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Abstract. The Plant–Craig stochastic convection parameterization (version 2.0) is implemented in

the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison

with the standard convection scheme with a simple stochastic scheme only, from random parameter

variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of

July 2009. Deterministic and probabilistic measures of theprecipitation forecasts are assessed. The5

Plant–Craig parameterization is found to improve probabilistic forecast measures, particularly the

results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is

neutral, although the Plant–Craig scheme does deliver improvements when forecasts are made over

larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing,

for which convective precipitation is likely to be less predictable.10

1 Introduction

Quantitative precipitation forecasting is recognized as one of the most challenging aspects of nu-

merical weather prediction (Ebert et al., 2003; Montani et al., 2011; Gebhardt et al., 2011). While

progress is continually being made in improving the accuracy of single forecasts – through improve-

ments in the model formulation as well as increases in grid resolution – a complementary approach15

is the use of ensembles in order to obtain an estimate of the uncertainty in the forecast (Buizza et al.,

2005; Montani et al., 2011; Buizza et al., 2007; Bowler et al., 2008; Thirel et al., 2010; Yang et al.,

2012; Zhu, 2005; Abhilash et al., 2013; Roy Bhowmik and Durai, 2008; Clark et al., 2011; Tennant and Beare,

2013). Of course, ensemble forecasting systems themselvesremain imperfect, and one of the most

important problems is insufficient spread in ensemble forecasts, where the forecast tends to cluster20

too strongly around rainfall values that turn out to be incorrect.
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One reason for lack of spread in an ensemble is that model variability is constrained by the number

of degrees of freedom in the model, which is typically much less than that of the real atmosphere.

The members of an ensemble forecast may start with a good representation of the range of possi-

ble initial conditions, but running exactly the same model for each ensemble member means that25

the range of possible ways of modelling the atmosphere – of which the model in question is one –

are not fully considered. Common ways of accounting for model error are running different mod-

els for each ensemble member (e.g. Mishra and Krishnamurti,2007; Berner et al., 2011), adding

random perturbations to the tendencies produced by the parameterizations (e.g. Buizza et al., 1999;

Bouttier et al., 2012) and randomly perturbing parameters in physics schemes (e.g. Bowler et al.,30

2008; Christensen et al., 2015).

Focusing on convective rainfall, and for model grid lengthswhere convective rainfall is parame-

terized, another way of accounting for model error is to introduce random variability in the convec-

tion parameterization itself (e.g. Lin and Neelin, 2003; Khouider et al., 2010; Plant and Craig, 2008;

Ragone et al., 2014). Ideally this should be done in a physically consistent way, so that the random35

variability causes the parameterization to sample from therange of possible convective responses on

the grid scale. A recent overview is given by Plant et al. (2015).

Such “stochastic” convection parameterization schemes have been developed over the last 10

years, and are just beginning to be implemented and verified in operational forecasting setups, with

some promise for the improvement of probabilistic ensembleforecasts (e.g Teixeira and Reynolds,40

2008; Bengtsson et al., 2013; Kober et al., 2015). The purpose of the present study is to continue this

pioneering work of verifying probabilistic forecasts using stochastic convection parameterizations,

by investigating the performance of the Plant and Craig (2008) (PC) scheme in MOGREPS, the Met

Office ensemble forecasting system (Bowler et al., 2008).

The PC scheme has been shown to produce rainfall variabilityin much better agreement with45

cloud resolving model results than for other non-stochastic schemes (Keane and Plant, 2012), and

has been shown to add variability in a physically consistentway when the model grid spacing is

varied (Keane et al., 2014). It has also been demonstrated that the convective variability it produces,

on scales of tens of kilometres, can be a major source of modelspread (Ball and Plant, 2008) and

further that its performance at large scales in a model intercomparison is similar to that of more50

traditional methods (Davies et al., 2013).

These are encouraging results, albeit from idealized modelling setups, and it is important to estab-

lish whether or not they might translate into better ensemble forecasts in a fully-operational NWP

setup. Groenemeijer and Craig (2012) examined seven cases using the COSMO ensemble system

with 7km grid spacing and compared the spread in an ensemble using only different realizations55

of the PC scheme (i.e. where the random seed in the PC scheme was varied but the members were

otherwise identical) with that in an ensemble where additionally the initial and boundary conditions

were varied. They found the spread in hourly accumulated rainfall produced by the PC scheme to
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be25–50% of the total spread, when the fields were upscaled to35km. The present study investi-

gates the behaviour of the scheme in a trial of 34 forecasts with the MOGREPS-R ensemble, using60

a grid length of24km. The mass-flux variance produced by the PC scheme is inversely proportional

to the grid box area being used and so it is not obvious from theresults of Groenemeijer and Craig

(2012) whether the stochastic variations of PC will contribute significantly to variability within an

ensemble system operating at the scales of MOGREPS-R. Nonetheless, MOGREPS-R has been

shown, in common with most ensemble forecasting systems, toproduce insufficient spread relative65

to its forecast error in precipitation (Tennant and Beare, 2013), suggesting that there is scope for the

introduction of a stochastic convection parameterizationto be able to improve its performance.

Although the version of MOGREPS used here has now been superseded, the present study repre-

sents the first time that the scheme has been verified in an operationally-used ensemble forecasting

system for an extended verification period, and provides thenecessary motivation for more extensive70

tuning and verification studies in a more current system. As well as this, the present study aims to

reveal more about the behaviour of the scheme itself, building on work referenced above, as well as

on recent work by Kober et al. (2015) which focused on individual case studies.

The paper compares the performance of the PC scheme with the default MOGREPS convection

parameterization, based on Gregory and Rowntree (1990), inorder to seek evidence that account-75

ing for model error by using a stochastic convection parameterization can lead to improvements in

ensemble forecasts. Of course, the two parameterizations are different in other ways than the stochas-

ticity of the PC scheme: it is therefore possible that any differences in performance are due to other

factors. Nonetheless, the default MOGREPS scheme has benefitted from much experience in devel-

oping it alongside the Met Office Unified Model (Lean et al., 2008, UM), whereas relatively modest80

efforts were made here to adapt the PC scheme to the host ensemble system: thus, any improvements

that the PC scheme shows over the default scheme are of clear interest.

2 Methods

2.1 The Plant–Craig stochastic convection parameterization

The Plant and Craig (2008) scheme operates, at each model grid point, by reading in the vertical85

profile from the dynamical core, and calculating what convective response is required to stabilize that

profile. It is based on the Kain-Fritsch convection parameterization (Kain and Fritsch, 1990; Kain,

2004), adapting the plume model used there and also using a similar formulation for the closure,

based on a dilute CAPE. It generalizes the Kain-Fritsch scheme by allowing for more than one

cloud in a grid box, and by allowing the size and number of clouds to vary randomly. Details of its90

implementation in an idealized configuration of the UM are given by Keane and Plant (2012); this

would be regarded as Version 1.1. The important differencesin the implementation for the present

study, to produce Version 2.0, are presented here.
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The scheme allows for the vertical profile from the dynamicalcore to be averaged in horizontal

space and/or in time before it is input. This means that the input profile is more representative95

of the large-scale (assumed quasi-equilibrium) environment, and is less affected by the stochastic

perturbations locally induced by the scheme at previous time steps. It was decided in the present

study to use different spatial averaging extents over oceanand over land, in order that orographic

effects were not too heavily smoothed. The spatial averaging strategy implemented was to use a

square of7× 7 grid points over the ocean and3× 3 grid points over land; the temporal averaging100

strategy was to average over the previous 7 time steps (each of 7.5 min) and the current time step. The

cloud lifetime was set to 15 minutes. As well as using the averaged profile for the closure calculation,

the plume profiles were also calculated for ascent within theaveraged environment.

Initial tests showed that the scheme was yielding too small aproportion of convective precipitation

over the domain. Two further parameters were adjusted from the study by Keane and Plant (2012),105

in order to increase this fraction: the mean mass flux per cloud 〈m〉 and the root mean square cloud

radius
√

〈r2〉. Similar changes were made for the same reason by Groenemeijer and Craig (2012)

in their mid-latitude tests over land, and reflect the fact that the original settings in Plant and Craig

(2008) and Keane and Plant (2012) were chosen to match well with cloud-resolving model simula-

tions of tropical oceanic convection. Specifically, the mean mass flux per cloud was reduced here110

from 2× 107kgs−1 to 0.8× 107kgs−1 in order to increase the number of plumes produced by the

scheme. The entrainment rates used in the scheme are inversely proportional to cloud radius, and

a pdf of cloud radius is used characterized by the root mean square cloud value
√

〈r2〉. This was

increased from 450 m to 600 m, in order to produce less strongly entraining plumes. This had some

impact on the convective precipitation fraction, but the scheme still yielded a relatively low propor-115

tion of convective rain:12% in these tests, as compared with50% for the standard scheme. The

overall amount of rainfall was similar for the two schemes, with the dynamics compensating for the

reduction in convective rain produced, and ensuring that the instability was suitably removed by the

dynamics and convection scheme combined in both cases. There is no correct answer for the con-

vective fraction, which is both model and resolution dependent in current operational practice. For120

example, the current ECMWF model has a global average of about 60% (Bechtold, 2015). Doubtless

the convective precipitation fraction produced by the Plant–Craig scheme in MOGREPS-R could be

increased further with stronger changes to parameters and we remark that Groenemeijer and Craig

(2012) set
√

〈r2〉 to 1250 m for their tests, which would likely have such an effect. We attempted

only minimal tuning here and were deliberately rather conservative about the parameter choices125

made, with the intention that the results can reasonably be considered to represent a lower limit of

the possible impact of a more thoroughly adapted scheme.
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Figure 1. An outline of the MOGREPS NAE domain, with its rotated latitude-longitude grid. The contours are

for reference, and are derived from the dataset used in the present study to separate the domain into land and

ocean areas. The grey shading shows the region for which radar-derived precipitation data were available.

2.2 Description of MOGREPS

The Met Office Global and Regional Ensemble Prediction System (MOGREPS) has been developed

to produce short-range probabilistic weather forecasts (Bowler et al., 2008). It is based on the UM130

(Davies et al., 2005) with 24 ensemble members, and is comprised of global and regional ensembles.

In the present study, the regional ensemble MOGREPS-R was used, with a resolution of 24km and 38

vertical levels. This covers a North Atlantic and European (NAE) domain, which is shown in Figure

1. The model was run on a rotated latitude-longitude grid, with real latitude and longitude locations

of the north pole and the corners of the domain given in Table 1. The regional ensemble was driven135

by initial and boundary conditions from the global ensemble, as described by Bowler et al. (2008).

The operational system has been upgraded since these tests and so the present study represents

a ‘proof of concept’ for a stochastic convection scheme in a full–complexity regional or global

ensemble prediction system, rather than a detailed technical recommendation for the latest version

of MOGREPS.140

Table 1. Locations of the north pole and the corners of the domain of the NAE rotated grid, in terms of real

latitude and longitude.

Location latitude (◦N) longitude (◦E)

north pole 37.5 177.5

bottom-left 16.3 -19.8

top-left 72.7 -80.0

bottom-right 16.5 14.2

top-right 73.2 74.1
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Stochastic physics is already included in the regional MOGREPS, in the form of a random param-

eters scheme, where a number of selected parameters are stochastically perturbed during the forecast

run (Bowler et al., 2008). This scheme was retained for the present study, given that the Plant–Craig

scheme is intended to account only for the variability in theconvective response for a given large-

scale state, and as such its design does not conflict with the inclusion of a method to treat parameter145

uncertainty within other parameterization schemes. The MOGREPS random parameter scheme does

introduce variability in parameters that appear within thestandard UM convection scheme, which is

based on the Gregory and Rowntree (1990) scheme with subsequent developments as described by

Martin et al. (2006). No stochastic parameter variation is applied for any of the parameters appearing

in the Plant–Craig scheme. Thus, there is no “double counting” of parameterization uncertainty in150

these tests but rather we are comparing different methods ofaccounting for convective uncertainties

in a framework which also includes a simple stochastic treatment of uncertainties in other aspects of

the model physics.

The forecasts using the Plant–Craig scheme were obtained byrerunning the regional version of

MOGREPS, with the standard convection scheme replaced by the Plant–Craig scheme, and driven by155

initial and boundary conditions taken from the same archived data that were used for the operational

forecasts. These are compared with the forecasts produced operationally during the corresponding

period, so that the only difference between the two sets of forecasts is in the convection parameteri-

zation scheme. The study used the UM at version 7.3. The modeltimestep was 7.5 minutes, within

which the convection scheme was called twice, and the forecast length was 54 hours.160

2.3 Time period investigated

The time period investigated was from the 10th until the 30thJuly 2009. This length of time was cho-

sen as being sufficient to obtain statistically meaningful results, but without requiring a more lengthy

experiment that would only be justified by a more mature system. The particular month was chosen

partly for convenience and partly as a period that subjectively had experienced plentiful convective165

rain over the UK, therefore providing a good test of a convective parameterization scheme.

Experimental forecasts with the Plant–Craig scheme were generated twice daily (at 06:00 and

18:00 UTC) for comparison with the operational forecast which was taken from the archive. On

some days the archive forecast was missing and so no experimental forecast was generated. In total

34 forecasts were generated, with start times shown in Table2.170

2.4 Validation

A detailed validation was carried out against Nimrod radar rainfall data (Harrison et al., 2000; Smith et al.,

2006). This observational data set is only available over the UK (as shown in Figure 1), and so most

of the validation in the following focuses on this region. The forecasts were assessed on the basis of

6-hourly rainfall accumulations, every 6 hours, for lead times from 0 to 54 hours.175
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Table 2.Start times of forecasts investigated in this study (all dates in July 2009).

10th 18UTC 16th 18UTC 21st 06UTC 27th 18UTC

11th 06UTC 17th 06UTC 21st 18UTC 28th 06UTC

11th 18UTC 17th 18UTC 22nd 06UTC 28th 18UTC

12th 06UTC 18th 06UTC 23rd 06UTC 29th 06UTC

12th 18UTC 18th 18UTC 23rd 18UTC 29th 18UTC

13th 06UTC 19th 06UTC 24th 18UTC 30th 06UTC

14th 06UTC 19th 18UTC 25th 06UTC 30th 18UTC

15th 18UTC 20th 06UTC 25th 18UTC

16th 06UTC 20th 18UTC 26th 06UTC

2.4.1 Fractions skill score

This score (denoted FSS) was developed by Roberts and Lean (2008), and was used by Kober et al.

(2015) to assess the quality of deterministic forecasts produced using the Plant–Craig scheme for

two case studies. Note that we use the term ‘deterministic’,in this manuscript, to refer to forecasts

providing a single quantity (for example, a single-member forecast, or the ensemble mean), and180

‘probabilistic’ to refer to forecasts providing a probabilistic distribution (or, at the very least, a de-

terministic forecast, with, in addition, an assessment of its uncertainty). The FSS is determined, at

a given grid pointX , by comparing the fractions of observed,O, and forecast,F , grid points ex-

ceeding a specific rainfall threshold, within a specific spatial window centred atX . Here we define:

185

FSS = 1−
〈(F −O)2〉

〈F 2〉+ 〈O2〉
(1)

where the angled brackets〈. . .〉 indicate averages over the grid point centresX for which observa-

tions are available, over the different forecast initialization times, and here over the different ensem-

ble members (so that effectively a separate score is calculated for each ensemble member and these

are averaged to produce the overall score denoted here byFSS). The spatial window (over which190

the fractions are evaluated) gives the scale at which the score is applied, so that the FSS can be used

to assess the performance of forecasts both at the grid scaleand at larger scales. The division by

〈F 2〉+ 〈O2〉 normalizes against the smoothing applied at the given scale, so that the score always

ranges between 0 and 1. The FSS is positively oriented.

2.4.2 Brier scores195

In order to determine whether or not the variability introduced by the Plant–Craig scheme is added

where it is most needed, the Brier skill score (Wilks, 2006) was applied to both forecast sets, using

the same observational data, to assess the respective quality of the probabilistic forecasts. The Brier

score is a threshold-based probabilistic verification score, and is given by the mean difference be-
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tween the forecast probability of exceeding a given threshold (this probability is here simply taken to200

be the fraction of ensemble members which forecast precipitation greater than the threshold) and the

observed probability (i.e 1 if the observed precipitation is above the threshold and 0 if it is below).

To obtain the Brier skill score,BSS, this is compared with a reference score; the reference score

is here taken to be that calculated from always forecasting aprobability taken from the observation

data set (i.e. the proportion of times the observed precipitation is above the threshold). Thus,205

BSS = 1−
〈(f − o)2〉

〈(〈o〉− o)2〉
(2)

wheref is the forecast probability,o is the observation (0 or 1) and〈o〉 is the ‘climatological’ prob-

ability based on the observation set. The angle brackets denote an average over the entire forecast

set. Although〈o〉 is only availablea posteriori to the event, it does provide a useful ‘base’ for com-

parison: if the forecast issued is no better than one given bysimply always issuing a climatological210

average (i.e. ifBSS ≤ 0) then the forecast can be said to have no skill.

2.4.3 Ensemble added value

This measure aims to assess the benefit of using an ensemble, as against a single forecast randomly

selected from the ensemble. It was recently developed and described in detail by Ben Bouallègue

(2015) and a brief outline is given here. The score is of particular interest to the present study, as215

this measure should highlight the advantages and disadvantages of using the stochastic Plant–Craig

methodology, and provides an assessment that is less affected by structural differences between the

Plant–Craig scheme and the Gregory-Rowntree (GR) scheme.

The ensemble added value (EAV) is based on the quantile score(QS) (Koenker and Machado,

1999; Gneiting, 2011), which is used to assess probabilistic forecasts at a given probability level220

(equivalently, the Brier score assesses probabilistic forecasts at a given value threshold). If a quantile

forecastφτ of theτ th quantile of a meteorological variable is given, then the quantile score for that

quantile is interpreted as

qτ = 〈(ω −φτ )(τ − I{ω < φτ})〉 (3)

whereω is the observed value, the functionI(x) is defined as 1 ifx is true and 0 ifx is false and the225

angle brackets denote an average over all forecasts, as for the Brier skill score. In this way, a forecast

for a low quantile is penalized more heavily if it is above theobserved value, than if it is below the

observed value, and vice-versa for a forecast for a high quantile (note that the score is negatively

oriented). The score for the50% quantile is simply the mean absolute error.

The QS can, like the Brier score, be decomposed into a reliability and a resolution component230

(Bentzien and Friederichs, 2014). In order to calculate theEAV, a potential QSQτ is defined as the

total QS minus its reliability component. The QS is here evaluated by first sorting the ensemble

members, and interpreting themth sorted ensemble member as the(m− 0.5)/24 quantile forecast.
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The EAV is then given by summing the potential QSsQm over the 24 members, and comparing with

an equivalent sum over reference potential QSs:235

EAV = 1−

∑

m
Qm

∑

m
Qref

m

. (4)

The reference forecast is created by defining the quantile assimply a randomly-selected member

of the ensemble, so that the reference forecast represents the score which could have been obtained

with only one forecast (a single member is randomly selected, with replacement, once for the en-

tire period, but separately for each quantile). The EAV thusmeasures the quality of the ensemble240

forecast, relative to the quality of the individual membersof the ensemble.

2.5 Separation into weakly- and strongly-forced cases

Groenemeijer and Craig (2012) applied the Plant–Craig scheme in an ensemble forecasting system

for seven case studies, with various synoptic conditions, and showed that the proportion of ensemble

variability arising from the use of the stochastic scheme (as against that arising from variations in245

the initial and boundary conditions) depends on the strength of the large-scale forcing, as measured

by the large-scale vorticity maximum. In particular, the stronger the large-scale forcing, the lower

the proportion of the variability that comes from the stochastic scheme.

Kober et al. (2015) investigated two of the case studies further, by verifying forecasts using the

Plant–Craig scheme and using a non-stochastic convection scheme. They found that the improve-250

ment in forecast quality from using the Plant–Craig scheme was significantly higher for the more

weakly-forced of the two cases, since the additional grid-scale variability introduced by the stochas-

tic scheme is more important.

As part of the present study, we extend the work of Kober et al.(2015) by separating our validation

period into dates for which the synoptic forcing is relatively weak or strong. We then compare any255

improvement in the forecasts using the Plant–Craig scheme,over those using the Gregory-Rowntree

scheme, for the two sets of forecasts, to assess over an extended period whether the benefit of using

a stochastic scheme is indeed greater when the synoptic forcing is weaker.

The separation into weakly- and strongly-forced cases was carried outa posteriori to the event

based on surface analysis charts. The aim here is not to develop an adaptive forecasting system, but260

rather to develop understanding of the behaviour of the Plant–Craig scheme. Nonetheless, the results

may also be interpreted as providing evidence that such a system may be feasible if the strength of the

synoptic forcing could be predicted in advance (using, for example, the convective adjustment time

scale as discussed by Keil et al. (2014)). The period was divided into 12-hour sections, centred on

00 or 12 UTC, and a surface analysis chart valid at the respective centre-time was used to determine265

whether to categorize the section as weakly- or strongly-forced. The 00 UTC analyses were taken

from Wetterzentrale (2009) and the 12 UTC analyses from Eden(2009).
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The separation was conducted by assigning periods with discernible cyclonic and/or frontal activ-

ity over or close to the UK as strongly-forced and the rest as weakly-forced, with some additional

adjustment of the preliminary categorization based on the written reports by Eden (2009). The peri-270

ods were categorized as in Table 3.

Table 3.Categorization of 12-hour periods (centred at the time given) investigated in this study, into weak and

strong synoptic forcing (all dates in July 2009).

10th 00UTC Weak 17th 12UTC Strong 25th 00UTC Weak

10th 12UTC Strong 18th 00UTC Strong 25th 12UTC Weak

11th 00UTC Strong 18th 12UTC Weak 26th 00UTC Strong

11th 12UTC Strong 19th 00UTC Strong 26th 12UTC Strong

12th 00UTC Strong 19th 12UTC Weak 27th 00UTC Strong

12th 12UTC Strong 20th 00UTC Weak 27th 12UTC Weak

13th 00UTC Weak 20th 12UTC Weak 28th 00UTC Strong

13th 12UTC Weak 21st 00UTC Strong 28th 12UTC Strong

14th 00UTC Strong 21st 12UTC Strong 29th 00UTC Strong

14th 12UTC Strong 22nd 00UTC Strong 29th 12UTC Strong

15th 00UTC Weak 22nd 12UTC Strong 30th 00UTC Weak

15th 12UTC Weak 23rd 00UTC Weak 30th 12UTC Weak

16th 00UTC Weak 23rd 12UTC Weak 31st 00UTC Weak

16th 12UTC Weak 24th 00UTC Weak 31st 12UTC Strong

17th 00UTC Strong 24th 12UTC Weak

3 Results

3.1 Fractions skill score

The quality of the respective deterministic forecasts (i.e. those produced by individual ensemble

members, with no supplementary indication of the forecast uncertainty) using Gregory-Rowntree275

(GR) and Plant–Craig (PC) is assessed using Figures 2, 3 and 4. The performance of the schemes is

overall similar, with PC being superior for low thresholds (in contrast to the findings of Kober et al.

(2015)) and short lead times and GR for moderate thresholds.With upscaling (Figs. 3 and 4), the

performance of both schemes improves for all thresholds andlead times. The PC scheme benefits

particularly from the upscaling at higher thresholds and longer lead times, sometimes performing280

significantly better than the GR scheme where at the grid scale the performance was equal. In gen-

eral, the difference in the scores between the two schemes does not reach such high values as those

seen in Kober et al. (2015), although this could be due to the fact that they investigated individual
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case studies which were specifically selected to test the impact of the stochastic scheme, whereas

our results are scores averaged over an extended period.285

In general, then, the schemes perform similarly overall, and the impact of using a stochastic

scheme on the FSS is modest. Indeed, the fact that there is no skill for the highest threshold, for

either scheme, is more important. This lack of skill could besimply due to the fact that the case

study period was too short to obtain a statistically significant sample of extreme rain events. How-

ever, it is also true that MOGREPS significantly overforecasts heavy rain over the UK for this period290

(see Figure 13).

3.1.1 Separation into weakly- and strongly-forced cases

Figure 5 shows the difference in FSS between PC and GR, for forecasts separated into weakly- and

strongly-forced cases, as described in Section 2. It can be seen that, with no averaging, PC is better

for the smallest thresholds but worse for the moderate thresholds, while with upscaling the relative295

performance for moderate and higher thresholds is improved, especially for the weakly-forced cases.

PC generally performs better than GR for weakly-forced cases, and worse for strongly-forced

cases. While both schemes benefit from upscaling the score, this benefit is greater for PC. The results

agree well with those of Kober et al. (2015) for two example cases, where the Plant–Craig scheme

benefits more from the upscaling than the non-stochastic scheme, and performs relatively better for300

the weakly-forced than for the strongly-forced case.

Moreover, it is clear that the upscaling is more beneficial tothe PC scheme (relative to the GR

scheme) for the weakly-forced cases than for the strongly-forced cases. The interpretation is that the

PC scheme provides a better statistical description of small-scale, weakly-forced convection than

a non-stochastic scheme. This will not provide any improvement to the FSS evaluated at the grid305

scale, since the convection is placed randomly, but it does improve the FSS when it is evaluated over

a neighbourhood of grid points, so that it becomes a more statistical evaluation of the quality of the

scheme.

3.2 Brier score

The quality of the probabilistic forecasts, with respect toforecasts using the observed climatology,310

is assessed using Brier skill scores, plotted in Figure 6. While neither scheme has skill for high

thresholds, PC performs substantially better for medium and low thresholds, for all lead times. In

particular, PC has skill in predicting whether or not rain will occur (zero threshold), while GR does

not. Further analysis shows that this is also the case for thresholds between 0 and 0.05 (not shown).

The decomposition of the Brier score into reliability (Figure 7) and resolution (Figure 8) is also315

shown (note that the difference is taken in the opposite direction for reliability so that the colour

scale must not be reversed). The Plant–Craig scheme improves both components of this score; the

improvement for reliability is rather higher than that for resolution. The scores for both reliability
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Figure 2. Fractions skill score computed for grid-scale data for the Gregory-Rowntree scheme (top), the Plant–

Craig scheme (centre) and the difference between the two schemes (Plant–Craig minus Gregory Rowntree,

bottom). 12
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Figure 3. Fractions skill score for the Gregory-Rowntree scheme (top), the Plant–Craig scheme (centre) and

the difference between the two schemes (Plant–Craig minus Gregory Rowntree, bottom). The neighbourhood

area is(120km)2, corresponding to the central grid box and two grid boxes in each direction.13
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Figure 4. Fractions skill score for the Gregory-Rowntree scheme (top), the Plant–Craig scheme (centre) and

the difference between the two schemes (Plant–Craig minus Gregory Rowntree, bottom). The neighbourhood

area is(216km)2, corresponding to the central grid box and four grid boxes ineach direction.14
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each direction (bottom). The score shown is the average overall lead times.
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and resolution are low for the higher thresholds, which is probably a consequence of the fact that

there are insufficient data to assess such extreme values.320

3.2.1 Separation into weakly- and strongly-forced cases

Figure 9 shows the Brier skill scores as a function of threshold, separated into strongly- and weakly-

forced cases. The forecasts are improved using PC for both sets of cases, and the difference is

considerably greater for weakly-forced cases, where GR hasalmost no skill. This can be interpreted

in terms of the fact that small-scale variability is relatively more important for the weakly-forced325

cases, and ensemble members using the Plant–Craig scheme differ from each other more than for

the strongly-forced cases, where initial and boundary condition variability is relatively more im-

portant (Groenemeijer and Craig, 2012). Our result is similar to what was found by Kober et al.

(2015), where the Plant–Craig scheme was found to perform better than a non-stochastic scheme for

a weakly-forced case, and at low thresholds, but worse than the non-stochastic Tiedtke, M. (1989)330

scheme for a strongly-forced case.

3.3 Ensemble added value (EAV)

The EAV is plotted in Figure 10. The PC scheme performs substantially better for this score across

lead times, and the improvement is of a similar magnitude to that of the Brier score. This suggests

that the improvement in the probabilistic forecast from using PC comes from the stochasticity of the335

scheme, since the EAV is measured against individual forecasts from the same ensemble: it should,

therefore, be ‘normalized’ against differences in the underlying convection scheme which are not

related to the stochasticity. The interpretation here is that while structural differences between two

convection schemes will lead to differences in the quality of the ensemble forecasts, this will mainly

be due to differences in the quality of individual members ofthe ensemble. The stochastic character340

of the PC scheme may or may not improve the quality of the individual members, but it is primarily

designed to improve the quality of the ensemble as a whole.

Note that the ensemble forecasts using the GR scheme also have a positive EAV, representing the

value added by the multiple initial and boundary conditionsprovided by the global model, and by

the stochasticity coming from the random parameters scheme. Since these factors are also present345

in the ensemble forecasts using the PC scheme, it can be interpreted that the fractional difference

between the two EAVs represents the value added by the stochastic character of the PC scheme as a

fraction of the value added by all the ensemble generation techniques in MOGREPS.

3.4 General climatology

Although Nimrod radar observations were only available over a restricted part of the forecast do-350

main, it is also of interest to compare the forecasts over thewhole domain. Figure 11 shows the

convective fraction: that is, the amount of rainfall which came from the convection scheme divided

17
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Figure 7. Brier score reliability for the Gregory-Rowntree scheme (top), the Plant–Craig scheme (centre) and

the difference between the two schemes (Gregory Rowntree minus Plant–Craig, bottom).
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Figure 8. Brier score resolution for the Gregory-Rowntree scheme (top), the Plant–Craig scheme (centre) and

the difference between the two schemes (Plant–Craig minus Gregory Rowntree, bottom).
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scheme (red line) as a function of forecast lead time.

by the total amount of rain from the convection scheme and grid-scale precipitation. Both schemes

produce more convective rain over land, and the difference between the fractions over land and sea

is in proportion to the fraction over the whole domain; the fractions are fairly constant with forecast355

lead time. As discussed in Sec. 2.1, the convective fractionis much lower for PC than for GR, sug-

gesting that adjusting parameters to increase this fraction would further increase the PC influence

on the forecast (for example, Groenemeijer and Craig (2012)used a reduced closure time scale to

increase the activity of the PC scheme). It is important, however, to reiterate that the total amount of

rainfall produced (including from the grid-scale dynamics) did not vary significantly, and that there360

is no correct value for the convective fraction.
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Figure 11. Convective fraction as a function of forecast lead time, forthe Gregory-Rowntree scheme (green

lines) and the Plant–Craig scheme (red lines), over land (dashed lines), over ocean (dotted lines) and in total

(full lines), for the full NAE domain.

The ensemble spread is shown as a function of lead time in Figure 12, over the whole domain and

separately over land and over ocean. Both schemes produce more spread over land, but the difference

between PC and GR is also much greater over land. This is presumably due to the fact that PC has a

higher convective fraction over land, and is therefore moreable to influence the spread. The spread365

increases with forecast lead time, and does so more quickly with PC than with GR.

Figure 13 shows density plots of rainfall from the two schemes, and from the observations, over

the UK part of the domain, for a lead time of 30 to 36 hours. It isclear that the model produces too

many instances of heavy rainfall for this period, and that this is exacerbated by the extra variability

introduced by the PC scheme. However, as shown earlier in this Section, neither scheme has any370

skill for large thresholds. It is clear from Figure 13 that this is partly due to over-production of heavy

rain, although it is also the case that the case study was of insufficient length to fully assess such

extreme values.

Figure 14 shows that the PC scheme also produces more heavy rainfall than the GR scheme over

ocean (here for a lead time of 30 to 36 hours). This suggests that one possible approach to tuning375

the PC scheme could be to apply less input averaging over the ocean, since Keane et al. (2014) have

shown that applying more input averaging increases the variability and, therefore, the tails of the

distribution.

Although a lead time of 30 to 36 hours was chosen for Figures 13and 14, similar conclusions

could be drawn for the plots for other lead times (not shown).The exception to this statement is380

that for the first 6 hours, for which the forecasts had not developed sufficiently for the curves to lie

significantly apart from each other.
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0.01 0.05 0.10 0.50 1.00 5.00 10.00

1e
−0

6
1e

−0
4

1e
−0

2
1e

+0
0

6 hour accumulation (mm/hr)

PD
F 

(h
r/m

m
)

Figure 13. Density plots for accumulated rainfall for the period of 30 to 36 hours lead time, over the UK part

of the domain, for forecasts with the Gregory-Rowntree scheme (green line), the Plant–Craig scheme (red line)

and observations (black line).

3.4.1 Validation over the whole NAE domain

A validation using the routine verification system was also performed for the two setups, covering

land areas over the whole forecast domain. This calculates various forecast skill scores, by com-385

paring against SYNOP observations at the surface and at a height of 850 hPa, and yielded a mixed

assessment of the performance of the PC scheme against the GRscheme. For example, the contin-

uous ranked probability score, which assesses both the forecast error and how well the ensemble

spread predicts the error (Hersbach, 2000), was improved byroughly 10% on using the PC scheme

for rainfall, but degraded by about 10% for temperature and pressure. The impact on the wind fore-390

cast was broadly neutral.
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Figure 14. Density plots for accumulated rainfall for the period of 30 to 36 hours lead time, over the entire

NAE domain, for forecasts with the Gregory-Rowntree scheme(green line) and the Plant–Craig scheme (red

line) over ocean.

This shows that, while the improvements demonstrated in this Section hold for other areas outside

the UK, this has come at a cost to the quality of the forecast for some of the other variables. An

important advantage of using a stochastic convection scheme, over a statistical downscaling proce-

dure, is its feedback on the rest of the model, and it is important that this feedback is of benefit.395

The recent analysis by Selz and Craig (2015a) is very encouraging in this regard, demonstrating the

processes of upscale error growth from convective uncertainties can be well reproduced by the PC

scheme, in good agreement with the behaviour of large-domain simulations in which the convection

is simulated explicitly (Selz and Craig, 2015b).

4 Conclusions400

A physically-based stochastic scheme for the parameterization of deep convection has been evaluated

by comparing probabilistic rainfall forecasts produced using the scheme in an operational ensemble

system with those from the same ensemble system with its standard deep convection parameteriza-

tion. The impact of using a stochastic scheme on deterministic forecasts is broadly neutral, although

there is some improvement when larger areas are assessed. This is relevant to applications such as405

hydrology, where rainfall over an area larger than a grid boxcan be more relevant than rainfall on

the grid box scale.

The Plant–Craig scheme has been shown to have a positive impact on probabilistic forecasts for

light and medium rainfall, while neither scheme is able to skillfully forecast heavy rainfall. The

impact of the scheme is greater for weakly-forced cases, where subgrid-scale variability is more410

important. Keil et al. (2014) studied a convection-permitting ensemble without stochastic physics,

and found that deterministic forecast skill was poorer during weak than during strong forcing con-

ditions. They developed a convective adjustment time-scale to measure the strength of the forcing
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conditions. This quantity can be calculated from model variables and could therefore be used in ad-

vance to determine how predictable the convective responsewill be for a given forecast. This could415

potentially be useful in an adaptive ensemble system using two convection parameterizations (see,

for example, Marsigli et al. (2005)), one of which is stochastic and is better suited to providing an

estimate of the uncertainty in weaker forcing cases.

Although the Plant–Craig scheme clearly produces improvedprobabilistic forecasts, it is not cer-

tain whether this is due to its stochasticity, or to different underlying assumptions between it and the420

standard convection scheme. In order to make a clean distinction, further studies could be performed

in which the performance of the Plant–Craig scheme is compared against its own non-stochastic

counterpart, which can be constructed by using the full cloud distribution and appropriately normal-

izing, instead of sampling randomly from it (cf Keane et al.,2014). Nonetheless, the results from

applying the recently-developed ensemble added value metric do provide some relevant information425

for this question. This metric aims to assess the quality of the ensemble in relation to the underlying

member forecasts, and the Plant–Craig scheme has been shownto increase it. This indicates that

the stochastic aspect of the scheme can increase the value added to a forecast by using an ensem-

ble, since other aspects of the scheme would be expected (broadly) to affect the performance of the

ensemble as a whole, and of the individual members, equally.430

The results of this study justify further work to investigate the impact of the Plant–Craig scheme

on ensemble forecasts. Since the version of MOGREPS used in this study has been superseded, it is

not feasible to carry out more a more detailed investigationbeyond the proof-of-concept carried out

in the present study. Interestingly, the resolution used inthis study is now becoming more widely

used in global ensemble forecasting, and so future work could involve implementing the scheme in a435

global NWP system, for example the global version of MOGREPS. This would enable assessments

to be made as to whether the scheme provides benefits for the representation of tropical convection,

in addition to those aspects of mid-latitude convection that were demonstrated here.

5 Code and/or data availability

The source code for the Plant–Craig parameterization, as itwas used in this study, can be made440

available on request, by contacting r.s.plant@reading.ac.uk.
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