanalysis period. b) Time series of the RMSE of the reanalysis total AOT (black), fine-mode AOT 1224 
(blue) and coarse-mode AOT (red), all at 550nm, validated with AERONET. The daily average 6-hr RMSEs 1225 
are in small dots and the corresponding 90-day running averages are in solid lines.  1226 

 1227 

  1228 
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 1229 

Figure 7. Pair-wise comparison of the global 6-hrly reanalysis AOT and AERONET AOT with respect to 1230 
total (left), fine (middle) and coarse (right) modes at 550nm for JJASON (upper) and DJFMAM (bottom) 1231 
for the entire reanalysis time (2003-2013). The normalized data density is shown in color. The solid 1232 
magenta line represents a Theil-Sen linear regression and the corresponding equation is shown, where 1233 
𝜏𝑁 is the NAAPS reanalysis AOT and 𝜏𝐴 is the AERONET AOT. The solid blue line is a least-squares linear 1234 
regression and the corresponding equation is not shown. Also shown are the bias, root mean square 1235 
error (rmse), square of the pearson’s correlation coefficient (r2), total number of stations (Nstation) and 1236 
total number of 6-hrly AERONET data (Ndata).  1237 

1238 
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 1239 

Figure 8. Same as Fig. 7, except for the monthly average of pair-wised 6-hrly mode AOTs at 550nm. 1240 
Monthly average is obtained only when the total number of 6-hrly AERONET data exceeds 10 to ensure 1241 
temporal representativeness. The monthly average reanalysis AOT here is calculated based on the 1242 
available 6-hrly data that can be paired with AERONET data.      1243 
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 1244 

 1245 

 1246 

Figure 9. Cumulative distribution function for the reanalysis 6-hrly AOT errors compared to AERONET L2, 1247 
MODIS and MISR data assimilation quality data with respect to the available total, fine and coarse 1248 
modes at 550nm for the entire reanalysis time period (2003-2013).  1249 
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 1251 

Figure 10. Comparison of regional fine mode AOT at 550nm of the reanalysis (red) at 95%, 90%, 75%, 1252 
50%, 25%, 10% and 5% percentiles to the pair-wised AERONET L2 data (black) for the regions defined in 1253 
Figure 4 for the 10 year time period (June 2003-May 2013). Also shown are the regional mean of the 1254 
reanalysis and AERONET fine mode AOTs in “+” and diamond respectively. Green triangles represent the 1255 
root mean square error (RMSE) of the reanalysis. Red dots represent the square of the Pearson 1256 
correlation coefficient (r2) between the reanalysis and the AERONET observations.   1257 
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 1261 

Figure 11. Same as Fig. 10, except for coarse mode AOT at 550nm.  1262 
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 1265 

Figure 12. Same as Fig. 10, except for total AOT at 550nm. Also, AOT value greater than 1.0 is cropped in 1266 
this figure.  1267 

  1268 
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 1269 

 1270 

Figure 13. Trends of the deseasonalized reanalysis total AOT at 550nm over 2003-2013 (unit: 1271 
100xAOT/year). The dotted areas have passed 95% statistical significance level (see text and Zhang and 1272 
Reid (2010) for details). 1273 
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  1275 



78 
 

 1276 

Figure 14. Monthly mean 550nm reanalysis and AERONET L2 mode AOTs at 6 AERONET sites, Alta 1277 
Floresta in the Amazon, Beijing in East Asia, Capo Verde off the west coast of North Africa, GSFC in East 1278 
CONUS, Solar Village in Arabian Peninsula, and Venise in Italy. The solid blue line is a linear regression of 1279 
the reanalysis total AOT. The red solid line is a linear regression of the AERONET total AOT, only available 1280 
when there is continuous data through the time. Monthly mean AERONET AOT is obtained only when 1281 
the total number of 6-hrly AERONET data exceeds 10 to ensure temporal representativeness. 1282 
Annotations for each time series show bias, RMSE and r2 of monthly averages for unpaired comparisons; 1283 
paired comparisons, using reanalysis values sampled to match available AERONET data, are shown in 1284 
parentheses.   1285 
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APPENDIX: Impact of tuning of sources and sinks vs. AOT data assimilation upon model performance  1286 

To show the relative importance of the tuning process on sources and sinks versus the AOT data 1287 

assimilation to reanalysis performance, four model runs with difference configurations were conducted. 1288 

AOT results from these four runs were inter-compared and validated with AERONET L2 data. The four 1289 

model configurations are NAAPS without tuning (that is to say the original native version of NAAPS from 1290 

which the reanalysis was originally based), NAAPS with tuning, NAAPS without tuning but with AOT data 1291 

assimilation, and the final reanalysis version, which is with both tuning and AOT assimilation. The four 1292 

model runs all cover Dec 2010-Nov 2011 one year time period. Interannual tuning was not conducted to 1293 

preserve a measure of consistency within the model itself.  The AOT data assimilation process, the input 1294 

data and its pre-DA treatment are kept the same for the DA runs. The “tuning” processes on the sources 1295 

and sinks include the addition of organic aerosols, updated SO2 and DMS emissions, use of CMORPH 1296 

precipitation to replace model precipitation within 30°S-30°N, usage of the FLAMBE MODIS 2-day-1297 

maximum regionally tuned smoke emissions and applying regional tuned factors on dust erodible 1298 

fraction. For example, through the tuning exercises dust emission for 2011 is reduced from 1510 Tg to 1299 

953 Tg, and biomass turning smoke emission is reduced from 180 Tg to 85 Tg globally.  1300 

The appendix table shows the 550nm total, fine and coarse mode AOT bias, RMSE, r2 and Theil-1301 

Sen linear regression slope against AERONET from the four model runs. With the tuning of sources and 1302 

sinks, RMSE decreases about half, bias and r2 also significantly improved for coarse, fine and total AOTs 1303 

for the natural model run. The linear regression slope is also much closer to 1 for the fine and the total 1304 

AOTs, and about unchanged for the coarse AOT compared to the NAAPS run without sources and sinks 1305 

tuning. The absolute bias, RMSE and r2 are comparable with those of the DA run without the tuning; i.e., 1306 

through the tuning process on the baseline (“NAAPS_untuned”), similar validation result can be 1307 

obtained as through the AOT assimilation on the baseline. This indicates that the tuning process on 1308 

sources and sinks is as equally important as the AOT data assimilation process.  1309 
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AOT data assimilation based on the tuned NAAPS further improves the validation statistics. For 1310 

example, the RMSE is reduced about 20% for the coarse, fine and total AOTs comparing the reanalysis to 1311 

the “NAAPS_tuned”.  When comparing the DA runs (“reanalysis” vs. “DA_untuned”), there are also 1312 

discernable improvements on bias, RMSE and r2 resulted from the tuning process. The linear regression 1313 

slope is improved for the fine AOT and about the same for the total AOT. The regression slope is 1314 

worsened for the coarse AOT (0.64 for the reanalysis), because the model, like other aerosol models, 1315 

faces challenges successfully resolving dust events over Sahel, East Asia and Indian subcontinent regions 1316 

(e.g., Sessions et. al. 2015). While the untuned model has slight high biased coarse AOT, which makes 1317 

the regression slope more tilted. The linear regression slope of the reanalysis based on all the 11-year 1318 

data is 0.85 (Fig.7) though, better than the 2011 level.      1319 

 The appendix Fig. 1 and Fig. 2 show the global coarse, fine and total AOT distributions from the four 1320 

model runs for the two seasons of 2011, ie., JJASON and DJFMAM respectively.  For both seasons, it is 1321 

obvious that the natural NAAPS run without tunings has the most different AOT distributions and global 1322 

averages among the four runs.  The three other runs look more similar to each other, which is consistent 1323 

with the validation statistics shown in appendix Table 1. For JJASON the natural NAAPS run without 1324 

tunings has the lowest global mean AOTs among the four runs, yet the highest AOTs near dust and 1325 

smoke source regions in South America and South Africa. This indicates possible excessive emissions in 1326 

these regions and excessive removals over water, which are tuned through applying smaller emission 1327 

factors for smoke and dust and lower dry deposition velocity for dust over water in the tuning process. 1328 

For both seasons, the tuned NAAPS run without DA has slight high bias in the fine AOT (see also 1329 

appendix Table 1) and the bias is slightly larger in DJFMAM than in JJASON, most probably resulted from 1330 

excessive addition of organic aerosols during boreal winter.     1331 
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Compared to the reanalysis, the DA run without source and sink tuning, exhibits similar global total AOT 1332 

distribution. However, some differences between the two are noticeable for the fine and coarse AOTs. 1333 

For example, over the Indian subcontinent the AOT partitioning between the fine and coarse AOTs 1334 

differs significantly.  The contribution of the fine-mode aerosols to the total AOT dominates the 1335 

contribution of the coarse-mode aerosols in the reanalysis. Whereas the total AOT is predominantly 1336 

attributed to the coarse-mode aerosols in the DA run without tunings. Over the southern flank of the 1337 

Himalayas, where fine-mode aerosols from industrial and biofuel emissions often prevails over coarse-1338 

mode (refer to Kanpur site in Tables 2-4), the fine mode fraction is increased from ~0.3 in the DA run 1339 

without tunings to ~0.7 in the reanalysis. This illustrates the importance of the tuning processes in 1340 

yielding a better AOT partitioning between the fine and coarse modes.      1341 

  1342 
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Appendix Table: Statistics of the coarse, fine and total AOTs at 550nm from four model runs compared 1343 
with AERONET L2 data.  The four model runs are from four different model configurations, including 1344 
NAAPS without sources and sinks tuning, NAAPS with tuning, NAAPS without tuning but with AOT data 1345 
assimilation, and the reanalysis version, which is with both the tuning and the AOT assimilation. The 1346 
comparison is based on one year time period (Dec. 2010 to Nov. 2011). The global AERONET mean is 1347 
0.085, 0.102 and 0.187 for coarse, fine and total AOT respectively, obtained with averaging 97654 valid 1348 
6-hrly L2 data from 285 stations.    1349 

 AOT Bias 
Coarse | fine | total  

RMSE 
Coarse | fine |total  

r2 
Coarse |fine |total 

Regression slope 
Coarse |fine |total 

NAAPS_untuned 0.008|-0.030|-0.022 0.17|0.19|0.26 0.33|0.05|0.15 0.59|0.69|0.81 

NAAPS_tuned -0.005|0.021|0.016 0.10|0.10|0.16 0.45|0.47|0.48 0.58|0.98|0.89 

DA_untuned 0.014|-0.025|-0.011 0.09|0.11|0.14 0.58|0.41|0.56 0.90|0.75|0.80 

Reanalysis -0.013|0.006|-0.007 0.08|0.08|0.13 0.59|0.63|0.65 0.64|1.00|0.77 
 1350 

  1351 
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 1352 

 1353 

Appendix Figure 1. 6-month-average (Jun-Nov 2011) total (upper), fine (middle) and coarse (bottom) 1354 
AOTs at 550nm from four NAAPS runs with different configuration:  NAAPS without tuning, NAAPS with 1355 
tuning processes on sources and sinks, NAAPS without tuning but with AOT data assimilation, and the 1356 
reanalysis version, which is with both tuning and AOT assimilation. Annotations at the bottom left in the 1357 
figures show the area mean AOTs over ocean and over land averaged for 40°S-60°N.  1358 

 1359 

  1360 
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 1361 

    1362 

Appendix Figure 2. Same as the Appendix Figure 1, except for Dec. 2010-May 2011 6-month-average.    1363 
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