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Abstract 10 

Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are 11 

poorly represented in many earth system models. We integrated peatlands into the coupled Canadian 12 

Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together 13 

simulate the fluxes of water, energy and CO2 at the land surface –atmosphere boundary in the family of 14 

Canadian Earth System Models (CanESMs). New components and algorithms were added to represent the 15 

unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow 16 

decomposition of carbon in the water-logged soils and the interaction between the water, energy and 17 

carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling 18 

framework together with site-level evaluations of the model performance for simulated water, energy and 19 

carbon fluxes at eight different peatland sites. The simulated daily gross primary production and 20 

ecosystem respiration are well correlated with observations, with values of the Pearson correlation 21 

coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at 22 

the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The 23 

general peatland model compares well with other site-level and regional-level models for peatlands, and 24 

is able to represent bogs and fens under a range of climatic and geographical conditions.  25 

 26 

1. Introduction  27 

Peatlands represent about 20% of the global soil carbon (C) pool and have played a critical role in 28 

regulating the global climate since the onset of the Holocene (Yu et al. 2013). Peatlands have 29 

accumulated more than 600 Gt C over the Holocene and serve as a long-term C sink at a rate higher than 30 

5 Gt C per century on average (Yu et al. 2010). Over 90% of the world’s peatlands are located in the 31 

northern hemisphere (Yu et al., 2010) in large areas such as the Hudson Bay Lowlands, the west Siberian 32 

Lowlands and the FennoSoviet Lowlands, where gross primary production (GPP) is comparatively low 33 

(e.g. Yebra et al., 2015). The inhibited decomposition in waterlogged organic soil persistently sequesters 34 

C in peatlands, despite the relatively low primary production.  35 
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Peatlands are usually characterized by a ground layer of bryophytes or sedges covering 80-100% of the 1 

surface (Vitt, 2014). Bryophytes, especially Sphagnum mosses, are nonvascular land plants that are able 2 

to effectively capture and store water and nutrients (Turetsky, 2003). Globally, bryophytes and lichens are 3 

widely present, especially over tundra, boreal forest floor and desert, and are estimated to account for a 4 

net C uptake of 0.34 Gt C yr-1 on average (Porada et al., 2013), out of 5.0 (±0.9) Gt C yr-1 global net C 5 

uptake by land and oceans between 1960 and 2010 (Ballantyne et al., 2012).  Peatlands can be classified 6 

as either fens or bogs. Bogs are dependent upon precipitation for water and nutrients while fens receive 7 

additional contributions from ground and surface waters (Rydin and Jeglum, 2006). The different sources 8 

of nutrients between bogs and fens leads to differences in their physical state including hydrology, soil 9 

and water chemistry, vegetation, and nutrient availability. These differences can lead to differences in the 10 

fluxes of carbon from these fens vs. bogs, e.g. fen methane emissions are more sensitive to vegetation 11 

type but less sensitive to temperature than bogs (Turetsky et al. 2014). Fens generally produce the most 12 

methane with water tables at or above the peat surface, while bogs produce the most methane with the 13 

water table below the peat surface (Turetsky et al. 2014). 14 

Peatlands are particularly vulnerable to C loss under climate change. The IPCC Fifth Assessment Report 15 

(AR5) projected a large increase of temperature and a risk of lower soil moisture (Christensen et al., 2013, 16 

Seneviratne et al., 2010) in the boreal region. Warmer temperatures and drought can both stimulate the 17 

decomposition of peat and further enhance climate change through increased CO2 and CH4 emissions 18 

(Davidson and Janssens et al., 2006; Tarnocai, 2006; Ise et al., 2008; Dorrepaal et al., 2009; Wu and 19 

Roulet, 2014). However, the increasing atmospheric CO2 concentration and temperature may also 20 

promote increased primary production and shifts in vegetation ecozones, compensating for the additional 21 

C loss from soil respiration (Camill and Clark, 2000; Ward et al. 2013; Wang et al. 2015). Wu and Roulet 22 

(2014) showed that fens, which rely on external inputs of water, may be particularly sensitive to changes 23 

in surface hydrology. Overall, large uncertainties prevail in the future carbon budget of peatlands and its 24 

feedback to climate change (McGuire et al. 2009).  25 

Earth system models (ESMs) simulate the global C cycle and feedbacks to climate and are used to make 26 

future climate projections. Poor representation of processes related to the C cycle in peatlands and organic 27 

soil types was identified as one of the key reasons for inaccuracies in simulated soil organic mass and 28 

heterotrophic respiratory fluxes in the ESMs used in CMIP5 (Todd-Brown et al. 2013). Recognizing the 29 

importance of representing organic soils in the high latitudes, progress has been made recently to integrate 30 

peatlands, wetlands and permafrost into coupled global Climate-C models. For example, several versions 31 

of the Lund-Potsdam-Jena (LPJ) model, a global dynamic vegetation model, have incorporated wetlands 32 

or peatlands to simulate global methane emissions (Wania et al. 2009a, 2009b), the spatial expansion and 33 

C sequestration of peatlands (Spahni et al., 2012) and wetlands (Kleinen et al. 2012; Schuldt et al., 2013) 34 

during the Holocene, and the water and energy cycles in permafrost (Ekici et al, 2014). The simulation of 35 

the global spatial distribution of wetlands and permafrost and the long-term C sequestration of peatlands 36 

improved the simulations of soil temperature and water content (e.g. Wania et al., 2009a). However, the 37 

models were not evaluated on fine temporal and spatial scales because they were designed for capturing 38 

the long-term C accumulation. On the other hand, several peatland models have been developed and 39 

evaluated for individual sites. For example, the McGill Wetland Model (MWM) simulates the C exchange 40 

in Degerö Stormyr and the Mer Bleue bog (St-Hilaire et al., 2010); the peatland version of the GUESS-41 

ROMUL model simulates the variation of net ecosystem production (NEP) with water table position in a 42 

fen (Yorova et al., 2007); and the PEATBOG model simulates C and N cycles in peatlands, specifically 43 
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the Mer Bleue bog (Wu et al., 2013). These models have been shown to reproduce well the processes 1 

occurring in the peatlands that they were designed for.  However, conclusions drawn from these studies 2 

about the global implications of peatlands on climate change are often obtained from scaling up the 3 

results of the site-level sensitivity analyses and have high uncertainties.  4 

The coupled Canadian Land Surface Scheme (CLASS) (Verseghy, 2012) and the Canadian Terrestrial 5 

Ecosystem Model (CTEM) (Melton and Arora, 2014) constitute the land surface component of the family 6 

of Canadian Earth System Models (CanESMs). The objective of this study is to introduce peatlands into 7 

the latest coupled system of CLASS version 3.6 and CTEM version 2.0 (Melton and Arora, 2015). In this 8 

paper we present the functional and structural modifications made to the CLASS-CTEM modelling 9 

framework and the explicit site-level evaluation of the energy, water and C balances in varied peatlands 10 

that are located in typical northern peatland regions: North America, Eurasia and Siberia. 11 

 12 

2. Model Description  13 

CLASS was first developed in the late 1980s for inclusion in the Canadian Global Climate Model (GCM) 14 

(Verseghy, 1991; Verseghy et al., 1993), and has been under continuous development since then. It 15 

simulates the energy and water balances of the components of the land surface, mainly the temperatures 16 

and liquid and frozen water contents of the vegetation, snow and soil for four sub-areas of each grid cell 17 

(bare soil, vegetation covered ground, snow covered ground and vegetation over snow), at a timestep of 18 

15-30 minutes. The model has been parameterized for mineral, organic or mixed soil types (Letts et al., 19 

2000). The organic soil parameterization significantly improved the simulations of soil water and energy 20 

balances in peatlands and other organic soils (Comer et al. 2000; Bellisario et al. 2010).  21 

CTEM simulates the terrestrial ecosystem C cycle for nine plant functional types (PFTs) and soil through 22 

photosynthesis, autotrophic and heterotrophic respiration based on parameterizations developed by Arora 23 

(2003) and Arora and Boer (2005). CTEM’s treatment of soil moisture and soil carbon pools showed 24 

comparatively high correlations with the biome soil pool and turnover time among ESMs (Todd-Brown et 25 

al. 2013).  These processes determine the flow of carbon in and out of model’s three live vegetation 26 

components of leaves, stems and roots and two dead carbon pools of litter and soil organic matter. CTEM 27 

version 1.2 and above have an improved ability to capture the regional heterogeneity in land cover using a 28 

mosaic approach (Melton and Arora, 2014), which matches the similar capability in CLASS. When 29 

coupled to CLASS, the structural attributes of vegetation such as the leaf area index (LAI), root depth, 30 

and vegetation height that are calculated in CTEM are passed to CLASS and used in its calculations of the 31 

energy and water balance. The photosynthesis in CTEM directly controls the stomatal activity and the 32 

associated stomatal resistance of the PFTs and thus affects the energy and water exchanges at the surface 33 

in CLASS. Photosynthesis and leaf respiration are modelled at the CLASS time step of 15-30 minutes, 34 

whereas the rest of terrestrial ecosystem processes are modelled at a daily time step.  35 

To account for the eco-hydrological and biogeochemical interactions among vegetation, atmosphere and 36 

soil in peatlands, the following modifications were made to the coupled CLASS3.6-CTEM2.0 modelling 37 

framework: 38 
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1. The top soil layer was characterized as a moss layer with a higher heat and hydraulic capacity than a 1 

mineral soil layer. The moss layer buffers the exchange of energy and water at the soil surface and 2 

regulates the soil temperature and moisture (Turetsky et al., 2012).  3 

2. Three peatland vascular PFTs (evergreen shrubs, deciduous shrubs and sedges) as well as mosses 4 

were added to the existing 9 CTEM PFTs. These peatland-specific PFTs are adapted to cold climate 5 

and inundated soil with optimized plant structure (shoot/root ratio, rooting depth), growth strategy 6 

and metabolic acclimations to light, water and temperature.  7 

3. We considered the soil inundation stress on microbial respiration in the litter C pool. The original 8 

CTEM assumed that litter respiration was not affected by oxygen deficit as a result of flooding, since 9 

litter was always assumed to have access to air. This assumption does not hold for peatlands where 10 

high water table positions occur routinely. 11 

4. To provide the framework for future runs coupled to the global earth system model, we separated the 12 

soil C balance and heterotrophic respiration (HR) calculations for peatland and non-peatland fractions 13 

for each grid cell in the global model. Over the non-peatland fraction, we use the original CTEM 14 

approach that aggregates the HR from each PFT weighted by the fractional cover. Over the peatland 15 

fraction the soil C pool and decomposition are controlled by the water table position, following the 16 

two-compartment approach used in the MWM (St-Hilaire et al., 2010).  17 

2.1 Soil layers  18 

The water table depth (WTD) in natural peatlands fluctuates seasonally from above the soil surface to the 19 

top of the permanently saturated soil layer, which is often referred to as the boundary between acrotelm 20 

and catotelm. The boundary is usually estimated to be 30 cm below the soil surface in wetlands (National 21 

Wetland Working Group, 1997), and has been widely used as the bottom of the first soil layer in two-22 

layer soil decomposition models (e.g. Granberg et al., 1999; Yorova et al., 2007; Spahni et al., 2013). To 23 

capture the effect of the fluctuating water table on the transfer of water and energy within the soil, we 24 

used a multi-layer configuration rather than the standard three-layer configuration of the soil layers in 25 

CLASS. We assigned nine organic soil layers, each 10 cm thick, at the top of the soil profile and a 10th 26 

soil layer from 90 cm down to the bottom of the organic soil (Figure 1). Moss was treated as the top first 27 

soil layer and the substrate below the 10th soil layer was considered as bedrock. Mineral soil was not 28 

included.  29 

2.2 A moss layer as the first soil layer  30 

The standard configuration of soil layers in CLASS consists of 3 layers with thickness of 0.10m, 0.25m, 31 

and 3.75m. Organic soil in CLASS was parameterized by Letts et al. (2000) as fibric, hemic and sapric 32 

peat in the three soil layers respectively, representing fresh, moderately decomposed and highly 33 

decomposed organic matter. Tests of CLASS on peatlands revealed improved performance in the energy 34 

simulations for fens and bogs with this organic soil parameterization. However, the model overestimated 35 

energy and water fluxes at bog surfaces during dry periods due to the neglect of the moss cover (Comer et 36 

al., 2000).  37 
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To take into account the interaction amongst the moss and the soil layers and the overlying atmosphere 1 

for energy and water transfer, we added a new soil layer 0.10 m thick above the fibric organic soil to 2 

represent living and dead peatland bryophytes, such as Sphagnum mosses and true mosses (Bryopsida). 3 

The physical characteristics of mosses differ from those of either the shoots or the roots of vascular plants 4 

(Rice et al., 2008). In particular, mosses can hold more than 30 grams of water per gram of biomass 5 

(Robroek et al., 2009). More than 90% of the moss leaf volume is occupied by the water-holding hyaline 6 

cells (Rice et al., 2008), which retain water even when the water table depth declines to 1- 10 m below the 7 

surface (Hayward and Clymo, 1982). 8 

The parameter values of the moss layer for water and energy properties were derived from a number of 9 

recent experiments measuring the hydraulic properties of mosses (Price et al., 2008; Price and 10 

Whittington, 2010; McCarter and Price, 2012) (Table 1). Living mosses range from 2 - 3 to over 5 cm in 11 

height (Rice et al., 2008) and have lower values of dry bulk density and field capacity than fibric peat 12 

(Price et al., 2008). Compared to fibric peat, the saturated hydraulic conductivity of living moss is higher 13 

by orders of magnitude (Price et al., 2008) and the thermal conductivity is more affected by the water 14 

content (O’Donnell et al., 2009). To fully account for the effect of mosses, we set the depth of the living 15 

moss (zm) within the top soil (i.e. moss) layer to 3 cm for fens and 4 cm for bogs, and interpolated its 16 

water content wm (kg water per kg dry mass) from the water content of the overall layer θl,1 (m3 water per 17 

m3 soil) and the depth of the living moss: 18 

𝑤𝑚 =
𝑧𝑚𝜃𝑙,1𝜌𝑤

𝐵𝑚
         Eqn. 1 19 

where the dry moss biomass (Bm) is converted from moss C (Cm) using the standard conversion factor of 20 

0.46 kg C per kg dry biomass, θl,1 (m3 m-3) is the liquid water content of the top soil layer, and ρw is the 21 

density of water (1000 kg m-3). The maximum and minimum moss water contents were estimated from a 22 

number of observed moss water contents (e.g. Flanagan and Williams, 1998; Robroek et al., 2009). In 23 

CLASS, evaporation at the soil surface is controlled by a soil evaporation efficiency coefficient β 24 

(Verseghy, 2012).  This parameter is calculated from the liquid water content and the field capacity of the 25 

first soil layer following Lee and Pielke (1992). For peatlands, β was assumed to be regulated by the 26 

relative moisture of the living moss rather than the ratio of relative liquid water content of the first soil 27 

layer:  28 

𝛽 = 0.25[1 − cos (
𝑤𝑚−𝑤𝑚,𝑚𝑖𝑛

𝑤𝑚−𝑤𝑚,𝑚𝑎𝑥
)]2       Eqn. 2 29 

where wm, wm,max, w m,min are the water content and the maximum and minimum water contents of the 30 

living moss in kg water per kg dry moss. 31 

2.3 Primary production of mosses 32 

Mosses are an important contributor to the primary production and the C sequestration in peatlands, 33 

owing to the low decomposability of the moss tissue. Sphagnum in peatlands grows at 20 – 1600 g 34 

biomass m-2 yr-1 and accounts for about 50% of the total peat volume (Turetsky, 2003). We have modified 35 

CTEM to include a moss C pool and moss litter pool along with the related C fluxes, i.e. photosynthesis, 36 

autotrophic respiration, heterotrophic respiration and humification. The net photosynthesis of moss (Gm) 37 

is calculated from the gross photosynthesis (G0,m) and dark respiration (Rd,m).  38 
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𝐺𝑚 = 𝐺0,𝑚 − 𝑅𝑑,𝑚         Eqn. 3 1 

The moss photosynthesis and dark respiration are calculated using the Farquhar (1985) biochemical 2 

approach following the MWM (St-Hilaire et al., 2010) and CTEM (Melton and Arora, 2015), with 3 

modifications for integration with CLASS-CTEM and moss phenology. The leaf-level gross 4 

photosynthesis rate G0,m (μmol CO2 m-2 s-1) is obtained as the minimum of the transportation limited 5 

photosynthesis rates (Js) and the first root of the quadratic solution of the light-limited rate (Je) and the 6 

Rubisco limited rate (Jc).  A logistic factor (ς) is added with values 0 or 1 to introduce a seasonal control 7 

of moss photosynthesis. In the MWM, spring photosynthesis starts when the snow depth is below 0.05 m 8 

and the soil temperature at 5 cm depth goes above 0.5 °C (Moore et al., 2006). Since in our case CLASS 9 

sets the minimum depth for melting, discontinuous snow to 0.10 m, this limits the spring photosynthesis 10 

to starting only once the snow is completely melted.  11 

𝐺0,𝑚 = 𝜍 𝑚𝑖𝑛(𝐽𝑠,
(𝐽𝑐+𝐽𝑒)±√(𝐽𝑐+𝐽𝑒)2−4(𝐽𝑐+𝐽𝑒)

2
)       Eqn. 4 12 

The dark respiration in mosses (Rd,m) is calculated as a function of the base dark respiration rate (Rd,m,0) 13 

which has a value of 1.1 μmol m-2 s-1 (Adkinson and Humphreys, 2011) scaled by the moss moisture 14 

(fm,,rd) and soil temperature functions (fT,rd). The moss moisture function is based on the volumetric water 15 

content of the moss, 𝜃𝑚 (m3 water per m3 moss).  The MWM models the relation between water content 16 

in mosses and dark respiration with optimal water content at 5.8 g water per g dry weight, following the 17 

approach in Frolking (et al., 1996). We modified the relation for water content above the optimal water 18 

content, based on a recent discovery of a weak linear positive relation between the dark respiration rate 19 

and the water content above the optimal water content during the late summer and fall (Adkinson and 20 

Humphreys, 2011) 21 

R𝑑,𝑚 = R𝑑,𝑚,0𝑓𝑚,𝑟𝑑𝑓𝑇,𝑟𝑑         Eqn. 5 22 

𝑓𝑇,𝑟𝑑 = (3.22 − (0.046 ∗ T𝑚𝑜𝑠𝑠)(T𝑚𝑜𝑠𝑠−25/10)      Eqn. 6 23 

𝑓𝑚,𝑟𝑑 =  {

0,                                                 𝜃𝑚 < 0.4

0.35𝜃𝑚
2/3 − 0.14,      0.4 ≤ 𝜃m < 5.8

0.01𝜃𝑚 + 0.942,                     5.8 < θm

      Eqn. 7 24 

Photosynthetic photon flux density (PPFD) is measured by the photosynthetically active radiation (PAR), 25 

which is defined as the solar radiation between 0.4 to 0.7 μmol that can be used by plants via 26 

photosynthesis. In the coupled CLASS-CTEM system, the PAR received by the moss (PARm, unit μmol 27 

protons m-2 s-1) is converted from the visible short-wave radiation reaching the ground (K*g, unit W m-2) 28 

in CLASS by a factor of 4.6 μmol m-2 s-1 per W m-2 (McCree, 1972). K*g is a function of the incoming 29 

shortwave radiation (K↓, unit: W m-2), the surface albedo (αg), and the canopy transmissivity (τc): 30 

K∗𝑔 = 𝐾 ↓  𝜏𝑐(1 − 𝛼𝑔)         Eqn. 8 31 

The energy uptake by the moss layer is thus a function of the total incoming short-wave radiation, the 32 

aggregated leaf area index (LAI) of the PFTs present, the snow depth, the fractional vegetation cover and 33 

the soil water content (Verseghy, 2012). In peatland C models that do not consider vegetation dynamics, 34 

the transmissivity of the vegetation canopy is usually assumed to be constant (e.g. St-Hilaire et al., 2010). 35 
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Compared with such models, CLASS enables a more detailed representation of light incident on the moss 1 

surface since it includes partitioning of direct/diffuse and visible/near-IR radiation, PFT-specific 2 

transmissivities, and time-varying LAI and fractional PFT coverages (Verseghy et al., 2012).   3 

2.4 Peatland-specific PFTs  4 

CLASS normally categorizes the global vegetation into four broad PFTs that differ in their structure and 5 

intra-annual development cycles: needleleaf trees (NDL), broadleaf trees (BDL), crops and grasses. 6 

CTEM further subdivides each PFT in CLASS into PFTs that vary in their phenology, physiology and 7 

their C assimilation rates: evergreen NDL, deciduous NDL, evergreen BDL, deciduous cold BDL, 8 

deciduous dry BDL, C3 crops, C4 crops, C3 grasses and C4 grasses. The evergreen broadleaf PFTs and 9 

C3 grasses have been parameterized primarily for tropical and temperate vegetation types that are not 10 

representative of peatland plants. Therefore, we introduced three new PFTs for peatlands: evergreen 11 

shrubs, deciduous shrubs and sedges. Evergreen shrubs, for example the ericaceous shrubs, are the 12 

common dominant vascular plants in bogs and poor fens while deciduous shrubs, such as the betulaceous 13 

shrubs often dominate rich fens. Both shrubs are categorized as broadleaf trees in CLASS 14 

morphologically, but their phenological and physiological characteristics are more similar to those of 15 

needleleaf trees. The shrub tundra ecosystem is situated adjacent to needleleaf forest in the northern 16 

hemisphere (Kaplan et al., 2003) and they share similar responses to climate in ESMs (e.g. Bonan et al., 17 

2002). Table 2 lists the key parameters for the peatland PFTs used in this model. (The photosynthesis and 18 

autotrophic respiration of vascular PFTs are modeled the same as the original CTEM.)  19 

2.5 Heterotrophic respiration  20 

Over the non-peatland fraction, heterotrophic respiration (HR) is calculated as the sum of the respiration 21 

from litter and soil carbon pools as in the original version of CTEM (Arora, 2003). The soil C pool over 22 

the non-peatland areas is assumed to be exponentially distributed with depth (Arora, 2003). In peatlands a 23 

large amount of humic soil is generally located in the permanently saturated zone and the bulk density 24 

increases with soil depth (Loisel and Garneau, 2010). Thus the assumption of exponentially decreasing 25 

distribution of C content with increasing soil depth is not valid in peatlands. We used a quadratic equation 26 

to calculate the distribution of soil C content over depth based on an empirically determined bulk density 27 

profile (Frolking et al., 2001).  28 

HR over the peatland fraction of a grid cell is modelled using a two-pool approach with a flexible 29 

boundary between the pools that depends on the depth of the water table: 30 

{
𝑅𝑜 = 𝐶𝑆𝑂𝑀,𝑜𝑘𝑜𝑓𝑇,𝑜              

𝑅𝑎 = 𝐶𝑆𝑂𝑀,𝑎𝑘𝑎𝑓𝑇,𝑎𝑓𝑎𝑛𝑜𝑥𝑖𝑐
        Eqn. 9 31 

where o and a denote the oxic and anoxic portions of the soil C pool, respectively. The respiration rate R 32 

(unit: μmol C m-2 s-1) is obtained from the respiration rate coefficient k (μmol C kg C-1 s-1), the 33 

temperature functions fT, the soil C mass CSOM (kg) and a scaling factor fanoxic after Frolking et al. (2010) 34 

and Frolking et al. (2001), which represents the inhibition of microbial respiration under anoxic 35 

conditions. The value of this parameter is uncertain, varying in those two papers between 0.001, 0.025 36 

and 0.1.  Based on calibration runs using two of the datasets described below, MB-Bog and AB-Fen, we 37 

adopted a value of 0.025.  Q10 is calculated using a hyperbolic tan function of the soil temperatures (Ts) of 38 

the oxic and anoxic zones (Melton and Arora, 2015), which are in turn functions of water table depth 39 
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(Eqn. 10). The Q10 values of the anoxic and the oxic zones of the soil are indicated as Q10,a and Q10,o. The 1 

values of k, fT and CSOM are updated along with the water table depth (zwt, unit: m, positive downward) and 2 

the peat depth (zp, unit: m) at each CTEM time step. The equations for k and CSOM are derived from Figure 3 

2 in Frolking et al. (2001), and parameterized differently for fens and bogs (Table 3):  4 

{
𝑓𝑇,𝑜 = 𝑄10,𝑜

(∫ 𝑇𝑗
𝑧𝑤𝑡

0
−15)/10  

𝑓𝑇,𝑎 = 𝑄10,𝑎
(∫ 𝑇𝑗

𝑧𝑝
𝑧𝑤𝑡

−15)/10
         Eqn. 10 5 

𝑄10 = 1.44 + 0.56 tanh [0.075(46.0 − 𝑇𝑠)]      Eqn. 11 6 

{
𝑇𝑠,𝑜 = ∫ 𝑇𝑗

𝑧𝑤𝑡

0
 /(𝑧𝑤𝑡)

𝑇𝑠,𝑎 = ∫ 𝑇𝑗
𝑧𝑝

𝑧𝑤𝑡
/(𝑧𝑝 − 𝑧𝑤𝑡)

        Eqn. 12 7 

𝑘𝑜 = {

0,                                                              𝑧𝑤𝑡 < 0

𝑘1(1 − 𝑒𝑘2𝑧𝑤𝑡) + 𝑘3𝑧𝑤𝑡,         0.3 > 𝑧𝑤𝑡 ≥ 0

𝑘4𝑒𝑘5𝑧𝑤𝑡 + 𝑘6𝑧𝑤𝑡 + 𝑘7,                   𝑧𝑤𝑡 ≥ 0.3

     Eqn. 13 8 

𝑘𝑎 = {

𝑘4𝑒𝑘5𝑧𝑝 + 10𝑘6𝑧𝑝 + 𝑘7,                              𝑧𝑤𝑡 < 0

|𝑘1𝑒𝑘2𝑧𝑤𝑡 − 𝑘4𝑒𝑘5𝑧𝑃 − 𝑘3𝑧𝑤𝑡 + 𝑘8|,     0.3 > 𝑧𝑤𝑡 ≥ 0

𝑘4(𝑒𝑘5𝑧𝑃−𝑒𝑘5𝑧𝑤𝑡) + 𝑘6(𝑧𝑃 − 𝑧𝑤𝑡),               𝑧𝑤𝑡 ≥ 0.3

    Eqn. 14 9 

𝐶𝑆𝑂𝑀,𝑜 =  0.487 ∗ (𝑘9𝑧𝑤𝑡
2 + 𝑘10𝑧𝑤𝑡)       Eqn. 15 10 

𝐶𝑆𝑂𝑀,𝑎 =  𝐶𝑠𝑜𝑚 − 𝐶𝑆𝑂𝑀,𝑜        Eqn. 16 11 

where 0.487 is a parameter that converts from soil mass to soil C content.  The variation of ko and ka with 12 

water table depth for bogs and fens is shown in Figure 2.  It will be noted that there is a sharp transition in 13 

decomposition rate at a depth of 0.3 m, reflecting the work of Frolking (2001). As noted in section 2.1 14 

above, this value is widely accepted as a representative estimate of the depth dividing the acrotelm and 15 

catotelm.  In reality, of course, this depth will vary among peatlands.  When our peatland model is 16 

implemented in climate mode, it is planned that spinup tests will be run to assess the spatial variability of 17 

this depth, and adjustments will be made to equations 13 and 14 if necessary. 18 

As only organic soil is considered in peatlands, the peat soil C is updated from the humification (Chum, kg 19 

C m-2 day-1) and soil respiration from the oxic (Ro in kg C m-2 day-1) and anoxic (Ra in kg C m-2 day-1) 20 

components during the time step: 21 

𝑑𝐶𝑠𝑜𝑚

𝑑𝑡
= 𝐶ℎ𝑢𝑚 − 𝑅𝑜 − 𝑅𝑎        Eqn. 17 22 

Chum is calculated as a PFT-dependent fraction of the decomposition rate.  Values of this coefficient are 23 

shown in Table 2 (variable “humicfac”). At the end of each time step, the peat depth (i.e. the depth of the 24 

organic soil) zp is updated from the updated peat C mass (CSOM in kg) by solving the quadratic equation: 25 

𝑧𝑝 =  
−𝑘10+√𝑘10+

4𝑘9𝐶𝑠𝑜𝑚
0.487

2𝑘9
        Eqn. 18 26 
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The water table depth zwt is deduced by searching for a soil layer below which the soil is saturated and 1 

above which the soil moisture is at or below the retention capacity with respect to gravitational drainage.  2 

Within this soil layer j, zwt is calculated as: 3 

𝑧𝑤𝑡 = 𝑧𝑏,𝑗 − ∆𝑧 [
𝜃𝑙,𝑗+𝜃𝑖,𝑗−𝜃𝑟𝑒𝑡,𝑗

𝜃𝑝,𝑗−𝜃𝑟𝑒𝑡,𝑗
]          Eqn. 19 4 

where Δz is the thickness of soil layer (unit: m), θl and θi are the liquid and frozen water contents (unit, m3 5 

m-3), θret and θp are the water retention capacity and the porosity, and zb, (unit: m) is the bottom depth of 6 

the soil layer. 7 

 8 

3. Evaluation methods and data  9 

3.1 Site locations 10 

The model was applied at eight peatlands sites to assess its performance in simulating the water, energy 11 

and C fluxes. The peatlands selected consist of four bogs and four fens sites (Figure 3).  The bogs are the 12 

Auchecorth Moss (UK-Amo), 18 km south of Edinburgh, Scotland; the Fajemry Bog (SE-Faj), in the 13 

south of Sweden; the Fyodorovskoye Bog (RU-Fyo), about 340 km north-west of Moscow, Russia; and 14 

the Mer Bleue Bog (MB-Bog), about 20km away from Ottawa, Canada.  The fens are the Kaamanen 15 

Wetland (FI-Kaa), close to Inari in Finland; the Lompolojänkkä northern boreal fen (FI-Lom), in northern 16 

Finland; the Degerö Stormyr (SE-Deg) near Uppsala, Sweden; and the Alberta Western Peatland treed fen 17 

(AB-Fen), north of Edmonton. The characteristics of the 8 peatlands represented nutrient gradients from 18 

ombrotrophic to minerotrophic, elevations between 65 and 581 meters above sea level, mean annual 19 

precipitation (MAP) ranging from 473 to 1155 mm per year, mean annual temperature (MAT) between -20 

1.4 and 10.0 degrees C and maximum leaf area index (LAI) ranging from 0.7 to 3.5 (Table 4).  21 

Data were obtained from the FLUXNET database (http://fluxnet.ornl.gov/).  For each site and for each 22 

downloaded variable, the highest available data level was used. The meteorological drivers for the model 23 

were obtained from level 4 (gap-filled and quality-controlled) data, except for the wind speed, which was 24 

obtained from level 3 and surface pressure from level 2 data. Carbon fluxes were obtained from level 4 25 

daily average data when available. The observed GPP and NEP in the FLUXNET database were derived 26 

from the observed NEP and the relations between NEP, temperature and photosynthetically active 27 

radiation (PAR).  The remaining fluxes were averaged from half hourly level 2 and level 3 data.  28 

 29 

In the model evaluation, it must be borne in mind that eddy covariance measurements of turbulent fluxes 30 

of energy, water and carbon are subject to inherent uncertainties and errors related to atmospheric 31 

conditions such a low turbulence and wind direction, or to equipment malfunction.  For this reason, we 32 

selected a relatively large number of test sites with multi-year datasets, and focused on long-term 33 

averages for the validation.  We also included in the evaluation variables such as water table depth, soil 34 

temperature and snow depth, which are not dependent on turbulent flux measurements. 35 

 36 

3.2 Model initialization and spin up  37 

http://fluxnet.ornl.gov/
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For each site, the FLUXNET database was used to assign values to background variables such as latitude, 1 

longitude, peat depth, areal coverage of the three peatland PFTs, and their roughness lengths, visible and 2 

near-infrared albedos and canopy mass. Other CLASS- and CTEM-related vegetation parameters were 3 

assigned their standard values, as listed in Table 2. The parameter values for evergreen shrubs, deciduous 4 

shrubs and sedge mostly reflected those used for evergreen needleleaf trees, deciduous needleleaf trees 5 

and C3 grasses in CTEM, respectively. Exceptions were made for some parameters that determine the 6 

length or shape and turnover of the stem and root of the PFT and its tolerance to coldness and dryness 7 

(Table 2).  8 

Model C pools in vegetation were spun up from initial conditions by repeatedly cycling through the 9 

inputs for approximately 100 years until the annual mean C pools in consecutive years differed by less 10 

than 5%. The initial soil C mass was calculated from the observation-based estimations of peat depth 11 

based on an empirically obtained relation between the soil depth and soil mass (Eqn. 15).  12 

3.3 Observational datasets 13 

The model was forced with half-hourly measured meteorological data: downwelling shortwave radiation, 14 

downwelling longwave radiation, precipitation, atmospheric pressure, air temperature (Ta), specific 15 

humidity, and wind speed. The measurement heights for the latter three were obtained from the 16 

FLUXNET metadata.  Datasets ranged in length from 2 to 9 years.  The parameters used for model 17 

evaluation include water table depth (zWT), snow depth, soil temperature (Ts), latent heat flux (QE), 18 

sensible heat flux (QH), GPP, ER and NEP. Energy and C fluxes were measured every 30 minutes using 19 

the eddy-covariance (EC) technique. The required downwelling longwave radiation (LW) was available 20 

only at MB-Bog, AB-Fen, SE-Deg and FI-Lom. For the remaining 4 sites, LW was estimated following 21 

the methods of Crawford and Duchon (1998): 22 

𝐿𝑊 ↓= [𝑐𝑓 + (1 − 𝑐𝑓)𝜀𝑐]𝜎𝑇𝑎
4        Eqn. 20 23 

where σ is the Stefan–Boltzmann constant and cf is the cloud fraction term ranging between 0 and 1. cf is 24 

estimated as the ratio between the incoming shortwave radiation and the clear-sky solar radiation, which 25 

in turn is a function of the locational character of the site, i.e. latitude, longitude, altitude and time zone. εc 26 

is the clear sky emissivity and is estimated from the vapor pressure (e0) following Ångström (1918):  27 

𝜀𝑐 = 0.83 − 0.18 ∗ 10−0.067𝑒0        Eqn. 21 28 

Water table depths were available for 3 bogs (RU-Fyo, SE-Faj and MB-Bog) and 3 fens (AB-Fen, FI-29 

Lom, SE-Deg) sites and snow depths were available for MB-Bog and AB-Fen only. Soil temperatures 30 

were available at 1, 5, 10, 20, 40, 80, 150 and 250 cm below the soil surface at the MB-Bog and at 2, 5, 31 

10, 20, 50, and 100 cm below the soil surface at AB-Fen. For the other 6 sites, the soil temperature was 32 

only measured at 5 cm below the surface.  33 

3.4 Evaluation methods   34 

The model was evaluated against observation-based daily sensible and latent heat fluxes at the soil 35 

surface, soil water content, water table and snow depth, soil temperature at various depths and the daily, 36 

monthly and annual C fluxes (GPP, ER, NEP). The root mean square error (RMSE) and linear regression 37 
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coefficient (r2) were primarily used for evaluation. Statistical analyses were conducted using the free 1 

software package R version 3.1.1 (R Core Team, 2014).  2 

Since the ultimate goal is to apply the model globally in an ESM, further experiments were done to 3 

investigate the importance of modelling fens and bogs separately. In the version of the model described 4 

above, bogs and fens are distinguished primarily through the parameterization of the control of water 5 

table depth on soil decomposition (Table 3). Also, the depth of the living moss (dm) is set to 4.0 cm for 6 

bogs and 3.0 cm for fens. In a first test, the parameters for soil decomposition (Table 3) for bogs were 7 

used for the fen sites and those for the fens were used for the bog sites. In a second test, the living moss 8 

layer was set to a set to a single fixed value of 3.5 cm for both bogs and fens. The resulting differences in 9 

the surface fluxes and the soil temperatures were then evaluated.   10 

4. Results and Discussion 11 

4.1 Water budget terms  12 

Figure 4 illustrates the simulated daily WTD compared with observations at the six sites where WTD was 13 

observed. The model successfully simulated the seasonal dynamics and the zone of fluctuation of the 14 

water table in the first two bogs, except for the extremely deep water table observed in RU-Fyo in 2010. 15 

Although ponded water is simulated in the model, the simulated WTD did not include the depth of pond 16 

above the soil surface, which appears in the observations as a negative value, for example up to -0.14 m in 17 

the SE-Faj bog during the winter. The simulated WTD of the FI-Lom fen agreed well with the 18 

observations after the spring of the second simulated year (2008). The modeled WTD was calculated as 19 

the uppermost surface of the liquid water present in the soil, and thus did not account for the potential 20 

occurrence of liquid water below the surface frozen soil layer. As a result, the simulated WTD stayed 21 

close to the soil surface over the winter when the soil was frozen. The errors in MB-Bog were consistent 22 

over time, which was likely a result of the difference between the observed and modeled peat surfaces. 23 

The difference in height between hummocks and hollows at the MB-Bog is about 0.25 m (Lafleur et al., 24 

2005) and the bottom of the fibric peat lies at 0.35 m and 0.10 m below the peat surface for hummock and 25 

hollow, respectively (Dimitrov et al., 2010). The parameterized MB-Bog, with 0.10m of fibric peat, is 26 

therefore closer to a hollow (Table 1). Correcting the modeled WTD by 0.25 m led to a high agreement 27 

with the observed WTD in MB-Bog (Figure 4). For AB-Fen, the model overestimated the inter-annual 28 

fluctuation and did not reproduce the trend of increasing WTD seen in the observations, which was likely 29 

associated with the change in vegetation cover. It has been observed that the AB-Fen site is currently 30 

changing from a rich fen to a poor fen and is now in a phase of rapid tree establishment and increase in 31 

LAI and NEP (Flanagan and Syed, 2011).  32 

The model reproduced the annual variation of snow depth quite well for the bog and fen sites where 33 

observations were available (Figure 5). The errors for the MB bog may be associated with uncertainties in 34 

the observed data stemming from the combination of a continuous record from one spot with sporadic 35 

snow depth data from other locations on the bog surface (Moore et al, 2006).  36 

4.2 Energy budget terms   37 

The model performed similarly well on the daily average latent heat (QE) and sensible heat (QH) fluxes 38 

for multi-year simulations (Table 5, Figure 6). The RMSEs ranged from 23.0 to 37.7 W m-2 (QH) and 39 

27.3 to 79.7 W m-2 (QE) for bogs and from 19.6 to 41.5 W m-2 (QH) and 15.8 to 31.5 W m-2 (QE) for 40 
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fens. When organic soils were first introduced into CLASS by Comer et al. (2000), RMSEs ranged from 1 

16.9 to 47.7 W m-2 (QH) and 23.1 to 65.6 W m-2 (QE) for fens and 67.4 to 182.5 W m-2 (QH) and 78.1 to 2 

153.8 W m-2 (QE) for bogs. Our new model shows a consistent improvement in the energy flux 3 

simulations, especially for bogs, where the surface moss cover plays an essential role in regulating the 4 

thermal and hydraulic conductivities (Turetsky et al., 2012).  5 

The mean r2 coefficient between the simulated and observed daily average QH was 0.47 and the highest r2 6 

was 0.89 for the AB-Fen site. The poorest agreement in QH occurred in the FI-Kaa fen and the UK-Amo 7 

bog. The error in FI-Kaa peaked in the winters of 2002 and 2007 when the snow depth exceeded 0.8 m 8 

(not shown). Turbulent fluxes over deep, cold snow packs are notoriously difficult to model accurately 9 

(Bazile et al., 2013). In the case of QE, the mean r2 for the 8 sites is 0.52, and rises to 0.60 if the outlier 10 

UK-Amo is disregarded. The large bias of QH and QE at UK-Amo is thought to be partially attributable 11 

to instrumental errors, given the scattered data cloud of the observed QE in 2006 (not shown).  12 

The simulated daily average soil temperature at 5 cm depth across the eight sites agreed well with the 13 

observations, with r2 values between 0.77 and 0.98. The comparatively low value found for UK-Amo is 14 

perhaps linked to the errors in QE noted above. The RMSE ranged from 1.7 to 4.7 °C with a mean of 3.1 15 

°C. This is larger than the RMSE range of 0.7 to 2.3 °C found for LPJ-WHy v1.2 by Wania et al. (2009a), 16 

yet is encouraging considering that the simulation periods for our sites ranged from 2 to 9 years compared 17 

to the 1-year simulation with LPJ-WHy, and that we included eight sites in our evaluation compared with 18 

two peatland sites for LPJ-WHy. Our model was able to capture the seasonal variation in soil temperature 19 

at different depths down to the bedrock. Figure 7 compares the modeled soil temperatures against the 20 

observations at 5cm, 40cm, 80cm, and 250 cm depths for the Mer Bleue bog, where good-quality data are 21 

available for soil T at various depths.  22 

4.3 Carbon fluxes 23 

In eddy-covariance measurements, as noted in section 3.1 above, GPP and ER are obtained by 24 

partitioning the observed NEP on the basis of empirically derived relationships.  In the case of modelled 25 

carbon fluxes, on the other hand, NEP is calculated by subtracting ER from GPP, therefore the error in the 26 

NEP simulations accumulates the errors in GPP and ER. Bearing in mind these caveats, examination of 27 

the modelled daily GPP, ER and NEP suggests that the model is capable of capturing seasonal dynamics 28 

and climate-driven events consistently in various types of peatlands.  Figures 8-10 show the daily average 29 

fluxes in time series form. The RMSE (Table 6) is between 0.43 and 0.67 g C m-2 day-1 for GPP and ER 30 

for the three sites in Scandinavia and Canada (FI-Kaa, MB-Bog, and SE-Faj, two bogs and a fen) that 31 

have high-quality observed data and are not undergoing vegetation shifts. Larger biases of GPP and ER 32 

occurred in the blanket bog (UK-Amo) and the Russian ombrotrophic bog (RU-Fyo), the peat depths of 33 

which were very deep and relatively shallow respectively – up to 10 m in UK-Amo and 1 m in RU-Fyo 34 

(Table 4). Variations in the historical climate have led to variations in the peat accumulation rates over the 35 

Holocene and the vertical stratification of the peat and hence the decomposition rates and 36 

decomposability of the peat, which becomes important for deeper, older peat deposits. The Russian bog 37 

may be an outlier because warm climate conditions persisted until about 5000 B.P. in Northern Siberia 38 

and about 1000 years later in most other areas (Yu et al., 2009). The RU-Fyo bog experienced a period of 39 

low GPP due to an abrupt decrease of air temperature in the early fall of 2010, which was well reproduced 40 

by the model. The starting and ending periods of photosynthesis in the spring and fall were accurately 41 

simulated except for the coldest peatland, FI-Lom, where the length of the growing season was slightly 42 
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overestimated. Short periods of overestimation of soil temperature at 5 cm existed during that period, by 1 

up to 5°C, which may have caused the errors in GPP; Moore et al. (2012) noted a high correlation 2 

between soil temperature and the initiation of photosynthesis in the spring.  3 

The RMSE of the daily NEP simulations (Table 6) ranges from 0.486 to 1.65 gC m-2 day-1. The lowest 4 

biases were for the SE-Faj bog and the two poor fens (SE-Deg and FI-Kaa) that had little vegetation 5 

cover, with the maximum LAI below 1.0 m2 m-2. Values of r2 greater than about 0.3 were observed at six 6 

sites. At the two others, SE-Faj and UK-Amo, the observed NEP varied widely, ranging from -1.8 to 2.2 g 7 

C m-2 day -1 and from -3.9 to 4.8 g C m-2 day -1 respectively. The discrepancy with the modelled values, 8 

contributing to the low r2 values for these two sites, might be due either to weaknesses in the model or to 9 

inadequate screening of the eddy covariance measurements. NEP was overestimated at the beginning and 10 

the end of the growing season for FI-Lom due to the overestimation of GPP for that period as discussed 11 

above. These results may be compared to an evaluation of the MWM using the SE-Deg dataset that was 12 

conducted by Wu et al. (2013).  For daily NEP they obtained an RMSE of 0.49, similar to ours, but a 13 

higher r2 of 0.52. It should be noted that the MWM was driven by observed WTD and soil temperature, 14 

while in our simulations these were allowed to evolve freely, so our comparable result is gratifying. 15 

Figures 11-13 show the daily modelled versus observed GPP, ER and NEP in scatterplot form.  Although 16 

the model performs reasonably well, with r2 values averaging over 0.7 for both GPP and ER, a general 17 

tendency can be seen for the modelled GPP to be biased low at high and low values, and high at medium 18 

values.  The bias in the very low values may be spurious, given the relatively large errors associated with 19 

eddy covariance measurements of small fluxes; also, the occasional negative observed values of GPP may 20 

be indicative of erroneous partitioning of the measured NEP between GPP and ER.  At FI-Lom, FI-Kaa 21 

and UK-Amo, the high model bias at low observed values may be related to early leaf-out and/or delayed 22 

leaf drop.  The biases at medium values are possibly related to the use of the “big-leaf” assumption in 23 

CLASS-CTEM, which neglects sunlit and shaded canopy fractional areas, and may have a dampening 24 

effect on photosynthesis.  Low biases at high values may be related to water stress caused by a low water 25 

table, as seen in Figure 4 for RU-Fyo and FI-Lom.  In the case of ER, the modelled values do not show 26 

systematic biases except for RU-Fyo and UK-Amo, which were difficult to model as noted above.  Given 27 

the fact that a major focus of this study was the incorporation of respiration for organic soils and mosses 28 

into CLASS-CTEM, this is encouraging. 29 

Since NEP is the residual of two large terms, GPP and ER, in Figure 14 we investigate the relationship 30 

between the modelled GPP, autotrophic respiration (AR) and heterotrophic respiration (HR).  Across 31 

most sites, simulated AR is approximately 40 - 50 % of GPP with a relatively consistent relationship 32 

between the two. In CLASS-CTEM, autotrophic respiration is sensitive to temperature, the maximum 33 

catalytic capacity of Rubsico, and the vertical profile of radiation along the depth of the canopy (Melton 34 

and Arora, 2016). GPP is also sensitive to these same factors and thus tends to respond similarly. HR is 35 

much more variable than AR and GPP and also shows greater variability between sites. FI-Kaa is 36 

relatively consistent in simulated HR while sites such as SE-Faj and FI-Lom have markedly variable HR 37 

fluxes. HR in CLASS-CTEM is sensitive to soil matric potential, soil temperature and detrital carbon 38 

stocks (Melton and Arora, 2016). The strongest control on the HR variability at these sites appears to be 39 

the soil matric potential. The CLASS-CTEM HR parameterization has a maximal rate at a soil matric 40 

potential intermediate between wet and dry soils (absolute soil matric potential between 0.04 and 0.06 41 

MPa; see Figure 1 in Melton et al. 2015). The primary assumption of the HR parameterization is that soil 42 
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moisture constrains HR when soils are very dry due to limited microbial respiration. As soil become very 1 

wet, HR also drops to reflect diminished oxygen supply to microbes. The sites with the high variability of 2 

HR tend to reflect soil moisture conditions during the growing season with soil matric potentials 3 

fluctuating between the zone of optimal HR production and shutdown due to overly moist soils. For 4 

example, in 2007, SE-Faj had high variability of HR with the water table rising from 12 cm to only a few 5 

centimetres below the soil surface (indicating saturated soil conditions) resulting in a large shutdown of 6 

the HR flux, while 2008 was a drier year with a water table more consistently about 20 cm below the 7 

surface and much less variable HR fluxes simulated. 8 

The simulated accumulated monthly NEP from March to November agreed well with the observations in 9 

the four bogs and four fens. The outliers for bogs were the overestimations in MB-Bog in October and 10 

November due to the underestimation of GPP (Figure 8). The NEP in RU-Fyo in one August was 11 

underestimated owing to the underestimated GPP, which in turn was a result of the underestimated LAI 12 

and rooting depth temperature in the summer. Figure 15, showing plots of NEP averaged for each month 13 

of the year at each site, demonstrates on the whole larger scatter for the bogs than the fens, with the 14 

scatter increasing through the summer and fall. The overall value of r2 was 0.59 for bogs and 0.58 for 15 

fens; both values are higher than or similar to those obtained in evaluations of other peatland C models. 16 

For example, the r2 value of the monthly NEP for LPJ-WHy was reported to be 0.35 for four peatlands, 17 

with three of the sites overlapping those used in this study: SE-Deg, FI-Kaa and MB-Bog (Wania et al., 18 

2009b). The Finland peatland model simulated the NEP in FI-Kaa with r2 of 0.80 for the same time period 19 

tested for our model (Gong et al., 2013), but only the one site was used in the evaluation.  20 

4.4 Annual net ecosystem production 21 

The simulated mean annual NEP values with their standard deviations generally fall within the range of 22 

the standard deviations of the observations (Figure 16), between 9 g C m-2 yr-1 in the rich fen (FI-Lom) 23 

and 73 g C m-2 yr-1 in the productive bog (RU-Fyo) (Table 7). The only site with large bias in annual NEP 24 

was AB-Fen.  Observation-based estimations of NEP in this fen were extremely high, totalling 176 g C 25 

from May to October, in comparison with other sites (Syed et al., 2006). This treed fen had a high peat 26 

density and LAI and large variation in the WTD, which, accompanied by high spring temperatures, 27 

resulted in high ecosystem photosynthesis capacity and production (Adkinson et al., 2010). Considering 28 

nutrient factors and the site-specific peat density could potentially capture the large NEP at this site. The 29 

observed annual NEP for the eight sites varied greatly overall, between -17 and 187 C m-2 yr-1, while the 30 

simulated NEP showed slightly less variation, ranging from 13 to 157 g C m-2 yr-1. The simulated mean 31 

annual NEP across the sites was 87 g C m-2 yr-1 and was 22 g C m-2 yr-1 higher than the mean observed 32 

NEP. In contrast the LPJ-WHy model simulated most of the annual NEP between -5 – 0 gC m-2 yr-1, 33 

lower than their observed median of 40 g C m-2 yr-1 (Wania et al., 2009b). As noted above, variations in 34 

the depth and age of the peat at the eight sites reflected fluctuations in past climate, leading to site-35 

specific soil properties that were not always captured by the standardized values used in the model. 36 

Peatlands in different geographical locations also reflected the effects of local conditions: for example, 37 

the blanket bog UK-Amo in a maritime climate accumulated 101 g C m-2 yr -1 in 2007 (Dinsmore et al., 38 

2010) while the dry MB-Bog was estimated to be a source of 13.8 g C m-2 yr -1 (Roulet et al., 2007). The 39 

modeled NEP bias tended towards underestimation for the treed fen (AB-fen) and the productive 40 

ombrotrophic bog (MB-Bog), and towards overestimation for the remaining sites .   41 
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The model errors in GPP were smaller than the standard deviation of the observations, except for the 1 

atypical sites (AB-Fen, RU-Fyo) and the sites that had only a few years of data (FI-Lom, SE-Faj) (Table 2 

7). The bias of the simulated ER did not exceed the error bars except for in the RU-Fyo bog, for which a 3 

thin peat depth of 1 meter was used to initialize the simulation (Table 4). The simulated WTD was 4 

consistently shallower in the summer than the observations (Figure 4), which slowed down the soil 5 

respiration in the model and contributed to the discrepancies in ER. The observed WTD showed an abrupt 6 

decrease in the summer of 2010 without pulses of large ER being observed during that period (Figure 9), 7 

indicating uncertainties in the WTD observations. Another reason for the errors in ER was the 8 

underestimation in soil T. For example, the simulated soil T at 5 cm depth was higher in the summers 9 

with RMSE of 4.6 °C in RU-Fyo (Table 5). The site is particularly shallow and homogeneous, thus the 10 

standardized living moss layer of 4 cm for bogs was probably too large, leading to an overestimation of 11 

the thermal insulation effect from the moss layers and hence less seasonal variation in soil temperature 12 

and ER.  13 

An overview of the model’s performance is illustrated via a series of Taylor diagrams (Figure 17). Taylor 14 

diagrams provide a graphical summary of how closely modelled data match observed data (Taylor, 2001).  15 

The radial spokes represent the level of correlation and the x and y axes show the standard deviation.  The 16 

standard deviation of the observations is plotted on the x axis, and the RMSE of the modelled values is 17 

indicated by the concentric contours around this point. Since we have eight pairs of modelled and 18 

observed points for each diagram, we normalized the data by dividing each of the standard deviations and 19 

the RMSEs by the standard deviation of the observations associated with each point, so that all the 20 

observation points fall at 1 on the x axis.  The outliers are the vegetated treed fen (AB-Fen), the maritime 21 

blanket bog UK-Amo and the extremely shallow peatland RU-Fyo. The model simulations consistently 22 

agreed quite well with the observations except at these sites for some evaluated parameters. The Pearson r 23 

was above 0.90 for the soil temperature at 5 cm and above 0.50 and 0.60 for the sensible and latent heat 24 

fluxes, except for those at UK-Amo. The modeled daily GPP and ER were highly correlated with the 25 

observations, with Pearson r values between 0.80 and 0.95 for GPP, and between 0.70 and 0.96 for ER. 26 

The simulated daily NEP accumulated the errors in GPP and ER and was somewhat less well correlated 27 

with the observations, with Pearson r values between 0.4 and 0.72.  28 

4.5 The necessity of distinguishing fens and bogs  29 

The original version of our peatland model (referred to as “CONTROL” hereafter) as described above 30 

distinguishes bogs and fens through the controls of water table depth on soil decomposition and the depth 31 

of the living moss. The parameters for the water table depth regulation of soil decomposition were 32 

derived from the empirical relations in the MWM (Eqn. 13, 14). Our first test, “K-SWAP”, involved 33 

swapping the values of the decomposition parameters (Table 3) between the bog and fen sites.  As shown 34 

in Figure 18, the differences between the test and control runs are generally very small.  The relative 35 

differences in the simulated values of the fluxes and temperatures between K-SWAP and CONTROL 36 

ranged from -1.6 % to +5.1 % for RMSE and from -23 % and +6 % for r2. The relative differences in 37 

RMSE and r2 for GPP, QH, QE and Ts5 were smaller than ±1 %. The largest differences in r2 between K-38 

SWAP and CONTROL were for NEP at SE-Faj and UK-Amo, which had significantly lower r2 values 39 

than the other sites. The long-term effect on the overall carbon balance, as reflected in the cumulative 40 

NEP, is shown for six of the sites in Figure 19.  (AB-Fen and RU-Fyo are omitted, since the differences in 41 

those two cases were imperceptible for both sensitivity tests.)  The cumulative differences were 42 
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everywhere less than 15%.  The results of K-SWAP indicate that parameterizing fens and bogs differently 1 

for the regulation of water table depth on soil decomposition does not make a large difference in the 2 

simulation.  3 

The second test, “D-MOSS”, retained the settings in K-SWAP and changed additionally the depth of the 4 

living moss in both bogs and fens to 3.5 cm. The RMSE and r2 of D-MOSS show site-specific differences 5 

compared to CONTROL (Figure 18). The relative differences between D-MOSS and CONTROL in RMSE 6 

and r2 were in the range of – 5 % to +7 % and -15 % to +13 %, respectively. The mean differences for all 7 

sites and all evaluated variables were less than 5% for both RMSE and r2. For GPP, ER and the soil 8 

temperature at 5 cm depth, the r2 in D-MOSS was similar to that of CONTROL. For QE, the r2 in D-MOSS 9 

was higher than the control for all the fens and one unusual bog (UK-Amo), but not for the other three 10 

bogs. Compared to CONTROL, the r2 of NEP was higher in D-MOSS for five sites by up to 7 % and less 11 

than 2 % lower in the other sites, except for UK-Amo where r2 was also low in CONTROL. Turning to the 12 

long-term carbon balance as shown by the cumulative NEP in Figure 19, it is evident that the depth of the 13 

living moss has more of an effect on the simulation than the decomposition parameters.  The difference is 14 

largest for FI-Kaa at 29%, and then SE-Faj and SE-Deg at 23%.  However, the effect of the moss depth 15 

seems to be more site-specific than related to the differences between bogs and fens.  16 

Since as noted in section 2.5 above, there was some uncertainty about what value to assign to the anoxic 17 

respiration scaling factor fanoxic, a third test was performed to assess the sensitivity of the simulation to this 18 

parameter.  Frolking et al. (2010) assigned it a value of 0.001, and Frolking et al. (2001) set it to 0.025 for 19 

bogs and 0.1 for fens.  For our simulations, based on the results of calibration runs we chose a constant 20 

value of 0.025 for all of the sites.  Since according to Frolking et al. (2001) this value is more 21 

representative of bogs, we ran tests for the four fen sites with fanoxic set first to 0.1 and then to 0.001.  The 22 

effect of the changes on the cumulative ER is shown in Figure 20.  It can be seen that the maximum 23 

cumulative difference is only about 9% (for fanoxic = 0.1 at SE-Deg), and in the other cases the differences 24 

are much smaller.  This suggests that we are not incurring any serious errors by using a single value for 25 

fanoxic. 26 

Based on the results of the three tests described above, we conclude that when our model is applied at 27 

climate time and space scales, as a first-order approximation it will not be necessary to distinguish 28 

between fens and bogs through the use of different model parametrizations and coefficients.  It will only 29 

be necessary to map the locations of peatlands, and whether a given peatland behaves like a bog or a fen 30 

will evolve out of the climate forcings, which will determine the vegetation cover and the hydrological 31 

characteristics of the peatland in question.  This will considerably simplify the global implementation of 32 

the model, since global datasets mapping the locations of fens vs. bogs are not available.   33 

  34 

5. Conclusions 35 

We have presented here an extension of the CLASS-CTEM model, enabling it to simulate the water, 36 

energy and C cycles of peatlands.  The model simulations of the daily C fluxes are of comparable 37 

accuracy to those performed by other models that were developed for a particular site or an area, for 38 

example the Finland regional peatland model (Gong et al., 2013) for the FI-Lom site and the MWM for 39 

the MB-Bog and SE-Deg sites (Wu et al., 2013). Compared with models that simulate global peatland C 40 
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fluxes such as LPJ-WHy (Wania et al., 2009a, b) and CLIMBER2-LPJ (Kleinen et al., 2012), our model 1 

performs well and covers the ranges in the observations (Yu et al., 2010). The variations in climatic 2 

conditions and in the C stocks contained by peatlands in nature are difficult to capture completely by the 3 

general peatland model here. The model errors were larger for sites with unusual soil properties or 4 

vegetation cover. Long-term decline of water table depth can also shift the vegetation in peatlands from 5 

mosses and grasses to shrubs and trees (Flanagan and Syed, 2011; Munir et al., 2014; Talbot et al. 2010). 6 

Taking into account such effects could improve the performance of the model (Sulman et al., 2012). Also, 7 

other forms of C besides CO2, such as methane (CH4) and dissolved organic C, are as yet missing from 8 

the C budget in the model and need to be included in order to fully simulate the net C budget of peatland 9 

ecosystems. At the moment, approaches to modelling CH4 emissions from peatlands or wetlands diverge 10 

widely and further work is needed in areas such as more accurate land surface classification, more 11 

realistic emissions from non-inundated wetlands (where water table depth regulates the emissions) and 12 

peat soils from high latitudes (Bohn et al., 2015). This study has tested the model’s performance on 13 

northern peatlands only; further tests are needed to validate the model on the remaining 10% of peatlands 14 

(Yu et al., 2011) that are located in the tropical region and southern hemisphere.  15 

The coupled CLASS-CTEM models serve as the land surface component for the family of Canadian 16 

Earth System Models (CanESMs). Despite some limitations in simulating unusual peatlands, the extended 17 

version that we have presented here shows an overall good skill in simulating the water and energy 18 

dynamics and the daily and annual C fluxes in peatlands. Contrary to models designed for specific sites 19 

such as the MWM, the peatland model presented here need not distinguish between bogs and fens, which 20 

constitutes a distinct advantage for application in an ESM at the global scale.  21 

 22 

Code Availability 23 

Fortran code for the CLASS-CTEM modelling framework is available on request and upon agreeing to Environment 24 
Canada's licensing agreement available at http://collaboration.cmc.ec.gc.ca/science/rpn.comm/license.html. Please 25 
contact the third author, Dr. Joe Melton (joe.melton@canada.ca) to obtain model code. 26 
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Figures 1 

Figure 1. Schematic diagram of the peatland CLASS-CTEM model with 12 PFTs and 10 soil 2 

layers.  The symbols C, T and θ represent carbon, temperature and soil water content respectively. 3 
The subscripts L, S, R, H, and D represent leaf, stem, root, fresh litter and old litter respectively. 4 

Figure 2. Variation of respiration rate coefficients ko and ka with water table depth. 5 
 6 

Figure 3. Locations of the test peatlands; closed circles indicate bogs and triangles indicate 7 

fens.Figure 4. Simulated and observed daily average water table depth (m) in three bogs 8 

(MB-Bog, RU-Fyo, SE-Faj) and three fens (AB-Fen, FI-Lom, SE-Deg). 9 

Figure 5. Simulated and observed daily average snow depth (m) in the MB-Bog and the AB-10 

Fen. 11 

Figure 6. Simulated and observed daily average latent heat flux QE (W m-2) and sensible 12 

heat flux QH (W m-2) in two bogs (MB-Bog and UK-Amo) and two fens (FI-Lom and SE-Deg). 13 

Figure 7. Simulated and observed daily mean soil temperature Ts (°C) at 5cm, 40cm, 80cm 14 

and 250 cm at the Mer Bleue Bog. Note that the simulated temperatures at 40 and 80 cm are 15 

interpolated from the simulated soil layer temperatures above and below these depths.  The 16 

deepest measurement corresponds approximately to the midpoint of the lowest soil layer. 17 

Figure 8.  Simulated and observed daily GPP (gC m-2 d-1) in bogs and fens. 18 

Figure 9. Simulated and observed daily ER (gC m-2 d-1) in bogs and fens.  19 

Figure 10. Simulated and observed daily NEP (gC m-2 d-1) in bogs and fens.  20 

Figure 11. Scatterplots of simulated vs. observed daily GPP (gC m-2 d-1) in bogs and fens. 21 

Figure 12. Scatterplots of simulated vs. observed daily ER (gC m-2 d-1) in bogs and fens.  22 

Figure 13. Scatterplots of simulated vs. observed daily NEP (gC m-2 d-1) in bogs and fens.  23 

Figure 14. Simulated GPP, autotrophic respiration (AR) and heterotrophic respiration (HR) 24 
(gC m-2 d-1) for bogs and fens. 25 

Figure 15. Scatter plots of simulated and observed monthly mean NEP (gC m-2 mo-1) in bogs 26 

and fens.  The sites are represented by different symbols and NEP for each of the 12 months 27 

is colour-coded. The black line represents the best fit of the modelled NEP and the observed 28 

NEP. 29 

Figure 16.  Observed and simulated annual GPP, ER and NEP (g C m-2 yr-1) for the eight sites 30 

(error bars show the standard deviations); red bars are modeled fluxes and blue bars are 31 

observed fluxes. Figure 17. Taylor diagrams of model performance on average sensible heat 32 

flux (QH), latent heat flux (QE), soil temperature at 5 cm depth, and daily average GPP, ER 33 

and NEP (gC m-2 d-1) in bogs and fens. 34 
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Figure 18. Comparisons of RMSE and r2 of the simulated latent heat flux (QE), sensible heat 1 

flux (QH), soil temperature at 5 cm depth (Ts5), GPP, ER and NEP against the original 2 

simulations for the two tests described in section 4.5. 3 

Figure 19.  Cumulative NEP for bog and fen sites over the test periods, for the control runs 4 
and the two sensitivity tests K-SWAP and D-MOSS. 5 
 6 
Figure 20. Effect of varying fanoxic on the ER flux for the four fen sites.  The control run was 7 
with fanoxic set to 0.025. 8 

 9 
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Tables  1 

Table 1. Physical properties of organic soil types 2 

Soil 

Type 
Soil 

depth 

(cm) 

Pore 

Volume 

(m3 m-3) 

Retention 

capacity 

(m3 m-3) 

Residual 

water 

content 

(m3 m-3) 

Clapp and 

Hornberger 

parameter 

“b” 

Saturated 

Hydraulic 

conductivity 

(m s-1) 

Soil moisture 

Suction at 

saturation 

(m) 

Heat 

Capacity 

(J m-3 K-1) 

Moss 0 – 10 10.980 20.200 30.010 2.3 40.183*10-2 50.0103 52.5*106 

Fibric 10 – 20 0.935 0.275 0.040 2.7 0.280*10-3 0.0103 2.5*106 

Hemic 20 – 50  0.880 0.625 0.150 6.1 0.200*10-5 0.0102 2.5*106 

Sapric > 60  0.830 0.705 0.220 12.0 0.100*10-6 0.0101 2.5*106 

 3 

1O’Donnell et al., 2009; 2Price and Whittington, 2010; 3McCarter and Price, 2012; 4Price et al., 2008; 4 
5Berlinger et al., 2001. 5 

 6 

Table 2. Descriptions of vegetation characteristics for the four peatland PFTs. A dash (−) 7 

indicates the parameter is inapplicable to that PFT. 8 

Parameter 

name 

Description Unit Moss Evergreen 

shrubs 

Deciduous 

shrubs 

Sedge Refer-

ences 

abar 
Parameter determining root 

distribution 
− − 

8.50 9.50 9.50 
1 

avertmas 
Average root biomass for 

estimating rooting profile 
Kg C m-2 − 1.50 1.20 0.20 1 

bsratelt Litter respiration rate at 15 °C 

Kg C kg 

C -1 year-

1 

− 0.4453 0.5986 0.5260 2 

bsratesc Soil C respiration rates at 15 °C 
Kg C kg 

C -1 yr-1 
− 0.0208 0.0208 0.0100 2 

bsrtroot 
Base respiration rates at 15 °C for 

root 

Kg C kg 

C -1 year-

1 

− 0.5000 0.2850 0.1000 2 

bsrtstem 
Base respiration rates at 15 °C for 

stem 

Kg C kg 

C -1 year-

1 

− 0.0700 0.0335 − 2 
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cdlsrtmx Maximum loss rate for cold stress Day-1  − 0.10 0.30 0.15 2 

drlsrtmx 
Maximum loss rate for drought 

stress 
Day-1 − 0.006 0.005 0.020 2 

humicfac 

Humification factor used for 

transferring C from litter into soil 

C pool 

− − 0.42 0.42 0.42 2 

kn 
Canopy light/nitrogen extinction 

coefficient 
− − 0.50 0.50 0.46 2 

laimax Maximum leaf area index m2 − 4.0 3.0 4.0 2 

laimin Minimum leaf area index m2 − 1.0 1.0 0.01 2 

lfespany Leaf life span year − 5.0 0.4 1.0 3 

lwrthrsh 
Lower temperature threshold for 

cold stress related leaf loss rate 
°C − -50.0 -5.0 0.1 2 

mxrtdpth Maximum rooting depth m − 
1.00 1.00 1.00 1 

rmlcoeff 
Leaf maintenance respiration 

coefficient 
− − 0.025 0.020 0.015 2 

rmlmoss25 
Base dark respiration rate in 

mosses 

μmol 

CO2 m-2 

s-1 

1.1 − − − 4 

rootlife Turnover time scale for root year − 11.50 12.00 2.00 2, 5 

rtsrmin Minimum root/shoot ratio  − − 0.16 0.16 0.30 2, 6 

stemlife Turnover time scale for stem year − 65 75 − 2 

Tlow 
Lower temperature limits for 

photosynthesis 
°C 0.5 -2.0 -2.0 -1.0 2, 7, 8 

Tup 
Upper temperature limits for 

photosynthesis 
°C − 34.0 34.0 40.0 2 

Vmax Maximum photosynthesis rate  

μmol 

CO2 m-2 

s-1 

106.5, 

14 
60 50 40 4, 9 

 1 

 2 
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1calibrated based on proper rooting depth; 2adapted from the parameters for evergreen, 1 
deciduous needleleaf and C3 grasses; 3Lamberty et al. (2007); 4Williams and Flanagan 2 
(1998); 5modified for shrubs so that the root turnover time follows trees > shrubs > 3 
grasses; 6calibrated based on Murphy et al. (2009) for the minimum root/shoot ratio of 4 
sedge to be lower than grasses; 7Moore et al. (2006); 8Tanja et al. (2003); 9Assumed based 5 
on literature (Givinish, 2002; Reich, 1998) so that Vmax values are higher in evergreens 6 
than in deciduous and are in line with the values for trees; 10 Vmax of mosses is 14 in the 7 
summer and 6.5 in the remaining time (Williams and Flanagan, 1998).  8 

 9 

 10 

Table 3. Soil decomposition parameters for bog and fen (reformulated from the McGill 11 

Wetland Model, based on Frolking et al. (2001)) 12 

 k1 (μmol C 
kg C-1 s-1) 

k2  

(m-1) 
k3 (μmol C 
kg C-1 s-1) 

k4 (μmol C 
kg C-1 s-1) 

k5    
(m-1) 

k6   

(m-1) 
k7 (μmol C 
kg C-1 s-1) 

k8 (μmol C 
kg C-1 s-1) 

k9   

(m-2) 
k10     

(m-1) 

Bog 0.009 -20.0 0.015 -0.183 -18.0 0.003 0.0134 0.0044 

4.057 72.067 

Fen 0.010 -40.0 0.015 -1.120 -25.0 0.000 0.0151 -0.0052 

 13 

 14 

Table 4. Descriptions of the test sites   15 

Site 
Bog Fen 

MB-Bog SE-Faj RU-Fyo UK-Amo AB-Fen FI-Kaa FI-Lom SE-Deg 

Site name Mer Bleue 

bog 

Fäjemyr  

bog 

Fyodorov-

skoye bog 

Auchen-

corth Moss 

Alberta 

treed fen 

Kaama-

nen fen 

Lompolo-

jänkkä fen 

Degerö fen 

Latitude (°) 45.41 56.27 56.46 55.79 54.47 69.14 68.00 64.18 

Longitude 

(°) 
-75.52 13.55 32.92 -3.24 -113.32 27.30 24.21 19.55 

Elevation 

(m) 
65 150 273 265 581 155 269 270 

1Climate Dfb Cfb Dfb Cfb Dfb Dfc Dfc Dfc 

2Land Cover Perma-

nent 

Wetlands 

Perma-

nent 

Wetlands 

Woody Grasslands 
Mixed 

Forests 

Woody 

Savannas 

Woody 

Savannas 
Grasslands 
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Dominant 

vegetation 

Shrub 

Evergreen 

Needle-

leaf 

Forest 

Evergreen 

Needle-

leaf trees 

Grass 

Ever-

green 

Needle-

leaf 

Trees 

Grass 

Evergreen 

Needle-

leaf 

Evergreen 

Needle-

leaf Trees 

Vegetation 

coverage 
0.50 0.20 0.70 0.25 1.00 0.15 0.50 0.15 

Max. LAI 

(m-2m-2) 
3.0 1.0 3.5 1.9 2.6 0.7 1.3 0.9 

MAP (mm) 943 700 711 1155 504 474 484 523 

MAT (°C) 6.0 6.2 3.9 10.0 2.1 -1.1 -1.4 1.2 

Peat depth 

(m) 0.3 – 6 4 – 5 1.0 < 0.5 – > 10 2.0 0.3 – 1.4 2 – 3 3 – 8 

Peatland 

type 
Ombrotro

-phic Bog 

Ombrotro

-phic Bog 

Ombrotro

-phic Bog 
Blanket Bog 

Treed 

fen 
Poor Fen Aapa mire Poor fen 

Data period 2004-

2009 

2006-

2009 

2009-

2010 2005-2010 

2003-

2009 

2000-

2007 

2007-

2009 2002-2006 

References 10, 11, 19 16, 19 12 17, 18, 19 3, 4, 5, 

19 

6, 7, 19 8, 9, 19 13, 14, 15, 

19 

 1 

1Climate types are classified using the Köppen-Geiger Climate Classification (KCGG) (Kottek et al., 2 

2006). Dfb = Snow fully humid warm summer; Dfc = Snow fully humid cool summer; Cfb = Warm 3 

temperature fully humid with warm summer. 4 
2Land cover is classified using the International Geosphere Biosphere Programme (IGBP) Land Cover 5 

Classification.    6 

3Syed et al. (2006); 4Adkinson et al. (2011); 5Flanagan and Syed (2011);  6Aurela 7 

et al. (1998); 7Maanavilja et al. (2011); 8Aurela et al. (2009); 9Drew et al. (2010); 8 
10Moore et al. (2002); 11Bubier et al. (2006); 9 
12http://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/neespi/Fyodorovskoye/wetspruce/; 10 
13Sagerfors et al. (2008); 14Laine et al. (2011); 15Peichi et al. (2014); 16Lund et al. 11 

(2007); 17Dinsmore et al. (2010); 18Leith et al. (2014); 19 http://fluxnet.ornl.gov 12 

 13 

 14 

 15 

http://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/neespi/Fyodorovskoye/wetspruce/
http://fluxnet.ornl.gov/
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Table 5. Summary of statistics of model performance with respect to daily average latent 1 

heat flux (QH), sensible heat flux (QE) and soil T at 5cm (Ts5). * indicates unrealistic values 2 

observed for the site. 3 

Site 

Bog Fen 

Mean MB-

Bog 

SE- 

Faj 

RU-

Fyo 

UK-

Amo 

AB-

Fen 

FI- 

Kaa 

FI- 

Lom 

SE-

Deg 

QH 

(W m-2) 

r2 0.65 0.50 0.41 0.22 0.89 0.25 0.42 0.39 0.47 

RMSE  23.0 27.3 37.7 31.0 41.5 36.7 25.4 19.6 30.3 

QE 

(W m-2) 

r2 0.89 0.56 0.51 0.01* 0.82   0.35 0.49 0.54 0.52 

RMSE  27.3 33.5 33.3 79.7 15.8 31.5 28.3 23.9 34.1 

Ts5 

(°C) 

r2 0.98 0.87 0.88 0.77 0.91 0.85 0.90 0.79 0.87 

RMSE  1.7 2.6 4.6 2.3 4.7 2.9 2.1 3.86 3.1 

 4 

 5 

 6 

Table 6. Summary of statistics of model performance with respect to GPP, ER and NEP (g C m-7 
2 day-1) 8 

Site 

Bog Fen 

Mean MB- 

Bog 

SE- 

Faj 

RU- 

Fyo 

 UK-

Amo 

AB- 

Fen 

FI- 

Kaa 

FI- 

Lom 

SE- 

Deg 

Daily GPP 

(gC m-2 d-1) 

r2 0.90 0.80 0.81 0.63 0.95 0.78 0.76 0.65 0.79 

RMSE  0.669 0.606 2.36 1.44 1.45 0.601 1.07 0.84 1.13 

Daily ER 

(gC m-2 d-1) 

r2 0.91 0.84 0.61 0.56 0.93 0.73 0.80 0.54 0.74 

RMSE  0.524 0.456 2.90 1.12 0.867 0.431 0.543 0.615 0.93 

Daily NEP 

(gC m-2 d-1) 

r2 0.45 0.21 0.30 0.17 0.72 0.28 0.35 0.41 0.36 

RMSE  0.724 0.539 1.65 0.936 1.01 0.624 1.00 0.486 0.87 

 9 

 10 
 11 
 12 
 13 
 14 
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Table 7. Summary of observed (obs.) and modeled (mod.) mean annual GPP, ER and NEP of 1 

the 8 sites with standard deviation shown in brackets; units are g C m-2 yr-1.   2 

Site 

Bog Fen Mea

n 

 

MB-Bog SE-Faj RU-Fyo UK-Amo AB-Fen FI-Kaa FI-Lom SE-Deg   

GPP 

obs. 

714(±45

) 
472(±3) 

1502(±251

) 
789(±189) 

864 

(±172) 
289 (±39) 

418(±5

2) 
383(±24) 679 

GPP 

mod. 

734(±15

) 
573(±49) 1135(±4) 752(±37) 594 (±72) 327 (±33) 

489(±3

9) 
300(±71) 613 

ER 

obs. 

612(±29

) 
536(±102) 

1545(±119

) 
706(±212) 

678 

(±160) 
270 (±40) 

380(±5

9) 
295(±36) 628 

ER 

mod. 

690(±89

) 
426(±55) 1000(±86) 594(±46) 581 (±88) 270 (±46) 

372(±9

6) 
224(±76) 520 

NEP 

obs. 

103(±25

) 
25(±34) -17(±73) 87(±48) 187 (±37) 17 (±29) 57(±9) 58(±6) 65 

NEP 

mod. 
44(±78) 97(±77) 135(±91) 157(±43) 13 (63) 57 (±22) 

117(±5

7) 
77(±5) 87 

 3 

  4 
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Figure 1. Schematic diagram of the peatland CLASS-CTEM model with 12 PFTs and 10 soil 1 

layers. The symbols C, T and θ represent carbon, temperature and soil water content 2 

respectively. The subscripts L, S, R, H, and D represent leaf, stem, root, fresh litter and old 3 

litter respectively.  4 

 5 

 6 

 7 
 8 

 9 
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 1 

Figure 2. Variation of respiration rate coefficients ko and ka with water table depth. 2 
  3 



 

34 

Figure 3. Locations of the test peatlands; closed circles indicate bogs and triangles indicate 1 

fens. 2 

  3 
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Figure 4. Simulated and observed daily average water table depth (m) in three bogs (MB-1 

Bog, RU-Fyo, SE-Faj) and three fens (AB-Fen, FI-Lom, SE-Deg). 2 
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 8 
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 10 
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 16 

Figure 5. Simulated and observed daily average snow depth (m) in the MB-Bog and the AB-17 

Fen. 18 

 19 
 20 

 21 

  22 

Fens

Bogs



 

36 

Figure 6. Simulated and observed daily average latent heat flux QE (W m-2) and sensible heat 1 

flux QH (W m-2) in two bogs (MB-Bog and UK-Amo) and two fens (FI-Lom and SE-Deg). 2 
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 8 
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 13 
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 18 

Figure 7. Simulated and observed daily mean soil temperature Ts (°C) at 5cm, 40cm, 80cm 19 

and 250 cm at the Mer Bleue Bog. Note that the simulated temperatures at 40 and 80 cm are 20 

interpolated from the simulated soil layer temperatures above and below these depths.  The 21 

deepest measurement corresponds approximately to the midpoint of the lowest soil layer. 22 
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Figure 8. Simulated and observed daily GPP (gC m-2 d-1) in bogs and fens. 1 

 2 

 3 

 4 

 5 

Figure 9. Simulated and observed daily ER (gC m-2 d-1) in bogs and fens.  6 
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Figure 10. Simulated and observed daily NEP (gC m-2 d-1) in bogs and fens.  1 
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 1 

igure 11. Scatterplots of simulated vs. observed daily GPP (gC m-2 d-1) in bogs and fens. 2 
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 1 

Figure 12. Scatterplots of simulated vs. observed daily ER (gC m-2 d-1) in bogs and fens.  2 
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Figure 13. Scatterplots of simulated vs. observed daily NEP (gC m-2 d-1) in bogs and fens.  1 
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Figure 14. Simulated GPP, autotrophic respiration (AR) and heterotrophic respiration (HR) (gC m-1 
2 d-1) for bogs and fens. 2 
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Figure 15. Scatter plots of simulated and observed monthly mean NEP (gC m-2 month-1) in 1 

bogs and fens.  The sites are represented by different symbols and NEP for each of the 12 2 

months is colour-coded. The black line represents the best fit of the modelled NEP and the 3 

observed NEP. 4 
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 14 

Figure 16.  Observed and simulated annual GPP, ER and NEP (g C m-2 yr-1) for the eight sites 15 

(error bars show the standard deviations); red bars are modeled fluxes and blue bars are 16 

observed fluxes.  17 
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Figure 17. Taylor diagrams of model performance on average sensible heat flux (QH), latent 1 

heat flux (QE), soil temperature  at 5 cm depth, and daily average GPP, ER and NEP (gC m-2 d-2 
1) in bogs and fens. 3 
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 1 
Figure 18. Comparisons of RMSE and r2 of the simulated latent heat flux (QE), sensible heat 2 
flux (QH), soil temperature at 5 cm depth (Ts5), GPP, ER and NEP against the original 3 
simulations for the two tests described in section 4.5. 4 
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Figure 19.  Cumulative NEP for bog and fen sites over the test periods, for the control runs and the 1 
two sensitivity tests K-SWAP and D-MOSS. 2 
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Figure 20. Effect of varying fanoxic on the ER flux for the four fen sites.  The control run was 1 
with fanoxic set to 0.025. 2 
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