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Abstract 15 

An integrated modelling system based on the regional on-line coupled meteorology-16 

atmospheric chemistry WRF-Chem model configured with two nested domains with 17 

horizontal resolution 11.1 km and 3.7 km has been applied for numerical weather prediction 18 

and for air quality forecast in Slovenia. In the study an evaluation of the air quality 19 

forecasting system has been performed for summer 2013. In the case of ozone (O3) daily 20 

maxima, the first and second day model predictions have been also compared to the 21 

operational statistical O3 forecast and to the persistence. Results of discrete and categorical 22 

evaluations show that the WRF-Chem based forecasting system is able to produce reliable 23 

forecasts, which depending on monitoring site and the evaluation measure applied can 24 

outperform the statistical model. For example, the correlation coefficient shows the highest 25 

skill for WRF-Chem model O3 predictions, confirming the significance of the non-linear 26 

processes taken into account in an on-line coupled Eulerian model. For some stations and 27 

areas biases were relatively high due to highly complex terrain and unresolved local 28 

meteorological and emission dynamics, which contributed to somewhat lower WRF-Chem 29 
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skill obtained in categorical model evaluations. Applying a bias-correction could further 1 

improve WRF-Chem model forecasting skill in these cases.  2 

Key words: Air quality, forecast, ozone, WRF-Chem, online-coupled model, statistical model 3 
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1 Introduction 5 

Real-time air quality forecasting (RT-AQF) is a relatively new discipline in atmospheric 6 

sciences, which has evolved as a response to societal and economic needs, reflecting the 7 

progress in scientific understanding of physical processes and numerical and computational 8 

technologies (Zhang et al., 2012a). The first RT-AQF systems, developed for forecasting air 9 

pollution in exposed urban regions, were either empirical methods based on persistence, 10 

climatology, human expertise and meteorological forecast (e.g. Wolff and Lioy, 1978), or 11 

statistical models taking advantage of links between pollutant concentrations, meteorological 12 

variables (wind speed and direction, temperature, cloudiness, moisture etc.) and physical 13 

(emissions) parameters (e.g. McCollister and Wilson, 1975; Cobourn, 2007; Vlachogianni et 14 

al., 2011). The next step in evolution of RT-AQF systems was the use of sophisticated 15 

chemical transport models that represent all major processes (meteorological and chemical) 16 

that lead to the formation and accumulation of air pollutants. Many of these RT-AQF systems 17 

consist of an offline coupled meteorological model and a chemical-transport model, where the 18 

meteorological model (e.g., ALADIN, ALADIN International Team, 1997; MM5, Grell et al., 19 

1994; WRF, Skamarock et al., 2008) provides meteorological input for the chemical-transport 20 

model (e.g., EMEP, van Loon et al., 2004; CMAQ, Byun and Schere, 2006; CAMx, 21 

ENVIRON, 2011; CHIMERE, Menut et al., 2013) with an output time interval typically 22 

around 1 hour. Examples are the EURAD (http://db.eurad.uni-koeln.de/index_e.html), 23 

SILAM (http://silam.fmi.fi/), ForeChem (http://atmoforum.aquila.infn.it/forechem/), 24 

CALIOPE (http://www.bsc.es/caliope/) forecast systems and others. The new generation of an 25 

online coupled models (e.g., MCCM, Grell et al., 2000; GATOR-GCMM, Jacobson 2001; 26 

Meso-NH-C, Tulet et al. 2003; WRF-Chem, Grell et al., 2005; Enviro-HIRLAM, Baklanov et 27 

al., 2008; GEM-AQ, Kaminski et al. 2008; COSMO-ART, Vogel et al., 2009; WRF-Chem-28 

MADRID, Zhang et al., 2010a) presents an alternative approach with one unified modelling 29 

system, in which meteorological and air quality variables are simulated together within the 30 

same model. The online approach permits the simulation of two-way interactions between 31 

different atmospheric processes including emissions, chemistry, clouds and radiation, and a 32 
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better response of the simulated pollutant transport to changes of the wind field (Grell et al., 1 

2004), and can thus provide a more realistic representation of the atmosphere. The use of 2 

online coupled models can be particularly important in regions with high aerosol loadings and 3 

cloud coverage (Otte et al., 2005; Eder et al., 2006), where physical processes in the 4 

atmosphere may be modified by the aerosol direct effect on radiation or by aerosol cloud 5 

interactions. Several reviews summarized the strengths and limitations of offline and online 6 

coupled models (e.g. Zhang 2008; Klein, 2012; Baklanov et al., 2014).There is an increasing 7 

awareness that an integrated online approach is needed not only for assessment, forecasting 8 

and communication of air quality, but also for weather forecasting (e.g. Baklanov, 2010; Grell 9 

and Baklanov, 2011; Klein et al., 2012; Zhang et al., 2012b; Baklanov et al., 2014). 10 

Nevertheless, there are several issues regarding the inclusion of chemistry into numerical 11 

weather prediction models. More evidence is required whether an integrated model can 12 

produce a good climatology of the most important chemical species, and if such a model is, 13 

considering many uncertainties, able to beat persistence forecasts of these species (Grell and 14 

Baklanov, 2011). These questions are calling for further research and studies exploring the 15 

performance of the models with an online coupled chemistry. 16 

In recent years extensive efforts have been devoted to develop air quality (AQ) forecasting 17 

systems for Slovenia. In this study we explore the use of the state-of-the-science WRF-Chem 18 

model (Grell et al., 2005) with coupled meteorological, microphysical, chemical, and 19 

radiative processes for forecasting AQ in Slovenia during summertime conditions. In last 20 

decade WRF-Chem has been increasingly applied to many areas worldwide (e.g., Misenis and 21 

Zhang, 2010; Fast et al., 2009; Zhang et al., 2010a, 2010b; Li et al., 2011; Tie et al., 2009; Hu 22 

et al., 2012; Forkel et al., 2012, Žabkar et al., 2011a, 2013). In most of these studies WRF-23 

Chem model has been successfully used to simulate historical poor AQ conditions in hindcast 24 

approach. To our knowledge, only a few studies focused on using WRF-Chem for forecasting 25 

AQ, most of these have applied WRF-Chem forecast before and during field campaigns 26 

(McKeen et al., 2005, 2007, 2009; Yang et al., 2011). Takigawa et al. (2007) evaluated O3 27 

forecast for a 1 month time period from a one-way nested global-regional RT-AQF system 28 

with full chemistry based on the global CHASER (Sudo et al. 2002) and regional WRF-Chem 29 

models, while Saide et al. (2011) evaluated a forecast system based on WRF-Chem model for 30 

simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate over Santiago de Chile for 31 

wintertime conditions. WRF-Chem-MADRID (Zhang et al., 2010a) with two additional gas-32 

phase mechanisms, sectional representation for particle size distribution and more advanced 33 
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model treatments compared to WRF-Chem, was applied by Chuang et al. (2011) and by 1 

Yahya et al. (2014) for forecasting AQ over the Southeastern U.S.. In spite of a limited 2 

number of evaluation studies published in the literature, an increasing number of real-time 3 

weather and air quality forecasting systems based on WRF-Chem are implemented worldwide 4 

(http://ruc.noaa.gov/wrf/WG11/Real_time_forecasts.htm). 5 

In our study we explore the forecasting skill of WRF-Chem model over the topographically 6 

complex and geographically diverse area of Slovenia for three summer months (June - August 7 

2013). Furthermore, in the case of O3 we compare WRF-Chem predictions with a statistical 8 

model for predicting O3 daily maxima, currently used at the Slovenian Environment Agency 9 

(SEA). Both first day (1-day) and second day (2-day) forecasts are considered, while a 10 

persistence model, which assumes that pollutant level today and tomorrow will be the same as 11 

yesterday, is used as a threshold for useful model prediction. Since the availability of accurate 12 

and reliable forecasting system could be useful to the local authorities and could help to 13 

advise the public the proper preventive actions, we want to answer the question whether 14 

WRF-Chem model outperforms the statistical model or persistence. Namely, considering 15 

many uncertainties related to one unified model, it may not be easy for models with online 16 

chemistry to be able to perform well enough to meet the required standards, and more 17 

research and studies are needed to investigate that (Grell and Baklanov, 2011). Due to the 18 

limited number of previous studies focused on online coupled forecasting systems, the aim of 19 

our study is also to provide a greater insight into potential that lies in the approach based on 20 

an unified model for forecasting weather and air pollution. Finally, identified strengths, 21 

limitations and deficiencies of analyzed RT-AQFs, are expected to present the basis for 22 

further research.  23 

2 Methodology 24 

2.1 WRF-Chem forecast system 25 

The RT-AQF system for Slovenia based on the WRF-Chem model version 3.4.1 is configured 26 

with two nested domains (Fig.1) with horizontal resolution 11.1 km and 3.7 km, and 151×100 27 

and 181×145 grid points, respectively. A 1-way nesting is applied by two separate 28 

consecutive simulations, where outputs from the coarse grid integration are processed to 29 

provide boundary conditions for the nested run every 15 minutes. The vertical structure of the 30 

atmosphere is resolved with 42 vertical levels extending up to 50 hPa, with the highest 31 
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resolution of ~25 m near the ground. About 15 levels are located within the lowest 2 km to 1 

assure high vertical resolution of the daytime planetary boundary layer (PBL). To produce the 2 

48-hour forecast, the model is run every day, starting at 00 UTC, with meteorological initial 3 

(ICs) and lateral boundary conditions (BCs) taken from the 0.5ᵒ data from the Global Forecast 4 

System (GFS) operated by the US National Weather Service (NWS). For chemical BCs 5 

forecasts from global MOZART-4/ GEOS-5 (Emmons et al., 2010) RT-AQF system with 6 

temporal availability of 6 h are used. The instantaneous outputs at the 24
th

 hour of the 7 

previous day forecast are used to initialize next day’s forecasting simulation. An exception is 8 

the very first day of the first 48-hour forecasting cycle, when global MOZART-4/ GEOS-5 9 

fields were used also to initialize chemistry. A three day spin-up ahead of the first analyzed 10 

forecast day is then taken into account to allow pollutants to accumulate in the air masses.  11 

In the WRF-Chem model, several choices for parameterizations of physical and chemical 12 

processes are available (Grell et al., 2005; Skamarock et al., 2008; Peckham et al., 2011), and 13 

their choice can have a strong impact on the model predictions. In both domains we decided 14 

to apply the same schemes as were used in simulation SI1 for Phase-2 of the Air Quality 15 

Model Evaluation International Initiative (AQMEII) (e.g., Balzarini et al., 2014, Baró et al., 16 

Curci et al., 2014, Forkel et al., 2014, Im et al., 2014a and 2014b, Kong et al., 2014, 2014, 17 

San Josè et al., 2014). These include Yonsei University (YSU) PBL scheme (Hong et al., 18 

2006), NOAH land-surface model (Chen and Dudhia, 2001), Rapid Radiative Transfer 19 

Method for Global (RRTMG) long-wave and short-wave radiation scheme (Iacono et al. 20 

2008), Grell 3D ensemble cumulus parameterization scheme (Grell and Devenyi, 2002) with 21 

radiative feedback, Morrison double-moment cloud microphysics (Morrison et al., 2008), 22 

Fast-J photolysis scheme (Wild et al., 2000), RADM2 gas phase chemistry (Stockwell et al., 23 

1990) and the MADE/SORGAM aerosol module (Ackermann et al., 1998, Schell et al., 24 

2001). Current model implementation includes a modified RADM2 gas phase chemistry 25 

solver as described in Forkel et al. (2014), which avoids under-representation of nocturnal O3 26 

titration in areas with high NO emissions. According to Forkel et al. (2014) the modified 27 

solver tends to over-estimate the low NO2 concentration for pristine regions and in the free 28 

troposphere, which results in an overestimation of O3. Due to the focus on polluted regions 29 

this deficiency was considered as less important than the advantage of better description of 30 

the titration. In addition, the comparatively small modelling domain (D1) ensures that the 31 

boundary conditions constrain the high bias of the modified solver for O3 and NO2 in the free 32 

troposphere. Also according to our sensitivity tests (results not shown) the modified solver 33 
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showed better performance for O3 daily maxima and O3 nighttime minima than the QSSA 1 

RADM2 solver supplied originally with WRF-Chem model. 2 

Among feedbacks only the aerosol direct effects on radiation according to Fast et al. (2006) 3 

and Chapman et al. (2009) are taken into account. As shown by Kong et al. (2014) for two air 4 

pollution episodes, this degree of aerosol-meteorology interactions in 3.4.1 version of the 5 

WRF-Chem improved model performance for high aerosol loads, while the representation of 6 

the indirect effects needs to be further improved to be able to outperform simulations with 7 

direct effects only.  8 

Biogenic emissions are estimated using MEGAN (Model of Emissions of Gases and Aerosols 9 

from Nature; Guenther et al., 2006) online model calculations, while dust emissions are 10 

modelled according to Shaw et al. (2008) with an adjustment to avoid high dust fluxes from 11 

some Dalmatian islands in Croatia. A detailed anthropogenic inventory for pollutants CO, 12 

NH3, NOx, SO2, and NMVOC, which has been for the purpose of AQ forecasting constructed 13 

for year 2009 by SEA (SEA, 2014), is used to estimate anthropogenic emissions in Slovenia. 14 

For areas outside Slovenia the recently updated anthropogenic emissions for the year 2009 15 

based on the TNO-MACC-II (Netherlands Organization for Applied Scientific Research, 16 

Monitoring Atmospheric Composition and Climate – Interim Implementation), the same as 17 

prepared for phase-2 of the AQMEII exercise (Pouliot et al., 2014), are being used. Daily 18 

updates of the WRF-Chem based experimental AQ forecast are provided at 19 

http://meteo.fmf.uni-lj.si/onesnazenje. 20 

2.2 Statistical ozone daily maximum forecast 21 

The statistical O3 model (Žabkar, 2011b), currently used at SEA for forecasting O3 daily 22 

maxima at 8 measuring sites in Slovenia (Fig.3), is a multivariate regression tool combined 23 

with clustering algorithms to take into account measured data, weather forecast data, as well 24 

as the predicted backward trajectories of each monitoring site. As regards measurements, 25 

yesterday (at 12, 15, 18 and 21 local time, daily maximum, daily minimum, daily average) 26 

and today early morning (7 local time) meteorological (pressure, relative humidity, direct and 27 

diffusive solar radiation, wind speed) and AQ data (O3, NOx, NO2, CO, PM10, SO2) are used. 28 

For meteorological predictions the 24-h ECMWF forecast variables at 12 UTC of the forecast 29 

day at different vertical levels (1000 hPa, 925 hPa, 850 hPa, 500 hPa, 300 hPa) above the 30 

measuring sites are taken into account. Among all these variables by the use of stepwise 31 

http://meteo.fmf.uni-lj.si/onesnazenje
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technique, based on the F-statistic only significant variables were selected  to be included in 1 

multivariate regression equations for different monitoring sites (from 15 to 26 variables, 2 

depending on monitoring site).  3 

The important part of the statistical forecast is calculation of 24-h backward trajectories on 4 

meteorological fields of ALADIN/SI forecast. The inclusion of 24-h predicted trajectories 5 

into statistical model is based on the study (Žabkar et al., 2008) which showed, that the 6 

highest O3 daily maxima at monitoring sites in Slovenia are in general associated with short 7 

(slow-moving) backward trajectories with a southwestern origin, while the lowest measured 8 

daily maximum O3 values for all the stations are associated with the clusters of long 9 

northwestern trajectories. Clusters of similar trajectories were for the purpose of statistical 10 

forecast calculated by k-means clustering algorithms (Moody and Galloway, 1988; Žabkar et 11 

al., 2008) on 6 years (2004-2010) of data (ALADIN/SI trajectories). As an example, Fig. 2 12 

shows a mean O3 daily maxima for clusters of similar trajectories for one of the monitoring 13 

sites. The same 6-year time period of training data was used in the stepwise multiple 14 

regression procedure to determine the multiple regression prognostic equations associated 15 

with monitoring sites and trajectory clusters, from measurements, ECMWF forecast data, 16 

average cluster O3 daily maximum, and day-of-the-year variable.  17 

The first step of the statistical O3 prediction is the calculation of trajectories approaching the 18 

monitoring stations at 12 UTC of the forecast day. In the next step these backward trajectories 19 

of each monitoring site are associated to the nearest pre-calculated cluster of similar 20 

trajectories. Finally, the multiple regression equation of the associated group of trajectories is 21 

used to calculate the O3 daily maximum prediction. It must also be noted, that the decision on 22 

declaring O3 episodes is only partially based on the results from this statistical model; it also 23 

involves a decision made by AQ forecasters.  24 

2.3 Evaluation methodology 25 

We evaluate the 1-day and 2-day WRF-Chem meteorological and AQ forecasts on the high 26 

resolution domain during a 3-month period (June - August 2013).The main focus is on O3 27 

predictions. In the case of air pollutants, the instantaneous lowest model level mixing ratios 28 

(with grid point center about 12 m above model orography - an exception is KRV station as 29 

explained below) are compared to the hourly averaged concentrations measured at monitoring 30 

stations (which have a typical inlet height of 3 m) from the national network and some other 31 
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environmental information systems in Slovenia. Figure 3 shows locations of these AQ 1 

monitoring stations, and Tab. 1 lists the basic characteristics, including comparison of the 2 

station altitude, the height of model orography, model analysis height, and pollutants with 3 

higher than 75% availability of valid data during the analyzed time period for each of the AQ 4 

monitoring site. In the case of the elevated alpine KRV station, AQ variables are evaluated for 5 

the 5
th

 model layer instead of the first model layer. We made this exception for KRV, since 6 

the height of the model topography was significantly underestimated there (Tab. 1), as well as 7 

the station is known to be strongly influenced by the conditions of the free troposphere. The 8 

selection of the 5
th

 model layer for KRV station is based on analyses performed for different 9 

model layers (results not shown) and was found to reduce the negative bias for O3 due to too 10 

low WRF-Chem topography at this location. Although even for this model layer the location 11 

of the grid point representing KRV station (1414 m) is still well below the true station altitude 12 

(1740  m), the O3 bias for KRV station is significantly smaller than for the first layer, while 13 

the correlation coefficient between the measured and simulated O3 levels remains similar in 14 

both cases (the 5
th

 or the lowest model layer). Taking results from higher model layers would 15 

further decrease the negative model bias, but would also worsen the correlation coefficient for 16 

O3 at this station due to decreased impact of surface processes. 17 

All AQ stations are background, 7 of them are measuring urban background, 1 suburban and 18 

9 rural conditions. Valid O3 measurements are for the analyzed time period available for 13 19 

AQ stations. When studying the general model performance, data from additional 4 stations 20 

for two other pollutants (NO2, PM10) are also analyzed to get a better picture of model 21 

behavior over the domain, known for its large topographical and climate diversity. The 22 

coverage of three climate zones in Slovenia (Mediterranean, sub-alpine and mountainous) 23 

with monitoring stations is the following: NG, KOP and OTL are Mediterranean sites, KRV is 24 

a mountainous station, and the remaining stations are sub-alpine. As well as the elevated 25 

station KRV, the ISK, OTL and VNA stations are also influenced by regional transport of 26 

pollutants.  27 

For evaluation of predicted meteorological variables, data from SEA meteorological stations 28 

(MET, Fig. 3) for 2m temperature (T2m), 10 m wind speed (W10m), relative humidity (RH), 29 

incoming shortwave radiation (SR) and precipitation (RR) are used. It must be noted, that 30 

MET stations with lower spatial representativeness (e.g. alpine stations) were not a priori 31 

excluded from the analyses, which needs to be taken into account when looking at evaluation 32 

http://worldwidescience.org/wws/link.html?type=RESULT&redirectUrl=http://www.etde.org/etdeweb/details.jsp?query_id=1&page=0&osti_id=306379
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results. The reason for not excluding these stations was that some information about the AQ 1 

forecast can also be gained by the evaluation of meteorological forecast for these stations.  2 

Basic statistical measures (correlation coefficient (CORR), mean error (ME), mean absolute 3 

error (MAE) and root mean square error (RMSE)) are used for evaluating model’s forecasting 4 

skills of meteorological and AQ variables. In the case of O3, correlation coefficients are 5 

presented also by Taylor diagrams (Taylor, 2001), which graphically summarize the similarity 6 

between model forecasts and observations not only in terms of their correlation, but also with 7 

their centered root-mean-square difference and the amplitude of their variations, represented 8 

by their standard deviations. Furthermore, some additional discrete statistical measures, 9 

including index of agreement (IOA), the mean normalized bias error (MNBE), and the mean 10 

normalized gross error (MNGE) are calculated for O3 daily maximum concentrations 11 

predicted by the different models. Finally, to evaluate the model’s ability to predict 12 

exceedances and non-exceedances also several categorical indices including Equitable Threat 13 

Score (ETS), Critical Success Index (CSI), Bias (B), False Alarm Ratio (FAR) and 14 

Probability Of Detection (POD) are calculated for different thresholds. Definitions of 15 

statistical measures are shown in Appendix A. 16 

2.4 Meteorology and air quality of June-August 2013 17 

The analyzed period was marked by three heat wave events, which contributed to the summer 18 

characterized by high temperatures, sunny weather and lack of precipitation in Slovenia. The 19 

first heat wave event with measured temperature daily maxima up to 35 °C occurred after a 20 

rather cold beginning of the month and lasted from June 15 – 21. The event was terminated by 21 

a cold front passage and followed by the pronounced cold episode during the end of June and 22 

the beginning of July. Another heat wave event with temperatures above 35 ºC observed in 23 

the lowland, started on July 26 and was briefly interrupted on July 29, when thunderstorms 24 

related to frontal passage were accompanied by exceptionally strong wind gusts. The most 25 

remarkable of three extraordinary hot episodes was recorded from August 1 – 8. On the last 26 

day of this episode, August 8, temperatures reached 40 °C at some measuring sites in 27 

Slovenia, and many of them observed their highest temperature ever recorded.  28 

As expected for summertime conditions, measured concentrations of most air pollutants, 29 

including PM10, were in general low during the analyzed time period. The only exception 30 

was O3 with exceedances of 8-hour target value (120 μgm
-3

) measured at all AQ monitoring 31 
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stations during the three heat wave events, which is the reason why the main focus of the 1 

present study is on this pollutant. During the second two events (in July and August) also 2 

threshold exceedances of 1-hour daily maxima were recorded for O3. In spite of the hot and 3 

sunny conditions during the first heat wave event in June 2013, measured daily O3 maxima at 4 

the Slovenian stations did not exceed the 1-hour information threshold value (1h ITV; 180 5 

μgm
-3

), but reached 171 μgm
-3

 at the Mediterranean OTL and the elevated alpine KRV 6 

stations. During the second heat wave event 1-hour daily maxima exceeded 180 μgm
-3 

at 7 

KRV, OTL, NG and KP (July 23 – 28), while the highest number of 1-hour exceedances (20) 8 

has been in July measured at OTL station. Similarly, during the August heat wave event O3 9 

concentrations exceeded the 1h ITV at LJ, MB, OTL, NG and KP from August 2 – 7. To 10 

summarize, the Mediterranean stations (NG, OTL, KP) due to very high O3 concentrations 11 

measured during the heat wave events (especially the second two events) exhibited the 12 

poorest AQ in Slovenia during the analyzed time period, while the legislation limit values 13 

have been exceeded only occasionally for the sub-alpine stations. 14 

 15 

3 Results and discussion  16 

3.1 Evaluation of meteorological variables 17 

Table 2 shows conventional statistical scores evaluating the 1-day WRF-Chem forecast for 18 

the basic meteorological variables, 2m temperature (T2m; for hourly values and daily 19 

maxima), 10 m wind speed (W10m), relative humidity (RH) and incoming solar radiation 20 

(SR). Results for three selected measuring sites (LJ, NG, MS) and overall result for all 24 21 

MET monitoring sites (shown in Fig. 3) are presented separately.  22 

Incoming solar radiation is the main energy source that drives all atmospheric processes, 23 

including PBL processes, and has a critical role also in atmospheric chemistry. For almost all 24 

sites the mean SR was overestimated by the model, with an overall ME of 16 W/m
2
 and 11 25 

W/m
2
 for 1-day and 2-day forecast, respectively. CORR was higher for 1-day (0.77) than for 26 

2-day (0.71) forecast, with a range of 0.64 to 0.90 for 1-day forecasts at different stations. The 27 

larger positive bias during the first day than for the second day can be attributed to less cloudy 28 

conditions during the first day of simulation.  29 

 30 
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In the case of T2m 1-day (2-day) WRF-Chem meteorological forecast showed an overall 1 

correlation with measurements of 0.93 (0.94) for all 1-hour values and 0.97 (0.96) for 1-hour 2 

daily maxima. With an exception of three alpine stations with higher simulated positive bias, 3 

daily T2m maxima were simulated with ME between -3.9 °C and -0.6 °C, depending on 4 

station spatial representativeness. All meteorological variables, including soil temperature and 5 

soil moisture, are always initialized with GFS data. This explains higher negative bias for 6 

T2m during the first day of simulation in spite of the overestimated of solar radiation. An 7 

average systematic underestimation of T2m daily maxima was -2.1 °C both for 1-day and 2-8 

day forecast. Nighttime T2m minima showed lower systematic bias for 2-day forecast, which 9 

resulted in overall bias for all hourly T2m values of -1.3 °C for 1-day and -0.8 °C for 2-day 10 

forecast. Predominant weak wind conditions with variable direction at stations located in 11 

complex topography were challenging to simulate. The general model tendency was to 12 

overestimate W10m with overall ME of 0.8 m/s for 1-day and 2-day forecast, where for some 13 

stations bias can be very low (e.g. LJ; Tab. 2) and much higher for some other stations due to 14 

their local positioning in complex topography (e.g. HRA located in valley with ME of 1.9 15 

m/s). For hourly values the correlation is lower (Tab. 2), but for mean daily W10m values 16 

Pearson correlation coefficient between 0.4 and 0.9 has been simulated, depending on 17 

monitoring site. Relative humidity shows slightly better results for 1-day than for 2-day 18 

forecast with CORR of 0.77 and low overall ME of 2 % for 1-day forecast, which for 19 

particular stations can be positive (e.g. KRV) or negative (e.g. LJ, NG; Tab. 2).  20 

Precipitation (RR) has an important role in cleansing of the atmosphere by wet deposition and 21 

scavenging. On average, the predicted precipitation underestimated the measured 3-month 22 

accumulations by -55 mm (1-day) or -8 mm (2-day forecast), where the station averaged 23 

predicted 3-month precipitation was 145 mm for 1-day, and 194 mm for 2-day forecast 24 

(results not shown). It must also be taken into account that the 3.4.1 model version does not 25 

allow to include the information about hydrometeors at the boundaries of the nested domain 26 

(in the applied 1-way nesting procedure), which contributes to the negative simulated bias of 27 

precipitation. A large decrease in the precipitation bias from day 1 to day 2 suggests that 28 

different initialization methodology (e.g. using 1 day spin-up for meteorology) could improve 29 

the prediction of precipitation events.  30 
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3.2 Evaluation of air quality variables 1 

In this section we evaluate WRF-Chem predictions for O3, NO2 and PM10, as three of the 2 

most problematic pollutants in terms of harm to human health and compliance with EU limit 3 

values (EEA, 2012). Table 3 shows the domain wide performance statistics for 1-day and 2-4 

day forecasts of these pollutants, where in the case of O3 1-hour and 8-hour averages and 5 

daily maxima are analyzed separately. The comparison of 1-day and 2-day forecasts shows 6 

that concentrations of air pollutants were somewhat better forecasted 1-day than 2-days ahead 7 

by means of almost all of statistics shown in Tab. 3, with higher impact on O3 predictions. 8 

Although the 2-day prediction was generally not worse for the majority of meteorological 9 

variables, the reason for better 1-day prediction in the case of O3 could be somewhat stronger 10 

simulated winds on the second day of simulation. Stronger winds impact the transport and 11 

dispersion of pollutants, and have the greatest consequence for secondary pollutants (like O3) 12 

which need time to be formed.  13 

As shown in Tab. 3 the WRF-Chem simulations tend to overestimate the 1-hour and 8-hour 14 

O3 values with ME of 14.5 μgm
-3

 and 14.6 μgm
-3

, respectively. Looking at MAE, RMSE and 15 

CORR statistics, agreement with measurements is better for 8-hour (22.6 μgm
-3

, 28.1 μgm
-3

 16 

and 0.69) than for 1-hour O3 values (25.1 μgm
-3

, 32.1 μgm
-3

 and 0.65), which is in line with 17 

results of previous studies (e.g. Tong and Mauzerall, 2013) and suggests that the current 18 

modeling system has problems simulating the small-scale fluctuations of O3. On the other 19 

hand evaluations of predicted 8-hour and daily O3 maxima, which are of most concern, show 20 

a nice model performance (ME, MAE RMSE and CORR of -2.7 μgm
-3

, 13.3 μgm
-3

, 16.7 21 

μgm
-3

 and 0.81 for daily maxima, respectively), in line or even better than obtained in some 22 

previous studies (e.g. Tong and Mauzerall, 2006; Chuang et al., 2011; Yahya et al., 2014), 23 

which could be to some extent related to higher model resolution.  24 

To understand results of the domain wide statistics (in Tab. 3) we further analyze spatial and 25 

temporal characteristics of model O3 predictions. Figure 4 shows a spatial pattern of average 26 

simulated 1-day predictions for O3, NO2 and PM10 overlaid with measured averages, where 27 

in the case of O3 results for all hourly values and for daily maxima are shown separately. 28 

Examples of forecasted and measured time series for O3 at different stations are shown in Fig. 29 

5. In Fig. 4a the elevated alpine KRV station is the only one with high negative bias (-12 μgm
-

30 

3
) in forecasted 1-hour O3 concentrations at the lowest model layer, which can be explained 31 

by the too low altitude of the KRV station in model topography. The high negative bias for 32 

http://www.sciencedirect.com/science/article/pii/S1352231014002969
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hourly O3 concentrations at KRV station is reduced to a value of only -2 μgm
-3

 by using the 1 

5
th

 model layer concentrations as explained in chapter 2.3. The 5
th

 model level predictions 2 

will be used for KRV in all analyses that follow. Besides KRV also the Mediterranean KOP 3 

and OTL stations, as well as the rural ZAV site, are stations with comparatively high 4 

measured nighttime O3 levels, which results in low overall bias for all hourly O3 values for 5 

these stations (from -2 to -7 μgm
-3

). Namely, WRF-Chem model cannot capture well the 6 

profound nighttime O3 reductions (shown also by Žabkar et al, 2013; Im et al., 2014a), which 7 

contributes to the overall over-prediction of hourly O3 concentrations (from 10 to 36 μgm
-3

)
 

8 

for stations with very low measured nighttime O3 concentrations. For sites with highest 9 

positive bias in 1-hour O3 concentrations (TRB, ZAG, HRA and ISK, with bias of 36 μgm
-3

, 10 

31 μgm
-3

, 26 μgm
-3

 and 32 μgm
-3

, respectively), this can also be partly explained by too high 11 

altitude of the stations in model orography (Tab. 1), since the mean O3 concentration 12 

increases with height. 13 

Looking at O3 daily maxima (Fig. 4b), the under-predictions occur at alpine KRV (-16 μgm
-3

 14 

for the lowest model level shown in Fig.4) and at three Mediterranean stations (OTL, NG, 15 

KOP; from -14 to -11 μgm
-3

). For Mediterranean stations the underestimations of daily 16 

maxima are most probably due to inaccurate representation of costal processes in model, 17 

which are crucial for PBL height evolution and accumulation of pollution in the near ground 18 

air layers. For TRB station located in narrow valley of the very complex terrain that cannot be 19 

appropriately resolved in the current model topography, the model over-predicts O3 daily 20 

maxima for 14 μgm
-3

. For other sub-alpine stations the bias of O3 daily maxima predictions is 21 

lower.  22 

To some extent the previously mentioned model over-predictions of nighttime O3 minima 23 

could be explained by model error in predicted NO2 levels. When evaluating the primary 24 

pollutants one must be aware that in the model the instantaneous emissions are spread over an 25 

entire grid box, which results in underestimated emissions and concentrations close to the 26 

source regions and overestimated emissions and concentrations at rural locations adjacent to 27 

the source regions, and can thus cause a combined effect of negative and positive biases at 28 

urban and rural sites. Comparisons of WRF-Chem predicted NO2 levels with measurements 29 

show that in spite of the high spatial resolution the concentrations of the small urban areas are 30 

insufficiently represented by the model (Fig. 4c). In Slovenia many towns are located in 31 

basins or very narrow valleys, usually poorly or even not resolved in model topography. 32 
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Smoothed local emissions for these towns show significant underestimations of NO2 1 

concentrations (e.g. ZAG in Fig. 6). In combination with poorly reproduced meteorological 2 

processes (calm and stable nighttime conditions in valleys and basins) this results in an 3 

underestimation of the O3 loss by titration. This can explain the positive nighttime bias of O3 4 

found at these sites. The situation is better for bigger cities, located in wider basins, like LJ or 5 

CE (LJ; Fig. 6), while at rural sites NO2 is either well simulated (e.g. MOH; Fig. 6), or 6 

slightly over-predicted due to increased emissions from adjacent urban area (e.g. ZAD; Fig. 7 

6). The overall agreement of hourly NO2 predictions with measurements was good for rural 8 

sites, while urban sites experienced under-predictions, which were highest for small cities, 9 

especially for NG (ME of -13 μgm
-3

) and ZAG (ME of -14 μgm
-3

). 10 

Also interesting to discuss are the results for predicted PM10 concentrations (Tab. 3 and Fig. 11 

4d), showing slight over-prediction of daily PM10 levels at all stations which is somewhat 12 

surprising due to the fact that nearly all current off-line and on-line coupled chemical 13 

transport models show large systematic PM10 underestimations. For example, within 14 

AQMEII exercise, where seventeen modeling groups from Europe and North America were 15 

brought together, running eight operational online-coupled air quality models over Europe 16 

and North America, the rural PM10 concentrations over Europe were underestimated by all 17 

models (model configurations) by up to 66% while for the urban PM10 concentrations the 18 

underestimations were even much larger (up to 75%) (Im et al., 2014b). The reason for slight 19 

over-prediction of PM10 levels could be to some extent attributed to the high model spatial 20 

resolution used in our study. Further, CORR for daily PM10 concentrations is rather low 21 

(0.34 and 0.37 for 1-day and 2-day forecasts, respectively; Tab. 3), which is partly due to the 22 

low temporal dynamics of measured daily PM10 concentrations during the analyzed time 23 

period (no recorded PM10 exceeding), and partly due to the simulated PM10 overestimations 24 

during the heat wave events. These over-predictions contributed also to the overall positive 25 

bias of predicted PM10 levels. As shown in Fig. 7 for two monitoring sites, there was a 26 

significant PM10 over-prediction simulated on June 10 (day 8 in Fig. 7), related to the pre-27 

frontal advection of polluted air-masses coming from the north-western part of the domain D2 28 

(coming from domain D1). The next significant PM10 over-prediction occurred during the 29 

first heat wave episode (June 17-22), when during the hot and low wind conditions (after June 30 

17) the PM10 levels started to build up in the PBL over entire domain D2 (and over 31 

southwestern parts of domain D1), and reached the maximum concentrations in Slovenia 32 

again with prefrontal advection of polluted air masses. Both over-predictions contributed to 33 
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an overall positive bias in forecasted PM10 concentrations. Detailed analyses showed that 1 

high concentrations in domain D1 originated from boundary conditions, and appear to be a 2 

consequence of overestimated advection of Saharan dust in MOZART model predictions. The 3 

increase in PM10 concentrations over Slovenia was also simulated during the prefrontal 4 

advection related to the cold front which terminated the next two heat wave events in July and 5 

August (days 56-57 and days 67-68 in Fig. 7), but during these days predicted PM10 levels 6 

were close to the measured PM10 concentrations.  7 

3.3 Evaluation and comparison of different methods for O3 daily maximum 8 

predictions  9 

In this section we want to answer the question: “how accurate is the 1-hour O3 daily 10 

maximum WRF-Chem forecast in comparison to the statistical model prediction or to 11 

persistence?”. According to Zhang et al. (2012a) statistical models are known to be generally 12 

more suitable for complex site-specific relations between concentrations of air pollutants and 13 

predictors. With appropriate and accurate predictors they have a higher accuracy as compared 14 

to deterministic models, which is, along with their computational efficiency their main 15 

advantage (Zhang et al., 2012a). Among the strengths of the deterministic models are that 16 

they give prognostic time- and spatially-resolved concentrations under typical and atypical 17 

scenarios, and can give scientific insights into pollutant formation processes (Zhang et al., 18 

2012a).  Furthermore, they also allow forecasts for locations which are not monitored due to 19 

their complete spatial coverage. In spite of simplified descriptions of physical and chemical 20 

processes in the deterministic models and inaccuracies and uncertainties in model inputs (in 21 

particular the emissions), some previous studies already suggested that deterministic models 22 

can also have skills close to statistical forecasting tools (e.g. Manders et al., 2009). In addition 23 

to evaluation and comparison of O3 daily maxima predictions with WRF-Chem and the 24 

statistical model, we decided to add a persistence model as a threshold for useful model 25 

prediction. Persistence works well under stationary conditions, but because it cannot handle 26 

changes in weather and emissions, fails at the beginning and at the end of the episodes (Zhang 27 

et al., 2010a). Regarding the extremes, models of all types are known to have problem to 28 

accurately predict them, while persistence predicts extremes with a 1-day (2-day) time lag.  29 

Figure 8 compares discrete statistics site by site for 1-day and 2-day model predictions of 1-30 

hour O3 daily maxima. Similarly, Tab. 4 shows these statistics for all data with different 31 

thresholds applied (only for WRF-Chem and persistence, because a statistical forecast is not 32 
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available for all stations), and separately for different types of stations (sub-alpine urban, 1 

rural, Mediterranean urban) with an available statistical forecast. Looking at ME persistence 2 

gives results close to zero as long as no threshold is applied, while with threshold of 140 μgm
-

3 

3
 (Tab. 4) ME of 1-day persistence (-10.2 μgm

-3
) is very close to the WRF-Chem model for 1-4 

day predictions (-11.2 μgm
-3

), and for 2-day predictions WRF-Chem (-13.8 μgm
-3

) already 5 

beats persistence (-19.4 μgm
-3

). Site-by-site comparison (Fig. 8) shows that for most stations 6 

the statistical forecast has a lower ME than WRF-Chem forecast, but there are also stations 7 

(ISK, HRA, LJ, KRV) with lower or equal ME for WRF-Chem than for statistical model, 8 

indicating the possible occurrence of atypical conditions not resolved by the statistical model. 9 

Looking at MAE and RMSE, at all stations except those with highest ME (TRB, KOP) WRF-10 

Chem outperforms the persistence already in the 1-day forecast. Among sites with available 11 

statistical forecast there are only two (OTL, KOP) with WRF-Chem performing worse than 12 

the statistical forecast. CORR is one of the parameters that suggest how much the model is 13 

able to follow the true nature of processes regardless the possible bias. For almost all stations 14 

WRF-Chem shows higher CORR than persistence for 1-day and 2-day forecasts. Only at the 15 

KRV station the 1-day statistical forecast (CORR=0.80) somewhat outperforms WRF-Chem 16 

(0.74), and at NG and KOP CORR for WRF-Chem and statistical model is very similar.  17 

The Taylor diagrams in Fig. 9 show CORR together with the centered root-mean-square 18 

difference (RMSD) between model forecasts and observations, and the amplitude of their 19 

variations (standard deviation). The ideal model would have a correlation coefficient of 1 and 20 

a standard deviation equal to the observations, which means that it would be co-located with 21 

the black dot on the diagram. WRF-Chem gives higher CORR and lower RMSD for all types 22 

of stations, while standard deviation of WRF-Chem O3 daily maxima predictions is 23 

underestimated and lower than for other model forecasts. The latter shows that the variability 24 

in WRF-Chem model predictions is not as large as that in observed values. MNBE in Fig. 8 25 

has very similar results to ME. For all forecasts except WRF-Chem for the TRB site (with 26 

MNBE of 16%) which is located in a narrow valley that is not resolved in the current model 27 

resolution, MNBE is below the ±10-15%, which is the U.S. EPA (US EPA, 1991) 28 

recommended threshold for the models used for regulatory applications. For MNGE the U.S. 29 

EPA recommendation below 30-35% for O3 applications is met by all forecasts, even in the 30 

case of 2-day persistence model. With exception of the MS and KOP sites MNGE is lower for 31 

WRF-Chem than for statistical forecast, while for KOP and KRV sites 1-day persistence gives 32 

best results, followed by the statistical forecast or WRF-Chem. Very similar are results for 33 
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IOA with the range of 0-1, and score 1 indicating perfect model agreement with the 1 

observations. We can conclude that for most stations the WRF-Chem predictions are in line or 2 

even outperform the statistical model. With the exception of the stations with high bias due to 3 

very complex local topography (TRB) or unresolved coastal processes (KOP), the WRF-4 

Chem forecasts are more accurate than persistence. Here we recall that high negative bias in 5 

WRF-Chem forecast for alpine KRV site due to too low altitude of the station in model 6 

topography was compensated by taking prediction from the 5
th

 model level. 7 

The key requirement for a forecast system is to be able to predict O3 concentration levels 8 

greater than a given threshold. Thus, in addition to the discrete evaluation just presented, also 9 

the contingency-table-based statistics are an important metric of forecast performance. Table 10 

5 summarizes the categorical evaluation results for three different thresholds (120, 140, 160 11 

μgm
-3

) of elevated O3 levels, which pose a greater risk to human health. Namely, it is 12 

important to take into account that results of categorical statistics are very sensitive to the 13 

threshold chosen, as well as to the overall pollution levels during the analyzed months. 14 

Equitable Threat Score (ETS) measures the fraction of observed and/or correctly predicted 15 

events, adjusted for the frequency of hits that would be expected to occur by random chance. 16 

Although this score takes into account the climatology it is not truly equitable. It ranges from 17 

-1/3 to 1, where the minimum value depends on climatology (it is near 0 for rare events). 18 

Looking at Tab. 5 ETS shows equal skill for WRF-Chem and statistical forecast, higher than 19 

persistence for the 120 μgm
-3

 threshold (1-day and 2-day forecast). ETS decreases with 20 

increasing the threshold for both WRF-Chem and statistical forecast, indicating the challenge 21 

that both models have to accurately predict the extremes. In the case of 140 μgm
-3

 threshold, 22 

WRF-Chem has the same ETS as persistence, higher than the statistical model for 1-day 23 

forecast, while for 2-day forecast WRF-Chem outperforms the statistical model, followed by 24 

persistence. In the case of 160 μgm
-3

 threshold persistance has the highest ETS for a 1-day 25 

forecast, followed by statistical model and WRF-Chem, while in the case of 2-day 26 

predictions, statistical model shows the highest skill and WRF-Chem the lowest. Another 27 

measure, the critical success index (CSI), is similar to ETS, except that it does not take into 28 

account the climatology of the events and thus gives poorer scores for rarer events. It 29 

measures the percentage of cases that are correctly forecasted out of those either forecasted or 30 

observed, and ranges from 0 to 1 (1 indicating the perfect forecast). Similar as ETS, CSI gives 31 

higher scores for persistence in the case of 1-day forecast for the higher two thresholds, while 32 

on the second day WRF-Chem or the statistical model already performs better. Bias (B) 33 
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determines whether the same fraction of events are both forecasted and observed. A tendency 1 

of the statistical model and of WRF-Chem to under-predict O3 threshold exceedances shows 2 

as a B below 1 for these two models.  The false alarm ratio (FAR) that measures the 3 

percentage of forecast high O3 events that turn out to be false alarms, gives highest skill for 4 

WRF-Chem, followed by statistical model and persistence. The probability of detection 5 

(POD) is a measure of how often a high threshold occurrence is actually predicted to occur, 6 

and is relatively low for WRF-Chem with respect to other models.  7 

It must be noted, that in categorical evaluations systematic biases like those obtained with 8 

WRF-Chem for some stations (e.g. KOP), significantly impact the model performance. For 9 

example, if KOP station was excluded from categorical evaluations, WRF-Chem performance 10 

improved by means of all statistical measures (results not shown). If correction techniques, 11 

based on observations and the previous day’s forecast (e.g., McKeen et al., 2005, 2007; Kang 12 

et al., 2008) were to be applied to correct the systematic biases, WRF-Chem forecasts might 13 

outperform the other two models even in categorical evaluations. 14 

 15 

4 Summary and conclusion 16 

A high resolution modelling system based on an on-line coupled WRF-Chem has been 17 

applied for numerical weather prediction and for forecasting air quality in Slovenia. In the 18 

study the evaluation of the forecasting system has been conducted for three summer months. 19 

Since the selection of physical or chemical parameterization schemes influences and possibly 20 

changes the outcomes, we decided to apply schemes which are well documented and have 21 

previously been used in other applications (e.g. AQMEII). Both 1-day and 2-day predictions 22 

of meteorological and air quality variables have been analyzed. The focus has been on O3 as 23 

the only pollutant with recorded exceedances of legislation limit values during the three heat 24 

wave events in June, July and August 2013.  WRF-Chem daily O3 maximum predictions have 25 

also been compared to the operational statistical model and persistence forecasts to answer the 26 

question how skillful are the WRF-Chem model predictions compared to these two models.  27 

1-day and 2-day WRF-Chem PM10 forecasts showed a very low bias. Exceptions were two 28 

events with significantly over-predicted PM10 levels due to prefrontal advection of polluted 29 

air masses from neighboring regions. Knowing that majority of the current chemical transport 30 

models show large negative biases in simulated PM10 concentrations, these results present a 31 
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good starting point for studying the importance of aerosol feedbacks with realistic model 1 

aerosol concentrations, left for future research.  2 

The overall agreement of WRF-Chem NO2 forecast with measurements was good for rural 3 

sites, while urban sites experienced model under-predictions, which were highest for small 4 

towns. One important reason is that many small towns are located in basins or very narrow 5 

valleys, usually poorly presented in model topography. Smoothed local emissions result in 6 

model underestimations of NO2 concentrations for these towns. This in combination with 7 

insufficiently reproduced calm meteorological conditions in basins and valleys during the 8 

nighttime hours explains also WRF-Chem over-predictions of nighttime O3 concentrations.  9 

Evaluations of predicted 1-hour and 8-hour daily O3 maxima, which are in the case of this 10 

pollutant of the highest interest, show good WRF-Chem model performance. Nevertheless, 11 

there are also stations which experience high over- or under-predictions of O3 daily maximum 12 

levels. For Mediterranean sites the under-predictions of the daily maxima are most probably 13 

due to inaccurate representation of costal processes in model, which are crucial for the PBL 14 

height evolution and accumulation of pollution in the near ground air layers. For some sub-15 

alpine stations the reason for the higher bias in O3 daily maximum predictions is their location 16 

either at elevated mountainous or coastal regions, or in narrow valleys which cannot be 17 

appropriately resolved in the current model resolution - that impacts how accurately model 18 

simulates the local processes responsible for the level of local pollution. Comparisons of 19 

WRF-Chem O3 daily maximum forecasts with persistence and with statistical model 20 

predictions show that with respect to some statistical parameters the deterministic WRF-21 

Chem forecast can outperform the other two for both 1-day and 2-day predictions. For 22 

example, correlation coefficient shows highest skill for WRF-Chem model, confirming the 23 

importance of complex processes as taken into account in an on-line coupled Eulerian model. 24 

Further improvement of WRF-Chem forecasting skill could be obtained by applying one of 25 

the bias-correction methods in order to account for unresolved topographical and coastal 26 

effects, as well as emission patterns. Chemical data assimilation, although currently still in its 27 

infancy for online coupled meteorology-chemistry models (Bocquet et al., 2014), could in 28 

future also be used as an efficient method for improving prediction of chemical concentration 29 

fields. For WRF-Chem model a technical note on the implementation of the aerosol 30 

assimilation and a guidance for prospective users has been recently published by Pagowski et 31 

al. (2014). 32 
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Appendix A: Statistical measures 1 

For i-th observed (Oi) and the corresponding modelled (Mi) value of variable, discrete 2 

statistical measures are calculated as follows: 3 
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Mean normalized bias error: 20 
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Mean normalized gross error: 24 
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For categorical evaluation all model predictions are first classified into four groups (a, b, c 28 

and d):  29 

 a  prediction is above, but observation is below the threshold 30 

 b prediction and observation are above the threshold 31 

 c prediction and observation are below the threshold 32 

 d prediction is below, but observation is above the threshold 33 

 34 

Categorical statistics are calculated as follows:  35 
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 1 

Equitable threat score: 
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Table 1: AQ monitoring sites. 1 

Monitoring site Abbreviation Type of 

zone 

Altitude 

(m) 

Model 

orography 

(m) 

Model 

analysis 

height (m) 

Pollutants Statistical ozone 

forecast 

Celje CE Urban 240 300 313 O3, PM10, NO2 No 

Hrastnik HRA Urban 290 540 552 O3, SO2 Yes 

Iskrba ISK Rural 540 579 591 O3, NO2 Yes 

Koper KOP Urban 56 72 85 O3, PM10 Yes 

Kovk KOV Rural 608 516 528 NO2 No 

Krvavec KRV Rural 1740 1272 1414 O3 Yes 

Ljubljana LJ Urban 299 287 300 O3, PM10, NO2, Yes 

Murska Sobota MS Rural 188 189 202 O3, PM10, NO2 Yes 

Nova Gorica NG Urban 113 150 163 O3, PM10, NO2 Yes 

Otlica OTL Rural 918 874 886 O3 Yes 

Sv. Mohor MOH Rural 394 254 266 NO2 No 

Trbovlje TRB Suburban 250 459 471 O3, PM10, NO2 No 

Velenje VEL Urban 389 461 474 O3, SO2 No 

Vnajnarje VNA Rural 630 468 480 NO2 No 

Zadobrova ZAD Rural 280 275 287 PM10, NO2 No 

Zagorje ZAG Urban 241 431 443 O3, PM10, NO2 No 

Zavodnje ZAV Rural 765 678 690 O3, NO2 No 

2 
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Table 2: Statistical scores for 1-hour values of 2m temperature (T2m), 10 m wind speed 1 

(W10m) and relative humidity (RH), and for daily average incoming solar radiation (SR). 2 

Shown are results for 1-day forecast, calculated separately for three measuring sites (LJ, NG, 3 

MS) and for 24 MET monitoring stations (ALL) during the 3-month period. In the case of 4 

temperature results for daily maxima are also shown. 5 

Variable Station NoCases Mean ME MAE RMSE CORR 

T2m 1h (°C) LJ 2129 20.3 -1.6 2.3 2.9 0.91 

 NG 2184 21.8 -1.1 2.1 2.5 0.94 

 MS 2184 19.2 -2 2.3 2.8 0.95 

 ALL 47836 18.7 -1.3 2.3 2.9 0.93 

T2m max (°C) LJ 89 26.5 -1.6 1.8 2.1 0.98 

 NG 90 26.8 -3 3 3.3 0.96 

 MS 90 26.2 -1.7 1.8 2 0.98 

 ALL 1976 24.2 -2.1 2.7 3.2 0.97 

W10m (m/s) LJ 2129 1.5 0 0.7 1 0.58 

 NG 2183 2.7 1 1.4 1.9 0.35 

 MS 2184 2.3 0.4 1.1 1.4 0.53 

 ALL 43378 2.4 0.8 1.4 1.9 0.36 

RH (%) LJ 2066 62 -2 8 10 0.85 

 NG 2121 62 -1 12 15 0.75 

 MS 2121 69 3 8 11 0.88 

 ALL 48556 68 2 11 14 0.77 

SR (W/m2) LJ 90 276 19 31 43 0.84 

 NG 90 278 4 32 43 0.77 

 MS 90 273 15 26 37 0.9 

 ALL 1710 273 16 35 49 0.77 

6 
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Table 3: Domain wide performance statistics for 1-day and 2-day forecast in μgm
-3

. For 1 

different pollutants statistics for all hourly (hour), 8-hour averages (8h), 8-hour daily 2 

maximum (8h max), daily maximum (max) or daily average (day) concentrations are shown.  3 

  NoCases Mean ME MAE RMSE CORR 

O3 (hour)  1 day 28391 94.8 14.5 25.1 32.1 0.65 

 2 day 28391 95.0 14.5 25.5 32.5 0.64 

O3 (8h) 1 day 28072 94.8 14.6 22.6 28.1 0.69 

 2 day 28072 95.0 14.6 23.0 28.5 0.68 

O3 (8h max) 1 day 1157 111.5 -0.1 13.2 16.5 0.77 

 2 day 1157 111.6 -0.2 13.7 17.0 0.75 

O3 (max) 1 day 1170 116.5 -2.7 13.3 16.7 0.81 

 2 day 1170 116.6 -3.1 14.0 17.5 0.78 

NO2 (hour) 1 day 26178 7.3 -5.1 7.5 10.8 0.3 

 2 day 26178 7.5 -4.9 7.6 10.8 0.3 

PM10 (day) 1 day 718 29.0 7.1 12.0 18.8 0.34 

 2 day 718 29.1 7.2 12.0 19.1 0.37 

4 
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Table 4: Discrete evaluation of 1-hour daily maximum ozone predictions.  1 

Stations Threshold, 

NoCases 

Forecast Mean  

(μgm
-3

 ) 

ME 

(μgm
-3

 ) 

MAE 

(μgm
-3

 ) 

RMSE 

(μgm
-3

 ) 

CORR MNBE 

(%) 

MNGE 

(%) 

IOA 

All  > 0 F 1day 116.5 -2.6 13.3 16.7 0.81 -0.05 11.7 0.86 

 1170 F 2day 116.6 -3.1 14.0 17.5 0.78 -0.1 12.3 0.84 

 PER 1day 119.5 -0.4 15.8 21.1 0.65 1.6 14.5 0.81 

 PER 2day 119.8 -0.4 21.7 27.7 0.39 2.8 19.6 0.65 

> 140 F 1day 144.1 -11.2 15.2 17.9 0.52 -6.8 9.5 0.57 

1102 F 2day 141.4 -13.8 16.5 19.4 0.42 -8.6 10.5 0.48 

 PER 1day 145.0 -10.2 15.6 19.6 0.41 -6.5 10.0 0.52 

 PER 2day 135.8 -19.4 24.76 29.2 0.31 -12.4 15.9 0.38 

Sub-alpine 

urban with SF 

(LJ, HRA) 

> 0 F 1day 115.3 1.1 10.7 14.0 0.84 3.4 11.1 0.91 

180 F 2day 115.4 0.8 12.0 15.2 0.80 3.5 12.2 0.88 

 PER 1day 114.3 -0.3 16.7 21.7 0.64 2.2 16.5 0.80 

 PER 2day 114.6 -0.3 21.9 27.8 0.41 3.9 21.6 0.65 

 SF 1day 114.0 -0.5 11.9 15.7 0.81 1.6 11.2 0.88 

 SF 2day 116.2 0.6 13.4 17.1 0.75 3.2 12.7 0.84 

Rural with SF 

(MS, ISK, 

KRV, OTL) 

> 0 F 1day 117.6 -5.6 13.3 16.3 0.80 -3.0 10.8 0.86 

360 F 2day 117.4 -6.4 14.2 17.4 0.76 -3.4 11.4 0.84 

 PER 1day 123.6 -0.3 15.0 20.7 0.65 1.4 13.1 0.81 

 PER 2day 124.1 -0.4 21.6 27.8 0.37 2.4 18.5 0.64 

 SF 1day 121.5 -2.9 15.0 19.4 0.74 -0.7 12.2 0.83 

 SF 2day 122.9 -1.8 15.8 20.5 0.67 0.5 13.2 0.79 

Mediterranean 

urban with SF 

(KOP, NG) 

> 0 F 1day 123.5 -11.8 17.4 22.5 0.76 -6.9 12.5 0.80 

179 F 2day 124.5 -11.2 17.2 21.8 0.77 -6.5 12.4 0.82 

 PER 1day 135.9 -0.5 17.4 23.0 0.68 1.2 13.8 0.83 

 PER 2day 136.0 -0.2 25.2 31.5 0.41 2.8 19.7 0.66 

 SF 1day 129.3 -7.0 15.9 20.7 0.75 -3.6 11.6 0.83 

 SF 2day 131.6 -4.5 15.6 20.4 0.74 -1.6 11.6 0.84 

 2 

3 
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Table 5: Categorical evaluation of 1-hour daily maximum ozone predictions for different 1 

thresholds, calculated for 8 monitoring sites with available statistical forecast. 2 

Threshold Forecast ETS CSI B FAR POD a b c d 

> 120 F 1day 0.42 0.63 0.81 0.13 0.70 39 253 313 107 

 F 2day 0.39 0.61 0.79 0.14 0.68 41 245 303 115 

 PER 

1day 

0.31 0.59 0.99 0.25 0.74 91 267 249 93 

 PER 

2day 

0.17 0.49 1.00 0.34 0.65 123 235 209 124 

 SF 1day 0.42 0.67 1.02 0.21 0.81 67 257 243 61 

 SF 2day 0.38 0.65 1.03 0.23 0.80 77 264 225 66 

> 140 F 1day 0.40 0.50 0.64 0.15 0.551 19 111 490 92 

 F 2day 0.37 0.47 0.66 0.19 0.53 25 108 476 95 

 PER 

1day 

0.40 0.53 1.00 0.31 0.69 62 141 435 62 

 PER 

2day 

0.19 0.35 1.00 0.48 0.52 97 106 391 97 

 SF 1day 0.30 0.43 0.73 0.29 0.52 40 99 398 91 

 SF 2day 0.30 0.43 0.70 0.27 0.51 37 98 403 94 

> 160 F 1day 0.19 0.22 0.38 0.34 0.25 10 19 626 57 

 F 2day 0.17 0.20 0.34 0.35 0.22 9 17 619 59 

 PER 

1day 

0.40 0.45 1.00 0.38 0.62 29 47 595 29 

 PER 

2day 

0.22 0.28 1.00 0.56 0.43 43 33 572 43 

 SF 1day 0.23 0.27 0.49 0.35 0.32 13 24 539 52 

 SF 2day 0.25 0.29 0.63 0.41 0.37 19 27 540 46 
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 1 

Figure 1: Modelling domains (D1, D2) used in WRF-Chem RT-AQF system. Orography (in 2 

meters) is shown in resolution of D1 domain (11.1 km). 3 

  4 
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 1 

 2 

Figure 2: Example of ozone analysis for the Nova Gorica (NG) monitoring site (average daily 3 

maximum ± standard deviation) for 7 clusters of similar trajectories, as used in the statistical 4 

ozone daily maximum forecast for the NG station. 5 
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 1 

 2 

Figure 3: Locations of monitoring stations used in evaluation of air quality variables (AQ 3 

stations; shown are also station abbreviations) and meteorological variables (MET stations). 4 

Green dots indicate measuring sites with available ozone daily maximum statistical forecast 5 

(SF). For the meaning of abbreviations of AQ sites see Tab. 1.  6 

  7 
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 1 

Figure 4: 3-month average 1-day predictions of a) hourly O3, b) O3 daily maximum, c) hourly 2 

NO2, and d) daily PM10concentrations for the first model layer, overlaid with measurements.  3 

 4 
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 1 

Figure 5: Time evolution of hourly ozone concentrations for 1-day (F 1day) and 2-day (F 2 

2day) WRF-Chem predictions and measurements for some stations during the 3-month 3 

period. (continued) 4 

  5 
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 1 

Figure 5: (continued) 2 
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Figure 6: The same as Fig. 5 but for NO2 at LJ, ZAG and MOH stations.2 
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 1 

Figure 7: The same as Fig. 5, but for daily PM10 concentrations at MS and ZAD stations. 2 

 3 
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 1 

Figure 8: Site-by-site comparison of discrete statistics for 1-day and 2-day WRF-Chem (F 2 

1day, F 2day), statistical (SF 1day, SF 2 day) and persistence model (P 1day, P 2day) 3 

predictions of ozone daily maxima during the 3 analyzed summer months.   4 

5 
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 1 

Figure 9: Taylor diagrams comparing 1-day and 2-day ozone daily maximum statistical 2 

forecast (SF), persistence (P) and WRF-Chem forecast (F) for a) sub-alpine urban stations 3 

with SF (LJ, HRA), b) sub-alpine urban stations without SF (CE, TRB, ZAG, VEL), c) rural 4 

stations with SF (MS, ISK, KRV, OTL) and d) Mediterranean urban stations (NG, KOP). 5 


