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Abstract. The Plant—Craig stochastic convection parameterizatiersion 2.0) is implemented in
the Met Office Regional Ensemble Prediction System (MOGRRIP&nd is assessed in comparison
with the standard convection scheme with a simple stoahsstieme only, from random parameter
variation. A set of 34 ensemble forecasts, each with 24 mesnkseconsidered, over the month of
July 2009. Deterministic and probabilistic measures ofgfezipitation forecasts are assessed. The
Plant—Craig parameterization is found to improve prolistil forecast measures, particularly the
results for lower precipitation thresholds. The impact etedministic forecasts at the grid scale is
neutral, although the Plant—Craig scheme does deliverdwgmnents when forecasts are made over
larger areas. The improvements found are greater in condibf relatively weak synoptic forcing,
for which convective precipitation is likely to be less piadble.

1 Introduction

Quantitative precipitation forecasting is recognized as of the most challenging aspects of nu-

merical weather predictioll].(Eb.&Lt_el‘ i.L_zbbs__MmmmHmﬂbetmmuﬂ 11). While

progress is continually being made in improving the acopddisingle forecasts — through improve-

ments in the model formulation as well as increases in ggdlitgion — a complementary approach
is the use of ensembles in order to obtain an estimate of thertainty in the foreca: al.,

2005 Montani et 41, 201 1: Buizza ef al.. 2007 Bowler ¢420081 Thirel et all 2010; Yang etlal.,
bo1h{znl) 2008 Abhiash etH. 2013: Roy Bhowmik and tizas! Clark et 1201 L: Tennant and sbare,

). Of course, ensemble forecasting systems themselvesn imperfect, and one of the most

important problems is insufficient spread in ensemble fasts; where the forecast tends to cluster
too strongly around rainfall values that turn out to be imeot.
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One reason for lack of spread in an ensemble is that modebikty is constrained by the number
of degrees of freedom in the model, which is typically mudsléhan that of the real atmosphere.
The members of an ensemble forecast may start with a goodseuation of the range of possi-
ble initial conditions, but running exactly the same modeldéach ensemble member means that
the range of possible ways of modelling the atmosphere — aftwthe model in question is one —
are not fully considered. Common ways of accounting for nhed@r are running different mod-
els for each ensemble member (A.Q_Miﬁhta_and_KﬂshnArlﬁQﬁj’;l.B.emﬂLeuLI_ZOJll) adding
random perturbations to the tendencies produced by thengdesizations (e.&__B_uizza_etl LL_;Lb99;
IBQ_uni_eLeLaj.]_m;I|2) and randomly perturbing parameterghysics schemes (em al.,

hon.é;'&hﬂsmaenﬁdall._ﬁtla

Focusing on convective rainfall, and for model grid lengthere convective rainfall is parame-

terized, another way of accounting for model error is toddtrce random variability in the convec-
tion parameterization itself (EMMW.LMWOS
IBa.g.o.n.&eLEllL&lM). Ideally this should be done in a phigicansistent way, so that the random
variability causes the parameterization to sample frontdhge of possible convective responses on
mtlﬂam
Such “stochastic” convection parameterization schemes baen developed over the last 10

the grid scale. A recent overview is given

years, and are just beginning to be implemented and verifiegérational forecasting setups, with

some promise for the improvement of probabilistic enserfiriecasts (e. i Ids,

MLB_englasg_n_eLHL_ZH&_KQb_eLdtla.LJOlS) The perpbthe present study is to continue this

pioneering work of verifying probabilistic forecasts ugistochastic convection parameterizations,

by investigating the performance of MMWQ scheme in MOGREPS, the Met
Office ensemble forecasting systdm_(.BmM_eulé{a.L_IZOOB).

The PC scheme has been shown to produce rainfall variabilitguch better agreement with
cloud resolving model results than for other non—stocbamhemesl.(.lsﬂa.n.&a.n.d_EHDL_dOlZ), and
has been shown to add variability in a physically consistea¢ when the model grid spacing is
varied tlsﬂa.n_e_edal__mll@. It has also been demonstraathih convective variability it produces,
on scales of tens of kilometres, can be a major source of rmpnlehdl.(.B.a.l.l_a.n.d_ELaIr{L_ZiOB) and

further that its performance at large scales in a modeléotaparison is similar to that of more
traditional method E(l)l?,).

These are encouraging results, albeit from idealized nlindedetups, and it is important to estab-
lish whether or not they might translate into better ensenfitilecasts in a fully-operational NWP

setuplﬁmﬂnﬂmﬂUﬂLan.dﬂ.alg_ﬁzbu) examined seven casesthe COSMO ensemble system

with 7km grid spacing and compared the spread in an ensemble usipglifferent realizations

of the PC scheme (i.e. where the random seed in the PC schesnavied but the members were
otherwise identical) with that in an ensemble where addlily the initial and boundary conditions
were varied. They found the spread in hourly accumulatedatiproduced by the PC scheme to
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be 25-50% of the total spread, when the fields were upscalegbton. The present study investi-
gates the behaviour of the scheme in a trial of 34 forecaststive MOGREPS-R ensemble, using

a grid length of24km. The mass-flux variance produced by the PC scheme is a&lygmoportional
to the grid box area being used and so it is not obvious fromehelts o ij ig
) whether the stochastic variations of PC will contiébsignificantly to variability within an
ensemble system operating at the scales of MOGREPS-R. halass, MOGREPS-R has been
shown, in common with most ensemble forecasting systenmmouce insufficient spread relative
to its forecast error in precipitatiolﬂ.ﬂ&ﬂﬂﬁﬂlﬁﬂdﬁlﬁ&
introduction of a stochastic convection parameterizatidme able to improve its performance.
Although the version of MOGREPS used here has now been sguatsthe present study repre-
sents the first time that the scheme has been verified in aatipsally-used ensemble forecasting

, suggesting that there is scope for the

system for an extended verification period, and providea#ioessary motivation for more extensive
tuning and verification studies in a more current system. AB as this, the present study aims to
reveal more about the behaviour of the scheme itself, mgldn work referenced above, as well as
on recent work bLKQ.bP.L&LliI._(ZdlS) which focused on indigicase studies.

The paper compares the performance of the PC scheme wittetaglldMOGREPS convection

parameterization, based Imﬁ.mg.o.ma.n.d.BmH_mde%}dier to seek evidence that account-

ing for model error by using a stochastic convection parangstion can lead to improvements in

ensemble forecasts. Of course, the two parameterizatienkféerent in other ways than the stochas-
ticity of the PC scheme: it is therefore possible that anfediinces in performance are due to other
factors. Nonetheless, the default MOGREPS scheme has thed&fom much experience in devel-
oping it alongside the Met Office Unified Modmouw, whereas relatively modest
efforts were made here to adapt the PC scheme to the hostlelessrstem: thus, any improvements
that the PC scheme shows over the default scheme are of miesgst.

2 Methods

2.1 The Plant—Craig stochastic convection parameterizatin

TheI.EI.a.n.La.n.dﬁtAid.@bS) scheme operates, at each modgbajrit, by reading in the vertical

profile from the dynamical core, and calculating what cotivecesponse is required to stabilize that

profile. It is based on the Kain-Fritsch convection paramzd&on tKa.Ln_a.D.d.ELIIS.Cll'LJ&bb_K:‘LIn

), adapting the plume model used there and also usingikisformulation for the closure,

based on a dilute CAPE. It generalizes the Kain-Fritsch reehby allowing for more than one
cloud in a grid box, and by allowing the size and number of dto vary randomly. Details of its

implementation in an idealized configuration of the UM areegi byI.Kﬁa.nP_a.n.d_EIAr{L(ZdlZ); this
would be regarded as Version 1.1. The important differentéise implementation for the present
study, to produce Version 2.0, are presented here.
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The scheme allows for the vertical profile from the dynamamk to be averaged in horizontal
space and/or in time before it is input. This means that tipaitiprofile is more representative
of the large-scale (assumed quasi-equilibrium) enviramtmand is less affected by the stochastic
perturbations locally induced by the scheme at previous sieps. It was decided in the present
study to use different spatial averaging extents over oesanover land, in order that orographic
effects were not too heavily smoothed. The spatial avegagirategy implemented was to use a
square of7 x 7 grid points over the ocean armdx 3 grid points over land; the temporal averaging
strategy was to average over the previous 7 time steps (é&chmin) and the current time step. The
cloud lifetime was set to 15 minutes. As well as using theayed profile for the closure calculation,
the plume profiles were also calculated for ascent withiretleraged environment.

Initial tests showed that the scheme was yielding too snaibportion of convective precipitation

over the domain. Two further parameters were adjusted fhenstudy b)LKaa.n.e_a.u.d_ElLlln_(ZblZ).
in order to increase this fraction: the mean mass flux perdclet) and the root mean square cloud
radius,/(r2). Similar changes were made for the same reasdn.ln&m.e.mmﬂdjmigl.(zmb)

in their mid-latitude tests over land, and reflect the faat the original settings i aig

M) ancl_lﬁaa.n_e_a.n_d_ElHn_L(Zl)lZ) were chosen to match willotdud-resolving model simula-

tions of tropical oceanic convection. Specifically, the meaass flux per cloud was reduced here

from 2 x 10"kgs ™! t0 0.8 x 10" kgs—! in order to increase the number of plumes produced by the
scheme. The entrainment rates used in the scheme are igvergportional to cloud radius, and
a pdf of cloud radius is used characterized by the root meaarsccloud value\/W. This was
increased from 450 m to 600 m, in order to produce less styagtaining plumes. This had some
impact on the convective precipitation fraction, but thkesue still yielded a relatively low propor-
tion of convective raini2% in these tests, as compared wiith% for the standard scheme. The
overall amount of rainfall was similar for the two schemeghwhe dynamics compensating for the
reduction in convective rain produced, and ensuring thairtktability was suitably removed by the
dynamics and convection scheme combined in both casese T§ap correct answer for the con-
vective fraction, which is both model and resolution deparidn current operational practice. For
example, the current ECMWF model has a global average oft@#bdu |Zl|5). Doubtless
the convective precipitation fraction produced by the Ri@naig scheme in MOGREPS-R could be
increased further with stronger changes to parameters angnvark tha]tﬁm.en.emﬂuer_a.nddaig
) sety/(r2) to 1250 m for their tests, which would likely have such an eff&éVe attempted
only minimal tuning here and were deliberately rather cored&ve about the parameter choices

made, with the intention that the results can reasonablyhsidered to represent a lower limit of
the possible impact of a more thoroughly adapted scheme.
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Figure 1. An outline of the MOGREPS NAE domain, with its rotated latiélongitude grid. The contours are
for reference, and are derived from the dataset used in #sept study to separate the domain into land and

ocean areas. The grey shading shows the region for which-dedized precipitation data were available.

2.2 Description of MOGREPS

The Met Office Global and Regional Ensemble Prediction $y$MOGREPS) has been developed
to produce short-range probabilistic weather foreclisnmi&_eLa.l.l_ZOdS). It is based on the UM
(lDam_ﬁ_eLellejl)S) with 24 ensemble members, and is ceebdf global and regional ensembles.
In the present study, the regional ensemble MOGREPS-R veals with a resolution of 24km and 38
vertical levels. This covers a North Atlantic and EuropesAE) domain, which is shown in Figure
. The model was run on a rotated latitude-longitude gridh weal latitude and longitude locations

of the north pole and the corners of the domain given in TAbTeh& regional ensemble was driven

by initial and boundary conditions from the global ensembtedescribed d;LBQMLI.&LQTHL_CZI)OS).
The operational system has been upgraded since these rtelsto dhe present study represents

a ‘proof of concept’ for a stochastic convection scheme inla-€omplexity regional or global
ensemble prediction system, rather than a detailed teehr@icommendation for the latest version
of MOGREPS.

Table 1. Locations of the north pole and the corners of the domain ®NAE rotated grid, in terms of real

latitude and longitude.

Location latitude {N) longitude (E)

north pole 375 177.5
bottom-left 16.3 -19.8
top-left 72.7 -80.0
bottom-right 16.5 14.2
top-right 73.2 74.1




Stochastic physics is already included in the regional ME&BB, in the form of a random param-
eters scheme, where a number of selected parameters drasttoally perturbed during the forecast
run I.B.QMLI.ELQLaI.Lmd&. This scheme was retained for tlesgmt study, given that the Plant—Craig
scheme is intended to account only for the variability in ¢baevective response for a given large-

145 scale state, and as such its design does not conflict witlnthesion of a method to treat parameter
uncertainty within other parameterization schemes. Th&@REBPS random parameter scheme does
introduce variability in parameters that appear withingtendard UM convection scheme, which is
based on thlaﬁ_mggmnd_amnlrkgdggm scheme with sudasedevelopments as described by
IM_a.LL'Ln_e_[_aj. kmde). No stochastic parameter variatiompjsli@d for any of the parameters appearing

150 in the Plant—Craig scheme. Thus, there is no “double coghtihparameterization uncertainty in

these tests but rather we are comparing different methoasoafunting for convective uncertainties
in a framework which also includes a simple stochastic tneat of uncertainties in other aspects of
the model physics.
The forecasts using the Plant—Craig scheme were obtaineerbgning the regional version of
155 MOGREPS, with the standard convection scheme replaced®i#mt—Craig scheme, and driven by
initial and boundary conditions taken from the same archdega that were used for the operational
forecasts. These are compared with the forecasts prodyezdtmnally during the corresponding
period, so that the only difference between the two setsretists is in the convection parameteri-
zation scheme. The study used the UM at version 7.3. The ntiotkettep was 7.5 minutes, within
160 which the convection scheme was called twice, and the fetdéeagth was 54 hours.

2.3 Time period investigated

The time period investigated was from the 10th until the 3@l 2009. This length of time was cho-
sen as being sufficient to obtain statistically meaningfauits, but without requiring a more lengthy
experiment that would only be justified by a more mature sysiEhe particular month was chosen
165 partly for convenience and partly as a period that subjelstiitad experienced plentiful convective
rain over the UK, therefore providing a good test of a coriveqgiarameterization scheme.
Experimental forecasts with the Plant—Craig scheme wenergéed twice daily (at 06:00 and
18:00 UTC) for comparison with the operational forecastalihivas taken from the archive. On
some days the archive forecast was missing and so no expeahierecast was generated. In total
170 34 forecasts were generated, with start times shown in Bhble

2.4 Validation

A detailed validation was carried out against Nimrod radarfall datal(.H.a.LLi.s.o.n_eLLL.Zde:ﬁmjlh_el al.,

). This observational data set is only available ovettK (as shown in Figudd 1), and so most

of the validation in the following focuses on this region €Morecasts were assessed on the basis of
175 6-hourly rainfall accumulations, every 6 hours, for leadds from 0 to 54 hours.
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Table 2. Start times of forecasts investigated in this study (akedan July 2009).

10th 18UTC  16th 18UTC 21st06UTC  27th 18UTIC
11th 06UTC 17th O6UTC 21st18UTC  28th 06UTIC
11th 18UTC  17th 18UTC 22nd O6UTC  28th 18UTIC
12th 0O6UTC  18th 06UTC  23rd 0O6UTC  29th 06UTC
12th 18UTC  18th 18UTC  23rd 18UTC  29th 18UTC
13th 0O6UTC  19th 06UTC  24th 18UTC  30th 06UTC
14th O6UTC  19th 18UTC  25th 06UTC  30th 18UTC
15th 18UTC  20th 06UTC  25th 18UTC
16th 0O6UTC 20th 18UTC  26th 06UTC

2.4.1 Fractions skill score

This score (denoted FSS) was developeh_b;LB.o.b.QLts_a.n.h LQQ.&)(Z\nd was used M al.

) to assess the quality of deterministic forecastdymred using the Plant—Craig scheme for

two case studies. Note that we use the term ‘determinigti¢his manuscript, to refer to forecasts
providing a single quantity (for example, a single-memlmetast, or the ensemble mean), and
‘probabilistic’ to refer to forecasts providing a probadtilc distribution (or, at the very least, a de-
terministic forecast, with, in addition, an assessmentsfincertainty). The FSS is determined, at
a given grid pointX, by comparing the fractions of observed, and forecastF, grid points ex-
ceeding a specific rainfall threshold, within a specific Epatindow centred aX. Here we define:

(F-0))
(F%) +(02)
where the angled brackets .) indicate averages over the grid point centié$or which observa-

FSS=1— (1)

tions are available, over the different forecast initiatian times, and here over the different ensem-
ble members (so that effectively a separate score is cédclfar each ensemble member and these
are averaged to produce the overall score denoted hefésSts). The spatial window (over which
the fractions are evaluated) gives the scale at which theess@applied, so that the FSS can be used
to assess the performance of forecasts both at the grid andlat larger scales. The division by
(F?) 4+ (O?) normalizes against the smoothing applied at the given ssalthat the score always
ranges between 0 and 1. The FSS is positively oriented.

2.4.2 Brier scores

In order to determine whether or not the variability intradd by the Plant—Craig scheme is added
where it is most needed, the Brier skill scclr_e__(mhmooebvapplied to both forecast sets, using
the same observational data, to assess the respectivieyqialie probabilistic forecasts. The Brier

score is a threshold-based probabilistic verification escand is given by the mean difference be-
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tween the forecast probability of exceeding a given thriestibis probability is here simply taken to
be the fraction of ensemble members which forecast pratipit greater than the threshold) and the
observed probability (i.e 1 if the observed precipitatismbove the threshold and 0O if it is below).
To obtain the Brier skill score3S.S, this is compared with a reference score; the reference scor
is here taken to be that calculated from always forecastipgbability taken from the observation
data set (i.e. the proportion of times the observed pretipit is above the threshold). Thus,
((f—0)*)
e (OEE) @
wheref is the forecast probability, is the observation (0 or 1) and) is the ‘climatological’ prob-
ability based on the observation set. The angle bracketste@m average over the entire forecast
set. Although{o) is only availablea posteriori to the event, it does provide a useful ‘base’ for com-
parison: if the forecast issued is no better than one givesiraply always issuing a climatological
average (i.e. ifBSS < 0) then the forecast can be said to have no skill.

2.4.3 Ensemble added value

This measure aims to assess the benefit of using an ensemhblggiast a single forecast randomly
selected from the ensemble. It was recently developed asctied in detail bue
) and a brief outline is given here. The score is of paldr interest to the present study, as
this measure should highlight the advantages and disaalyasof using the stochastic Plant—Craig
methodology, and provides an assessment that is lesseafflegtstructural differences between the
Plant—Craig scheme and the Gregory-Rowntree (GR) scheme.
The ensemble added value (EAV) is based on the quantile $Q3¥ LKQ.&D.kﬂLa.D.d.M.a.Qh.aldo,
IJSQJ’;I_G_u.eiJ.LnbLZQil), which is used to assess probabilistecasts at a given probability level
(equivalently, the Brier score assesses probabilistadasts at a given value threshold). If a quantile

forecastp, of therth quantile of a meteorological variable is given, then thargile score for that
quantile is interpreted as

¢r = ((w=07)(T = Hw < ¢-})) ©)

wherew is the observed value, the functiéf) is defined as 1 if: is true and 0 ifr is false and the
angle brackets denote an average over all forecasts, dwefBrier skill score. In this way, a forecast
for a low quantile is penalized more heavily if it is above tisserved value, than if it is below the
observed value, and vice-versa for a forecast for a hightidagnote that the score is negatively
oriented). The score for th#®% quantile is simply the mean absolute error.

The QS can, like the Brier score, be decomposed into a rkfjabhd a resolution component

dB_emLi_e_u_a.n_d_ELi_e.d_eLidﬂs_zdl4). In order to calculate8A¥ a potential QS is defined as the

total QS minus its reliability component. The QS is here eatdd by first sorting the ensemble

members, and interpreting theth sorted ensemble member as fhe— 0.5) /24 quantile forecast.
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The EAV is then given by summing the potential @gg over the 24 members, and comparing with
an equivalent sum over reference potential QSs:

FEAV =1- % 4)
The reference forecast is created by defining the quantignagly a randomly-selected member
of the ensemble, so that the reference forecast reprebengsdre which could have been obtained
with only one forecast (a single member is randomly selectétth replacement, once for the en-
tire period, but separately for each quantile). The EAV tmeasures the quality of the ensemble
forecast, relative to the quality of the individual membefrthe ensemble.

2.5 Separation into weakly- and strongly-forced cases

IG.LQen.em.eij.e.Lan.dLLAil;_Qdﬂ) applied the Plant—Craigreehia an ensemble forecasting system

for seven case studies, with various synoptic conditioms showed that the proportion of ensemble

variability arising from the use of the stochastic schengeggainst that arising from variations in

the initial and boundary conditions) depends on the stteafjthe large-scale forcing, as measured
by the large-scale vorticity maximum. In particular, theoeger the large-scale forcing, the lower
the proportion of the variability that comes from the statiascheme.

.l(m]IS) investigated two of the case studiehéurtoy verifying forecasts using the
Plant—Craig scheme and using a non-stochastic conveatfan®e. They found that the improve-
ment in forecast quality from using the Plant—Craig scherae significantly higher for the more
weakly-forced of the two cases, since the additional gcalesvariability introduced by the stochas-
tic scheme is more important.
As part of the present study, we extend the Worlk_oLKabﬂLledzaﬂJIS) by separating our validation
period into dates for which the synoptic forcing is relalyweeak or strong. We then compare any

improvement in the forecasts using the Plant—Craig schewee those using the Gregory-Rowntree
scheme, for the two sets of forecasts, to assess over ardexiteeriod whether the benefit of using
a stochastic scheme is indeed greater when the synoptindgascweaker.

The separation into weakly- and strongly-forced cases waaged outa posteriori to the event
based on surface analysis charts. The aim here is not toagesrladaptive forecasting system, but
rather to develop understanding of the behaviour of thetP@raig scheme. Nonetheless, the results
may also be interpreted as providing evidence that suchteraynay be feasible if the strength of the
synoptic forcing could be predicted in advance (using, f@neple, the convective adjustment time
scale as discussed E;)__el 14)). The period waslelivinto 12-hour sections, centred on
00 or 12 UTC, and a surface analysis chart valid at the reispamgntre-time was used to determine

whether to categorize the section as weakly- or stronglgei. The 00 UTC analyses were taken

fromllALeLLetzenltaH_L&bQ) and the 12 UTC analyses E@)
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The separation was conducted by assigning periods witledigde cyclonic and/or frontal activ-
ity over or close to the UK as strongly-forced and the rest aakly-forced, with some additional

adjustment of the preliminary categorization based on thigéem reports bE{L

ods were categorized as in Table 3.

Table 3. Categorization of 12-hour periods (centred at the timeriuevestigated in this study, into weak and

strong synoptic forcing (all dates in July 2009).

3 Results

10th OOUTC Weak  17th 12UTC Strong  25th 0OUTC Weak
10th 12UTC Strong  18th OOUTC Strong  25th 12UTC Wegk
11th OOUTC Strong  18th 12UTC Weak 26th OOUTC Strang
11th 12UTC Strong  19th 0OUTC Strong ~ 26th 12UTC Strang
12th OOUTC Strong  19th 12UTC Weak 27th OOUTC Strang
12th 12UTC Strong  20th 00UTC Weak 27th 12UTC Wegk
13th OOUTC Weak  20th 12UTC Weak 28th O0UTC Strong
13th 12UTC Weak  21st OOUTC Strong  28th 12UTC Strang
14th OOUTC Strong  21st 12UTC Strong ~ 29th OOUTC Strgng
14th 12UTC Strong  22nd OOUTC Strong  29th 12UTC Strgng
15th OOUTC Weak  22nd 12UTC Strong  30th OOUTC Wedgk
15th 12UTC Weak  23rd 00UTC Weak 30th 12UTC Weak
16th OOUTC Weak  23rd 12UTC Weak 31st 00UTC Weak
16th 12UTC Weak  24th OOUTC Weak 31st 12UTC Stronhg
17th OOUTC Strong  24th 12UTC Weak

9). The peri-

3.1 Fractions skill score

The quality of the respective deterministic forecasts these produced by individual ensemble
members, with no supplementary indication of the forecasettainty) using Gregory-Rowntree
(GR) and Plant—Craig (PC) is assessed using Fidiifds 2,3 arbperformance of the schemes is
overall similar, with PC being superior for low threshold@sgontrast to the findings Mal.
)) and short lead times and GR for moderate thresh@lith. upscaling (Figdd3 and 4), the
performance of both schemes improves for all thresholddeanditimes. The PC scheme benefits
particularly from the upscaling at higher thresholds anthkr lead times, sometimes performing
significantly better than the GR scheme where at the gricedbal performance was equal. In gen-
eral, the difference in the scores between the two schenessruu reach such high values as those
seen irLKQ.b.e.LeLiLII_LEIlS), although this could be due todhethat they investigated individual

10



285

290

295

300

305

310

315

case studies which were specifically selected to test thad¢tngf the stochastic scheme, whereas
our results are scores averaged over an extended period.

In general, then, the schemes perform similarly overall #re impact of using a stochastic
scheme on the FSS is modest. Indeed, the fact that there isilhfosthe highest threshold, for
either scheme, is more important. This lack of skill couldsimaply due to the fact that the case
study period was too short to obtain a statistically sigaificsample of extreme rain events. How-
ever, it is also true that MOGREPS significantly overforéshgsavy rain over the UK for this period
(see Figur&3).

3.1.1 Separation into weakly- and strongly-forced cases

Figure[® shows the difference in FSS between PC and GR, fec#sts separated into weakly- and
strongly-forced cases, as described in Sedflon 2. It caede that, with no averaging, PC is better
for the smallest thresholds but worse for the moderate hiotds, while with upscaling the relative
performance for moderate and higher thresholds is imprasgkcially for the weakly-forced cases.
PC generally performs better than GR for weakly-forced saaad worse for strongly-forced
cases. While both schemes benefit from upscaling the stisddnefit is greater for PC. The results
agree well with those J.f_lﬁo.b.QLeLlaL(ZI)lS) for two exampleesa where the Plant—Craig scheme
benefits more from the upscaling than the non-stochastensehand performs relatively better for

the weakly-forced than for the strongly-forced case.

Moreover, it is clear that the upscaling is more beneficigh PC scheme (relative to the GR
scheme) for the weakly-forced cases than for the strommlyefd cases. The interpretation is that the
PC scheme provides a better statistical description oflssoale, weakly-forced convection than
a non-stochastic scheme. This will not provide any improzento the FSS evaluated at the grid
scale, since the convection is placed randomly, but it do@save the FSS when it is evaluated over
a neighbourhood of grid points, so that it becomes a moristital evaluation of the quality of the
scheme.

3.2 Brier score

The quality of the probabilistic forecasts, with respectaiecasts using the observed climatology,
is assessed using Brier skill scores, plotted in Fidilire 6iléAtreither scheme has skill for high
thresholds, PC performs substantially better for mediuchlaw thresholds, for all lead times. In
particular, PC has skill in predicting whether or not raitl wccur (zero threshold), while GR does
not. Further analysis shows that this is also the case fesliuids between 0 and 0.05 (not shown).
The decomposition of the Brier score into reliability (Fighd) and resolution (Figufg 8) is also
shown (note that the difference is taken in the oppositectioe for reliability so that the colour
scale must not be reversed). The Plant—Craig scheme inphbmth components of this score; the
improvement for reliability is rather higher than that fessolution. The scores for both reliability

11
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and resolution are low for the higher thresholds, which @bpbly a consequence of the fact that
there are insufficient data to assess such extreme values.

3.2.1 Separation into weakly- and strongly-forced cases

Figure[® shows the Brier skill scores as a function of threstseparated into strongly- and weakly-
forced cases. The forecasts are improved using PC for btgsho$eases, and the difference is
considerably greater for weakly-forced cases, where GRilmasst no skill. This can be interpreted
in terms of the fact that small-scale variability is relativ more important for the weakly-forced
cases, and ensemble members using the Plant—Craig schiéendrdin each other more than for

the strongly-forced cases, where initial and boundary ttimmdvariability is relativelf more im-

portant kﬁ.m.en.&m.ei,iﬂLa.n.d_QElilg._ZbIZ). Our result is simtib what was found b al.

), where the Plant—Craig scheme was found to perfottartiban a non-stochastic scheme for
a weakly-forced case, and at low thresholds, but worse ﬁhmmmn-stochastldLedlke.JMBg)
scheme for a strongly-forced case.

3.3 Ensemble added value (EAV)

The EAV is plotted in FigurEZ10. The PC scheme performs suliatly better for this score across
lead times, and the improvement is of a similar magnitudé&b of the Brier score. This suggests
that the improvement in the probabilistic forecast frormgd?C comes from the stochasticity of the
scheme, since the EAV is measured against individual fete¢eom the same ensemble: it should,
therefore, be ‘normalized’ against differences in the ulyiley convection scheme which are not
related to the stochasticity. The interpretation hereds while structural differences between two
convection schemes will lead to differences in the qualityhe ensemble forecasts, this will mainly
be due to differences in the quality of individual memberthefensemble. The stochastic character
of the PC scheme may or may not improve the quality of the iddi&i members, but it is primarily
designed to improve the quality of the ensemble as a whole.

Note that the ensemble forecasts using the GR scheme als@lpositive EAV, representing the
value added by the multiple initial and boundary conditipnsvided by the global model, and by
the stochasticity coming from the random parameters sch8mee these factors are also present
in the ensemble forecasts using the PC scheme, it can berieted that the fractional difference
between the two EAVs represents the value added by the stickharacter of the PC scheme as a
fraction of the value added by all the ensemble generatimigues in MOGREPS.

3.4 General climatology

Although Nimrod radar observations were only availableraveestricted part of the forecast do-
main, it is also of interest to compare the forecasts ovemthele domain. Figur€11 shows the
convective fraction: that is, the amount of rainfall whicdmee from the convection scheme divided
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Figure 7. Brier score reliability for the Gregory-Rowntree schenapji the Plant—Craig scheme (centre) and
the difference between the two schemes (Gregory Rowntreesitlant—Craig, bottom).
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Figure 8. Brier score resolution for the Gregory-Rowntree schemg)(tine Plant—Craig scheme (centre) and
the difference between the two schemes (Plant—Craig minegd®/ Rowntree, bottom).
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Figure 10. Ensemble added value (EAV) for the Gregory-Rowntree schigmeen line) and the Plant—Craig
scheme (red line) as a function of forecast lead time.

by the total amount of rain from the convection scheme andtggale precipitation. Both schemes
produce more convective rain over land, and the differemteden the fractions over land and sea
is in proportion to the fraction over the whole domain; trections are fairly constant with forecast
lead time. As discussed in SECJ2.1, the convective fragsiomuch lower for PC than for GR, sug-
gesting that adjusting parameters to increase this fragtiould further increase the PC influence

on the forecast (for examp‘(ﬂ_ﬁmﬂnﬁm.ejﬂa.n.d_dillajg_dmﬁ)i a reduced closure time scale to

increase the activity of the PC scheme). It is important,én@w, to reiterate that the total amount of

rainfall produced (including from the grid-scale dynanidil not vary significantly, and that there
is no correct value for the convective fraction.
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Figure 11. Convective fraction as a function of forecast lead time,tfe@ Gregory-Rowntree scheme (green
lines) and the Plant—Craig scheme (red lines), over lanshgthlines), over ocean (dotted lines) and in total
(full lines), for the full NAE domain.

The ensemble spread is shown as a function of lead time iné{l; over the whole domain and
separately over land and over ocean. Both schemes produeespread over land, but the difference
between PC and GR is also much greater over land. This ismadsly due to the fact that PC has a
higher convective fraction over land, and is therefore natie to influence the spread. The spread
increases with forecast lead time, and does so more quidkiyRC than with GR.

Figure[IB shows density plots of rainfall from the two schepasd from the observations, over
the UK part of the domain, for a lead time of 30 to 36 hours. ttle&ar that the model produces too
many instances of heavy rainfall for this period, and that ihexacerbated by the extra variability
introduced by the PC scheme. However, as shown earlier snSéction, neither scheme has any
skill for large thresholds. It is clear from FigUr€l 13 thaistis partly due to over-production of heavy
rain, although it is also the case that the case study wassafficient length to fully assess such
extreme values.

Figure[T1# shows that the PC scheme also produces more héafaflthian the GR scheme over
ocean (here for a lead time of 30 to 36 hours). This suggeatsotie possible approach to tuning
the PC scheme could be to apply less input averaging ovemtl!mosincll_lsﬂa.n.e_ellall_(zbl4) have
shown that applying more input averaging increases thelbiity and, therefore, the tails of the

distribution.

Although a lead time of 30 to 36 hours was chosen for FighréardfT3, similar conclusions
could be drawn for the plots for other lead times (not showie exception to this statement is
that for the first 6 hours, for which the forecasts had not bigpexl sufficiently for the curves to lie
significantly apart from each other.
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Figure 12. Ensemble spread as a function of forecast lead time, for thgdBy-Rowntree scheme (green lines)
and the Plant—Craig scheme (red lines), over land (dashed)]iover ocean (dotted lines) and in total (full

lines), for the full NAE domain.
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Figure 13. Density plots for accumulated rainfall for the period of 886 hours lead time, over the UK part
of the domain, for forecasts with the Gregory-Rowntree s@hégreen line), the Plant—Craig scheme (red line)

and observations (black line).

3.4.1 Validation over the whole NAE domain

A validation using the routine verification system was alsofgrmed for the two setups, covering
385 land areas over the whole forecast domain. This calculadsus forecast skill scores, by com-
paring against SYNOP observations at the surface and aghtefi850 hPa, and yielded a mixed
assessment of the performance of the PC scheme against tekel@Re. For example, the contin-
uous ranked probability score, which assesses both thedstrerror and how well the ensemble
spread predicts the err MOOO), was improvedumhly 10% on using the PC scheme
390 for rainfall, but degraded by about 10% for temperature ardgure. The impact on the wind fore-

cast was broadly neutral.
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Figure 14. Density plots for accumulated rainfall for the period of 8036 hours lead time, over the entire
NAE domain, for forecasts with the Gregory-Rowntree schégneen line) and the Plant—Craig scheme (red

line) over ocean.

This shows that, while the improvements demonstrated é3bction hold for other areas outside
the UK, this has come at a cost to the quality of the forecassdme of the other variables. An
important advantage of using a stochastic convection sehewer a statistical downscaling proce-
dure, is its feedback on the rest of the model, and it is ingmarthat this feedback is of benefit.

The recent analysis liyj.elz.a.n.ddiig.(l(l)wa) is very engingan this regard, demonstrating the

processes of upscale error growth from convective uncgigaican be well reproduced by the PC

scheme, in good agreement with the behaviour of large-dosiiulations in which the convection

is simulated epricitIyI.(S.eILa.n.dLLJilg_ZQ{Sb).

4 Conclusions

A physically-based stochastic scheme for the parametemizaf deep convection has been evaluated
by comparing probabilistic rainfall forecasts producethgshe scheme in an operational ensemble
system with those from the same ensemble system with itdatdmeep convection parameteriza-
tion. The impact of using a stochastic scheme on deternuricgecasts is broadly neutral, although
there is some improvement when larger areas are assesseds Mélevant to applications such as
hydrology, where rainfall over an area larger than a grid tax be more relevant than rainfall on
the grid box scale.

The Plant—Craig scheme has been shown to have a positivetimpg@robabilistic forecasts for
light and medium rainfall, while neither scheme is able tdlfsily forecast heavy rainfall. The
impact of the scheme is greater for weakly-forced casesyrevbigbgrid-scale variability is more
important I.@Q studied a convection-perimgitensemble without stochastic physics,
and found that deterministic forecast skill was poorermgisveak than during strong forcing con-
ditions. They developed a convective adjustment timeesttameasure the strength of the forcing
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conditions. This quantity can be calculated from modelafzslgs and could therefore be used in ad-
vance to determine how predictable the convective respoilidee for a given forecast. This could
potentially be useful in an adaptive ensemble system usingcbnvection parameterizations (see,

for exampleLM_a.mi.g_Ij_et_ill_(ﬁ)J)S)), one of which is stodimand is better suited to providing an
estimate of the uncertainty in weaker forcing cases.

Although the Plant—Craig scheme clearly produces imprg@velabilistic forecasts, it is not cer-
tain whether this is due to its stochasticity, or to diffanenderlying assumptions between it and the
standard convection scheme. In order to make a clean distinturther studies could be performed
in which the performance of the Plant—Craig scheme is coatpagainst its own non-stochastic
counterpart, which can be constructed by using the fullaidigtribution and appropriately normal-
izing, instead of sampling randomly from it (I(;f_Kﬁa.n.P_eItlaD.’IJ). Nonetheless, the results from
applying the recently-developed ensemble added valueaaetprovide some relevant information

for this question. This metric aims to assess the qualithefnsemble in relation to the underlying
member forecasts, and the Plant—Craig scheme has been shdmanease it. This indicates that

the stochastic aspect of the scheme can increase the valaed &aa forecast by using an ensem-
ble, since other aspects of the scheme would be expectealilpydo affect the performance of the

ensemble as a whole, and of the individual members, equally.

The results of this study justify further work to investigahe impact of the Plant—Craig scheme
on ensemble forecasts. Since the version of MOGREPS ushi$isttidy has been superseded, it is
not feasible to carry out more a more detailed investigateyond the proof-of-concept carried out
in the present study. Interestingly, the resolution usethiis study is now becoming more widely
used in global ensemble forecasting, and so future workddaublve implementing the scheme in a
global NWP system, for example the global version of MOGRERfs would enable assessments
to be made as to whether the scheme provides benefits forgresentation of tropical convection,
in addition to those aspects of mid-latitude convection were demonstrated here.

5 Code and/or data availability

The source code for the Plant—Craig parameterization, wastused in this study, can be made
available on request, by contacting r.s.plant@readingkac

Acknowledgements. We would like to thank Neill Bowler for helping to plan and sgt the numerical experi-
ments, and Rod Smyth for helping to set up preliminary expenits on MONSOON.
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