
We would like to thank Anonymous Referee 2 for the thorough and prompt review. I (Keane)
write this on behalf of all authors, but I would first like to point out that I discovered an error in the
FSS calculation (which affects Figures 2 and 3 of the original manuscript but not Figure 4): I was
taking the mean of(F −O)2/(F 2 + O2) as a whole instead of the numerator and the denominator
individually before dividing. Apologies for this – I have now corrected the error and it does not alter5
the overall conclusions of the paper, but the situation for the FSS is now somewhat more coherent.

We address here the Specific comments in turn, and this shouldthereby ensure that the General
comments are also addressed.

1. OK

2. We agree that it would be worth citing those two papers as two examples of a third possible10
way of accounting for model variability.

3. OK

4. The PC scheme will have most impact at grid spacings of low tens of kilometres, with its
impact increasing as the resolution becomes finer (until deep convection is no longer parame-
terised); see Keane et al. (2014) for an example of this, where the increase in variability pro-15
duced by the stochasticity of the scheme increases with decreasing grid spacing. This means
that it will become more relevant for global climate modelling in the future as the resolution
of such models increases, and is already relevant for regional climate modelling, where grid
spacings are in the low tens of kilometres.

5. The scheme was developed from considerations of tropicaloceanic convection, where the in-20
stability builds up over a longer period under relatively constant forcing. Over mid-latitudes
the forcing tends to vary more quickly, and the convection scheme has less time to respond
before the grid-scale dynamics stabilise the atmosphere. Therefore parameters must be tuned
towards making the scheme more active, for example by makingthe plumes larger so that the
entrainment of less buoyant air is lower relative to their size. Groenemeijer & Craig (2012) jus-25
tified a (larger) increase in plume radius with the argument that the boundary layer is known to
be shallower over the tropical ocean than over mid-latitudes, and so correspondingly narrower
updraughts are produced. The idea behind reducing the mass flux per cloud was to produce
more clouds so that the scheme would have more chances to be active, although the effect of
this is likely to be lower than that of changing the cloud radius.30

Future work will involve applying the PC scheme to global forecast case studies, and attempt-
ing to find parameters which can be applied globally, or some suitable variation of parameters,
possibly based on predictors derived from model variables.

6. We shall state here that the forecasts were 54 hours long.

7. As stated in the Response to Review 1, the FSS is calculatedfor each member separately, and35
a mean over all members is calculated.

8. The idea of the normalisation is so that the FSS ranges from0 to 1, whatever scale it is
evaluated at.

9. This is deterministic in the sense that the ensemble is used to produce a single quantity, with
no indication of the uncertainty. This will be clarified in the revised text.40

10. The forecast length used was simply that which was run operationally at the time the forecasts
were calculated. Future work involving global models wouldof course involve longer runs
(for example, the global version of MOGREPS currently provides a 7-day ensemble forecast).
Having recalculated the FSSs, the performance of the PC scheme relative to GR is better for
longer lead times (than what was originally shown), particularly at larger scales.45
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11. We have reproduced Figure 2, taking thresholds corresponding to the 50th, 75th, 90th, 95th,
99th, 99.9th and 99.99th percentiles. In Figure RF1, the thresholds are the same for both fore-
cast sets and the observation set, and correspond to the percentiles as applied to the observation
set (i.e. this is the same as Figure 2 but with other thresholds). In Figure RF2, the thresholds
are different for each set, and correspond to the percentiles applied to that set (separately for50
each forecast ensemble member). There is little differencebetween the plots, suggesting that
the rainfall bias is not responsible for the lack of skill at high thresholds. It is presumably
simply the case that the dataset is not large enough to allow aconclusive verification at such
extreme values: we have in total 67150 elements in each dataset, for each forecast lead time
(i.e. by aggregating over all grid points where observations were available and over all initial55
forecast times), so there are only 67 cases where the observed value is above the 99.9th per-
centile and just 6 cases where it is above the 99.99th percentile. We have edited the text on
page 10215, L8-9, to reflect this result.

12. Having corrected the FSS calculation, the distributionand behaviour with scale is more coher-
ent.60

13. This has been clarified in the text.

14. This was based on a theory that I (Keane) have developed since writing Keane & Plant 2012,
that length scales are less important than the number of gridboxes, when it comes to determin-
ing how large an averaging area should be applied (whether this is for the input fields to the
scheme, as described on pg 10203, L20 onwards, or for evaluating the scheme, as discussed65
here). However, this theory is rather controversial, and the issue probably requires more than
a sentence to do justice to it. It is also somewhat incidentalto the discussion here so I think it
is best simply to remove this sentence.

15. OK

16. The results of looking at percentiles are more interesting than for the FSS. As before, we70
have redone Figure 5 for the same seven percentiles as for theFSS, with the thresholds fixed
to those for the observation data set (Figure RF3) and with the thresholds corresponding to
the percentiles for the given data set (Figure RF4). On applying consistent percentiles and
varying thresholds, the skill of both schemes extends to higher thresholds, suggesting that
the Reviewers’ theory that this may mitigate the effect of the heavy rainfall bias (Figure 10) is75
correct. The PC scheme is better than the GR scheme for all buttwo of the percentile/lead-time
combinations (for which at least one scheme has a positive Brier skill score) but the difference
is often small so that this does not show in Figure RF4.

17. We have plotted the decomposition of the Brier score intoreliability (Figure 7) and resolution
(Figure 8). The scales are different from those for Figure 5 [and will of course be stated here].80
The PC scheme generally improves both components of the score at low thresholds, and for
all lead times (note that the colours for the reliability difference plot have been reversed, since
this component is negatively oriented).

18. We shall remove the references to resolution and postprocessing. The EAV remains interest-
ing to calculate, since it goes some way towards "normalising" the differences between the85
schemes other than the stochasticity of the PC scheme, and thereby giving a measure of how
much the improvement in the forecast is due to the stochasticity.

19. Our motivation for using the FSS, rather than RMSE, in this paper was that a threshold-based
score is more appropriate to the heavily skewed way that rainfall is distributed. However, an
earlier analysis showed that the RMSE and spread were both higher for PC than for GR. Both90
ensembles were underdispersive (with a spread significantly lower than the RMSE), but PC
produced more spread relative to RMSE compared with GR (i.e.the increase in spread on
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using PC was greater than the increase in RMSE). This is summarized in R. J. Keane (2013):
“The Plant-Craig stochastic convection scheme: How it works and some examples of its appli-
cation”, presented during a Stochastic Physics Week at Deutscher Wetterdienst and available at95
ftp://ftp.dwd.de/pub/DWD/Forschung_und_Entwicklung/StochasticPhysicsWeek/Keane.pdf (see
slide 29).

20. When the scheme was first applied to ICON global forecasts, it was found that the temperature
forecast in the mid-troposphere was degraded compared withthe standard convection scheme
in ICON. This was mitigated by increasing the mean plume radius, so that more heat and100
moisture was transported vertically by the scheme. This suggests that the degradation in the
MOGREPS temperature and pressure forecasts is related to the insufficient tuning of certain
parameters in the PC scheme, as described on page 10204.

There now follows a marked-up version of the manuscript, highlighting the differences in the
new version, as against the originally submitted version. The differences are intended to address the105
Concerns of both Reviewers.

7
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Abstract. The Plant–Craig stochastic convection parameterization (version 2.0) is implemented in

the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison

with the standard convection scheme with a simple stochastic element
:::::::

schemeonly, from random

parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over110

the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are

assessed. The Plant–Craig parameterization is found to improve probabilistic forecast measures,

particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at

the grid scale is neutral, although the Plant–Craig scheme does deliver improvements when forecasts

are made over larger areas. The improvements found are greater in conditions of relatively weak115

synoptic forcing, for which convective precipitation is likely to be less predictable.

1 Introduction

Quantitative precipitation forecasting is recognized as one of the most challenging aspects of nu-

merical weather prediction (Ebert et al., 2003; Montani et al., 2011; Gebhardt et al., 2011). While

progress is continually being made in improving the accuracy of single forecasts – through improve-120

ments in the model formulation as well as increases in grid resolution – a complementary approach

is the use of ensembles in order to obtain an estimate of the uncertainty in the forecast (Buizza et al.,

2005; Montani et al., 2011; Buizza et al., 2007; Bowler et al., 2008; Thirel et al., 2010; Yang et al.,

2012; Zhu, 2005; Abhilash et al., 2013; Roy Bhowmik and Durai, 2008; Clark et al., 2011; Tennant and Beare,

2013). Of course, ensemble forecasting systems themselvesremain imperfect, and one of the most125

important problems is insufficient spread in ensemble forecasts, where the forecast tends to cluster

too strongly around rainfall values that turn out to be incorrect.
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One reason for lack of spread in an ensemble is that model variability is constrained by the number

of degrees of freedom in the model, which is typically much less than that of the real atmosphere.

The members of an ensemble forecast may start with a good representation of the range of possible130

initial conditions, but running exactly the same model for each ensemble member means that the

range of possible ways of modelling the atmosphere – of whichthe model in question is one – are

not fully considered.Two possible
::::::::

Commonways of accounting for modelvariability
:::::

errorare run-

ning different models for each ensemble member (e.g. Mishraand Krishnamurti, 2007; Berner et al.,

2011)and,
:

adding random perturbations to the tendencies produced by the parameterizations (e.g.135

Buizza et al., 1999; Bouttier et al., 2012)
:::

and
:::::::::

randomly
::::::::::

perturbing
::::::::::

parameters
:::

in
:::::::

physics
::::::::

schemes

:::::::::::::::::::::::::::::::::::::::::::

(e.g. Bowler et al., 2008; Christensen et al., 2015).

Focusing on convective rainfall, and for model grid lengthswhere convective rainfall is parame-

terized, another way of accounting for modelvariability
:::::

erroris to introduce random variability in the

convection parameterization itself, ideally
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(e.g. Lin and Neelin, 2003; Khouider et al., 2010; Plant and Craig, 2008; Ragone et al., 2014140

::::::

Ideally
::::

this
::::::

should
:::

be
:::::

donein a physically consistent way, so that the random variability causes the

parameterization to sample from the range of possible convective responses on the grid scale(e.g. Lin and Neelin, 2003; Khouider et al.,

A recent overview is given by Plant et al. (2015).

Such “stochastic” convection parameterization schemes have been developed over the last 10

years, and are just beginning to be implemented and verified in operational forecasting setups, with145

some promise for the improvement of probabilistic ensembleforecasts(e.g Bengtsson et al., 2013; Kober et al., 2015)
:::::::::::::::

(e.g Teixeira and Re

The purpose of the present study is to continue this pioneering work of verifying probabilistic

forecasts using stochastic convection parameterizations, by investigating the performance of the

Plant and Craig (2008) (PC) scheme in MOGREPS, the Met Office ensemble forecasting system

(Bowler et al., 2008).150

The PC scheme has been shown to produce rainfall variabilityin much better agreement with

cloud resolving model results than for other non-stochastic schemes (Keane and Plant, 2012), and

has been shown to add variability in a physically consistentway when the model grid spacing is

varied (Keane et al., 2014). It has also been demonstrated that the convective variability it produces,

on scales of tens of kilometres, can be a major source of modelvariability
::::::

spread(Ball and Plant,155

2008) and further that its performance at large scales in a model intercomparison is similar to that of

more traditional methods (Davies et al., 2013).

These are encouraging results, albeit from idealized modelling setups, and it is important to estab-

lish whether or not they might translate into better ensemble forecasts in a fully-operational NWP

setup. Groenemeijer and Craig (2012) examined seven cases using the COSMO ensemble system160

with 7km grid spacing andfound that the PC schemeproduced25–50%
:::::::::

compared
:::

the
:::::::

spread
::

in

::

an
:::::::::

ensemble
::::::

using
:::::

only
::::::::

different
:::::::::::

realizations
:::

of
:::

the
::::

PC
:::::::

scheme
::::

(i.e.
:::::::

where
:::

the
::::::::

random
::::

seed
:::

in

:::

the
:::

PC
::::::::

scheme
::::

was
::::::

varied
::::

but
:::

the
:::::::::

members
:::::

were
:::::::::

otherwise
::::::::::

identical)
::::

with
::::

that
:::

in
:::

an
:::::::::

ensemble

:::::

where
:::::::::::

additionally
:::

the
::::::

initial
::::

and
:::::::::

boundary
:::::::::

conditions
:::::

were
::::::

varied.
:::::

They
::::::

found
:::

the
:::::::

spread
::

in
::::::

hourly

2



:::::::::::

accumulated
:::::::

rainfall
::::::::

produced
:::

by
:::

the
:::

PC
:::::::

scheme
::

to
:::

be
:::::::

25–50%
:

of the totalvarianceof hourly–accumulated165

rainfall on ascaleof
::::::

spread,
:::::

when
:::

the
::::::

fields
::::

were
:::::::::

upscaled
::

to
:

35km. The present study investigates

the behaviour of the scheme in a trial of 34 forecasts with theMOGREPS-R ensemble, using a grid

length of24km. The mass-flux variance produced by the PC scheme is inversely proportional to

the grid box area being used and so it is not obvious from the results of Groenemeijer and Craig

(2012) whether the stochastic variations of PC will contribute significantly to variability within an170

ensemble system operating at the scales of MOGREPS-R. Nonetheless, MOGREPS-R has been

shown, in common with most ensemble forecasting systems, toproduce insufficient spread relative

to its forecast error in precipitation (Tennant and Beare, 2013), suggesting that there is scope for the

introduction of a stochastic convection parameterizationto be able to improve its performance.

Although the version of MOGREPS used here has now been superseded, the present study repre-175

sents the first time that the scheme has been verified in an operationally-used ensemble forecasting

system for an extended verification period, and provides thenecessary motivation for more extensive

tuning and verification studies in a more current system. As well as this, the present study aims to

learn
:::::

reveal
:

more about the behaviour of the scheme itself, building on work referenced above, as

well as on recent work by Kober et al. (2015) which focused on individual case studies.180

The paper compares the performance of the PC scheme with the default MOGREPS convection

parameterization, based on Gregory and Rowntree (1990), inorder to seek evidence that accounting

for modelvariability
::::

error
:

by using a stochastic convection parameterization can leadto improve-

ments in ensemble forecasts. Of course, the two parameterizations arefundamentallydifferent ,

quiteapartfrom
::::::::

different
::

in
:::::

other
:::::

ways
:::::

thanthe stochasticity of the PC scheme, so that it will be185

impossibleto obtainunequivocalproof that thestochasticityis responsiblefor animprovementin

performance:
::

it
::

is
:::::::::

therefore
::::::::

possible
::::

that
::::

any
::::::::::

differences
::

in
::::::::::::

performance
:::

are
::::

due
:::

to
:::::

other
::::::

factors.

Nonetheless, the default MOGREPS scheme has benefitted frommuch experience in developing it

alongside the Met Office Unified Model (Lean et al., 2008, UM),whereas relatively modest efforts

were made here to adapt the PC scheme to the host ensemble system: thus, any improvements that190

the PC scheme shows over the default scheme are of clear interest.

2 Methods

2.1 The Plant–Craig stochastic convection parameterization

The Plant and Craig (2008) scheme operates, at each model grid point, by reading in the vertical

profile from the dynamical core, and calculating what convective response is required to stabilize195

that profile. Itcanbeconsideredasastochasticandspectralgeneralizationof
::

is
:::::

based
:::

on
:

the Kain-

Fritsch convection parameterization (Kain and Fritsch, 1990; Kain, 2004),sinceit adapts
::::::::

adapting

the plume model used there and alsohas
:::::

usinga similar formulation for the closure, based on a dilute

CAPE.
:

It
:::::::::::

generalizes
:::

the
::::::::::::

Kain-Fritsch
:::::::

scheme
:::

by
::::::::

allowing
:::

for
:::::

more
:::::

than
::::

one
:::::

cloud
:::

in
:

a
::::

grid
:::::

box,

3



:::

and
:::

by
::::::::

allowing
::::

the
::::

size
::::

and
:::::::

number
::

of
:::::::

clouds
::

to
:::::

vary
:::::::::

randomly.
:

Details of its implementation in200

an idealized configuration of the UM are given by Keane and Plant (2012); this would be regarded

as Version 1.1. The important differences in the implementation for the present study, to produce

Version 2.0, are presented here.

The scheme allows for the vertical profile from the dynamicalcore to be averaged
:

in
::::::::::

horizontal

:::::

space
::::::

and/or
:::

in
:::::

time
:

before it is input. This means that the input profile is more representative205

of the large-scale (assumed quasi-equilibrium) environment, and is less affected by the stochastic

perturbations locally induced by the scheme at previous time steps. It was decided in the present

study to use different spatial averaging extents over oceanand over land, in order that orographic

effects were not too heavily smoothed. The spatial averaging strategy implemented was to use a

square of7× 7 grid points over the ocean and3× 3 grid points over land; the temporal averaging210

strategy was to average over the previous 7 time steps (each of 7.5 min) and the current time step. The

cloud lifetime was set to 15 minutes. As well as using the averaged profile for the closure calculation,

the plume profiles were also calculated for ascent within theaveraged environment.

Initial tests showed that the scheme was yielding too small aproportion of convective precipitation

over the domain. Two further parameters were adjusted from the study by Keane and Plant (2012),215

in order to increase this fraction: the mean mass flux per cloud 〈m〉 and the root mean square cloud

radius
√

〈r2〉. Similar changes were made for the same reason by Groenemeijer and Craig (2012)

in their mid-latitude tests over land, and reflect the fact that the original settings in Plant and Craig

(2008) and Keane and Plant (2012) were chosen to match well with cloud-resolving model sim-

ulations of tropical oceanic convection. Specifically, themean mass flux per cloud was reduced220

here from2× 107kgs−1 to 0.8× 107kgs−1 in order to increase the number of plumes produced

by the scheme. The entrainment rates used in the scheme are inversely proportional to cloud ra-

dius, and a pdf of cloud radius is used characterized by the root mean square cloud value
√

〈r2〉.

This was increased from 450 m to 600 m, in order to produce lessstrongly entraining plumes.

This had some impact on the convective precipitation fraction, but the scheme still yielded a rela-225

tively low proportion of convective rain:12% in these tests, as compared with50% for the stan-

dard scheme.
::::

The
:::::::

overall
:::::::

amount
::

of
:::::::

rainfall
:::::

was
::::::

similar
::::

for
:::

the
::::

two
:::::::::

schemes,
::::

with
::::

the
:::::::::

dynamics

::::::::::::

compensating
:::

for
::::

the
:::::::::

reduction
::

in
::::::::::

convective
::::

rain
::::::::::

produced,
::::

and
::::::::

ensuring
::::

that
:::

the
::::::::::

instability
::::

was

:::::::

suitably
::::::::

removed
:::

by
:::

the
:::::::::

dynamics
::::

and
::::::::::

convection
:::::::

scheme
:::::::::

combined
::

in
:::::

both
:::::

cases.
:

There is no cor-

rect answer forthisproportion
::

the
::::::::::

convective
::::::::

fraction,which is both model and resolution dependent230

in current operational practice. For example, the current ECMWF model has a global average of

about60% (Bechtold, 2015). Doubtless the convective precipitationfraction produced by the Plant–

Craig scheme in MOGREPS-R could be increased further with stronger changes to parameters and

we remark that Groenemeijer and Craig (2012) set
√

〈r2〉 to 1250 m for their tests, which would

likely have such an effect. We attempted only minimal tuninghere and were deliberately rather con-235
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Figure 1. An outline of the MOGREPS NAE domain, with its rotated latitude-longitude grid. The contours are

for reference, and are derived from the dataset used in the present study to separate the domain into land and

ocean areas. The grey shading shows the region for which radar-derived precipitation data were available.

servative about the parameter choices made, with the intention that the results can reasonably be

considered to represent a lower limit of the possible impactof a more thoroughly adapted scheme.

2.2 Description of MOGREPS

The Met Office Global and Regional Ensemble Prediction System (MOGREPS) has been developed

to produce short-range probabilistic weather forecasts (Bowler et al., 2008). It is based on the UM240

(Davies et al., 2005) with 24 ensemble members, and is comprised of global and regional ensembles.

In the present study, the regional ensemble MOGREPS-R was used, with a resolution of 24km and 38

vertical levels. This covers a North Atlantic and European (NAE) domain, which is shown in Figure

1. The model was run on a rotated latitude-longitude grid, with real latitude and longitude locations

of the north pole and the corners of the domain given in Table 1. The regional ensemble was driven245

by initial and boundary conditions from the global ensemble, as described by Bowler et al. (2008).

The operational system has been upgraded since these tests and so the present study represents

a ‘proof of concept’ for a stochastic convection scheme in a full–complexity regional or global

ensemble prediction system, rather than a detailed technical recommendation for the latest version

of MOGREPS.250

Stochastic physics is already included in the regional MOGREPS, in the form of a random param-

eters scheme, where a number of selected parameters are stochastically perturbed during the forecast

run (Bowler et al., 2008). This scheme was retained for the present study, given that the Plant–Craig

scheme is intended to account only for the variability in theconvective response for a given large-

scale state, and as such its design does not conflict with the inclusion of a method to treat parameter255

uncertainty within other parameterization schemes. The MOGREPS random parameter scheme does

introduce variability in parameters that appear within thestandard UM convection scheme, which is
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Table 1. Locations of the north pole and the corners of the domain of the NAE rotated grid, in terms of real

latitude and longitude.

Location latitude (◦N) longitude (◦E)

north pole 37.5 177.5

bottom-left 16.3 -19.8

top-left 72.7 -80.0

bottom-right 16.5 14.2

top-right 73.2 74.1

based on the Gregory and Rowntree (1990) scheme with subsequent developments as described by

Martin et al. (2006). No stochastic parameter variation is applied for any of the parameters appearing

in the Plant–Craig scheme. Thus, there is no “double counting” of parameterization uncertainty in260

these tests but rather we are comparing different methods ofaccounting for convective uncertainties

in a framework which also includes a simple stochastic treatment of uncertainties in other aspects of

the model physics.

The forecasts using the Plant–Craig scheme were obtained byrerunning the regional version of

MOGREPS, with the standard convection scheme replaced by the Plant–Craig scheme, and driven by265

initial and boundary conditions taken from the same archived data that were used for the operational

forecasts. These are compared with the forecasts produced operationally during the corresponding

period, so that the only difference between the two sets of forecasts is in the convection parameteri-

zation scheme. The study used the UM at version 7.3. The modeltimestep was 7.5 minutes, within

which the convection scheme was called twice,
::::

and
:::

the
::::::::

forecast
::::::

length
:::

was
:::

54
::::::

hours.270

2.3 Time period investigated

The time period investigated was from the 10th until the 30thJuly 2009. This length of time was cho-

sen as being sufficient to obtain statistically meaningful results, but without requiring a more lengthy

experiment that would only be justified by a more mature system. The particular month was chosen

partly for convenience and partly as a period that subjectively had experienced plentiful convective275

rain over the UK, therefore providing a good test of a convective parameterization scheme.

Experimental forecasts with the Plant–Craig scheme were generated twice daily (at 06:00 and

18:00 UTC) for comparison with the operational forecast which was taken from the archive. On

some days the archive forecast was missing and so no experimental forecast was generated. In total

34 forecasts were generated, with start times shown in Table2.280
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Table 2.Start times of forecasts investigated in this study (all dates in July 2009).

10th 18UTC 16th 18UTC 21st 06UTC 27th 18UTC

11th 06UTC 17th 06UTC 21st 18UTC 28th 06UTC

11th 18UTC 17th 18UTC 22nd 06UTC 28th 18UTC

12th 06UTC 18th 06UTC 23rd 06UTC 29th 06UTC

12th 18UTC 18th 18UTC 23rd 18UTC 29th 18UTC

13th 06UTC 19th 06UTC 24th 18UTC 30th 06UTC

14th 06UTC 19th 18UTC 25th 06UTC 30th 18UTC

15th 18UTC 20th 06UTC 25th 18UTC

16th 06UTC 20th 18UTC 26th 06UTC

2.4 Verification
:::::::::

Validation

A detailedverification
:::::::::

validationwas carried out against Nimrod radar rainfall data (Harrison et al.,

2000; Smith et al., 2006). This observational data set is only available over the UK (as shown in

Figure 1), and so most of theverification
:::::::::

validation in the following focuses on this region. The

forecasts were assessed on the basis of 6-hourly rainfall accumulations, every 6 hours, for lead times285

from 0 to 54 hours.

2.4.1 Fractions skill score

This score (denoted FSS) was developed by Roberts and Lean (2008), and was used by Kober et al.

(2015) to assess the quality of deterministic forecasts produced using the Plant–Craig scheme for

two case studies. Note that we use the term ‘deterministic’,in this manuscript, to refer to forecasts290

providing a single quantity (for example, a single-member forecast, or the ensemble mean), and

‘probabilistic’ to refer to forecasts providing a probabilistic distribution (or, at the very least, a de-

terministic forecast, with, in addition, an assessment of its uncertainty). The FSS is determined, at

a given grid pointX , by comparing the fractions of observed,O, and forecast,F , grid points ex-

ceeding a specific rainfall threshold, within a specific spatial window centred atX . Here we define:295

FSS = 1−
〈(F −O)2〉

〈F 2〉+ 〈O2〉
(1)

where the angled brackets〈. . .〉 indicate averages over the gridpoints
:::::

point
:::::::

centres
:

X for which

observations are available,and also over the different forecast initialization times. The score is

positivelyoriented,and,
::::

and
::::

here
::::

over
:::

the
::::::::

different
:::::::::

ensemble
::::::::

members
::::

(so
:::

that
::::::::::

effectively
:

a
::::::::

separate300

:::::

score
::

is
:::::::::

calculated
:::

for
:::::

each
:::::::::

ensemble
::::::::

member
::::

and
:::::

these
:::

are
:::::::::

averaged
::

to
::::::::

produce
:::

the
:::::::

overall
:::::

score

:::::::

denoted
::::

here
:::

by
:::::::

FSS).
:::

The
:::::::

spatial
:::::::

window
:::::

(over
::::::

which
::::

the
::::::::

fractions
:::

are
::::::::::

evaluated)
:::::

gives
:::

the
:::::

scale

::

at
:::::

which
::::

the
:::::

score
::

is
:::::::

applied,
:::

so
:::

that
::::

the
::::

FSS
:::

can
:::

be
::::

used
::

to
::::::

assess
:::

the
::::::::::::

performance
::

of
:::::::::

forecasts
::::

both

::

at
:::

the
::::

grid
:::::

scale
:::

and
::

at
::::::

larger
::::::

scales.
::::

The
::::::::

division
::

by
::::::::::::

〈F 2〉+ 〈O2〉
::::::::::

normalizes
:::::::

against
:::

the
::::::::::

smoothing
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::::::

applied
:::

at
:::

the
:::::

given
::::::

scale,
:::

so
::::

that
:::

the
:::::

score
:::::::

always
:

ranges between 0 and 1.
:::

The
:::::

FSS
::

is
:::::::::

positively305

::::::::

oriented.

2.4.2 Brier scores

In order to determine whether or not the variability introduced by the Plant–Craig scheme is added

where it is most needed, the Brier skill score (Wilks, 2006) was applied to both forecast sets, using

the same observational data, to assess the respective quality of the probabilistic forecasts. The Brier310

score is a threshold-based probabilistic verification score, and is given by the mean difference be-

tween the forecast probability of exceeding a given threshold (this probability is here simply taken to

be the fraction of ensemble members which forecast precipitation greater than the threshold) and the

observed probability (i.e 1 if the observed precipitation is above the threshold and 0 if it is below).

To obtain the Brier skill score,BSS, this is compared with a reference score; the reference score315

is here taken to be that calculated from always forecasting aprobability taken from the observation

data set (i.e. the proportion of times the observed precipitation is above the threshold). Thus,

BSS = 1−
〈(f − o)2〉

〈(〈o〉− o)2〉
(2)

wheref is the forecast probability,o is the observation (0 or 1) and〈o〉 is the ‘climatological’ prob-

ability based on the observation set. The angle brackets denote an average over the entire forecast320

set. Although〈o〉 is only availablea posteriori to the event, it does provide a useful ‘base’ for com-

parison: if the forecast issued is no better than one given bysimply always issuing a climatological

average (i.e. ifBSS < 0
::::::::

BSS ≤ 0) then the forecast can be said to have no skill.

2.4.3 Ensemble added value

This measure aims to assess the benefit of using an ensemble, as against a single forecast randomly325

selected from the ensemble. It was recently developed and described in detail by Ben Bouallègue

(2015) and a brief outline is given here. The score is of particular interest to the present study, as

this measure should highlight the advantages and disadvantages of using the stochastic Plant–Craig

methodology, and provides an assessment that is less affected by structural differences between the

Plant–Craig scheme and the Gregory-Rowntree (GR) scheme.330

The ensemble added value (EAV) is based on the quantile score(QS) (Koenker and Machado,

1999; Gneiting, 2011), which is used to assess probabilistic forecasts at a given probability level

(equivalently, the Brier score assesses probabilistic forecasts at a given value threshold). If a quantile

forecastφτ of theτ th quantile of a meteorological variable is given, then the quantile score for that

quantile is interpreted as335

qτ = 〈(ω −φτ )(τ − I{ω < φτ})〉 (3)

whereω is the observed value, the functionI(x) is defined as 1 ifx is true and 0 ifx is false and the

angle brackets denote an average over all forecasts, as for the Brier skill score. In this way, a forecast

8



for a low quantile is penalized more heavily if it is above theobserved value, than if it is below the

observed value, and vice-versa for a forecast for a high quantile (note that the score is negatively340

orientated
:::::::

oriented). The score for the50% quantile is simply the mean absolute error.

The QS can, like the Brier score, be decomposed into a reliability and a resolution component

(Bentzien and Friederichs, 2014). In order to calculate theEAV, a potential QSQτ is defined as the

total QS minus its reliability component. The QS is here evaluated by first sorting the ensemble

members, and interpreting themth sorted ensemble member as the(m− 0.5)/24 quantile forecast.345

The EAV is then given by summing the potential QSsQm over the 24 members, and comparing with

an equivalent sum over reference potential QSs:

EAV = 1−

∑

m
Qm

∑

m
Qref

m

. (4)

The reference forecast is created by defining the quantile assimply a randomly-selected member

of the ensemble, so that the reference forecast represents the score which could have been obtained350

with only one forecast (a single member is randomly selected, with replacement, once for the en-

tire period, but separately for each quantile). The EAV thusmeasures the quality of the ensemble

forecast, relative to the quality of the individual membersof the ensemble.

2.5 Separation into weakly- and strongly-forced cases

Groenemeijer and Craig (2012) applied the Plant–Craig scheme in an ensemble forecasting system355

for seven case studies, with various synoptic conditions, and showed that the proportion of ensemble

variability arising from the use of the stochastic scheme (as against that arising from variations in

the initial and boundary conditions) depends on the strength of the large-scale forcing, as measured

by the large-scale vorticity maximum. In particular, the stronger the large-scale forcing, the lower

the proportion of the variability that comes from the stochastic scheme.360

Kober et al. (2015) investigated two of the case studies further, by verifying forecasts using the

Plant–Craig scheme and using a non-stochastic convection scheme. They found that the improve-

ment in forecast quality from using the Plant–Craig scheme was significantly higher for the more

weakly-forced of the two cases, since the additional grid-scale variability introduced by the stochas-

tic scheme is more important.365

As part of the present study, we extend the work of Kober et al.(2015) by separating ourverification

:::::::::

validationperiod into dates for which the synoptic forcing is relatively weak or strong. We then com-

pare any improvement in the forecasts using the Plant–Craigscheme, over those using the Gregory-

Rowntree scheme, for the two sets of forecasts, to assess over an extended period whether the benefit

of using a stochastic scheme is indeed greater when the synoptic forcing is weaker.370

The separation into weakly- and strongly-forced cases was carried outa posteriori to the event

based on surface analysis charts. The aim here is not to develop an adaptive forecasting system, but

rather to develop understanding of the behaviour of the Plant–Craig scheme. Nonetheless, the results
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may also be interpreted as providing evidence that such a system may be feasible if the strength of the

synoptic forcing could be predicted in advance (using, for example, the convective adjustment time375

scale as discussed by Keil et al. (2014)). The period was divided into 12-hour sections, centred on

00 or 12 UTC, and a surface analysis chart valid at the respective centre-time was used to determine

whether to categorize the section as weakly- or strongly-forced. The 00 UTC analyses were taken

from Wetterzentrale (2009) and the 12 UTC analyses from Eden(2009).

The separation was conducted by assigning periods with discernible cyclonic and/or frontal activ-380

ity over or close to the UK as strongly-forced and the rest as weakly-forced, with some additional

adjustment of the preliminary categorization based on the written reports by Eden (2009). The peri-

ods were categorized as in Table 3.

Table 3.Categorization of 12-hour periods (centred at the time given) investigated in this study, into weak and

strong synoptic forcing (all dates in July 2009).

10th 00UTC Weak 17th 12UTC Strong 25th 00UTC Weak

10th 12UTC Strong 18th 00UTC Strong 25th 12UTC Weak

11th 00UTC Strong 18th 12UTC Weak 26th 00UTC Strong

11th 12UTC Strong 19th 00UTC Strong 26th 12UTC Strong

12th 00UTC Strong 19th 12UTC Weak 27th 00UTC Strong

12th 12UTC Strong 20th 00UTC Weak 27th 12UTC Weak

13th 00UTC Weak 20th 12UTC Weak 28th 00UTC Strong

13th 12UTC Weak 21st 00UTC Strong 28th 12UTC Strong

14th 00UTC Strong 21st 12UTC Strong 29th 00UTC Strong

14th 12UTC Strong 22nd 00UTC Strong 29th 12UTC Strong

15th 00UTC Weak 22nd 12UTC Strong 30th 00UTC Weak

15th 12UTC Weak 23rd 00UTC Weak 30th 12UTC Weak

16th 00UTC Weak 23rd 12UTC Weak 31st 00UTC Weak

16th 12UTC Weak 24th 00UTC Weak 31st 12UTC Strong

17th 00UTC Strong 24th 12UTC Weak

3 Results

3.1 Fractions skill score385

The quality of the respective deterministic forecasts
:::

(i.e.
:::::

those
:::::::::

produced
:::

by
::::::::::

individual
:::::::::

ensemble

:::::::::

members,
::::

with
:::

no
::::::::::::::

supplementary
:::::::::

indication
:::

of
:::

the
::::::::

forecast
:::::::::::

uncertainty)
:

using Gregory-Rowntree

(GR) and Plant–Craig (PC) is assessed using Figures 2and 3 ,
::

3
::::

and
::

4. The performance of the

schemes is overall similar, with PC being superior for low thresholds (in contrast to the findings of

Kober et al. (2015)) and short lead times. With averaging(Fig. 3
:::

and
::::

GR
:::

for
:::::::::

moderate
::::::::::

thresholds.390
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::::

With
:::::::::

upscaling
::::::

(Figs.
::

3
:::

and
::

4), thedifferencesbetweentheschemesbecomemorescatteredacross

theplots,with theperformance of both schemesimprovingfor higherthresholds,which is in broad

agreementwith the resultsof Kober et al. (2015)
::::::::

improves
:::

for
:::

all
::::::::::

thresholds
::::

and
:::::

lead
::::::

times.
::::

The

:::

PC
:::::::

scheme
::::::::

benefits
:::::::::::

particularly
:::::

from
::::

the
:::::::::

upscaling
::

at
:::::::

higher
::::::::::

thresholds
::::

and
::::::

longer
:::::

lead
::::::

times,

:::::::::

sometimes
:::::::::::

performing
:::::::::::

significantly
:::::

better
::::

than
:::

the
::::

GR
:::::::

scheme
::::::

where
::

at
:::

the
::::

grid
::::

scale
:::

the
::::::::::::

performance395

:::

was
::::::

equal. In general, the difference in the scores between the two schemes does not reach such high

values as those seen in Kober et al. (2015), although this could be due to the fact that they inves-

tigated individual case studies which were specifically selected to test the impact of the stochastic

scheme, whereas our results are scores averaged over an extended period.

In general, then, the schemes perform similarly overall, and the impact of using a stochastic400

scheme on the FSS is modest. Indeed, the fact that there is no skill for the highest threshold, for

either scheme, is more important. This lack of skill could besimply due to the fact that the case

study period was too short to obtain a statistically significant sample of extreme rain events. How-

ever, it is also true that MOGREPS significantly overforecasts heavy rain over the UK for this period

(see Figure 13).405

3.1.1 Separation into weakly- and strongly-forced cases

Figure 5 shows the difference in FSS between PC and GR, for forecasts separated into weakly- and

strongly-forced cases, as described in Section 2. It can be seen that, with no averaging, PC is better

for the smallest thresholds but worse for the moderate thresholds, while with upscalingthisbecomes

lessdependenton threshold,aswasseenin Figures2 and 3
:::

the
:::::::

relative
::::::::::::

performance
:::

for
:::::::::

moderate410

:::

and
::::::

higher
::::::::::

thresholds
::

is
:::::::::

improved,
:::::::::

especially
::::

for
:::

the
:::::::::::::

weakly-forced
:::::

cases.

PC generally performs better than GR for weakly-forced cases, and worse for strongly-forced

cases. While both schemes benefit from upscaling the score, this benefit is greater for PC. The

results agree well with those of Kober et al. (2015) for two example cases, where the Plant–Craig

scheme benefits more from the upscaling than the non-stochastic scheme, and performs relatively415

better for the weakly-forced than for the strongly-forced case.Note that theupscalingrequiredfor

the Plant–Craigschemeto show betterresults is a function of numberof grid boxesand rather

independentof theactualphysicalscale–thePCschemeworksonthescaleof thegridbox,whatever

thatmaybe,andthekey is to averageoverasufficientnumberof calls to thescheme.

Moreover, it is clear that the upscaling is more beneficial tothe PC scheme (relative to the GR420

scheme) for the weakly-forced cases than for the strongly-forced cases. The interpretation is that the

PC scheme provides a better statistical description of small-scale, weakly-forced convection than

a non-stochastic scheme. This will not provide any improvement to the FSS evaluated at the grid

scale, since the convection is placed randomly, but it does improve the FSS when it is evaluated over

a neighbourhood of grid points, so that it becomes a more statistical evaluation of the quality of the425

scheme.

11



threshold (mm/hr)

le
ad

 ti
m

e 
(h

ou
rs

)

0
6

12
18

24
30

36
42

48
54

0 0.1 0.3 1 3 10

0.0

0.2

0.4

0.6

0.8

1.0

threshold (mm/hr)

le
ad

 ti
m

e 
(h

ou
rs

)

0
6

12
18

24
30

36
42

48
54

0 0.1 0.3 1 3 10

0.0

0.2

0.4

0.6

0.8

1.0

threshold (mm/hr)

le
ad

 ti
m

e 
(h

ou
rs

)

0
6

12
18

24
30

36
42

48
54

0 0.1 0.3 1 3 10

−0.04

−0.02

0.00

0.02

0.04

Figure 2. Fractions skill score computed for grid-scale data for the Gregory-Rowntree scheme (top), the Plant–

Craig scheme (centre) and the difference between the two schemes (
:::::::::

Plant–Craig
::::::

minus
:::::::

Gregory
:::::::::

Rowntree,

bottom). 12
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Figure 3. Fractions skill score for the Gregory-Rowntree scheme (top), the Plant–Craig scheme (centre) and

the difference between the two schemes (
:::::::::

Plant–Craig
::::::

minus
:::::::

Gregory
:::::::::

Rowntree,bottom). The neighbourhood

area is(120km)2, corresponding to the central grid box and two grid boxes in each direction.13
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Figure 4.
::::::::

Fractions
::::

skill
::::

score
:::

for
:::

the
::::::::::::::::

Gregory-Rowntree
::::::

scheme
:::::

(top),
:::

the
::::::::::

Plant–Craig
:::::::

scheme
:::::::

(centre)
:::

and

::

the
:::::::::

difference
:::::::

between
:::

the
::::

two
:::::::

schemes
::::::::::

(Plant–Craig
::::::

minus
:::::::

Gregory
:::::::::

Rowntree,
:::::::

bottom).
:::

The
:::::::::::::

neighbourhood

:::

area
::

is
:::::::::

(216km)2,
::::::::::::

corresponding
::

to
:::

the
::::::

central
:::

grid
::::

box
:::

and
::::

four
:::

grid
:::::

boxes
::

in
:::::

each
::::::::

direction.14
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Figure 5. Fractions skill score for the Plant–Craig scheme, minus that for the Gregory-Rowntree scheme, for

strongly forced cases (full lines) and weakly forced cases (dashed lines), with no averaging (top), with a neigh-

bourhood area of two grid boxes in each direction (centre) and with a neighbourhood area of four grid boxes in

each direction (bottom). The score shown is the average overall lead times.
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3.2 Brier score

The quality of the probabilistic forecasts,
:::::

with
:::::::

respect
::

to
::::::::

forecasts
::::::

using
:::

the
:::::::::

observed
:::::::::::

climatology,

is assessed using Brier skill scores, plotted in Figure 6. While neither scheme has skill for high

thresholds, PC performs substantially better for medium and low thresholds, for all lead times. In430

particular, PC has skill in predicting whether or not rain will occur (zero threshold), while GR does

not. Further analysis shows that this is also the case for thresholds between 0 and 0.05 (not shown).

::::

The
:::::::::::::

decomposition
:::

of
:::

the
:::::

Brier
:::::

score
::::

into
:::::::::

reliability
::::::::

(Figure
::

7)
::::

and
:::::::::

resolution
:::::::

(Figure
:::

8)
::

is
::::

also

::::::

shown
:::::

(note
::::

that
:::

the
::::::::::

difference
::

is
::::::

taken
::

in
:::

the
:::::::::

opposite
::::::::

direction
:::

for
::::::::::

reliability
::

so
::::

that
::::

the
::::::

colour

::::

scale
:::::

must
::::

not
::

be
::::::::::

reversed).
::::

The
:::::::::::

Plant–Craig
:::::::

scheme
:::::::::

improves
::::

both
:::::::::::

components
:::

of
::::

this
::::::

score;
:::

the435

::::::::::::

improvement
:::

for
:::::::::

reliability
::

is
::::::

rather
::::::

higher
:::::

than
::::

that
:::

for
::::::::::

resolution.
::::

The
::::::

scores
:::

for
:::::

both
:::::::::

reliability

:::

and
::::::::::

resolution
:::

are
::::

low
:::

for
:::

the
:::::::

higher
::::::::::

thresholds,
::::::

which
::

is
:::::::::

probably
:

a
::::::::::::

consequence
:::

of
:::

the
::::

fact
::::

that

::::

there
::::

are
::::::::::

insufficient
::::

data
::

to
::::::

assess
:::::

such
:::::::

extreme
:::::::

values.

3.2.1 Separation into weakly- and strongly-forced cases

Figure 9 shows the Brier skill scores as a function of threshold, separated into strongly- and weakly-440

forced cases. The forecasts are improved using PC for both sets of cases, and the difference is

considerably greater for weakly-forced cases, where GR hasalmost no skill. This can be interpreted

in terms of the fact that small-scale variability is relatively more important for the weakly-forced

cases, and ensemble members using the Plant–Craig scheme differ from each other more than for

the strongly-forced cases, where initial and boundary condition variability is relatively more im-445

portant (Groenemeijer and Craig, 2012). Our result is similar to what was found by Kober et al.

(2015), where the Plant–Craig scheme was found to perform better than a non-stochastic scheme for

a weakly-forced case, and at low thresholds, but worse than the non-stochastic Tiedtke, M. (1989)

scheme for a strongly-forced case.

3.3 Ensemble added value (EAV)450

The EAV is plotted in Figure 10. The PC scheme performs substantially better for this score across

lead times, and the improvement is of a similar magnitude to that of the Brier score. This suggests

that the improvement in the probabilistic forecast from using PC comes from the stochasticity of

the scheme, since the EAV is measured against individual forecasts from the same ensembleand
:

:

:

it
:

should, therefore, be ‘normalized’ against differences inthe underlying convection scheme which455

are not related to the stochasticity. The interpretation here is that while structural differences between

two convection schemes will lead to differences in the quality of the ensemble forecasts, this will

mainly be due to differences in the quality of individual members of the ensemble. The stochastic

character of the PC scheme may or may not improve the quality of the individual members, but it is

primarily designed to improve the quality of the ensemble asa whole.460
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Figure 6. Brier skill score for the Gregory-Rowntree scheme (top), the Plant–Craig scheme (centre) and the

difference between the two schemes (
:::::::::

Plant–Craig
::::::

minus
:::::::

Gregory
:::::::::

Rowntree,bottom). For the difference plot,

instances where both skill scores are lower than zero are notplotted.
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Figure 7.
::::

Brier
:::::

score
::::::::

reliability
:::

for
:::

the
:::::::::::::::

Gregory-Rowntree
:::::::

scheme
:::::

(top),
:::

the
:::::::::

Plant–Craig
:::::::

scheme
:::::::

(centre)
:::

and

::

the
:::::::::

difference
:::::::

between
:::

the
:::

two
:::::::

schemes
::::::::

(Gregory
::::::::

Rowntree
:::::

minus
:::::::::::

Plant–Craig,
:::::::

bottom).
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Figure 8.
::::

Brier
:::::

score
::::::::

resolution
:::

for
:::

the
:::::::::::::::

Gregory-Rowntree
:::::::

scheme
:::::

(top),
:::

the
:::::::::

Plant–Craig
:::::::

scheme
:::::::

(centre)
:::

and

::

the
:::::::::

difference
:::::::

between
:::

the
:::

two
:::::::

schemes
:::::::::::

(Plant–Craig
:::::

minus
:::::::

Gregory
:::::::::

Rowntree,
:::::::

bottom).
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Figure 9. Brier skill score for the Gregory-Rowntree scheme (green lines) and the Plant–Craig scheme (red

lines), averaged over all lead times, for cases with strong forcing (full lines) and weak forcing (dashed lines),

as a function of threshold. The
::::::::

reference
:::

for
:::

the
::::

skill
::::

score
::

is
:::

the
::::::::

observed
:::::::::::

climatology.
:::

The
:

axes have been

chosen to focus on where the skill score is above zero.

Note that the ensemble forecasts using the GR scheme also have a positive EAV, representing the

value added by the multiple initial and boundary conditionsprovided by the global model, and by

the stochasticity coming from the random parameters scheme. Since these factors are also present

in the ensemble forecasts using the PC scheme, it can be interpreted that the fractional difference

between the two EAVs represents the value added by the stochastic character of the PC scheme as a465

fraction of the value added by all the ensemble generation techniques in MOGREPS.

Ben Bouallègue (2015) suggeststhattheresolutioncomponentof askill scorerepresentsamore

fundamentalassessmentof its quality than the reliability, asthe latter can bereducedto zeroby

applyingstatisticalcalibrationto theforecast.Therefore,becausetheEAV isbasedontheresolution

componentof thequantilescore,thefact that thePCschemeimprovesthis quantityprovidessome470

evidencethatit improvestheforecastbeyondwhatcouldbeachievedby asimplestatisticalcalibration

or downscalingof theforecast.

3.4 General climatology

Although Nimrod radar observations were only available over a restricted part of the forecast do-

main, it is also of interest to compare the forecasts over thewhole domain. Figure 11 shows the475

convective fraction(
:

: that is, the amount of rainfall which came from the convection scheme divided

by the total amount of rain from the convection scheme and grid-scale precipitation). Both schemes

produce more convective rain over land, and the difference between the fractions over land and sea

is in proportion to the fraction over the whole domain; the fractions are fairly constant with forecast

lead time. As discussed in Sec. 2.1, the convective fractionis much lower for PC than for GR, sug-480

gesting that adjusting parameters to increase this fraction would further increase the PC influence
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Figure 10. Ensemble added value (EAV) for the Gregory-Rowntree scheme(green line) and the Plant–Craig

scheme (red line) as a function of forecast lead time.

on the forecast (for example, Groenemeijer and Craig (2012)used a reduced closure time scale to

increase the activity of the PC scheme), althoughit is important
:

.
::

It
::

is
:::::::::

important,
:::::::::

however,to reiter-

ate that
:::

the
::::

total
:::::::

amount
:::

of
:::::::

rainfall
::::::::

produced
::::::::::

(including
:::::

from
:::

the
:::::::::

grid-scale
::::::::::

dynamics)
:::

did
::::

not
::::

vary

:::::::::::

significantly,
::::

and
::::

thatthere is no correct value for the convective fraction.485

The ensemble spread is shown as a function of lead time in Figure 12, over the whole domain and

separately over land and over ocean. Both schemes produce more spread over land, but the difference

between PC and GR is also much greater over land. This is presumably due to the fact that PC has a

higher convective fraction over land, and is therefore moreable to influence the spread. The spread

increases with forecast lead time, and does so more quickly with PC than with GR.490

Figure 13 shows density plots of rainfall from the two schemes, and from the observations, over

the UK part of the domain
:

,
:::

for
:

a
:::::

lead
::::

time
::

of
:::

30
::

to
:::

36
::::::

hours. It is clear that the model produces too

many instances of heavy rainfall for this period, and that this is exacerbated by the extra variability

introduced by the PC scheme. However, as shown earlier in this Section, neither scheme has any

skill for large thresholds, andit
:

.
:

It
:

is clear from Figure 13 that this is
:::::

partly
:

due to over-production495

of heavy rain
:

,
::::::::

although
::

it
::

is
::::

also
:::

the
::::

case
::::

that
:::

the
:::::

case
:::::

study
::::

was
::

of
::::::::::

insufficient
::::::

length
::

to
:::::

fully
::::::

assess

::::

such
::::::::

extreme
::::::

values.

Figure 14 shows that the PC scheme also produces more heavy rainfall than the GR scheme over

ocean
::::

(here
:::

for
::

a
::::

lead
:::::

time
::

of
:::

30
:::

to
:::

36
::::::

hours). This suggests that one possible approach to tuning

the PC scheme could be to apply less input averaging over the ocean, since Keane et al. (2014) have500

shown that applying more input averaging increases the variability and, therefore, the tails of the

distribution.

Although a lead time of 30 to 36 hours was chosen for Figures 13and 14, similar conclusions

could be drawn for the plots for other lead times (not shown).The exception to this statement is
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Figure 11. Convective fraction as a function of forecast lead time, forthe Gregory-Rowntree scheme (green

lines) and the Plant–Craig scheme (red lines), over land (dashed lines), over ocean (dotted lines) and in total

(full lines), for the full NAE domain.
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Figure 12.Ensemble spread as a function of forecast lead time, for the Gregory-Rowntree scheme (green lines)

and the Plant–Craig scheme (red lines), over land (dashed lines), over ocean (dotted lines) and in total (full

lines), for the full NAE domain.

that for the first 6 hours, for which the forecasts had not developed sufficiently for the curves to lie505

significantly apart from each other.

3.4.1 Verification
::::::::::

Validation over the whole NAE domain

Routineverification
::

A
:::::::::

validation
::::::

using
:::

the
:::::::

routine
::::::::::

verification
:::::::

system
:

was also performed for the

two setups, covering land areas over the whole forecast domain. This calculates various forecast

skill scores, by comparing against SYNOP observations at the surface and at a height of 850 hPa,510

and yielded a mixed assessment of the performance of the PC scheme against the GR scheme. For

example, the continuous ranked probability score, which assesses both the forecast error and how

well the ensemble spread predicts the error (Hersbach, 2000), was improved by roughly 10% on
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Figure 13. Density plots for accumulated rainfall for the period of 30 to 36 hours lead time, over the UK part

of the domain, for forecasts with the Gregory-Rowntree scheme (green line), the Plant–Craig scheme (red line)

and observations (black line).
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Figure 14. Density plots for accumulated rainfall for the period of 30 to 36 hours lead time, over the entire

NAE domain, for forecasts with the Gregory-Rowntree scheme(green line) and the Plant–Craig scheme (red

line) over ocean.

using the PC scheme for rainfall, but degraded by about 10% for temperature and pressure. The

impact on the wind forecast was broadly neutral.515

This shows that, while the improvements demonstrated in this Section hold for other areas outside

the UK, this has come at a cost to the quality of the forecast for some of the other variables. An

important advantage of using a stochastic convection scheme, over a statistical downscaling proce-

dure, is its feedback on the rest of the model, and it is important that this feedback is of benefit.

The recent analysis by Selz and Craig (2015a) is very encouraging in this regard, demonstrating the520

processes of upscale error growth from convective uncertainties can be well reproduced by the PC

scheme, in good agreement with the behaviour of large-domain simulations in which the convection

is simulated explicitly (Selz and Craig, 2015b).

23



4 Conclusions

A physically-based stochastic scheme for the parameterization of deep convection has been evaluated525

by comparing probabilistic rainfall forecasts produced using the scheme in an operational ensemble

system with those from the same ensemble system with its standard deep convection parameteriza-

tion. The impact of using a stochastic scheme on deterministic forecasts is broadly neutral, although

there is some improvement when larger areas are assessed. This is relevant to applications such as

hydrology, where rainfall over an area larger than a grid boxcan be more relevant than rainfall on530

the grid box scale.

The Plant–Craig scheme has been shown to have a positive impact on probabilistic forecasts for

light and medium rainfall, while neither scheme is able to skillfully forecast heavy rainfall. The

impact of the scheme is greater for weakly-forced cases, where subgrid-scale variability is more

important. Keil et al. (2014) studied a convection-permitting ensemble without stochastic physics,535

and found that deterministic forecast skill was poorer during weak than during strong forcing con-

ditions. They developed a convective adjustment time-scale to measure the strength of the forcing

conditions. This quantity can be calculated from model variables and could therefore be used in ad-

vance to determine how predictable the convective responsewill be for a given forecast. This could

potentially be useful in an adaptive ensemble system using two convection parameterizations (see,540

for example, Marsigli et al. (2005)), one of which is stochastic and is better suited to providing an

estimate of the uncertainty in weaker forcing cases.

Although the Plant–Craig scheme clearly produces improvedprobabilistic forecasts, it is not cer-

tain whether this is due to its stochasticity, or to different underlying assumptions between it and the

standard convection scheme. In order to make a clean distinction, further studies could be performed545

in which the performance of the Plant–Craig scheme is compared against its own non-stochastic

counterpart, which can be constructed by using the full cloud distribution and appropriately normal-

izing, instead of sampling randomly from it (cf Keane et al.,2014). Nonetheless, the results from

applying the recently-developed ensemble added value metric do provide some relevant information

for this question. This metric aims to assess the quality of the ensemble in relation to the underlying550

member forecasts, and the Plant–Craig scheme has been shownto increase it. This indicates that

the stochastic aspect of the scheme can increase the value added to a forecast by using an ensem-

ble, since other aspects of the scheme would be expected (broadly) to affect the performance of the

ensemble as a whole, and of the individual members, equally.

The results of this study justify further work to investigate the impact of the Plant–Craig scheme555

on ensemble forecasts. Since the version of MOGREPS used in this study has been superseded, it is

not feasible to carry out more a more detailed investigationbeyond the proof-of-concept carried out

in the present study. Interestingly, the resolution used inthis study is now becoming more widely

used in global ensemble forecasting, and so future work could involve implementing the scheme in a

global NWP system, for example the global version of MOGREPS. This would enable assessments560
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to be made as to whether the scheme provides benefits for the representation of tropical convection,

in addition to those aspects of mid-latitude convection that were demonstrated here.

5 Code and/or data availability

The source code for the Plant–Craig parameterization, as itwas used in this study, can be made

available on request, by contacting r.s.plant@reading.ac.uk.565

Acknowledgements. We would like to thank Neill Bowler for helping to plan and setup the numerical experi-

ments, and Rod Smyth for helping to set up preliminary experiments on MONSOON.
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