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We would like to thank Anonymous Referee 2 for the thorougth prompt review. | (Keane)
write this on behalf of all authors, but | would first like toipbout that | discovered an error in the
FSS calculation (which affects Figures 2 and 3 of the originanuscript but not Figure 4): | was
taking the mean of F — 0)?/(F? + 0?) as a whole instead of the numerator and the denominator
individually before dividing. Apologies for this — | have wacorrected the error and it does not alter
the overall conclusions of the paper, but the situationHergSS is now somewhat more coherent.

We address here the Specific comments in turn, and this skioereby ensure that the General
comments are also addressed.

1.
2.

10.

OK

We agree that it would be worth citing those two papers asexamples of a third possible
way of accounting for model variability.

. OK

. The PC scheme will have most impact at grid spacings of &g bf kilometres, with its

impact increasing as the resolution becomes finer (untp deavection is no longer parame-
terised); see Keane et al. (2014) for an example of this, evtier increase in variability pro-
duced by the stochasticity of the scheme increases withedsitrg grid spacing. This means
that it will become more relevant for global climate moddliin the future as the resolution
of such models increases, and is already relevant for raimate modelling, where grid
spacings are in the low tens of kilometres.

. The scheme was developed from considerations of tropaegnic convection, where the in-

stability builds up over a longer period under relativelystant forcing. Over mid-latitudes
the forcing tends to vary more quickly, and the convectidmesee has less time to respond
before the grid-scale dynamics stabilise the atmosphérerefore parameters must be tuned
towards making the scheme more active, for example by makimglumes larger so that the
entrainment of less buoyant air is lower relative to thaiesiGroenemeijer & Craig (2012) jus-
tified a (larger) increase in plume radius with the argumtaaitthe boundary layer is known to
be shallower over the tropical ocean than over mid-latisidad so correspondingly narrower
updraughts are produced. The idea behind reducing the nesgeft cloud was to produce
more clouds so that the scheme would have more chances tdiles atthough the effect of
this is likely to be lower than that of changing the cloud tesdi

Future work will involve applying the PC scheme to globakoast case studies, and attempt-
ing to find parameters which can be applied globally, or sanitalsle variation of parameters,
possibly based on predictors derived from model variables.

. We shall state here that the forecasts were 54 hours long.

. As stated in the Response to Review 1, the FSS is calcdtatedch member separately, and

a mean over all members is calculated.

. The idea of the normalisation is so that the FSS ranges @dm 1, whatever scale it is

evaluated at.

. This is deterministic in the sense that the ensemble i@ tosproduce a single quantity, with

no indication of the uncertainty. This will be clarified irethevised text.

The forecast length used was simply that which was ruredipeally at the time the forecasts
were calculated. Future work involving global models woafdcourse involve longer runs
(for example, the global version of MOGREPS currently pded a 7-day ensemble forecast).
Having recalculated the FSSs, the performance of the PGreehelative to GR is better for
longer lead times (than what was originally shown), patéidy at larger scales.
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12.

13.
14.

15.

16.

17.

18.

19.

We have reproduced Figure 2, taking thresholds correBpg to the 50th, 75th, 90th, 95th,
99th, 99.9th and 99.99th percentiles. In Figure RF1, thestholds are the same for both fore-
cast sets and the observation set, and correspond to ttenfitzs as applied to the observation
set (i.e. this is the same as Figure 2 but with other thresholid Figure RF2, the thresholds
are different for each set, and correspond to the percsrajiplied to that set (separately for
each forecast ensemble member). There is little differéeteeen the plots, suggesting that
the rainfall bias is not responsible for the lack of skill &tnthresholds. It is presumably
simply the case that the dataset is not large enough to allmmwelusive verification at such
extreme values: we have in total 67150 elements in eachetafas each forecast lead time
(i.e. by aggregating over all grid points where observatiwere available and over all initial
forecast times), so there are only 67 cases where the olseaige is above the 99.9th per-
centile and just 6 cases where it is above the 99.99th péleeéie have edited the text on
page 10215, L8-9, to reflect this result.

Having corrected the FSS calculation, the distribudinod behaviour with scale is more coher-
ent.

This has been clarified in the text.

This was based on a theory that | (Keane) have developee giriting Keane & Plant 2012,
that length scales are less important than the number obgKds, when it comes to determin-
ing how large an averaging area should be applied (whetieistifor the input fields to the
scheme, as described on pg 10203, L20 onwards, or for eirgjuae scheme, as discussed
here). However, this theory is rather controversial, amdissue probably requires more than
a sentence to do justice to it. It is also somewhat incideatdle discussion here so | think it
is best simply to remove this sentence.

OK

The results of looking at percentiles are more intengstinan for the FSS. As before, we
have redone Figure 5 for the same seven percentiles as f6&Bewith the thresholds fixed
to those for the observation data set (Figure RF3) and welthhesholds corresponding to
the percentiles for the given data set (Figure RF4). On apglgonsistent percentiles and
varying thresholds, the skill of both schemes extends thdrighresholds, suggesting that
the Reviewers’ theory that this may mitigate the effect efliieavy rainfall bias (Figure 10) is
correct. The PC scheme is better than the GR scheme for allbwif the percentile/lead-time
combinations (for which at least one scheme has a positikeg Bkill score) but the difference
is often small so that this does not show in Figure RF4.

We have plotted the decomposition of the Brier scorerigliability (Figure 7) and resolution
(Figure 8). The scales are different from those for Figurari[will of course be stated here].
The PC scheme generally improves both components of the stdow thresholds, and for
all lead times (note that the colours for the reliabilityfdience plot have been reversed, since
this component is negatively oriented).

We shall remove the references to resolution and pastpsing. The EAV remains interest-
ing to calculate, since it goes some way towards "normajisihe differences between the
schemes other than the stochasticity of the PC scheme, arebthgiving a measure of how
much the improvement in the forecast is due to the stoclitgstic

Our motivation for using the FSS, rather than RMSE, ia aper was that a threshold-based
score is more appropriate to the heavily skewed way thafaidia distributed. However, an
earlier analysis showed that the RMSE and spread were bgitlehior PC than for GR. Both
ensembles were underdispersive (with a spread significlowier than the RMSE), but PC
produced more spread relative to RMSE compared with GRtfieeincrease in spread on



lead time (hours)
18 24 30 36 42 48 54

12

1.0
0.8
0.6
0.4
0.2
0.0

©

o

0.95 0.99 0.999 0.9999

threshold (mm/hr)

3
1.0
0.8
0.6
0.4
0.2
0.0

©

)

0.95 0.99 0.999 0.9999

lead time (hours)
18 24 30 36 42 48

12

threshold (mm/hr)

0.04
0.02
0.00
—0.02
—0.04
©
o

0.95 0.99 0.999 0.9999

lead time (hours)
18 24 30 36 42 48 54

12

threshold (mm/hr)

Figure 0. Figure RF1



lead time (hours)
18 24 30 36 42 48 54

12

1.0
0.8
0.6
0.4
0.2
0.0

©

o

0.95 0.99 0.999 0.9999

threshold (mm/hr)

3
1.0
0.8
0.6
0.4
0.2
0.0

©

)

0.95 0.99 0.999 0.9999

lead time (hours)
18 24 30 36 42 48

12

threshold (mm/hr)

0.04
0.02
0.00
—0.02
—0.04
©
o

0.95 0.99 0.999 0.9999

lead time (hours)
18 24 30 36 42 48 54

12

threshold (mm/hr)

Figure 0. Figure RF2



Figure 0. Figure RF3
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Figure 0. Figure RF4
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using PC was greater than the increase in RMSE). This is suizendn R. J. Keane (2013):
“The Plant-Craig stochastic convection scheme: How it w@ikd some examples of its appli-

95 cation”, presented during a Stochastic Physics Week atbkat Wetterdienst and available at
ftp://ftp.dwd.de/pub/DWD/Forschung und_EntwicklugtgchasticPhysicsWeek/Keanelpdf (see
slide 29).

20. When the scheme was first applied to ICON global foreciastas found that the temperature
forecast in the mid-troposphere was degraded comparedhvgtstandard convection scheme
100 in ICON. This was mitigated by increasing the mean plumeusdso that more heat and
moisture was transported vertically by the scheme. Thigestg that the degradation in the
MOGREPS temperature and pressure forecasts is related toghfficient tuning of certain
parameters in the PC scheme, as described on page 10204.

There now follows a marked-up version of the manuscripthligdpting the differences in the
105 new version, as against the originally submitted versidre differences are intended to address the
Concerns of both Reviewers.


ftp://ftp.dwd.de/pub/DWD/Forschung_und_Entwicklung/StochasticPhysicsWeek/Keane.pdf
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Abstract. The Plant—Craig stochastic convection parameterizatiersion 2.0) is implemented in
the Met Office Regional Ensemble Prediction System (MOGRRIP&nd is assessed in comparison
with the standard convection scheme with a simple stoahektimerischemeonly, from random
parameter variation. A set of 34 ensemble forecasts, eatth2&i members, is considered, over
the month of July 2009. Deterministic and probabilistic sweas of the precipitation forecasts are
assessed. The Plant—Craig parameterization is found toowrapprobabilistic forecast measures,
particularly the results for lower precipitation thresth®l The impact on deterministic forecasts at
the grid scale is neutral, although the Plant—Craig scherae deliver improvements when forecasts
are made over larger areas. The improvements found areegiaatonditions of relatively weak
synoptic forcing, for which convective precipitation ikdily to be less predictable.

1 Introduction

Quantitative precipitation forecasting is recognized as of the most challenging aspects of nu-

merical weather predictioll].(Eb.&Lt_el‘ i.L_zbbs__MmmmHmﬂbetmmmL 11). While

progress is continually being made in improving the acopddisingle forecasts — through improve-

ments in the model formulation as well as increases in ggditgion — a complementary approach
is the use of ensembles in order to obtain an estimate of thertainty in the foreca: al.,

2005 Montani et 41, 201 1: Buizza ef al.. 2007 Bowler ¢120081 Thirel et all 2010; Yang etlal.,
bo1b{znl) 2002 Abhiash etH. 2013: Roy Bhowmik and thzans! Clark et 1201 L: Tennant and sbare

). Of course, ensemble forecasting systems themselvesn imperfect, and one of the most

important problems is insufficient spread in ensemble fasts; where the forecast tends to cluster
too strongly around rainfall values that turn out to be imeot.
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One reason for lack of spread in an ensemble is that modebikty is constrained by the number
of degrees of freedom in the model, which is typically mudsléhan that of the real atmosphere.
The members of an ensemble forecast may start with a gooels@piation of the range of possible
initial conditions, but running exactly the same model faclke ensemble member means that the
range of possible ways of modelling the atmosphere — of wthiehmodel in question is one — are
not fully consideredfwe-pessibleCommonways of accounting for modebriabilitrerrorare run-

ning different models for each ensemble memberke.g_M.iamhKLls.h.na.mwltL&(I)JLBﬂmeLella
pnd, adding random perturbations to the tendencies producedebpdarameterizations (e.g.
IB_Luzza_e_Lal. 19 d_'_B_Q_ulLi_&L&LlaL_Zb]ﬂ drandomlyperturbingparametersn physicsschemes

e.glBowler et 4l ;. Chri LQ-LJOB)

Focusing on convective rainfall, and for model grid lengthere convective rainfall is parame-

terized, another way of accounting for modatiability-erroris to introduce random variability in the

convection parameterlzatlon |tselﬁea+ly e.g

A recent overview is glven

15).
Such “stochastic” convection parameterization schemes baen developed over the last 10

years, and are just beginning to be implemented and verifiegérational forecasting setups, with

some promise for the improvement of probabilistic enserfuskrastge- &&&bﬁd&l&lﬁhﬁm

The purpose of the present study is to continue this piongesiork of verifying probabilistic

forecasts using stochastic convection parameterizatimnsnvestigating the performance of the
IELa.n.La.n.d&La.lol (201)8) (PC) scheme in MOGREPS, the Met Offiserable forecasting system
JBQAML&LeLa.l.LEdB).

The PC scheme has been shown to produce rainfall variabilitguch better agreement with
cloud resolving model results than for other non—stocbamhemesl.(.lsﬂa.n.&a.n.d_EHDL_dOlZ), and
has been shown to add variability in a physically consistea¢ when the model grid spacing is
varied tlsﬂa.n_e_edal__mll@. It has also been demonstraathil convective variability it produces,
on scales of tens of kilometres, can be a major source of Wm@t

) and further that its performance at large scales in@ehotercomparison is similar to that of

more traditional methodls_(.DasLLPﬁ_el li.l.__i)13).

These are encouraging results, albeit from idealized nlindedetups, and it is important to estab-

lish whether or not they might translate into better ensenfitlecasts in a fully-operational NWP

setuplﬁmﬂnﬂmﬂUﬂLan.dﬁl.alg_ﬁzbu) examined seven casesthe COSMO ensemble system

with 7km grid spacing andeuné-thatthe-PC-sechemeproduced25-50%comparedhe spreadin

an ensembleusing only different realizationsof the PC scheme(i.e. where the randomseedin

the PC schemewas varied but the memberswere otherwiseidentical) with thatin an ensemble
whereadditionallytheinitial andboundaryconditionswerevaried.Theyfoundthespreadn hourl
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accumulatedainfall producedy thePCschemeo be25-50% of the totalvarianeesthourly—aceumulated
rainfallonasealeofspreadwhenthefieldswereupscaledo 35km. The present study investigates

the behaviour of the scheme in a trial of 34 forecasts withtMBGREPS-R ensemble, using a grid
length of 24km. The mass-flux variance produced by the PC scheme is glygusoportional to

rid box area being used and so it is not obvious from theltse of ij ig
) whether the stochastic variations of PC will contébsignificantly to variability within an
ensemble system operating at the scales of MOGREPS-R. halass, MOGREPS-R has been
shown, in common with most ensemble forecasting systenmmouce insufficient spread relative
to its forecast error in precipitatiolﬂ.ﬂ&ﬂﬂﬁ.ﬂlﬁﬂdﬁl&ﬁ
introduction of a stochastic convection parameterizatidme able to improve its performance.
Although the version of MOGREPS used here has now been sguatsthe present study repre-

, suggesting that there is scope for the

sents the first time that the scheme has been verified in aatipslly-used ensemble forecasting
system for an extended verification period, and providea#ioessary motivation for more extensive
tuning and verification studies in a more current system. AB as this, the present study aims to
fearnrevealmore about the behaviour of the scheme itself, building orkweferenced above, as
well as on recent work d)LKQb_&LﬁIlEI]_(Z(I)lS) which focusedmiividual case studies.

The paper compares the performance of the PC scheme witletagldMOGREPS convection

parameterization, based bDQ.Le.g.Q.I’.)La.D.d.B.QMJ”I}.I’_e.&h9QODdET to seek evidence that accounting

for modelvariabiity-error by using a stochastic convection parameterization cantteadprove-
ments in ensemble forecasts. Of course, the two parametieriz arefundamentallydifferent;
qen{eapapt#emdlﬁerentm otherwaysthanthe stochast|C|ty of the PC hem%ha%ﬂ—mﬂ—be

perfermanee it is thereforepossiblethat any differencesn performanceredueto otherfactors
Nonetheless, the default MOGREPS scheme has benefittedhitarh experience in developing it

alongside the Met Office Unified Modm BOOB, Ulhereas relatively modest efforts
were made here to adapt the PC scheme to the host ensemblmsifais, any improvements that
the PC scheme shows over the default scheme are of cleasnter

2 Methods

2.1 The Plant—Craig stochastic convection parameterizatin

heI.EI.a.n.La.n.dLLzJid_(ZQbS) scheme operates, at each modgbarit, by reading in the vertical

profile from the dynamical core, and calculating what cotiveaesponse is required to stabilize

that profile. lteanbecensiderecisastochastiandspectralgeneralizatiomts basedn the Kain-

Fritsch convection parameter|zat|4.n_(.lsa.m_a.n.d_Er:|t£QmChbSa.ul| I.ZO.QLl)smeeH—adap%sada tin

the plume model used there and atssusinga similar formulation for the closure, based on a dilute
CAPE. It generalizeshe Kain-Fritschschemeby allowing for morethanonecloudin a grid box,
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andby allowing the size andnumberof cloudsto vary randomly.Details of its implementation in
an idealized configuration of the UM are given ); this would be regarded

as Version 1.1. The important differences in the implem@nigfor the present study, to produce
Version 2.0, are presented here.

The scheme allows for the vertical profile from the dynamémak to be averaged horizontal
spaceand/orin time before it is input. This means that the input profile is moneresentative
of the large-scale (assumed quasi-equilibrium) enviramtmand is less affected by the stochastic
perturbations locally induced by the scheme at previous sieps. It was decided in the present
study to use different spatial averaging extents over oesahnover land, in order that orographic
effects were not too heavily smoothed. The spatial avegagirategy implemented was to use a
square of7 x 7 grid points over the ocean armdx 3 grid points over land; the temporal averaging
strategy was to average over the previous 7 time steps (é&chmin) and the current time step. The
cloud lifetime was set to 15 minutes. As well as using theayed profile for the closure calculation,
the plume profiles were also calculated for ascent withiretleraged environment.

Initial tests showed that the scheme was yielding too snaibportion of convective precipitation

over the domain. Two further parameters were adjusted flanstudy b)LKaa.n.e_a.u.d_ElLllll_(Zbﬂ).
in order to increase this fraction: the mean mass flux perdc{ot) and the root mean square cloud

radius+/(r2). Similar changes were made for the same reasdu_m&mﬂm%m
in their mid-latitude tests over land, and reflect the faet the original settings i aig
M) ancLKea.n_e_a.n_d_Ellarh_(ZblZ) were chosen to match wiillaloud-resolving model sim-

ulations of tropical oceanic convection. Specifically, thean mass flux per cloud was reduced

here from2 x 107 kgs~! t0 0.8 x 107kgs~" in order to increase the number of plumes produced
by the scheme. The entrainment rates used in the schemevarsdly proportional to cloud ra-
dius, and a pdf of cloud radius is used characterized by tbemean square cloud valW.
This was increased from 450 m to 600 m, in order to producedassgly entraining plumes.
This had some impact on the convective precipitation foactbut the scheme still yielded a rela-
tively low proportion of convective raint2 % in these tests, as compared with% for the stan-
dard schemeThe overall amountof rainfall was similar for the two schemeswith the dynamics

compensatindor the reductionin convectiverain produced and ensuringthat the instability was

suitablyremovedoy the dynamicsandconvectiorschemecombinedn bothcasesThere is no cor-

rect answer fothisprepertientheconvectiveraction,which is both model and resolution dependent
in current operational practice. For example, the currédMB/F model has a global average of
about60 % m

Craig scheme in MOGREPS-R could be increased further witinger changes to parameters and

we remark thakﬁmgn&m&iﬂan.ddAig.dOlZ) g8t2) to 1250 m for their tests, which would

likely have such an effect. We attempted only minimal turtiege and were deliberately rather con-

5). Doubtless the convective precipitaffantion produced by the Plant—
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Figure 1. An outline of the MOGREPS NAE domain, with its rotated latiélongitude grid. The contours are
for reference, and are derived from the dataset used in #sept study to separate the domain into land and

ocean areas. The grey shading shows the region for which-dedized precipitation data were available.

servative about the parameter choices made, with the iatetttat the results can reasonably be
considered to represent a lower limit of the possible imp&atmore thoroughly adapted scheme.

2.2 Description of MOGREPS

The Met Office Global and Regional Ensemble Prediction 3y$MOGREPS) has been developed
to produce short-range probabilistic weather foreclimi&_eLa.l.l_ZOdS). It is based on the UM
i ILZ)LI)S) with 24 ensemble members, and is caebdf global and regional ensembles.
In the present study, the regional ensemble MOGREPS-R veals with a resolution of 24km and 38
vertical levels. This covers a North Atlantic and EuropesAE) domain, which is shown in Figure

. The model was run on a rotated latitude-longitude gridh weal latitude and longitude locations
of the north pole and the corners of the domain given in Tableh& regional ensemble was driven

by initial and boundary conditions from the global ensembtedescribed d;LBQMLI.&LQTHL_CZI)OS).
The operational system has been upgraded since these rielsto dhe present study represents

a ‘proof of concept’ for a stochastic convection scheme inla-€omplexity regional or global
ensemble prediction system, rather than a detailed teahr@icommendation for the latest version
of MOGREPS.

Stochastic physics is already included in the regional M@BB, in the form of a random param-
eters scheme, where a number of selected parameters drasttoally perturbed during the forecast
run I_BQMLLEI’_&LEI.LZ)AS). This scheme was retained for tlegmt study, given that the Plant—Craig
scheme is intended to account only for the variability in ¢baevective response for a given large-

scale state, and as such its design does not conflict witmthgsion of a method to treat parameter
uncertainty within other parameterization schemes. Th&e@RBPS random parameter scheme does
introduce variability in parameters that appear withingtendard UM convection scheme, which is
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Table 1. Locations of the north pole and the corners of the domain ®NAE rotated grid, in terms of real

latitude and longitude.

Location latitude {N) longitude CE)

north pole 375 177.5
bottom-left 16.3 -19.8
top-left 72.7 -80.0
bottom-right 16.5 14.2
top-right 73.2 74.1

based on thl%ﬁmgman.d.l%m&nlrla&d%m scheme with subisedevelopments as described by
IM_a.LL'Ln_e_[_aj. kmde). No stochastic parameter variatiompjsli@d for any of the parameters appearing
in the Plant—Craig scheme. Thus, there is no “double coghtihparameterization uncertainty in

these tests but rather we are comparing different methoasoafunting for convective uncertainties
in a framework which also includes a simple stochastic tneat of uncertainties in other aspects of
the model physics.

The forecasts using the Plant—Craig scheme were obtaineerigning the regional version of
MOGREPS, with the standard convection scheme replaced®iamt—Craig scheme, and driven by
initial and boundary conditions taken from the same arahdeta that were used for the operational
forecasts. These are compared with the forecasts prodyegdtmnally during the corresponding
period, so that the only difference between the two setsretfsts is in the convection parameteri-
zation scheme. The study used the UM at version 7.3. The ntiogestep was 7.5 minutes, within
which the convection scheme was called twimedthe forecasengthwas54 hours

2.3 Time period investigated

The time period investigated was from the 10th until the 3@l 2009. This length of time was cho-
sen as being sufficient to obtain statistically meaningfauits, but without requiring a more lengthy
experiment that would only be justified by a more mature sysiEhe particular month was chosen
partly for convenience and partly as a period that subjelstiiad experienced plentiful convective
rain over the UK, therefore providing a good test of a corniveqgiarameterization scheme.

Experimental forecasts with the Plant—Craig scheme wenergéed twice daily (at 06:00 and
18:00 UTC) for comparison with the operational forecastalihivas taken from the archive. On
some days the archive forecast was missing and so no expeahierecast was generated. In total
34 forecasts were generated, with start times shown in Bhble
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Table 2. Start times of forecasts investigated in this study (akedan July 2009).

10th 18UTC  16th 18UTC 21st06UTC  27th 18UTIC
11th 0O6UTC  17th 06UTC 21st18UTC  28th 06UTIC
11th 18UTC  17th18UTC 22nd O6UTC  28th 18UTIC
12th 0O6UTC  18th 06UTC  23rd 0O6UTC  29th 06UTC
12th 18UTC  18th 18UTC  23rd 18UTC  29th 18UTC
13th 0O6UTC  19th 06UTC  24th 18UTC  30th 06UTC
14th O6UTC  19th 18UTC  25th 06UTC  30th 18UTC
15th 18UTC  20th 06UTC  25th 18UTC
16th 0O6UTC 20th 18UTC  26th 06UTC

2.4 \VerifieationValidation

A detailedverificationvalidationwas carried out against Nimrod radar rainfall data

|ZOQ${) Iﬁmilh_et_all I._ZOJ)G) This observational data set ig ambilable over the UK (as shown in
Figure[l), and so most of theerificationvalidationin the following focuses on this region. The

forecasts were assessed on the basis of 6-hourly raintalhaulations, every 6 hours, for lead times
from O to 54 hours.

2.4.1 Fractions skill score

This score (denoted FSS) was developeh_b;LR.Q.bﬂU.s_a.n.h Laéﬁ)(and was used M al.

) to assess the quality of deterministic forecastdywed using the Plant-Craig scheme for

two case studies. Note that we use the term ‘determinigti¢his manuscript, to refer to forecasts
providing a single quantity (for example, a single-memlmeé€ast, or the ensemble mean), and
‘probabilistic’ to refer to forecasts providing a probadtilc distribution (or, at the very least, a de-
terministic forecast, with, in addition, an assessmentiincertainty). The FSS is determined, at
a given grid pointX, by comparing the fractions of observed, and forecastf’, grid points ex-
ceeding a specific rainfall threshold, within a specific Epatindow centred afX. Here we define:

F—-0)?
(r—op) W
(F2)+(0?)
where the angled brackets..) indicate averages over the ggbirtspoint centresX for which
observations are availablepd-alse-over the different forecast initialization time$he-seereis

pesitivelyorientedand, andhereoverthedifferentensemblenembergsothateffectivelyaseparate
scoreis calculatedior eachensemblenemberandtheseareaveragedo producethe overall score
denotedhereby F'S.S). The spatialwindow (overwhich thefractionsareevaluatedpivesthe scale
atthegrid scaleandatlargerscalesThedivisionby (£%) -+ (O?) normalizesagainsthesmoothing

FSS=1-
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appliedat the given scale,so that the scorealwaysranges between 0 and The FSSis positivel

oriented.
2.4.2 Brier scores

In order to determine whether or not the variability intradd by the Plant—Craig scheme is added
where it is most needed, the Brier skill scclr_e__(mhmooe}svapplied to both forecast sets, using
the same observational data, to assess the respectivieyqialie probabilistic forecasts. The Brier
score is a threshold-based probabilistic verification escand is given by the mean difference be-
tween the forecast probability of exceeding a given thristibis probability is here simply taken to
be the fraction of ensemble members which forecast pratipit greater than the threshold) and the
observed probability (i.e 1 if the observed precipitatis@bove the threshold and O if it is below).
To obtain the Brier skill score3S.S, this is compared with a reference score; the reference scor
is here taken to be that calculated from always forecastipgphability taken from the observation
data set (i.e. the proportion of times the observed pretipit is above the threshold). Thus,

L —o®)
B = o) @

wheref is the forecast probability, is the observation (0 or 1) and) is the ‘climatological’ prob-
ability based on the observation set. The angle bracketsteem average over the entire forecast
set. Although{o) is only availablea posteriori to the event, it does provide a useful ‘base’ for com-
parison: if the forecast issued is no better than one givesiraply always issuing a climatological
average (i.e. iIB:55<68B55 < 0) then the forecast can be said to have no skill.

2.4.3 Ensemble added value

This measure aims to assess the benefit of using an ensesblggiast a single forecast randomly
selected from the ensemble. It was recently developed asctied in detail bue
) and a brief outline is given here. The score is of paldr interest to the present study, as
this measure should highlight the advantages and disaatyasdf using the stochastic Plant—Craig
methodology, and provides an assessment that is lesseafflegtstructural differences between the
Plant—Craig scheme and the Gregory-Rowntree (GR) scheme.
The ensemble added value (EAV) is based on the quantile $Q3¥ LKQ.&D.kﬂLa.D.d.M.a.Qh.aIdO,
Il&%*);lﬁu_eiﬂnbl_mil), which is used to assess probabilistecasts at a given probability level
(equivalently, the Brier score assesses probabilistadasts at a given value threshold). If a quantile

forecastp, of the rth quantile of a meteorological variable is given, then thartile score for that
quantile is interpreted as

¢r = (W= ¢r)(T - Hw < ¢r})) 3)

wherew is the observed value, the functiéf) is defined as 1 if: is true and 0 ifz is false and the
angle brackets denote an average over all forecasts, deefBrier skill score. In this way, a forecast
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for a low quantile is penalized more heavily if it is above tieserved value, than if it is below the
observed value, and vice-versa for a forecast for a hightgegnote that the score is negatively
erientatedriented. The score for th60% quantile is simply the mean absolute error.

The QS can, like the Brier score, be decomposed into a rktiahind a resolution component

(lB_eu_tzi_eu_a.n_d_Eﬂ_ad_eﬂdMM). In order to calculateBA¥ a potential QS is defined as the

total QS minus its reliability component. The QS is here eatdd by first sorting the ensemble

members, and interpreting theth sorted ensemble member as the— 0.5)/24 quantile forecast.
The EAV is then given by summing the potential @gg over the 24 members, and comparing with
an equivalent sum over reference potential QSs:

EAV =1- % 4)
The reference forecast is created by defining the quantinagly a randomly-selected member
of the ensemble, so that the reference forecast reprebengsdre which could have been obtained
with only one forecast (a single member is randomly seleat&ith replacement, once for the en-
tire period, but separately for each quantile). The EAV tmeasures the quality of the ensemble
forecast, relative to the quality of the individual membefrthe ensemble.

2.5 Separation into weakly- and strongly-forced cases

IG_m_en_em_eiMn_deil;_(ZdlZ) applied the Plant—Craigmehia an ensemble forecasting system

for seven case studies, with various synoptic conditioms showed that the proportion of ensemble

variability arising from the use of the stochastic schensea@ainst that arising from variations in

the initial and boundary conditions) depends on the stteafjthe large-scale forcing, as measured
by the large-scale vorticity maximum. In particular, theoeger the large-scale forcing, the lower
the proportion of the variability that comes from the statiascheme.

.l(m;IIS) investigated two of the case studiehéurtoy verifying forecasts using the
Plant—Craig scheme and using a non-stochastic conveatfan®e. They found that the improve-
ment in forecast quality from using the Plant—Craig scherae significantly higher for the more
weakly-forced of the two cases, since the additional gcalesvariability introduced by the stochas-
tic scheme is more important.
As part of the present study, we extend the WOIlk_QLKQbﬁLHﬁaIL'IS) by separating ouerification
validationperiod into dates for which the synoptic forcing is relalyweeak or strong. We then com-

pare any improvement in the forecasts using the Plant—Gcligme, over those using the Gregory-
Rowntree scheme, for the two sets of forecasts, to assesamegtended period whether the benefit
of using a stochastic scheme is indeed greater when the Syfaing is weaker.

The separation into weakly- and strongly-forced cases waaged outa posteriori to the event
based on surface analysis charts. The aim here is not toagearladaptive forecasting system, but
rather to develop understanding of the behaviour of thetP@raig scheme. Nonetheless, the results
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may also be interpreted as providing evidence that suchteraynay be feasible if the strength of the
synoptic forcing could be predicted in advance (using, f@meple, the convective adjustment time
scale as discussed 14)). The period waslelivinto 12-hour sections, centred on

00 or 12 UTC, and a surface analysis chart valid at the reispagntre-time was used to determine

whether to categorize the section as weakly- or stronglgef. The 00 UTC analyses were taken
fromllALeLLel:Lem.LaH_(mbg) and the 12 UTC analyses ﬁ ).

The separation was conducted by assigning periods witledigde cyclonic and/or frontal activ-
ity over or close to the UK as strongly-forced and the rest aakly-forced, with some additional
adjustment of the preliminary categorization based on ttigem reports b@ 9). The peri-

ods were categorized as in Table 3.

Table 3. Categorization of 12-hour periods (centred at the timeriuevestigated in this study, into weak and

strong synoptic forcing (all dates in July 2009).

3 Results

10th OOUTC Weak  17th 12UTC Strong  25th 00OUTC Wegk
10th 12UTC Strong  18th OOUTC Strong  25th 12UTC Wegk
11th OOUTC Strong  18th 12UTC Weak 26th 00UTC Strong
11th 12UTC Strong  19th OOUTC Strong  26th 12UTC Strang
12th OQUTC Strong  19th 12UTC Weak 27th 0OUTC Strong
12th 12UTC Strong  20th 00UTC Weak 27th 12UTC Weak
13th 0OUTC Weak  20th 12UTC Weak 28th 00UTC Stropg
13th 12UTC Weak  21st 0OUTC Strong  28th 12UTC Strang
14th OOUTC Strong  21st 12UTC Strong ~ 29th OOUTC Strgng
14th 12UTC Strong  22nd OOUTC Strong  29th 12UTC Strgng
15th OOUTC Weak  22nd 12UTC Strong  30th 00UTC Weak
15th 12UTC Weak  23rd 0OUTC Weak  30th 12UTC Weak
16th OOUTC Weak  23rd 12UTC Weak  31st 00UTC Weak
16th 12UTC Weak  24th OOUTC Weak 31st 12UTC Stropg
17th OOUTC Strong  24th 12UTC Weak

385 3.1 Fractions skill score

The quality of the respective deterministic forecass. thoseproducedby individual ensemble
memberswith no supplementary
(GR) and Plant-Craig (PC) is assessed using Fiduzesi3- [ and@ The performance of the
schemes is overall similar, with PC being superior for lovefiholds (in contrast to the findings of

dication of the forecastuncertainty)using Gregory-Rowntree

390 IKQb_eLe[_al.l(mJls» and short lead timed/ith-averagingFig—3andGR for moderatehresholds.

10
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With upscaling(Figs B andd), the
theple%s—m%h%heperformance of both schemmsprovingfor-higherthresholdsyhichisin-broad
inprovesfor all thresholdsand lead times. The

sometimegperformingsignificantlybetterthanthe GR schemevhereatthegrid scaletheperformance
wasequal In general, the difference in the scores between the twerseb does not reach such high

values as those seenl.i.n_KQhP.Lelt la.l__dOlS), although thikl mudue to the fact that they inves-
tigated individual case studies which were specificallgsted to test the impact of the stochastic

scheme, whereas our results are scores averaged over adeskfeeriod.

In general, then, the schemes perform similarly overall #re impact of using a stochastic
scheme on the FSS is modest. Indeed, the fact that there isilhfosthe highest threshold, for
either scheme, is more important. This lack of skill couldsimaply due to the fact that the case
study period was too short to obtain a statistically sigaificsample of extreme rain events. How-
ever, it is also true that MOGREPS significantly overforéshgsavy rain over the UK for this period
(see Figur&3).

3.1.1 Separation into weakly- and strongly-forced cases

Figurel® shows the difference in FSS between PC and GR, fecésts separated into weakly- and
strongly-forced cases, as described in Sedlon 2. It caede that, with no averaging, PC is better
for the smallest thresholds but worse for the moderateltiotds, while with upscalinghisbecemes

J-and3he relative performancdor moderate
andhigherthresholdss improved especiallyfor the weakly-forcedcases

PC generally performs better than GR for weakly-forced saaad worse for strongly-forced

cases. While both schemes benefit from upscaling the sdusebénefit is greater for PC. The

results agree well with those llf_KQb_&Lel Ja.L_(2|015) for twareple cases, where the Plant—Craig
scheme benefits more from the upscaling than the non-stiicisakeme, and performs relatively

better for the weakly -forced than for the strongly forced;@Nete%haHheapse&hﬂgFeqH#edieF

Moreover, it is clear that the upscaling is more beneficigh PC scheme (relative to the GR
scheme) for the weakly-forced cases than for the strommlyefd cases. The interpretation is that the
PC scheme provides a better statistical description oflssnale, weakly-forced convection than
a non-stochastic scheme. This will not provide any improzento the FSS evaluated at the grid
scale, since the convection is placed randomly, but it do@save the FSS when it is evaluated over
a neighbourhood of grid points, so that it becomes a moristital evaluation of the quality of the

scheme.

11
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Figure 2. Fractions skill score computed for grid-scale data for theg@ry-Rowntree scheme (top), the Plant—
Craig scheme (centre) and the difference between the twenseh Plant—Craigminus Gregory Rowntree,
bottom). 12
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Figure 5. Fractions skill score for the Plant—Craig scheme, minusfttahe Gregory-Rowntree scheme, for
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3.2 Brier score

The quality of the probabilistic forecasisith respecto forecastaisingthe observedlimatology,
is assessed using Brier skill scores, plotted in Fidiire 6iléAtreither scheme has skill for high

thresholds, PC performs substantially better for mediuchlaw thresholds, for all lead times. In

particular, PC has skill in predicting whether or not raitlwccur (zero threshold), while GR does

not. Further analysis shows that this is also the case feslimids between 0 and 0.05 (not shown).
The decompositiorof the Brier scoreinto reliability (Figureld) andresolution(Figure@) is also

shown (note that the differenceis takenin the oppositedirectionfor reliability so thatthe colour
scalemustnot be reversed)The Plant—Craigscheméamprovesboth component®f this score;the
improvemenftor reliability is ratherhigherthanthatfor resolution.The scoresfor both reliabili

andresolutionarelow for the higherthresholdswhich is probablya consequencef the fact that
thereareinsufficientdatato assessuchextremevalues.

3.2.1 Separation into weakly- and strongly-forced cases

Figure[® shows the Brier skill scores as a function of thresseparated into strongly- and weakly-
forced cases. The forecasts are improved using PC for btghoeases, and the difference is
considerably greater for weakly-forced cases, where GRilmasst no skill. This can be interpreted
in terms of the fact that small-scale variability is relativ more important for the weakly-forced
cases, and ensemble members using the Plant—Craig schiéendrdin each other more than for
the strongly-forced cases, where initial and boundary tmmdvariability is relatively more im-
portant kﬁ.m.en.&m.ei,iﬂLa.n.d_QElilg__ZbIZ). Our result is simid what was found bmm.

), where the Plant—Craig scheme was found to perfottartiban a non-stochastic scheme for
a weakly-forced case, and at low thresholds, but worse ﬁhmmmn-stochastldLedlkeJMBg)
scheme for a strongly-forced case.

3.3 Ensemble added value (EAV)

The EAV is plotted in FigurEZ0. The PC scheme performs suliatly better for this score across
lead times, and the improvement is of a similar magnitudé&b of the Brier score. This suggests
that the improvement in the probabilistic forecast frormgsPC comes from the stochasticity of
the scheme, since the EAV is measured against individuatésts from the same ensenalsie:

it should, therefore, be ‘normalized’ against differencethéunderlying convection scheme which
are not related to the stochasticity. The interpretatior fsethat while structural differences between
two convection schemes will lead to differences in the dqualf the ensemble forecasts, this will
mainly be due to differences in the quality of individual nteens of the ensemble. The stochastic
character of the PC scheme may or may not improve the qudlihedndividual members, but it is
primarily designed to improve the quality of the ensembla adole.

16
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Figure 9. Brier skill score for the Gregory-Rowntree scheme (greead) and the Plant—Craig scheme (red

lines), averaged over all lead times, for cases with strongjrig (full lines) and weak forcing (dashed lines),

as a function of threshold. Theferencefor the skill scoreis the observedclimatology. The axes have been

chosen to focus on where the skill score is above zero.

Note that the ensemble forecasts using the GR scheme als@lpositive EAV, representing the
value added by the multiple initial and boundary conditipnsvided by the global model, and by
the stochasticity coming from the random parameters sch8imee these factors are also present
in the ensemble forecasts using the PC scheme, it can berieted that the fractional difference
between the two EAVs represents the value added by the stickbharacter of the PC scheme as a

fraction of the value added by all the ensemble generatimigues in MOGREPS.

3.4 General climatology

Although Nimrod radar observations were only availableraveestricted part of the forecast do-
main, it is also of interest to compare the forecasts ovemthele domain. FigurEZ11 shows the
convective fractiofl that is, the amount of rainfall which came from the convettoheme divided
by the total amount of rain from the convection scheme ardggale precipitation Both schemes
produce more convective rain over land, and the differemteden the fractions over land and sea
is in proportion to the fraction over the whole domain; trections are fairly constant with forecast
lead time. As discussed in SECJ2.1, the convective fragsiomuch lower for PC than for GR, sug-
gesting that adjusting parameters to increase this fragtiould further increase the PC influence
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Figure 10. Ensemble added value (EAV) for the Gregory-Rowntree sch@reen line) and the Plant—Craig

scheme (red line) as a function of forecast lead time.

on the forecast (for exampkﬁmﬂnﬁmﬂiﬂaﬂdillaig_dzo%)ﬂ a reduced closure time scale to

increase the activity of the PC schemalfheughitisimpertant It is important,howeverto reiter-
ate thathetotal amountof rainfall producedincludingfrom the grid-scaledynamics)did not var

significantly,andthatthere is no correct value for the convective fraction.

The ensemble spread is shown as a function of lead time iné{l) over the whole domain and
separately over land and over ocean. Both schemes produeespread over land, but the difference
between PC and GR is also much greater over land. This ismadsly due to the fact that PC has a
higher convective fraction over land, and is therefore natie to influence the spread. The spread
increases with forecast lead time, and does so more quidkiyRC than with GR.

Figure[IB shows density plots of rainfall from the two schepasd from the observations, over
the UK part of the domaiffor aleadtime of 30to 36 hours It is clear that the model produces too
many instances of heavy rainfall for this period, and thit inexacerbated by the extra variability
introduced by the PC scheme. However, as shown earlier snSéction, neither scheme has any
skill for large thresholdsandit-, It is clear from Figur&l3 that this artly due to over-production
of heavy rainalthougtit is alsothe casethatthe casestudywasof insufficientiengthto fully assess
suchextremevalues

Figure[13 shows that the PC scheme also produces more héafall thian the GR scheme over
ocean(herefor aleadtime of 30 to 36 hours) This suggests that one possible approach to tuning
the PC scheme could be to apply less input averaging ovewm\osincll_lsﬂa.n.e_ellall_(zbl4) have
shown that applying more input averaging increases thelbiity and, therefore, the tails of the

distribution.
Although a lead time of 30 to 36 hours was chosen for FighréardfT3, similar conclusions
could be drawn for the plots for other lead times (not showie exception to this statement is
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Figure 11. Convective fraction as a function of forecast lead time,tfe@ Gregory-Rowntree scheme (green
lines) and the Plant—Craig scheme (red lines), over lanshgthlines), over ocean (dotted lines) and in total
(full lines), for the full NAE domain.
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Figure 12. Ensemble spread as a function of forecast lead time, for thgdBy-Rowntree scheme (green lines)
and the Plant—Craig scheme (red lines), over land (dashed)]iover ocean (dotted lines) and in total (full

lines), for the full NAE domain.

that for the first 6 hours, for which the forecasts had not bigpetl sufficiently for the curves to lie
significantly apart from each other.

3.4.1 Verification-Validation over the whole NAE domain

ReutineverificationA validationusingthe routineverificationsystemwas also performed for the

two setups, covering land areas over the whole forecast iomhis calculates various forecast
skill scores, by comparing against SYNOP observationsastitface and at a height of 850 hPa,
and yielded a mixed assessment of the performance of the lRngcagainst the GR scheme. For
example, the continuous ranked probability score, whicesses both the forecast error and how
well the ensemble spread predicts the em 20@6 improved by roughly 10% on
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Figure 13. Density plots for accumulated rainfall for the period of 886 hours lead time, over the UK part
of the domain, for forecasts with the Gregory-Rowntree s@hégreen line), the Plant—Craig scheme (red line)

and observations (black line).
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Figure 14. Density plots for accumulated rainfall for the period of 8036 hours lead time, over the entire
NAE domain, for forecasts with the Gregory-Rowntree schégneen line) and the Plant—Craig scheme (red

line) over ocean.

using the PC scheme for rainfall, but degraded by about 10%efoperature and pressure. The
impact on the wind forecast was broadly neutral.

This shows that, while the improvements demonstrated Skction hold for other areas outside
the UK, this has come at a cost to the quality of the forecassdme of the other variables. An
important advantage of using a stochastic convection sehewer a statistical downscaling proce-
dure, is its feedback on the rest of the model, and it is ingpdrthat this feedback is of benefit.

The recent analysis tlz;uielLa.n.ddilg_(Z(l)lSa) is very engmgan this regard, demonstrating the

processes of upscale error growth from convective uncgigaican be well reproduced by the PC

scheme, in good agreement with the behaviour of large-dosimiulations in which the convection

is simulated epricitIyI.(S.e.ILa.n.dLLJilg_ZQ{Sb).
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4 Conclusions

A physically-based stochastic scheme for the parameteizaf deep convection has been evaluated
by comparing probabilistic rainfall forecasts producethgshe scheme in an operational ensemble
system with those from the same ensemble system with itslatdreep convection parameteriza-
tion. The impact of using a stochastic scheme on deternuricgecasts is broadly neutral, although
there is some improvement when larger areas are assesseds Mélevant to applications such as
hydrology, where rainfall over an area larger than a grid tax be more relevant than rainfall on
the grid box scale.

The Plant—Craig scheme has been shown to have a positivetimpg@robabilistic forecasts for
light and medium rainfall, while neither scheme is able tdlfsily forecast heavy rainfall. The
impact of the scheme is greater for weakly-forced casesrevbigbgrid-scale variability is more
important I.@Q studied a convection-perimgitensemble without stochastic physics,
and found that deterministic forecast skill was poorermgisveak than during strong forcing con-
ditions. They developed a convective adjustment timeesttameasure the strength of the forcing
conditions. This quantity can be calculated from modelafzslgs and could therefore be used in ad-
vance to determine how predictable the convective respoilisge for a given forecast. This could
potentially be useful in an adaptive ensemble system usgingcbnvection parameterizations (see,

for exampleLM_a.mj,g_Li_et_ilI_(m_bS)), one of which is stodimand is better suited to providing an
estimate of the uncertainty in weaker forcing cases.

Although the Plant—Craig scheme clearly produces imprgvelabilistic forecasts, it is not cer-
tain whether this is due to its stochasticity, or to diffanenderlying assumptions between it and the
standard convection scheme. In order to make a clean distinturther studies could be performed
in which the performance of the Plant—Craig scheme is coetpagainst its own non-stochastic
counterpart, which can be constructed by using the fullaidigtribution and appropriately normal-
izing, instead of sampling randomly from it (l;f_lﬁea.n_ejt'ﬁmi). Nonetheless, the results from
applying the recently-developed ensemble added valueaaetprovide some relevant information

for this question. This metric aims to assess the qualithe&nsemble in relation to the underlying
member forecasts, and the Plant—Craig scheme has been shdmanease it. This indicates that

the stochastic aspect of the scheme can increase the valed tala forecast by using an ensem-
ble, since other aspects of the scheme would be expectealilpydo affect the performance of the

ensemble as a whole, and of the individual members, equally.

The results of this study justify further work to investigahe impact of the Plant—Craig scheme
on ensemble forecasts. Since the version of MOGREPS ushi$isttidy has been superseded, it is
not feasible to carry out more a more detailed investigateyond the proof-of-concept carried out
in the present study. Interestingly, the resolution usethiis study is now becoming more widely
used in global ensemble forecasting, and so future workddaublve implementing the scheme in a
global NWP system, for example the global version of MOGRERfs would enable assessments
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to be made as to whether the scheme provides benefits forgresentation of tropical convection,
in addition to those aspects of mid-latitude convection were demonstrated here.

5 Code and/or data availability

The source code for the Plant—Craig parameterization, @astused in this study, can be made
available on request, by contacting r.s.plant@readingkac
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