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Dear Dr. Nicholas Henry Savage, 1 

We appreciate valuable comments, which have helped improve the paper. We revised the text 2 

according to the suggested corrections and would like to thank you for the thorough reading of the 3 

paper. Below we provide our point-by-point replies, where for clarity the comments are displayed in 4 

bold italics.   5 

Title. As per the instruction of GMD, please include the version of WRF-Chem in the title. 6 

Thank you for this reminder, model version is now included in the title: »Evaluation of the high 7 

resolution WRF-Chem (v3.4.1) air quality forecast and its comparison with statistical ozone 8 

predictions«. 9 

Abstract. Please specify the resolution of the model configuration applied (high resolution 10 

is rather a relative term) 11 

We included the information about model resolution in the first sentence of the abstract, which is 12 

now: »An integrated modelling system based on the regional on-line coupled meteorology-13 

atmospheric chemistry WRF-Chem model configured with two nested domains with horizontal 14 

resolution 11.1 km and 3.7 km has been applied for numerical weather prediction and for air quality 15 

forecast in Slovenia.« 16 

2.1 WRF-Chem forecast system. Please state the height of the model top.  17 

The height of the model top is 50 hPa, this information is now included in the paper in the following 18 

sentence: » The vertical structure of the atmosphere is resolved with 42 vertical levels extending up 19 

to 50 hPa, with the highest resolution of ~25 m near the ground.« 20 

Please provide a reference (even if it is only a report) for the emissions inventory. 21 

We added the reference to the project presentation at Slovenian Environment Agency (report is not 22 

yet available). 23 

2.2 Statistical ozone daily maximum forecast. Please provide references for the statistical 24 

model. 25 

We added the reference to the final report about statistical model (also available online).  26 

2.3 Evaluation methodology. What is the height of the lowest model level, and how does 27 

that compare to a typical inlet height? 28 

We added this information to the paper the following way: »In the case of air pollutants, the 29 

instantaneous lowest model level mixing ratios (with grid point center about 12 m above model 30 

orography - an exception is KRV station as explained below) are compared to the hourly averaged 31 

concentrations measured at monitoring stations (which have a typical inlet height of 3 m) from the 32 

national network and some other environmental information systems in Slovenia. Figure 3 shows 33 

locations of these AQ monitoring stations, and Tab. 1 lists the basic characteristics, including 34 

comparison of the station altitude, the height of model orography, model analysis height, and 35 

pollutants with higher than 75% availability of valid data during the analyzed time period for each of 36 

the AQ monitoring site«  37 

http://worldwidescience.org/wws/link.html?type=RESULT&redirectUrl=http://www.etde.org/etdeweb/details.jsp?query_id=1&page=0&osti_id=306379
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Have you considered using data from above level 1 - in very mountainous terrain, an 1 

observation site can be well above the model orography at the relevant grid point and it is 2 

more appropriate to use data from level 2 or above. 3 

Thank you for this question. In the case of AQ variables we usually use results from a higher model 4 

level for the KRV station. The altitude of this station is well above model topography (model height: 5 

1272 m, model grid point at the lowest level: 1284 m, station altitude: 1740 m). In the present paper 6 

we originally included results for all stations (also KRV) at the lowest model level, because the 7 

correlation coefficient at the lowest model level is highest (CORR decreases with increasing the 8 

model level), showing that in spite of the negative bias due to too low model topography, the near 9 

surface processes still play an important role in ozone dynamics. In the review process we 10 

reconsidered this and decided to use model data from the 5th model level for KRV (model grid point 11 

center: 1414 m), but stay with the lowest model level for all other stations. For KRV the 5th model 12 

level is still well below the station altitude, but this reduces the bias for KRV from -12 μgm-3 to -2 13 

μgm-3 for ozone hourly values, and from -16 μgm-3 to -7 μgm-3 for ozone daily maxima (which lowers 14 

the impact of KRV bias on overall model performance). Unfortunately also CORR then decreases from 15 

0.76 to 0.74 for ozone daily maxima (which has a negligible impact on overall model performance). 16 

For other stations the differences between model height and station altitude are smaller. Also for 17 

some of the stations model height is too low (e.g. VNA, model height: 468 m, station altitude:  630 18 

m), but for other stations the model height is too high (e.g. HRA, model height: 540 m, station 19 

altitude: 290 m), related to very complex topography in sub-alpine region of Slovenia. Consequently, 20 

by increasing the model levels we could reduce the negative bias for stations of the first group (with 21 

too low model orography), but cannot decrease the positive bias for the stations of the second group 22 

with too high model orography. This makes an approach of using higher model levels for stations 23 

with too low model orography questionable, also in the light that also CORR decreases with 24 

increasing model levels. We thus support the approach of using the data on the lowest model level 25 

and make a posterior bias correction, which does not impact the ozone dynamics and can be applied 26 

for all stations. We only made an exception for KRV station, for which the height in the model was 27 

significantly underestimated, as well as the station is known to be influenced by the conditions of the 28 

free troposphere (except during hot summer daytime conditions), which is not the case for other 29 

stations. 30 

For meteorological variables we did not explore the impact of using results from higher model levels. 31 

This would be far beyond the scope of this study, focused on ozone prediction, also because the 32 

impact of using the higher layer data depends on meteorological variable, as well as the set of 33 

meteorological stations is not the same as in the case of AQ stations.  34 

In the paper due to using results for KRV on the 5th level we corrected all of the AQ statistics and 35 

also the text throughout the paper accordingly. We included the following text: 36 

»In the case of the elevated alpine KRV station, AQ variables are evaluated for the 5th model layer 37 

instead of the first model layer. We made this exception for KRV, since the height of the model 38 

topography was significantly underestimated there (Tab. 1), as well as the station is known to be 39 

strongly influenced by the conditions of the free troposphere. The selection of the 5th model layer for 40 

KRV station is based on analyses performed for different model layers (results not shown) and was 41 

found to reduce the negative bias for O3 due to too low WRF-Chem topography at this location. 42 
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Although even for this model layer the location of the grid point representing KRV station (1414 m) is 1 

still well below the true station altitude (1740  m), the O3 bias for KRV station is significantly smaller 2 

than for the first layer, while the correlation coefficient between the measured and simulated O3 3 

levels remains similar in both cases (the 5th or the lowest model layer). Taking results from higher 4 

model layers would further decrease the negative model bias, but would also worsen the correlation 5 

coefficient for O3 at this station due to decreased impact of surface processes.« 6 

Later in text also:   7 

Instead of: »The elevated alpine KRV station is the only one with negative bias (-12 μgm-3) in 8 

forecasted 1-hour O3 concentrations, which can be explained by the too low altitude of the KRV 9 

station in model topography, since the mean O3 concentration increases with height.«  10 

We added: » In Fig. 4a the elevated alpine KRV station is the only one with high negative bias (-12 11 

μgm-3) in forecasted 1-hour O3 concentrations at the lowest model layer, which can be explained by 12 

the too low altitude of the KRV station in model topography. The high negative bias for hourly O3 13 

concentrations at KRV station is reduced to a value of only -2 μgm-3 by using the 5th model layer 14 

concentrations as explained in chapter 2.3. The 5th model level predictions will be used for KRV in all 15 

analyses that follow. 16 

We added also: » For sites with highest positive bias in 1-hour O3 concentrations (TRB, ZAG, HRA and 17 

ISK, with bias of 36 μgm-3, 31 μgm-3, 26 μgm-3 and 32 μgm-3, respectively), this can also be partly 18 

explained by too high altitude of the stations in model orography (Tab. 1), since the mean O3 19 

concentration increases with height.« 20 

Later in text we deleted: »or Alpine stations (KRV)« and added: » Here we recall that high negative 21 

bias in WRF-Chem forecast for alpine KRV site due to too low altitude of the station in model 22 

topography was compensated by taking prediction from the 5th model level.« 23 

Also the values of statistics in text and figures are changed throughout the paper. 24 

3.1 Evaluation of meteorological variables.  There is a large decrease in the precipitation 25 

bias from day 1 to day 2 - is this a model spin up issue? If so would a different initialisation 26 

improve this error? 27 

We agree. Additional circumstance here is also that in the 3.4.1 model version it was not possible to 28 

include the information about hydrometeors at the boundaries of the nested domain (in the applied 29 

1-way nesting procedure). Since the intensity of (relatively rare) summertime precipitation events 30 

was expected to have a less significant impact on ozone concentrations, we considered this issue less 31 

problematic (in our study focused on ozone). We added the following text: “It must also be taken 32 

into account that the 3.4.1 model version does not allow to include the information about 33 

hydrometeors at the boundaries of the nested domain (in the applied 1-way nesting procedure), 34 

which contributes to the negative simulated bias of precipitation. A large decrease in the 35 

precipitation bias from day 1 to day 2 suggests that different initialization methodology (e.g. using 1 36 

day spin-up for meteorology) could improve the prediction of precipitation events.” 37 

Please provide some evidence for the statement "the main precipitation events were well 38 

predicted and simulated" or remove this statement. 39 
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Although we performed analyses and produced some plots we think that including additional 1 

material here is beyond the scope of the paper. We thus decided to remove this statement.   2 

3.3 Evaluation and comparison of different methods for O3 daily maximum predictions. 3 

Please correct the statement "ideal forecast would lie in the right-bottom corner". It fact 4 

the ideal model would have correlation coefficient of 1 and a standard deviation equal to 5 

the observations, i.e. it would be co-located with the black dot which indicates the model. 6 

The black dot is not always in the bottom right corner on these plots. 7 

Thank you, we corrected this statement. The statement that is now included is: » The ideal model 8 

would have a correlation coefficient of 1 and a standard deviation equal to the observations, which 9 

means that it would be co-located with the black dot on the diagram. « 10 

In the section on the evaluation of the model’s ability to predict episodes, too much weight 11 

is given to accuracy. For example, the statement "Accuracy ... increases with threshold 12 

level" is misleading. A model which always forecasts "no event" will have an increasing 13 

accuracy as the number of events decreases. To compare skill at different thresholds you 14 

need to use a differnt metric e.g. Critical Success Index or Equitable Threat Score. These 15 

would be better choices in general than accuracy in this section. There is no harm in 16 

including accuracy in the tables, but it should not be the primary criterion for judging 17 

forecast skill.  18 

In the revised paper we replaced Accuracy (A) measure by Equitable Thread score (ETS), we also 19 

changed the order of categorical statistics in Tab. 5, so that ETS is shown in the first column, followed 20 

by CSI, B, FAR and POD. We corrected the text, to give most weight to the ETS and briefly mention 21 

the rest of them. The text that we now have in the paper regarding the categorical evaluations is the 22 

following: »Equitable Threat Score (ETS) measures the fraction of observed and/or correctly 23 

predicted events, adjusted for the frequency of hits that would be expected to occur by random 24 

chance. Although this score takes into account the climatology it is not truly equitable. It ranges from 25 

-1/3 to 1, where the minimum value depends on climatology (it is near 0 for rare events). Looking at 26 

Tab. 5 ETS shows equal skill for WRF-Chem and statistical forecast, higher than persistence for the 27 

120 μgm-3 threshold (1-day and 2-day forecast). ETS decreases with increasing the threshold for both 28 

WRF-Chem and statistical forecast, indicating the challenge that both models have to accurately 29 

predict the extremes. In the case of 140 μgm-3 threshold, WRF-Chem has the same ETS as 30 

persistence, higher than the statistical model for 1-day forecast, while for 2-day forecast WRF-Chem 31 

outperforms the statistical model, followed by persistence. In the case of 160 μgm-3 threshold 32 

persistance has the highest ETS for a 1-day forecast, followed by statistical model and WRF-Chem, 33 

while in the case of 2-day predictions, statistical model shows the highest skill and WRF-Chem the 34 

lowest. Another measure, the critical success index (CSI), is similar to ETS, except that it does not 35 

take into account the climatology of the events and thus gives poorer scores for rarer events. It 36 

measures the percentage of cases that are correctly forecasted out of those either forecasted or 37 

observed, and ranges from 0 to 1 (1 indicating the perfect forecast). Similar as ETS, CSI gives higher 38 

scores for persistence in the case of 1-day forecast for the higher two thresholds, while on the 39 

second day WRF-Chem or the statistical model already performs better. Bias (B) determines whether 40 

the same fraction of events are both forecasted and observed. A tendency of the statistical model 41 

and of WRF-Chem to under-predict O3 threshold exceedances shows as a B below 1 for these two 42 

models. The false alarm ratio (FAR) that measures the percentage of forecast high O3 events that 43 
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turn out to be false alarms, gives highest skill for WRF-Chem, followed by statistical model and 1 

persistence. The probability of detection (POD) is a measure of how often a high threshold 2 

occurrence is actually predicted to occur, and is relatively low for WRF-Chem with respect to other 3 

models. « 4 

Also why were these specific three thesholds chosen? 5 

There was no specific reason for these certain three thresholds. We also performed the calculations 6 

for different thresholds, e.g. 130 μgm-3 or 150 μgm-3, distinguishing between higher and lower ozone 7 

maxima, and the conclusions were similar. We included some thresholds which present an elevated 8 

ozone levels and pose a greater risk to human health, and decided to exclude the statistics for a 9 

higher threshold (180 μgm-3, a legislation limit value) due to a very low number of exceedances for 10 

this threshold. In the paper we extended the following sentence: »Table 5 summarizes the 11 

categorical evaluation results for three different thresholds (120, 140, 160 μgm-3) of elevated ozone 12 

levels, which pose a greater risk to human health.« 13 

Grammatical and other minor corrections. 14 

p1030 line 22, "The first RT-AQF systems.." 15 

p1030 line 25, delete "existing" 16 

p1032 line 13, "during summertime conditions" 17 

p1032 line 21, "a one-way" 18 

p1032 line 22, "evaluated a forecast" 19 

p1033 line 2, "based on WRF-Chem are implemented worldwide" 20 

p1033 line 4, "over the topographically complex" 21 

p1033 line 6, "with a statistical model" 22 

p1033 line 6, "at the Slovenian" 23 

p1036 line 19, "a southwestern" 24 

p1036 line 24, "shows a mean O3 daily mean" 25 

p1037 line 27, "is a mountainous station" 26 

p1037 line 27, "As well as the elevated station KRV, the ISK, OTL and VNA stations 27 

area are also influenced by regional transport of pollutants. 28 

p1038 line 7, "information about the AQ forecast can also be gained by the evaluation 29 

of meteorological forecasts for these stations." 30 

p1038 line 16, "index of agreement" 31 

p1041 line 3, "with a range of 0.64 to 0.90 for 1 day forecasts" 32 

p1041 line 7, "On average" 33 

p1042 line 8, "3 month accumulations by" 34 

p1042 line 3, "has problems simulating the" 35 

p1043 line 1, "the model over-predicts" 36 

p1043 line 5, "explained by model error in" 37 

p1043, line 16, "poorly reproduced meteorological" 38 

p1043, line 26, "Also interesting to discuss are the results" 39 

p1045, line 3, "In this section we want to answer the question: ’how accurate is the 40 

1 h O3 daily maximum WRF-Chem forecast in comparison to the statistical model 41 

prediction or to persistence?’." 42 
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p1045, line 8 "which is, along with their computational efficiency, " 1 

p1045, line 9 "Among the strengths of the deterministic models are that they give" 2 

p1045 line 12, "Furthermore, they also allow forecasts for" 3 

p1045 line 14, "descriptions of" 4 

p1045 line 27, "because a statistical" 5 

p1046 line 1, "with an available" 6 

p1046 line 5, "already beats persistence" 7 

p1046 line 12, "than the statistical forecast" 8 

p1046 line 25, "MNBE in Fig. 8 has very similar results to ME." 9 

p1047 line 13, "also contingency-table-based statistics are an important metric of" 10 

p1047 line 15, "It is important to take into account" 11 

p1048 line 9, "were to be applied to" 12 

p1049 line 7, "local emissions result in model underestimations of NO2" 13 

p1049 line 12, "show good WRF-Chem model performance" 14 

 15 

We revised the text according to the suggested corrections and would like to thank again for the 16 

thorough reading of the paper. 17 

 18 

  19 
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Dear Dr. Georg A. Grell, 1 

We appreciate and would like to thank you for all the comments and raised questions, which have 2 

helped to improve the quality of the paper. Below we provide our point-by-point replies, where for 3 

clarity the comments are displayed in bold italics. 4 

This paper describes the use of the community version of WRF-Chem for real-time ozone 5 

and aerosol predictions. The authors perform statistical evaluations over a 3 month period, 6 

comparing the model forecasts with observations as well as statistical forecast methods. In 7 

general his paper is well written and should be published in GMD. This can be done with 8 

only minor modifications.  9 

We thank for this comment.  10 

Although the authors provide much information on model set-up there are a few details 11 

that I was looking for and couldn’t find. Is this 2-way nesting or 1-way nesting? If it is 1-12 

way nesting, how was it applied?  13 

It is a 1-way nesting applied by two consecutive simulations (using ndown). We added this 14 

information the following way (section 2.1): »A 1-way nesting is applied by two separate consecutive 15 

simulations, where outputs from the coarse grid integration are processed to provide boundary 16 

conditions for the nested run every 15 minutes.«   17 

Is the choice of physics parameterization the same on both domains?  18 

Yes, schemes are the same on both domains. To include this information in the paper we changed in 19 

Section 2.1: »We decided to apply the same schemes as were used…« to »In both domains we 20 

decided to apply the same schemes as were used…«. 21 

Which photolysis model have you been using?  22 

Fast-J photolysis scheme (Fast et al., 2006), this information is now added in section 2.1.   23 

All evaluations I am assuming are done on the high resolution domain.  24 

Yes. We included this information in the first sentence of Section 2.3: »We evaluate the 1-day and 2-25 

day WRF-Chem meteorological and AQ forecasts on the high resolution domain during a 3-month 26 

period (June - August 2013).« 27 

Also, the color choice for figures 5, 6, and 7 is unfortunate. The two blue colors are almost 28 

impossible to separate – at least with my aging eyes. Why not a different color? Figure 5 is 29 

even more difficult to read, a bit too small for me.  30 

We replotted these figures with two different colors. Still it is hard to distinguish between 1-day and 31 

2-day forecast (Fig. 5-7), but the purpose of these figures is more to separate model forecast from 32 

observations. 1-day and 2-day forecast are more easily distinguished by the use of statistics. Figure 5 33 

is now divided into two parts. 34 

Some other questions I have: 35 

(1) There is a negative temperature bias, but a positive short wave bias? Since you are 36 

using the interaction flag for convection/radiation the SW bias could be interpreted as not 37 

enough cloud cover, which could give you a low bias at night, but at day? Are you cycling 38 
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soil temperature and soil moisture or is that always a new initialization with coarse 1 

resolution GFS data? 2 

All meteorological variables, including soil temperature and soil moisture are always initialized with 3 

GFS data, which is now mentioned in the paper. This explains higher negative bias for T2m during the 4 

first day of simulation (not valid for daily maxima, where bias is the same on the first and the second 5 

day of simulation). For all hourly values T2m bias decreases from -2.1 C to 0.8 C due to reduced bias 6 

for nighttime temperatures on the second day of simulation. Looking at results station by station the 7 

link between T2m and SW bias is not straightforward (they appear not to be directly correlated). On 8 

the first day of simulation higher SW is due to less cloudy conditions (more cloud cover on the 9 

second day).  10 

 (2) The statistics I assume are always over domain 2. The fact that the precipitation under-11 

forecast is a lot less on day 2 may indicate some spin-up issues, especially also when taking 12 

into consideration the coarse initial conditions (did you use .5 degree data from GFS?) 13 

Yes, we used the 0.5 degree data from GFS, this information is now added in section 2.1 as »…with 14 

meteorological initial (ICs) and lateral boundary conditions (BCs) taken from the 0.5ᵒ data from the 15 

Global Forecast System (GFS)…«. We also agree that under-prediction of precipitation indicates some 16 

spin-up problem, where it must also be taken into account that in 3.4.1 model version ndown 17 

procedure does not allow to include the information about hydrometeors at boundaries of the 18 

nested domain. Since the intensity of (rare) summertime precipitation events was expected to have a 19 

less significant impact on ozone concentrations, we considered this issue less problematic in our 20 

study focused on ozone. But we agree that applying a different initialization methodology should 21 

reduce the precipitation error. The following text was added: »It must be mentioned that the 3.4.1 22 

model version does not allow to include the information about hydrometeors at the boundaries of 23 

the nested domain (in the applied 1-way nesting procedure), which contributes to the negative 24 

simulated bias of precipitation. A large decrease in the precipitation bias from day 1 to day 2 25 

suggests that different initialization methodology (e.g. using 1 day spin-up for meteorology) could 26 

improve the prediction of precipitation events.« 27 

(3) On page 1047, line 22 you talk about WRF-Chem under-predicting Ozone maxima, while 28 

before you had a positive bias. Do you mean under-predict excedences? 29 

We replaced »ozone maxima« to »threshold exceedances«.  30 

(4) In the summary and conclusions you should mention again (you have that hidden 31 

somewhere in section 2.1, pg 1034) that different choice of physical or chemical 32 

parameterization will influence and possibly change outcomes. However I think your 33 

choices are good choices, since they are well documented in other real-time applications. 34 

We added the following sentence to the conclusions: »Since the selection of physical or chemical 35 

parameterization schemes influences and possibly changes the outcomes, we decided to apply the 36 

schemes that are well documented and have previously been used in other applications (e.g. 37 

AQMEII).« 38 

(5) Pg. 1031, line 7: The MM5 reference should be 1994, not 1995 – if I remember correctly 39 

This error is now corrected. 40 
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(6) Pg 1032, line 11: 2011 should not be a reference for WRF-Chem. Just 2005 is good 1 

enough. 2 

We deleted the 2011 reference. 3 

(7) Pg. 1049, last line: If you want you could add the recent Pagowski et al publication in 4 

GMD (also WRF-Chem special issue) as an example of chemical data assimilation 5 

The following sentence was added: »For WRF-Chem model a technical note on the implementation 6 

of the aerosol assimilation and a guidance for prospective users has been recently published by 7 

Pagowski et al. (2014).« 8 

 9 

  10 
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Abstract 15 

An integrated high resolution modelling system based on the regional on-line coupled 16 

meteorology-atmospheric chemistry WRF-Chem model configured with two nested domains 17 

with horizontal resolution 11.1 km and 3.7 km has been applied for numerical weather 18 

prediction and for air quality forecast in Slovenia. In the study an evaluation of the air quality 19 

forecasting system has been performed for summer 2013. In the case of ozone (O3) daily 20 

maxima, the first day and second day model predictions have been also compared to the 21 

operational statistical O3 forecast and to the persistence. Results of discrete and categorical 22 

evaluations show that the WRF-Chem based forecasting system is able to produce reliable 23 

forecasts, which depending on monitoring site and the evaluation measure applied can 24 

outperform the statistical model. For example, the correlation coefficient shows the highest 25 

skill for WRF-Chem model O3 predictions, confirming the significance of the non-linear 26 

processes taken into account in an on-line coupled Eulerian model. For some stations and 27 

areas biases were relatively high due to highly complex terrain and unresolved local 28 

meteorological and emission dynamics, which contributed to somewhat lower WRF-Chem 29 
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skill obtained in categorical model evaluations. Applying a bias-correction could further 1 

improve WRF-Chem model forecasting skill in these cases.  2 

Key words: Air quality, forecast, ozone, WRF-Chem, online-coupled model, statistical model 3 
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1 Introduction 5 

Real-time air quality forecasting (RT-AQF) is a relatively new discipline in atmospheric 6 

sciences, which has evolved as a response to societal and economic needs, reflecting the 7 

progress in scientific understanding of physical processes and numerical and computational 8 

technologies (Zhang et al., 2012a). The Ffirst RT-AQF systems, developed for forecasting air 9 

pollution in exposed urban regions, were either empirical methods based on persistence, 10 

climatology, human expertise and meteorological forecast (e.g. Wolff and Lioy, 1978), or 11 

statistical models taking advantage of existing links between pollutant concentrations, 12 

meteorological variables (wind speed and direction, temperature, cloudiness, moisture etc.) 13 

and physical (emissions) parameters (e.g. McCollister and Wilson, 1975; Cobourn, 2007; 14 

Vlachogianni et al., 2011). The next step in evolution of RT-AQF systems was the use of 15 

sophisticated chemical transport models that represent all major processes (meteorological 16 

and chemical) that lead to the formation and accumulation of air pollutants. Many of these 17 

RT-AQF systems consist of an offline coupled meteorological model and a chemical-18 

transport model, where the meteorological model (e.g., ALADIN, ALADIN International 19 

Team, 1997; MM5, Grell et al., 19945; WRF, Skamarock et al., 2008) provides 20 

meteorological input for the chemical-transport model (e.g., EMEP, van Loon et al., 2004; 21 

CMAQ, Byun and Schere, 2006; CAMx, ENVIRON, 2011; CHIMERE, Menut et al., 2013) 22 

with an output time interval typically around 1 hour. Examples are the EURAD 23 

(http://db.eurad.uni-koeln.de/index_e.html), SILAM (http://silam.fmi.fi/), ForeChem 24 

(http://atmoforum.aquila.infn.it/forechem/), CALIOPE (http://www.bsc.es/caliope/) forecast 25 

systems and others. The new generation of an online coupled models (e.g., MCCM, Grell et 26 

al., 2000; GATOR-GCMM, Jacobson 2001; Meso-NH-C, Tulet et al. 2003; WRF-Chem, 27 

Grell et al., 2005; Enviro-HIRLAM, Baklanov et al., 2008; GEM-AQ, Kaminski et al. 2008; 28 

COSMO-ART, Vogel et al., 2009; WRF-Chem-MADRID, Zhang et al., 2010a) presents an 29 

alternative approach with one unified modelling system, in which meteorological and air 30 

quality variables are simulated together within the same model. The online approach permits 31 

the simulation of two-way interactions between different atmospheric processes including 32 



 12 

emissions, chemistry, clouds and radiation, and a better response of the simulated pollutant 1 

transport to changes of the wind field (Grell et al., 2004), and can thus provide a more 2 

realistic representation of the atmosphere. The use of online coupled models can be 3 

particularly important in regions with high aerosol loadings and cloud coverage (Otte et al., 4 

2005; Eder et al., 2006), where physical processes in the atmosphere may be modified by the 5 

aerosol direct effect on radiation or by aerosol cloud interactions. Several reviews 6 

summarized the strengths and limitations of offline and online coupled models (e.g. Zhang 7 

2008; Klein, 2012; Baklanov et al., 2014).There is an increasing awareness that an integrated 8 

online approach is needed not only for assessment, forecasting and communication of air 9 

quality, but also for weather forecasting (e.g. Baklanov, 2010; Grell and Baklanov, 2011; 10 

Klein et al., 2012; Zhang et al., 2012b; Baklanov et al., 2014). Nevertheless, there are several 11 

issues regarding the inclusion of chemistry into numerical weather prediction models. More 12 

evidence is required whether an integrated model can produce a good climatology of the most 13 

important chemical species, and if such a model is, considering many uncertainties, able to 14 

beat persistence forecasts of these species (Grell and Baklanov, 2011). These questions are 15 

calling for further research and studies exploring the performance of the models with an 16 

online coupled chemistry. 17 

In recent years extensive efforts have been devoted to develop air quality (AQ) forecasting 18 

systems for Slovenia. In this study we explore the use of the state-of-the-science WRF-Chem 19 

model (Grell et al., 2005, 2011) with coupled meteorological, microphysical, chemical, and 20 

radiative processes for forecasting AQ in Slovenia during the summertime conditions. In last 21 

decade WRF-Chem has been increasingly applied to many areas worldwide (e.g., Misenis and 22 

Zhang, 2010; Fast et al., 2009; Zhang et al., 2010a, 2010b; Li et al., 2011; Tie et al., 2009; Hu 23 

et al., 2012; Forkel et al., 2012, Žabkar et al., 2011a, 2013). In most of these studies WRF-24 

Chem model has been successfully used to simulate historical poor AQ conditions in hindcast 25 

approach. To our knowledge, only a few studies focused on using WRF-Chem for forecasting 26 

AQ, most of these have applied WRF-Chem forecast before and during field campaigns 27 

(McKeen et al., 2005, 2007, 2009; Yang et al., 2011). Takigawa et al. (2007) evaluated O3 28 

forecast for a 1 month time period from an one-way nested global-regional RT-AQF system 29 

with full chemistry based on the global CHASER (Sudo et al. 2002) and regional WRF-Chem 30 

models, while Saide et al. (2011) evaluated a forecast system based on the WRF-Chem model 31 

for simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate over Santiago de Chile for 32 

wintertime conditions. WRF-Chem-MADRID (Zhang et al., 2010a) with two additional gas-33 
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phase mechanisms, sectional representation for particle size distribution and more advanced 1 

model treatments compared to WRF-Chem, was applied by Chuang et al. (2011) and by 2 

Yahya et al. (2014) for forecasting AQ over the Southeastern U.S.. In spite of a limited 3 

number of evaluation studies published in the literature, an increasing number of real-time 4 

weather and air quality forecasting systems based on WRF-Chem is performedare 5 

implemented worldwide (http://ruc.noaa.gov/wrf/WG11/Real_time_forecasts.htm). 6 

In our study we explore the forecasting skill of WRF-Chem model over the topographically 7 

complex and geographically diverse area of Slovenia for three summer months (June - August 8 

2013). Furthermore, in the case of O3 we compare WRF-Chem predictions with a statistical 9 

model for predicting O3 daily maxima, currently used at the Slovenian Environment Agency 10 

(SEA). Both first day (1-day) and second day (2-day) forecasts are considered, while a 11 

persistence model, which assumes that pollutant level today and tomorrow will be the same as 12 

yesterday, is used as a threshold for useful model prediction. Since the availability of accurate 13 

and reliable forecasting system could be useful to the local authorities and could help to 14 

advise the public the proper preventive actions, we want to answer the question whether 15 

WRF-Chem model outperforms the statistical model or persistence. Namely, considering 16 

many uncertainties related to one unified model, it may not be easy for models with online 17 

chemistry to be able to perform well enough to meet the required standards, and more 18 

research and studies are needed to investigate that (Grell and Baklanov, 2011). Due to the 19 

limited number of previous studies focused on online coupled forecasting systems, the aim of 20 

our study is also to provide a greater insight into potential that lies in the approach based on 21 

an unified model for forecasting weather and air pollution. Finally, identified strengths, 22 

limitations and deficiencies of analyzed RT-AQFs, are expected to present the basis for 23 

further research.  24 

2 Methodology 25 

2.1 WRF-Chem forecast system 26 

The RT-AQF system for Slovenia based on the WRF-Chem model version 3.4.1 is configured 27 

with two nested domains (Fig.1) with horizontal resolution 11.1 km and 3.7 km, and 151×100 28 

and 181×145 grid points, respectively. A 1-way nesting is applied by two separate 29 

consecutive simulations, where outputs from the coarse grid integration are processed to 30 

provide boundary conditions for the nested run every 15 minutes. The vertical structure of the 31 
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atmosphere is resolved with 42 vertical levels extending up to 50 hPa, with the highest near 1 

ground resolution of ~25 m near the ground. About 15 levels are located within the lowest 2 2 

km to assure high vertical resolution of the daytime planetary boundary layer (PBL). To 3 

produce the 48-hour forecast, the model is run every day, starting at 00 UTC, with 4 

meteorological initial (ICs) and lateral boundary conditions (BCs) taken from the 0.5ᵒ data 5 

from the Global Forecast System (GFS), a global numerical weather prediction system 6 

operated by the US National Weather Service (NWS). For chemical BCs forecasts from 7 

global MOZART-4/ GEOS-5 (Emmons et al., 2010) RT-AQF system with temporal 8 

availability of 6 h are used. The instantaneous outputs at the 24
th

 hour of the previous day 9 

forecast are used to initialize next day’s forecasting simulation. An exception is the very first 10 

day of the first 48-hour forecasting cycle, when global MOZART-4/ GEOS-5 fields were used 11 

also to initialize chemistry. A three day spin-up ahead of the first analyzed forecast day is 12 

then taken into account to allow pollutants to accumulate in the air masses.  13 

In the WRF-Chem model, several choices for parameterizations of physical and chemical 14 

processes are available (Grell et al., 2005; Skamarock et al., 2008; Peckham et al., 2011), and 15 

their choice can have a strong impact on the model predictions. In both domains wWe decided 16 

to apply the same schemes as were used in simulation SI1 for Phase-2 of the Air Quality 17 

Model Evaluation International Initiative (AQMEII) (e.g., Balzarini et al., 2014, Baró et al., 18 

Curci et al., 2014, Forkel et al., 2014, Im et al., 2014a and 2014b, Kong et al., 2014, 2014, 19 

San Josè et al., 2014). These include Yonsei University (YSU) PBL scheme (Hong et al., 20 

2006), NOAH land-surface model (Chen and Dudhia, 2001), Rapid Radiative Transfer 21 

Method for Global (RRTMG) long-wave and short-wave radiation scheme (Iacono et al. 22 

2008), Grell 3D ensemble cumulus parameterization scheme (Grell and Devenyi, 2002) with 23 

radiative feedback, Morrison double-moment cloud microphysics (Morrison et al., 2008), 24 

Fast-J photolysis scheme (Fast et al., 2006), RADM2 gas phase chemistry (Stockwell et al., 25 

1990) and the MADE/SORGAM aerosol module (Ackermann et al., 1998, Schell et al., 26 

2001). Current model implementation includes a modified RADM2 gas phase chemistry 27 

solver as described in Forkel et al. (2014), which avoids under-representation of nocturnal O3 28 

titration in areas with high NO emissions. According to Forkel et al. (2014) the modified 29 

solver tends to over-estimate the low NO2 concentration for pristine regions and in the free 30 

troposphere, which results in an overestimation of O3. Due to the focus on polluted regions 31 

this deficiency was considered as less important than the advantage of better description of 32 

the titration. In addition, the comparatively small modelling domain (D1) ensures that the 33 
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boundary conditions constrain the high bias of the modified solver for O3 and NO2 in the free 1 

troposphere. Also according to our sensitivity tests (results not shown) the modified solver 2 

showed better performance for O3 daily maxima and O3 nighttime minima than the QSSA 3 

RADM2 solver supplied originally with WRF-Chem model. 4 

Among feedbacks only the aerosol direct effects on radiation according to Fast et al. (2006) 5 

and Chapman et al. (2009) are taken into account. As shown by Kong et al. (2014) for two air 6 

pollution episodes, this degree of aerosol-meteorology interactions in 3.4.1 version of the 7 

WRF-Chem improved model performance for high aerosol loads, while the representation of 8 

the indirect effects needs to be further improved to be able to outperform simulations with 9 

direct effects only.  10 

Biogenic emissions are estimated using MEGAN (Model of Emissions of Gases and Aerosols 11 

from Nature; Guenther et al., 2006) online model calculations, while dust emissions are 12 

modelled according to Shaw et al. (2008) with an adjustment to avoid high dust fluxes from 13 

some Dalmatian islands in Croatia. A detailed anthropogenic inventory for pollutants CO, 14 

NH3, NOx, SO2, and NMVOC, which has been for the purpose of AQ forecasting constructed 15 

for year 2009 by SEA (SEA, 2014), is used to estimate anthropogenic emissions in Slovenia. 16 

For areas outside Slovenia the recently updated anthropogenic emissions for the year 2009 17 

based on the TNO-MACC-II (Netherlands Organization for Applied Scientific Research, 18 

Monitoring Atmospheric Composition and Climate – Interim Implementation), the same as 19 

prepared for phase-2 of the AQMEII exercise (Pouliot et al., 2014), are being used. Daily 20 

updates of the WRF-Chem based experimental AQ forecast are provided at 21 

http://meteo.fmf.uni-lj.si/onesnazenje. 22 

2.2 Statistical ozone daily maximum forecast 23 

The statistical O3 model (Žabkar, 2011b), currently used at SEA for forecasting O3 daily 24 

maxima at 8 measuring sites in Slovenia (Fig.3), is a multivariate regression tool combined 25 

with clustering algorithms to take into account measured data, weather forecast data, as well 26 

as the predicted backward trajectories of each monitoring site. As regards measurements, 27 

yesterday (at 12, 15, 18 and 21 local time, daily maximum, daily minimum, daily average) 28 

and today early morning (7 local time) meteorological (pressure, relative humidity, direct and 29 

diffusive solar radiation, wind speed) and AQ data (O3, NOx, NO2, CO, PM10, SO2) are used. 30 

For meteorological predictions the 24-h ECMWF forecast variables at 12 UTC of the forecast 31 

http://meteo.fmf.uni-lj.si/onesnazenje
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day at different vertical levels (1000 hPa, 925 hPa, 850 hPa, 500 hPa, 300 hPa) above the 1 

measuring sites are taken into account. Among all these variables by the use of stepwise 2 

technique, based on the F-statistic only significant variables were selected  to be included in 3 

multivariate regression equations for different monitoring sites (from 15 to 26 variables, 4 

depending on monitoring site).  5 

The important part of the statistical forecast is calculation of 24-h backward trajectories on 6 

meteorological fields of ALADIN/SI forecast. The inclusion of 24-h predicted trajectories 7 

into statistical model is based on the study (Žabkar et al., 2008) which showed, that the 8 

highest O3 daily maxima at monitoring sites in Slovenia are in general associated with short 9 

(slow-moving) backward trajectories with athe southwestern origin, while the lowest 10 

measured daily maximum O3 values for all the stations are associated with the clusters of long 11 

northwestern trajectories. Clusters of similar trajectories were for the purpose of statistical 12 

forecast calculated by k-means clustering algorithms (Moody and Galloway, 1988; Žabkar et 13 

al., 2008) on 6 years (2004-2010) of data (ALADIN/SI trajectories). As an example, Fig. 2 14 

shows a mean is showing mean O3 daily maxima for clusters of similar trajectories for one of 15 

the monitoring sites. The same 6-year time period of training data was used in the stepwise 16 

multiple regression procedure to determine the multiple regression prognostic equations 17 

associated with monitoring sites and trajectory clusters, from measurements, ECMWF 18 

forecast data, average cluster O3 daily maximum, and day-of-the-year variable.  19 

The first step of the statistical O3 prediction is the calculation of trajectories approaching the 20 

monitoring stations at 12 UTC of the forecast day. In the next step these backward trajectories 21 

of each monitoring site are associated to the nearest pre-calculated cluster of similar 22 

trajectories. Finally, the multiple regression equation of the associated group of trajectories is 23 

used to calculate the O3 daily maximum prediction. It must also be noted, that the decision on 24 

declaring O3 episodes is only partially based on the results from this statistical model; it also 25 

involves a decision made by AQ forecasters.  26 

2.3 Evaluation methodology 27 

We evaluate the 1-day and 2-day WRF-Chem meteorological and AQ forecasts on the high 28 

resolution domain during a 3-month period (June - August 2013).The main focus is on O3 29 

predictions. In the case of air pollutants, the instantaneous lowest model level mixing ratios 30 

(with grid point center about 12 m above model orography - an exception is KRV station as 31 
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explained below) are compared to the hourly averaged concentrations measured at monitoring 1 

stations (which have a typical inlet height of 3 m) from the national network and some other 2 

environmental information systems in Slovenia. Figure 3 shows locations of these AQ 3 

monitoring stations, and Tab. 1 lists the basic characteristics, including comparison of the 4 

station altitude, the height of model orography, model analysis height, and pollutants with 5 

higher than 75% availability of valid data during the analyzed time period for each of the AQ 6 

monitoring site. In the case of the elevated alpine KRV station, AQ variables are evaluated for 7 

the 5
th

 model layer instead of the first model layer. We made this exception for KRV, since 8 

the height of the model topography was significantly underestimated there (Tab. 1), as well as 9 

the station is known to be strongly influenced by the conditions of the free troposphere. The 10 

selection of the 5
th

 model layer for KRV station is based on analyses performed for different 11 

model layers (results not shown) and was found to reduce the negative bias for O3 due to too 12 

low WRF-Chem topography at this location. Although even for this model layer the location 13 

of the grid point representing KRV station (1414 m) is still well below the true station altitude 14 

(1740  m), the O3 bias for KRV station is significantly smaller than for the first layer, while 15 

the correlation coefficient between the measured and simulated O3 levels remains similar in 16 

both cases (the 5
th

 or the lowest model layer). Taking results from higher model layers would 17 

further decrease the negative model bias, but would also worsen the correlation coefficient for 18 

O3 at this station due to decreased impact of surface processes. 19 

All AQ stations are background, 7 of them are measuring urban background, 1 suburban and 20 

9 rural conditions. Valid O3 measurements are for the analyzed time period available for 13 21 

AQ stations. When studying the general model performance, data from additional 4 stations 22 

for two other pollutants (NO2, PM10) are also analyzed to get a better picture of model 23 

behavior over the domain, known for its large topographical and climate diversity. The 24 

coverage of three climate zones in Slovenia (Mediterranean, sub-alpine and mountainous) 25 

with monitoring stations is the following: NG, KOP and OTL are Mediterranean sites, KRV is 26 

a mountainous station, and the remaining stations are sub-alpine. As well as theBesides 27 

elevated station KRV, the also ISK, OTL and VNA stations are also influenced by measuring 28 

regional transport of pollutants.  29 

For evaluation of predicted meteorological variables, data from SEA meteorological stations 30 

(MET, Fig. 3) for 2m temperature (T2m), 10 m wind speed (W10m), relative humidity (RH), 31 

incoming shortwave radiation (SR) and precipitation (RR) are used. It must be noted, that 32 

http://worldwidescience.org/wws/link.html?type=RESULT&redirectUrl=http://www.etde.org/etdeweb/details.jsp?query_id=1&page=0&osti_id=306379
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MET stations with lower spatial representativeness (e.g. alpine stations) were not a priori 1 

excluded from the analyses, which needs to be taken into account when looking at evaluation 2 

results. The reason for not excluding these stations was that some interesting information 3 

about thefor AQ forecast can also be gained also by the evaluation of meteorological forecast 4 

for these stations.  5 

Basic statistical measures (correlation coefficient (CORR), mean error (ME), mean absolute 6 

error (MAE) and root mean square error (RMSE)) are used for evaluating model’s forecasting 7 

skills of meteorological and AQ variables. In the case of O3, correlation coefficients are 8 

presented also by Taylor diagrams (Taylor, 2001), which graphically summarize the similarity 9 

between model forecasts and observations not only in terms of their correlation, but also with 10 

their centered root-mean-square difference and the amplitude of their variations, represented 11 

by their standard deviations. Furthermore, some additional discrete statistical measures, 12 

including index iof agreement (IOA), the mean normalized bias error (MNBE), and the mean 13 

normalized gross error (MNGE) are calculated for O3 daily maximum concentrations 14 

predicted by the different models. Finally, to evaluate the model’s ability to predict 15 

exceedances and non-exceedances also several categorical indices including Equitable Threat 16 

Scoreaccuracy (ETSA), Critical Success Index (CSI), bBias (B), Ffalse aAlarm rRatio (FAR) 17 

and, Pprobability Oof Ddetection (POD) and critical success index (CSI) are calculated for 18 

different thresholds. Definitions of statistical measures are shown in Appendix A. 19 

2.4 Meteorology and air quality of June-August 2013 20 

The analyzed period was marked by three heat wave events, which contributed to the summer 21 

characterized by high temperatures, sunny weather and lack of precipitation in Slovenia. The 22 

first heat wave event with measured temperature daily maxima up to 35 °C occurred after a 23 

rather cold beginning of the month and lasted from June 15 – 21. The event was terminated by 24 

a cold front passage and followed by the pronounced cold episode during the end of June and 25 

the beginning of July. Another heat wave event with temperatures above 35 ºC observed in 26 

the lowland, started on July 26 and was briefly interrupted on July 29, when thunderstorms 27 

related to frontal passage were accompanied by exceptionally strong wind gusts. The most 28 

remarkable of three extraordinary hot episodes was recorded from August 1 – 8. On the last 29 

day of this episode, August 8, temperatures reached 40 °C at some measuring sites in 30 

Slovenia, and many of them observed their highest temperature ever recorded.  31 



 19 

As expected for summertime conditions, measured concentrations of most air pollutants, 1 

including PM10, were in general low during the analyzed time period. The only exception 2 

was O3 with exceedances of 8-hour target value (120 μgm
-3

) measured at all AQ monitoring 3 

stations during the three heat wave events, which is the reason why the main focus of the 4 

present study is on this pollutant. During the second two events (in July and August) also 5 

threshold exceedances of 1-hour daily maxima were recorded for O3. In spite of the hot and 6 

sunny conditions during the first heat wave event in June 2013, measured daily O3 maxima at 7 

the Slovenian stations did not exceed the 1-hour information threshold value (1h ITV; 180 8 

μgm
-3

), but reached 171 μgm
-3

 at the Mediterranean OTL and the elevated alpine KRV 9 

stations. During the second heat wave event 1-hour daily maxima exceeded 180 μgm
-3 

at 10 

KRV, OTL, NG and KP (July 23 – 28), while the highest number of 1-hour exceedances (20) 11 

has been in July measured at OTL station. Similarly, during the August heat wave event O3 12 

concentrations exceeded the 1h ITV at LJ, MB, OTL, NG and KP from August 2 – 7. To 13 

summarize, the Mediterranean stations (NG, OTL, KP) due to very high O3 concentrations 14 

measured during the heat wave events (especially the second two events) exhibited the 15 

poorest AQ in Slovenia during the analyzed time period, while the legislation limit values 16 

have been exceeded only occasionally for the sub-alpine stations. 17 

 18 

3 Results and discussion  19 

3.1 Evaluation of meteorological variables 20 

Table 2 shows conventional statistical scores evaluating the 1-day WRF-Chem forecast for 21 

the basic meteorological variables, 2m temperature (T2m; for hourly values and daily 22 

maxima), 10 m wind speed (W10m), relative humidity (RH) and incoming solar radiation 23 

(SR). Results for three selected measuring sites (LJ, NG, MS) and overall result for all 24 24 

MET monitoring sites (shown in Fig. 3) are presented separately.  25 

Incoming solar radiation is the main energy source that drives all atmospheric processes, 26 

including PBL processes, and has a critical role also in atmospheric chemistry. For almost all 27 

sites the mean SR was overestimated by the model, with an overall ME of 16 W/m
2
 and 11 28 

W/m
2
 for 1-day and 2-day forecast, respectively. CORR was higher for 1-day (0.77) than for 29 

2-day (0.71) forecast, with a range of 0.64 to 0.90 for 1-day forecasts at different stations. The 30 
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larger positive bias during the first day than for the second day can be attributed to less cloudy 1 

conditions during the first day of simulation.  2 

 3 

In the case of T2m 1-day (2-day) WRF-Chem meteorological forecast showed an overall 4 

correlation with measurements of 0.93 (0.94) for all 1-hour values and 0.97 (0.96) for 1-hour 5 

daily maxima. With an exception of three alpine stations with higher simulated positive bias, 6 

daily T2m maxima were simulated with ME between -3.9 °C and -0.6 °C, depending on 7 

station spatial representativeness. All meteorological variables, including soil temperature and 8 

soil moisture, are always initialized with GFS data. This explains higher negative bias for 9 

T2m during the first day of simulation in spite of the overestimated of solar radiation. A while 10 

aAn average systematic underestimation of T2m daily maxima was -2.1 °C both for 1-day and 11 

2-day forecast. Nighttime T2m minima showed lower systematic bias for 2-day forecast, 12 

which resulted in overall bias for all hourly T2m values of -1.3 °C for 1-day and -0.8 °C for 2-13 

day forecast. Predominant weak wind conditions with variable direction at stations located in 14 

complex topography were challenging to simulate. The general model tendency was to 15 

overestimate W10m with overall ME of 0.8 m/s for 1-day and 2-day forecast, where for some 16 

stations bias can be very low (e.g. LJ; Tab. 2) and much higher for some other stations due to 17 

their local positioning in complex topography (e.g. HRA located in valley with ME of 1.9 18 

m/s). For hourly values the correlation is lower (Tab. 2), but for mean daily W10m values 19 

Pearson correlation coefficient between 0.4 and 0.9 has been simulated, depending on 20 

monitoring site. Relative humidity shows slightly better results for 1-day than for 2-day 21 

forecast with CORR of 0.77 and low overall ME of 2 % for 1-day forecast, which for 22 

particular stations can be positive (e.g. KRV) or negative (e.g. LJ, NG; Tab. 2).  23 

Incoming solar radiation is the main energy source that drives all atmospheric processes, 24 

including PBL processes, and has a critical role also in atmospheric chemistry. For almost all 25 

sites the mean SR was overestimated by the model, with an overall ME of 16 W/m
2
 and 11 26 

W/m
2
 for 1-day and 2-day forecast, respectively. CORR was higher for 1-day (0.77) than for 27 

2-day (0.71) forecast, with span from 0.64 to 0.90 for 1-day forecast at different stations. 28 

Precipitation (RR) has an important role in cleansing of the atmosphere by wet deposition and 29 

scavenging. OIn average, the predicted precipitation underestimated the measured 3-month 30 

accumulations byfor -55 mm (1-day) or -8 mm (2-day forecast), where the station averaged 31 

predicted 3-month precipitation was 145 mm for 1-day, and 194 mm for 2-day forecast 32 
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(results not shown). It must also be taken into account that the 3.4.1 model version does not 1 

allow to include the information about hydrometeors at the boundaries of the nested domain 2 

(in the applied 1-way nesting procedure), which contributes to the negative simulated bias of 3 

precipitation. A large decrease in the precipitation bias from day 1 to day 2 suggests that 4 

different initialization methodology (e.g. using 1 day spin-up for meteorology) could improve 5 

the prediction of precipitation events. Although the WRF-Chem simulations sometimes failed 6 

to correctly predict the true amount and location of the more randomly spread summertime 7 

convective precipitation, the main precipitation events (e.g. those terminating three heat wave 8 

events) were well predicted and simulated.  9 

3.2 Evaluation of air quality variables 10 

In this section we evaluate WRF-Chem predictions for O3, NO2 and PM10, as three of the 11 

most problematic pollutants in terms of harm to human health and compliance with EU limit 12 

values (EEA, 2012). Table 3 shows the domain wide performance statistics for 1-day and 2-13 

day forecasts of these pollutants, where in the case of O3 1-hour and 8-hour averages and 14 

daily maxima are analyzed separately. The comparison of 1-day and 2-day forecasts shows 15 

that concentrations of air pollutants were somewhat better forecasted 1-day than 2-days ahead 16 

by means of almost all of statistics shown in Tab. 3, with higher impact on O3 predictions. 17 

Although the 2-day prediction was generally not worse for the majority of meteorological 18 

variables, the reason for better 1-day prediction in the case of O3 could be somewhat stronger 19 

simulated winds on the second day of simulation. Stronger winds impact the transport and 20 

dispersion of pollutants, and have the greatest consequence for secondary pollutants (like O3) 21 

which need time to be formed.  22 

As shown in Tab. 3 the WRF-Chem simulations tend to overestimate the 1-hour and 8-hour 23 

O3 values with ME of 14.53.7 μgm
-3

 and 14.63.8 μgm
-3

, respectively. Looking at MAE, 24 

RMSE and CORR statistics, agreement with measurements is better for 8-hour (22.69 μgm
-3

, 25 

28.15 μgm
-3

 and 0.69) than for 1-hour O3 values (25.15 μgm
-3

, 32.15 μgm
-3

 and 0.65), which 26 

is in line with results of previous studies (e.g. Tong and Mauzerall, 2013) and suggests that 27 

the current modeling system has problems simulatingto simulate the small-scale fluctuations 28 

of O3. On the other hand evaluations of predicted 8-hour and daily O3 maxima, which are of 29 

most concern, show a nice model performance (ME, MAE RMSE and CORR of -2.73.4 μgm
-

30 

3
, 13.37 μgm

-3
, 16.77.1 μgm

-3
 and 0.81 for daily maxima, respectively), in line or even better 31 
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than obtained in some previous studies (e.g. Tong and Mauzerall, 2006; Chuang et al., 2011; 1 

Yahya et al., 2014), which could be to some extent related to higher model resolution.  2 

To understand results of the domain wide statistics (in Tab. 3) we further analyze spatial and 3 

temporal characteristics of model O3 predictions. Figure 4 shows a spatial pattern of average 4 

simulated 1-day predictions for O3, NO2 and PM10 overlaid with measured averages, where 5 

in the case of O3 results for all hourly values and for daily maxima are shown separately. 6 

Examples of forecasted and measured time series for O3 at different stations are shown in Fig. 7 

5. In Fig. 4a Tthe elevated alpine KRV station is the only one with high negative bias (-12 8 

μgm
-3

) in forecasted 1-hour O3 concentrations at the lowest model layer, which can be 9 

explained by the too low altitude of the KRV station in model topography,. The high negative 10 

bias for hourly O3 concentrations at KRV station is reduced to a value of only -2 μgm
-3

 by 11 

using the 5
th

 model layer concentrations as explained in chapter 2.3. The 5
th

 model  level 12 

predictions will be used for KRV in all analyses that follow.since the mean O3 concentration 13 

increases with height. Besides KRV also the Mediterranean KOP and OTL stations, as well as 14 

the rural ZAV site, are stations with comparatively high measured nighttime O3 levels, which 15 

results in low overall bias for all hourly O3 values for these stations (from -23 to -7 μgm
-3

). 16 

Namely, WRF-Chem model cannot capture well the profound nighttime O3 reductions (shown 17 

also by Žabkar et al, 2013; Im et al., 2014a), which contributes to the overall over-prediction 18 

of hourly O3 concentrations (from 10 to 36 μgm
-3

)
 
for stations with very low measured 19 

nighttime O3 concentrations. For sites with highest positive bias in 1-hour O3 concentrations 20 

(TRB, ZAG, HRA and ISK, with bias of 36 μgm
-3

, 31 μgm
-3

, 26 μgm
-3

 and 32 μgm
-3

, 21 

respectively), this can also be partly explained by too high altitude of the stations in model 22 

orography (Tab. 1), since the mean O3 concentration increases with height. 23 

Looking at O3 daily maxima (Fig. 4b), the under-predictions occur at alpine KRV (-16 μgm
-3

 24 

for the lowest model level shown in Fig.4) and at three Mediterranean stations (OTL, NG, 25 

KOP; from -14 to -11 μgm
-3

). For Mediterranean stations the underestimations of daily 26 

maxima are most probably due to inaccurate representation of costal processes in model, 27 

which are crucial for PBL height evolution and accumulation of pollution in the near ground 28 

air layers. For TRB station located in narrow valley of the very complex terrain that cannot be 29 

appropriately resolved in the current model topography, the model over-predicts O3 daily 30 

maxima for 14 μgm
-3

. For other sub-alpine stations the bias of O3 daily maxima predictions is 31 

lower.  32 

http://www.sciencedirect.com/science/article/pii/S1352231014002969
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To some extent the previously mentioned model over-predictions of nighttime O3 minima 1 

could be explained by model incongruity error in predicted NO2 levels. When evaluating the 2 

primary pollutants one must be aware that in the model the instantaneous emissions are spread 3 

over an entire grid box, which results in underestimated emissions and concentrations close to 4 

the source regions and overestimated emissions and concentrations at rural locations adjacent 5 

to the source regions, and can thus cause a combined effect of negative and positive biases at 6 

urban and rural sites. Comparisons of WRF-Chem predicted NO2 levels with measurements 7 

show that in spite of the high spatial resolution the concentrations of the small urban areas are 8 

insufficiently represented by the model (Fig. 4c). In Slovenia many towns are located in 9 

basins or very narrow valleys, usually poorly or even not resolved in model topography. 10 

Smoothed local emissions for these towns show significant underestimations of NO2 11 

concentrations (e.g. ZAG in Fig. 6). In combination with poorlydeficiently reproduced 12 

meteorological processes (calm and stable nighttime conditions in valleys and basins) this 13 

results in an underestimation of the O3 loss by titration. This can explain the positive 14 

nighttime bias of O3 found at these sites. The situation is better for bigger cities, located in 15 

wider basins, like LJ or CE (LJ; Fig. 6), while at rural sites NO2 is either well simulated (e.g. 16 

MOH; Fig. 6), or slightly over-predicted due to increased emissions from adjacent urban area 17 

(e.g. ZAD; Fig. 6). The overall agreement of hourly NO2 predictions with measurements was 18 

good for rural sites, while urban sites experienced under-predictions, which were highest for 19 

small cities, especially for NG (ME of -13 μgm
-3

) and ZAG (ME of -14 μgm
-3

). 20 

Also Iinteresting to discuss are thealso results for predicted PM10 concentrations (Tab. 3 and 21 

Fig. 4d), showing slight over-prediction of daily PM10 levels at all stations which is 22 

somewhat surprising due to the fact that nearly all current off-line and on-line coupled 23 

chemical transport models show large systematic PM10 underestimations. For example, 24 

within AQMEII exercise, where seventeen modeling groups from Europe and North America 25 

were brought together, running eight operational online-coupled air quality models over 26 

Europe and North America, the rural PM10 concentrations over Europe were underestimated 27 

by all models (model configurations) by up to 66% while for the urban PM10 concentrations 28 

the underestimations were even much larger (up to 75%) (Im et al., 2014b). The reason for 29 

slight over-prediction of PM10 levels could be to some extent attributed to the high model 30 

spatial resolution used in our study. Further, CORR for daily PM10 concentrations is rather 31 

low (0.34 and 0.37 for 1-day and 2-day forecasts, respectively; Tab. 3), which is partly due to 32 

the low temporal dynamics of measured daily PM10 concentrations during the analyzed time 33 
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period (no recorded PM10 exceedingexceedances), and partly due to the simulated PM10 1 

overestimations during the heat wave events. These over-predictions contributed also to the 2 

overall positive bias of predicted PM10 levels. As shown in Fig. 7 for two monitoring sites, 3 

there was a significant PM10 over-prediction simulated on June 10 (day 8 in Fig. 7), related to 4 

the pre-frontal advection of polluted air-masses coming from the north-western part of the 5 

domain D2 (coming from domain D1). The next significant PM10 over-prediction occurred 6 

during the first heat wave episode (June 17-22), when during the hot and low wind conditions 7 

(after June 17) the PM10 levels started to build up in the PBL over entire domain D2 (and 8 

over southwestern parts of domain D1), and reached the maximum concentrations in Slovenia 9 

again with prefrontal advection of polluted air masses. Both over-predictions contributed to 10 

an overall positive bias in forecasted PM10 concentrations. Detailed analyses showed that 11 

high concentrations in domain D1 originated from boundary conditions, and appear to be a 12 

consequence of overestimated advection of Saharan dust in MOZART model predictions. The 13 

increase in PM10 concentrations over Slovenia was also simulated during the prefrontal 14 

advection related to the cold front which terminated the next two heat wave events in July and 15 

August (days 56-57 and days 67-68 in Fig. 7), but during these days predicted PM10 levels 16 

were close to the measured PM10 concentrations.  17 

3.3 Evaluation and comparison of different methods for O3 daily maximum 18 

predictions  19 

In this section we want to answer the question: “ how accurate is the 1-hour O3 daily 20 

maximum WRF-Chem forecast in comparison with to the statistical model prediction or with 21 

to persistence?”. According to Zhang et al. (2012a) statistical models are known to be 22 

generally more suitable for complex site-specific relations between concentrations of air 23 

pollutants and predictors. With appropriate and accurate predictors they have a higher 24 

accuracy as compared to deterministic models, which is, along with their  beside the 25 

computational efficiency their main advantage (Zhang et al., 2012a). Among the strengths of 26 

the deterministic models areis that they give prognostic time- and spatially-resolved 27 

concentrations under typical and atypical scenarios, and can give scientific insights into 28 

pollutant formation processes (Zhang et al., 2012a).  Furthermore, they also allow forecasts 29 

also for locations which are not monitored due to their complete spatial coverage. In spite of 30 

simplified descriptions of physical and chemical processes in the deterministic models and 31 

inaccuracies and uncertainties in model inputs (in particular the emissions), some previous 32 
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studies already suggested that deterministic models can also have skills close to statistical 1 

forecasting tools (e.g. Manders et al., 2009). In addition to evaluation and comparison of O3 2 

daily maxima predictions with WRF-Chem and the statistical model, we decided to add a 3 

persistence model as a threshold for useful model prediction. Persistence works well under 4 

stationary conditions, but because it cannot handle changes in weather and emissions, fails at 5 

the beginning and at the end of the episodes (Zhang et al., 2010a). Regarding the extremes, 6 

models of all types are known to have problem to accurately predict them, while persistence 7 

predicts extremes with a 1-day (2-day) time lag.  8 

Figure 8 compares discrete statistics site by site for 1-day and 2-day model predictions of 1-9 

hour O3 daily maxima. Similarly, Tab. 4 shows these statistics for all data with different 10 

thresholds applied (only for WRF-Chem and persistence, because a statistical forecast is not 11 

available for all stations), and separately for different types of stations (sub-alpine urban, 12 

rural, Mediterranean urban) with an available statistical forecast. Looking at ME persistence 13 

gives results close to zero as long as no threshold is applied, while with threshold of 140 μgm
-

14 

3
 (Tab. 4) ME of 1-day persistence (-10.2 μgm

-3
) is very close to the WRF-Chem model for 1-15 

day predictions (-11.29 μgm
-3

), and for 2-day predictions WRF-Chem (-13.84.6 μgm
-3

) 16 

already beats the persistence (-19.4 μgm
-3

). Site-by-site comparison (Fig. 8) shows that for 17 

most stations the statistical forecast has a lower ME than WRF-Chem forecast, but there are 18 

also stations (ISK, HRA, LJ, KRV) with lower or equal ME for WRF-Chem than for 19 

statistical model, indicating the possible occurrence of atypical conditions not resolved by the 20 

statistical model. Looking at MAE and RMSE, at all stations except those with highest ME 21 

(KRV, TRB, KOP) WRF-Chem outperforms the persistence already in the 1-day forecast. 22 

Among sites with available statistical forecast there are only two (OTLKRV, KOP) with 23 

WRF-Chem performing worse than the statistical forecast. CORR is one of the parameters 24 

that suggest how much the model is able to follow the true nature of processes regardless the 25 

possible bias. For almost all stations WRF-Chem shows higher CORR than persistence for 1-26 

day and 2-day forecasts. Only at the KRV station the 1-day statistical forecast (CORR=0.80) 27 

somewhat outperforms WRF-Chem (0.746), and at NG and KOP CORR for WRF-Chem and 28 

statistical model is very similar.  29 

The Taylor diagrams in Fig. 9 show CORR together with the centered root-mean-square 30 

difference (RMSD) between model forecasts and observations, and the amplitude of their 31 

variations (standard deviation),. The ideal where ideal modelforecast would lie in the right-32 
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bottom cornerhave a correlation coefficient of 1 and a standard deviation equal to the 1 

observations, which means that it would be co-located with the black dot on the diagram. 2 

WRF-Chem gives higher CORR and lower RMSD for all types of stations, while standard 3 

deviation of WRF-Chem O3 daily maxima predictions is underestimated and lower than for 4 

other model forecasts. The latter shows that the variability in WRF-Chem model predictions 5 

is not as large as that in observed values. MNBE in Fig. 8 has a course very similar results to 6 

ME. For all forecasts except WRF-Chem for the TRB site (with MNBE of 16%) which is 7 

located in a narrow valley that is not resolved in the current model resolution, MNBE is 8 

below the ±10-15%, which is the U.S. EPA (US EPA, 1991) recommended threshold for the 9 

models used for regulatory applications. For MNGE the U.S. EPA recommendation below 10 

30-35% for O3 applications is met by all forecasts, even in the case of 2-day persistence 11 

model. With exception of the MS and KOP sites MNGE is lower for WRF-Chem than for 12 

statistical forecast, while for KOP and KRV sites with highest negative bias in WRF-Chem 13 

predictions, 1-day persistence gives best results, followed by the statistical forecast and or 14 

WRF-Chem. Very similar are results for IOA with the range of 0-1, and score 1 indicating 15 

perfect model agreement with the observations. We can conclude that for most stations the 16 

WRF-Chem predictions are in line or even outperform the statistical model. With the 17 

exception of the stations with high bias due to very complex local topography (TRB) or, 18 

unresolved coastal processes (KOP) or alpine stations (KRV), the WRF-Chem forecasts are 19 

more accurate than persistence. Here we recall that high negative bias in WRF-Chem forecast 20 

for alpine KRV site due to too low altitude of the station in model topography was 21 

compensated by taking prediction from the 5
th

 model level. 22 

The key requirement for a forecast system is to be able to predict O3 concentration levels 23 

greater than a given threshold. Thus, in addition to the discrete evaluation just presented, also 24 

the contingency-table-based statistics are an important metrics of forecast performance. Table 25 

5 summarizes the categorical evaluation results for three different thresholds (120, 140, 160 26 

μgm
-3

) of elevated O3 levels, which pose a greater risk to human health. Namely, it is 27 

important to take should be taken into account that results of categorical statistics are very 28 

sensitive to the threshold chosen, as well as to the overall pollution levels during the analyzed 29 

months. Equitable Threat Score (ETS) measures the fraction of observed and/or correctly 30 

predicted events, adjusted for the frequency of hits that would be expected to occur by 31 

random chance. Although this score takes into account the climatology it is not truly 32 

equitable. It ranges from -1/3 to 1, where the minimum value depends on climatology (it is 33 
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near 0 for rare events). Looking at Tab. 5 ETS shows equal skill for WRF-Chem and 1 

statistical forecast, higher than persistence for the 120 μgm
-3

 threshold (1-day and 2-day 2 

forecast). ETS decreases with increasing the threshold for both WRF-Chem and statistical 3 

forecast, indicating the challenge that both models have to accurately predict the extremes. In 4 

the case of 140 μgm
-3

 threshold, WRF-Chem has the same ETS as persistence, higher than the 5 

statistical model for 1-day forecast, while for 2-day forecast WRF-Chem outperforms the 6 

statistical model, followed by persistence. In the case of 160 μgm
-3

 threshold persistance has 7 

the highest ETS for a 1-day forecast, followed by statistical model and WRF-Chem, while in 8 

the case of 2-day predictions, statistical model shows the highest skill and WRF-Chem the 9 

lowest. Accuracy (A), which measures how often the forecasts are correct either above or 10 

below the threshold, increases with threshold level. Looking at 1-day forecast A is highest for 11 

statistical forecast at 120 μgm
-3 

threshold, for WRF-Chem forecast at 140 μgm
-3

 threshold, 12 

and in the case of 160 μgm
-3

 threshold applied, for persistence. Another measure, the critical 13 

success index (CSI), is similar to ETS, except that it does not take into account the 14 

climatology of the events and thus gives poorer scores for rarer events. It measures the 15 

percentage of cases that are correctly forecasted out of those either forecasted or observed, 16 

and ranges from 0 to 1 (1 indicating the perfect forecast). Similar as ETS, CSI gives higher 17 

scores for persistence in the case of 1-day forecast for the higher two thresholds, while on the 18 

second day WRF-Chem or the statistical model already performs better. There is Bias (B) 19 

determines whether the same fraction of events are both forecasted and observed. A tendency 20 

of the statistical model and of WRF-Chem to under-predict O3 threshold exceedances shows 21 

as a B below 1 for these two models. a tendency of the statistical model and of WRF-Chem to 22 

under-predict O3 daily maxima. This shows as a bias (B) below 1 for these two models, where 23 

B determines whether the same fraction of events are both forecasted and observed. The false 24 

alarm ratio (FAR) that measures the percentage of forecast high O3 events that turn out to be 25 

false alarms, gives highest skill for WRF-Chem, followed by statistical model and 26 

persistence. The probability of detection (POD) is a measure of how often a high threshold 27 

occurrence is actually predicted to occur, and is relatively low for WRF-Chem with respect to 28 

other models. Another useful measure, the critical success index (CSI), measures the 29 

percentage of cases that are correctly forecasted out of those either forecasted or observed, 30 

and is for higher two thresholds best for persistence in the case of 1-day forecast, while on the 31 

second day WRF-Chem or the statistical model already perform better.  32 
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It must be noted, that in categorical evaluations systematic biases like those obtained with 1 

WRF-Chem for some stations (e.g. KOP, KRV), significantly impact the model performance. 2 

For example, if KOP and KRV stations waswere excluded from categorical evaluations, 3 

WRF-Chem performance improved by means of all statistical measures (results not shown). If 4 

correction techniques, based on observations and the previous day’s forecast (e.g., McKeen et 5 

al., 2005, 2007; Kang et al., 2008) were towould be applied to correct the systematic biases, 6 

WRF-Chem forecasts might outperform the other two models even in categorical evaluations. 7 

 8 

4 Summary and conclusion 9 

A high resolution modelling system based on an on-line coupled WRF-Chem has been 10 

applied for numerical weather prediction and for forecasting air quality in Slovenia. In the 11 

study the evaluation of the forecasting system has been conducted for three summer months. 12 

Since the selection of physical or chemical parameterization schemes influences and possibly 13 

changes the outcomes, we decided to apply schemes which are well documented and have 14 

previously been used in other applications (e.g. AQMEII).  Both 1-day and 2-day predictions 15 

of meteorological and air quality variables have been analyzed. The focus has been on O3 as 16 

the only pollutant with recorded exceedances of legislation limit values during the three heat 17 

wave events in June, July and August 2013.  WRF-Chem daily O3 maximum predictions have 18 

also been compared to the operational statistical model and persistence forecasts to answer the 19 

question how skillful are the WRF-Chem model predictions compared to these two models.  20 

1-day and 2-day WRF-Chem PM10 forecasts showed a very low bias. Exceptions were two 21 

events with significantly over-predicted PM10 levels due to prefrontal advection of polluted 22 

air masses from neighboring regions. Knowing that majority of the current chemical transport 23 

models show large negative biases in simulated PM10 concentrations, these results present a 24 

good starting point for studying the importance of aerosol feedbacks with realistic model 25 

aerosol concentrations, left for future research.  26 

The overall agreement of WRF-Chem NO2 forecast with measurements was good for rural 27 

sites, while urban sites experienced model under-predictions, which were highest for small 28 

towns. One important reason is that many small towns are located in basins or very narrow 29 

valleys, usually poorly presented in model topography. Smoothed local emissions result 30 

showin  as model underestimations of NO2 concentrations for these towns. This in 31 

combination with insufficiently reproduced calm meteorological conditions in basins and 32 
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valleys during the nighttime hours explains also WRF-Chem over-predictions of nighttime O3 1 

concentrations.  2 

Evaluations of predicted 1-hour and 8-hour daily O3 maxima, which are in the case of this 3 

pollutant of the highest interest, show gooda nice WRF-Chem model performance. 4 

Nevertheless, there are also stations which experience high over- or under-predictions of O3 5 

daily maximum levels. For Mediterranean sites the under-predictions of the daily maxima are 6 

most probably due to inaccurate representation of costal processes in model, which are crucial 7 

for the PBL height evolution and accumulation of pollution in the near ground air layers. For 8 

some sub-alpine stations the reason for the higher bias in O3 daily maximum predictions is 9 

their location either at elevated mountainous or coastal regions, or in narrow valleys which 10 

cannot be appropriately resolved in the current model resolution - that impacts how accurately 11 

model simulates the local processes responsible for the level of local pollution. Comparisons 12 

of WRF-Chem O3 daily maximum forecasts with persistence and with statistical model 13 

predictions show that with respect to some statistical parameters the deterministic WRF-14 

Chem forecast can outperform the other two for both 1-day and 2-day predictions. For 15 

example, correlation coefficient shows highest skill for WRF-Chem model, confirming the 16 

importance of complex processes as taken into account in an on-line coupled Eulerian model. 17 

Further improvement of WRF-Chem forecasting skill could be obtained by applying one of 18 

the bias-correction methods in order to account for unresolved topographical and coastal 19 

effects, as well as emission patterns. Chemical data assimilation, although currently still in its 20 

infancy for online coupled meteorology-chemistry models (Bocquet et al., 2014), could in 21 

future also be used as an efficient method for improving prediction of chemical concentration 22 

fields. For WRF-Chem model a technical note on the implementation of the aerosol 23 

assimilation and a guidance for prospective users has been recently published by Pagowski et 24 

al. (2014). 25 

 26 

Appendix A: Statistical measures 27 

For i-th observed (Oi) and the corresponding modelled (Mi) value of variable, discrete 28 

statistical measures are calculated as follows: 29 
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For categorical evaluation all model predictions are first classified into four groups (a, b, c 23 

and d):  24 

 a  prediction is above, but observation is below the threshold 25 

 b prediction and observation are above the threshold 26 

 c prediction and observation are below the threshold 27 

 d prediction is below, but observation is above the threshold 28 

 29 

Categorical statistics are calculated as follows:  30 
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Table 1: AQ monitoring sites. 1 

Monitoring site Abbreviation Type of 

zone 

Altitude 

(m) 

Model 

orography 

(m) 

Model 

analysis 

height (m) 

Pollutants Statistical ozone 

forecast 

Celje CE Urban 240 300 313 O3, PM10, NO2 No 

Hrastnik HRA Urban 290 540 552 O3, SO2 Yes 

Iskrba ISK Rural 540 579 591 O3, NO2 Yes 

Koper KOP Urban 56 72 85 O3, PM10 Yes 

Kovk KOV Rural 608 516 528 NO2 No 

Krvavec KRV Rural 1740 1272 1414 O3 Yes 

Ljubljana LJ Urban 299 287 300 O3, PM10, NO2, Yes 

Murska Sobota MS Rural 188 189 202 O3, PM10, NO2 Yes 

Nova Gorica NG Urban 113 150 163 O3, PM10, NO2 Yes 

Otlica OTL Rural 918 874 886 O3 Yes 

Sv. Mohor MOH Rural 394 254 266 NO2 No 

Trbovlje TRB Suburban 250 459 471 O3, PM10, NO2 No 

Velenje VEL Urban 389 461 474 O3, SO2 No 

Vnajnarje VNA Rural 630 468 480 NO2 No 

Zadobrova ZAD Rural 280 275 287 PM10, NO2 No 

Zagorje ZAG Urban 241 431 443 O3, PM10, NO2 No 

Zavodnje ZAV Rural 765 678 690 O3, NO2 No 

2 
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Table 2: Statistical scores for 1-hour values of 2m temperature (T2m), 10 m wind speed 1 

(W10m) and relative humidity (RH), and for daily average incoming solar radiation (SR). 2 

Shown are results for 1-day forecast, calculated separately for three measuring sites (LJ, NG, 3 

MS) and for 24 MET monitoring stations (ALL) during the 3-month period. In the case of 4 

temperature results for daily maxima are also shown. 5 

Variable Station NoCases Mean ME MAE RMSE CORR 

T2m 1h (°C) LJ 2129 20.3 -1.6 2.3 2.9 0.91 

 NG 2184 21.8 -1.1 2.1 2.5 0.94 

 MS 2184 19.2 -2 2.3 2.8 0.95 

 ALL 47836 18.7 -1.3 2.3 2.9 0.93 

T2m max (°C) LJ 89 26.5 -1.6 1.8 2.1 0.98 

 NG 90 26.8 -3 3 3.3 0.96 

 MS 90 26.2 -1.7 1.8 2 0.98 

 ALL 1976 24.2 -2.1 2.7 3.2 0.97 

W10m (m/s) LJ 2129 1.5 0 0.7 1 0.58 

 NG 2183 2.7 1 1.4 1.9 0.35 

 MS 2184 2.3 0.4 1.1 1.4 0.53 

 ALL 43378 2.4 0.8 1.4 1.9 0.36 

RH (%) LJ 2066 62 -2 8 10 0.85 

 NG 2121 62 -1 12 15 0.75 

 MS 2121 69 3 8 11 0.88 

 ALL 48556 68 2 11 14 0.77 

SR (W/m2) LJ 90 276 19 31 43 0.84 

 NG 90 278 4 32 43 0.77 

 MS 90 273 15 26 37 0.9 

 ALL 1710 273 16 35 49 0.77 

6 
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Table 3: Domain wide performance statistics for 1-day and 2-day forecast in μgm
-3

. For 1 

different pollutants statistics for all hourly (hour), 8-hour averages (8h), 8-hour daily 2 

maximum (8h max), daily maximum (max) or daily average (day) concentrations are shown.  3 

  NoCases Mean ME MAE RMSE CORR 

O3 (hour)  1 day 28391 94.8 14.53.7 25.15 32.51 0.65 

 2 day 28391 95.04.2 14.53.8 25.58 32.59 0.64 

O3 (8h) 1 day 28072 94.81 14.63.8 22.69 28.15 0.69 

 2 day 28072 95.04.2 14.63.8 23.03 28.59 0.68 

O3 (8h max) 1 day 1157 111.50.7 -0.17 13.26 16.57 0.77 

 2 day 1157 111.60.9 -0.21 13.74.1 17.04 0.75 

O3 (max) 1 day 1170 116.55.8 -2.73.4 13.37 16.77.1 0.81 

 2 day 1170 116.65.8 -3.19 14.04 17.59 0.789 

NO2 (hour) 1 day 26178 7.3 -5.1 7.5 10.8 0.3 

 2 day 26178 7.5 -4.9 7.6 10.8 0.3 

PM10 (day) 1 day 718 29.0 7.1 12.0 18.8 0.34 

 2 day 718 29.1 7.2 12.0 19.1 0.37 

4 



 45 

Table 4: Discrete evaluation of 1-hour daily maximum ozone predictions.  1 

Stations Threshold, 

NoCases 

Forecast Mean  

(μgm
-3

 ) 

ME 

(μgm
-3

 

) 

MAE 

(μgm
-3

 ) 

RMSE 

(μgm
-3

 ) 

CORR MNBE 

(%) 

MNGE 

(%) 

IOA 

All  > 0 F 1day 1156.85 -32.6.4 13.37 16.77.1 0.81 -0.05 11.72.0 0.86 

 1170 F 2day 1165.68 -3.91 14.04 17.59 0.789 -0.71 12.36 0.84 

 PER 1day 119.5 -0.4 15.8 21.1 0.65 1.6 14.5 0.81 

 PER 2day 119.8 -0.4 21.7 27.7 0.39 2.8 19.6 0.65 

> 140 F 1day 1443.13 -11.29 15.27 178.94 0.52 -6.87.4 9.59 0.57 

1102 F 2day 1410.46 -134.86 167.51 1920.40 0.421 -8.69.1 10.58 0.487 

 PER 1day 145.0 -10.2 15.6 19.6 0.41 -6.5 10.0 0.52 

 PER 2day 135.8 -19.4 24.76 29.2 0.31 -12.4 15.9 0.38 

Sub-alpine 

urban with SF 

(LJ, HRA) 

> 0 F 1day 115.3 1.1 10.7 14.0 0.84 3.4 11.1 0.91 

180 F 2day 115.4 0.8 12.0 15.2 0.80 3.5 12.2 0.88 

 PER 1day 114.3 -0.3 16.7 21.7 0.64 2.2 16.5 0.80 

 PER 2day 114.6 -0.3 21.9 27.8 0.41 3.9 21.6 0.65 

 SF 1day 114.0 -0.5 11.9 15.7 0.81 1.6 11.2 0.88 

 SF 2day 116.2 0.6 13.4 17.1 0.75 3.2 12.7 0.84 

Rural with SF 

(MS, ISK, 

KRV, OTL) 

> 0 F 1day 117.65.2 -5.68.1 13.34.6 16.37.6 0.80 -35.0 10.81.7 0.865 

360 F 2day 117.44.8 -6.48.8 14.25.5 17.48.9 0.767 -35.4 11.42.4 0.841 

 PER 1day 123.6 -0.3 15.0 20.7 0.65 1.4 13.1 0.81 

 PER 2day 124.1 -0.4 21.6 27.8 0.37 2.4 18.5 0.64 

 SF 1day 121.5 -2.9 15.0 19.4 0.74 -0.7 12.2 0.83 

 SF 2day 122.9 -1.8 15.8 20.5 0.67 0.5 13.2 0.79 

Mediterranean 

urban with SF 

(KOP, NG) 

> 0 F 1day 123.5 -11.8 17.4 22.5 0.76 -6.9 12.5 0.80 

179 F 2day 124.5 -11.2 17.2 21.8 0.77 -6.5 12.4 0.82 

 PER 1day 135.9 -0.5 17.4 23.0 0.68 1.2 13.8 0.83 

 PER 2day 136.0 -0.2 25.2 31.5 0.41 2.8 19.7 0.66 

 SF 1day 129.3 -7.0 15.9 20.7 0.75 -3.6 11.6 0.83 

 SF 2day 131.6 -4.5 15.6 20.4 0.74 -1.6 11.6 0.84 

 2 

3 
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Table 5: Categorical evaluation of 1-hour daily maximum ozone predictions for different 1 

thresholds, calculated for 8 monitoring sites with available statistical forecast. 2 

Threshold Forecast ETSA CSI B FAR POD a b c d 

> 120 F 1day 0.4278 0.631 0.8176 0.13 0.7066 395 25339 3137 10721 

 F 2day 0.3977 0.6159 0.7975 0.14 0.684 4137 24533 3037 11527 

 PER 

1day 

0.3174 0.59 0.99 0.25 0.74 91 267 249 93 

 PER 

2day 

0.1764 0.49 1.00 0.34 0.65 123 235 209 124 

 SF 1day 0.4280 0.67 1.02 0.21 0.81 67 257 243 61 

 SF 2day 0.3877 0.65 1.03 0.23 0.80 77 264 225 66 

> 140 F 1day 0.4084 0.5047 0.6459 0.154 0.551 197 11103 4902 92100 

 F 2day 0.3782 0.474 0.660 0.198 0.5349 252 10899 4769 95104 

 PER 

1day 

0.4082 0.53 1.00 0.31 0.69 62 141 435 62 

 PER 

2day 

0.1972 0.35 1.00 0.48 0.52 97 106 391 97 

 SF 1day 0.3079 0.43 0.73 0.29 0.52 40 99 398 91 

 SF 2day 0.3079 0.43 0.70 0.27 0.51 37 98 403 94 

> 160 F 1day 0.1991 0.22 0.387 0.342 0.25 910 19 6267 57 

 F 2day 0.1791 0.201 0.340 0.3526 0.22 96 17 61922 59 

 PER 

1day 

0.4092 0.45 1.00 0.38 0.62 29 47 595 29 

 PER 

2day 

0.2288 0.28 1.00 0.56 0.43 43 33 572 43 

 SF 1day 0.2390 0.27 0.49 0.35 0.32 13 24 539 52 

 SF 2day 0.2590 0.29 0.63 0.41 0.37 19 27 540 46 
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 1 

Figure 1: Modelling domains (D1, D2) used in WRF-Chem RT-AQF system. Orography (in 2 

meters) is shown in resolution of D1 domain (11.1 km). 3 

  4 
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 2 

Figure 2: Example of ozone analysis for the Nova Gorica (NG) monitoring site (average daily 3 

maximum ± standard deviation) for 7 clusters of similar trajectories, as used in the statistical 4 

ozone daily maximum forecast for the NG station. 5 

  6 
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 1 

 2 

Figure 3: Locations of monitoring stations used in evaluation of air quality variables (AQ 3 

stations; shown are also station abbreviations) and meteorological variables (MET stations). 4 

Green dots indicate measuring sites with available ozone daily maximum statistical forecast 5 

(SF). For the meaning of abbreviations of AQ sites see Tab. 1.  6 
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 1 

Figure 4: 3-month average 1-day predictions of a) hourly O3, b) O3 daily maximum, c) hourly 2 

NO2, and d) daily PM10concentrations for the first model layer, overlaid with measurements.  3 

 4 
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Figure 5: Time evolution of hourly ozone concentrations for 1-day (F 1day) and 2-day (F 2 

2day) WRF-Chem predictions and measurements for some stations during the 3-month 3 

period. (continued) 4 
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Figure 5: (continued) 2 
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Figure 6: The same as Fig. 5 but for NO2 at LJ, ZAG and MOH stations.2 
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Figure 7: The same as Fig. 5, but for daily PM10 concentrations at MS and ZAD stations. 2 

 3 
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Figure 8: Site-by-site comparison of discrete statistics for 1-day and 2-day WRF-Chem (F 2 

1day, F 2day), statistical (SF 1day, SF 2 day) and persistence model (P 1day, P 2day) 3 

predictions of ozone daily maxima during the 3 analyzed summer months.   4 

5 
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 1 

Figure 9: Taylor diagrams comparing 1-day and 2-day ozone daily maximum statistical 2 

forecast (SF), persistence (P) and WRF-Chem forecast (F) for a) sub-alpine urban stations 3 

with SF (LJ, HRA), b) sub-alpine urban stations without SF (CE, TRB, ZAG, VEL), c) rural 4 

stations with SF (MS, ISK, KRV, OTL) and d) Mediterranean urban stations (NG, KOP). 5 


