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Abstract

Balance constraints are important for a background error covariance (BEC) in data
assimilation to spread information between different variables and produce balance
analysis fields. Using statistical regression, we develop the balance constraint for the
BEC of aerosol variables and apply it to a data assimilation and forecasting system for5

the WRF/Chem model. One-month products from the WRF/Chem model are employed
for BEC statistics with the NMC method. The cross-correlations among the original
variables are generally high. The highest correlation between elemental carbon and
organic carbon without balance constraints is approximately 0.9. However, the corre-
lations for the unbalanced variables are less than 0.2 with the balance constraints.10

Data assimilation and forecasting experiments for evaluating the impact of balance
constraints are performed with the observations of the surface PM2.5 concentrations
and speciated concentrations along an aircraft flight track. The speciated increments
of the experiment with balance constraints are more coincident than the speciated in-
crements of the experiment without balance constraints, for the observation information15

can spread across variables by balance constraints in the former experiment. The fore-
cast results of the experiment with balance constraints show significant and durable
improvements from the 3rd hour to the 18th hour compared with the forecast results
of the experiment without the balance constraints. However, the forecasts of these two
experiments are similar during the first 3 h. The results suggest that the balance con-20

straint is significantly positive for the aerosol assimilation and forecasting.

1 Introduction

Data assimilation in meteorology-chemistry models has received an increasing amount
of attention in recent years as a basic methodology for improving aerosol analysis
and forecasting. In a data assimilation system, the background error covariance (BEC)25

plays a crucial role in the success of the assimilation process. It determines variable
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analysis increments and the balance relationships between different variables (Derber
and Bouttier, 1999; Chen et al., 2013).

However, accurate estimation is difficult due to a lack of information about the true
atmospheric states and is computationally difficult dealt due to the large dimension
of the BEC (typically 106 ×106). Different methods have been developed to estimate5

and simplify the expression of the BEC, such as the analysis of innovations, the NMC
and the ensemble (Monte Carlo) methods. A common method is known as the NMC
method, which assumes that the forecast errors are approximated by differences be-
tween pairs of forecasts that are valid at the same time (Parrish and Derber, 1992).
The NMC method is extensively used in operational atmospheric and meteorology-10

chemistry data assimilation systems. Pagowski et al. (2010) estimated the BEC of
PM2.5 by calculating the differences between the forecasts of 24 and 48 h to develop
the Grid-point Statistical Interpolation (GSI) three-dimensional variational assimilation
system. Benedetti et al. (2007) calculated the BEC of the sum of the mixing ratios of all
aerosol species to develop the operational forecast and analysis systems of ECMWF.15

The BEC with multiple species and size bins of aerosols have been calculated and em-
ployed in data assimilation. Liu et al. (2011) calculated the BEC with 14 aerosol species
from the Goddard Chemistry Aerosol Radiation and Transport scheme of the Weather
Research and Forecasting/Chemistry (WRF/Chem) model and applied it to the GSI
system. Schwartz et al. (2012) increased the number of the species to 15 based on the20

study of Liu et al. (2011). Li et al. (2013) estimated the BEC for five species derived
from the MOSAIC scheme. These studies proved that data assimilation with a practical
BEC can spread the observation information to nearby model grid-points and improve
analysis fields and aerosol forecasting.

One role that the BEC serves in data assimilation is to spread information be-25

tween different variables to produce balance analysis fields, which employ balance
constraints to convert original variables into new independent variables. The balance
constraint is crucial and employed in atmospheric and oceanic data assimilation, such
as geostrophic balance or temperature-salinity balance (Bannister, 2008a, b). To incor-
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porate balance constraints, the model variables are usually transformed to balanced
and unbalanced parts. The unbalanced parts as control variables are independent
in data assimilation, and the balanced parts are constrained by balance constraints
(Derber and Bouttier, 1999). Instead of using an empirical function as a balance con-
straint, more constraint relationships are derived using regression techniques (Ricci5

and Weaver, 2005). Although distinct empirical relations between some variables (such
as temperature and humidity) may not exist, the regression equation can also be esti-
mated as balance constraints (Chen et al., 2013).

In current aerosol data assimilation with multiple variables, balance constraints are
not incorporated by the BEC. The state variables are assumed to be independent vari-10

ables without cross-correlation. However, the aerosol species are frequently highly cor-
relative due to their common emission sources and diffusion processes. For example,
the correlations in terms of the R-square between elemental carbon and black carbon
exceed 0.6 in many locations across Asia and the South Pacific in both urban and sub-
urban locations (Salako et al., 2012), and the correlations between different size bins,15

such as PM10, PM2.5 and PM1, are also significant (Hoek et al., 2002; Gomišček et al.,
2004). Thus, the cross-correlations between different variables are necessary to pro-
duce balanced analysis fields. Cross-correlations spread the observation information
from one variable to other variables, which enhances the impact of the observation of
individual species or size bin.20

Recently, several researchers have suggested that the BEC with balanced cross-
correlation should be introduced into aerosol data assimilation (Kahnert, 2008; Liu
et al., 2011; Li et al., 2013; Saide et al., 2013). Kahnert (2008) exhibited cross-
correlations of the seventeen aerosol variables from Multiple-scale Atmospheric Trans-
port and Chemistry (MATCH) Model. He found that the statistical cross-correlations25

between aerosol components are primarily influenced by the interrelations between
emissions and by interrelations due to chemical reactions to a much lesser degree.
However, he did not detail the effects of the BEC with cross-correlation on data as-
similation experiments. Saide et al. (2012, 2013) incorporated the capacity to add
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cross-correlations between aerosol size bins in GSI for assimilating AOD data. The
cross-correlations between the nearest two size bins for each species were consid-
ered using recursive filters, which is similar to the horizontal spread by the distance
units. For the species that are not adjacent, application of this method to consider their
cross-correlations is challenging.5

In this paper, we explore incorporating cross-correlations in BEC by balance con-
straints. The balance constraints are established using statistical regression. We apply
the BEC to a data assimilation and forecasting system for the Model for Simulation
Aerosol Interactions and Chemistry (MOSAIC) scheme in WRF/Chem. The MOSAIC
scheme includes a large number of variables with eight species and eight/four size10

bins. A three-dimensional variational data assimilation (3-Dvar) method for the MO-
SAIC scheme has been estimated by Li et al. (2013). For comparisons, we employ the
same model configurations as employed by Li et al. (2013) to perform data assimilation
experiments with a focus on the impact of cross-correlations of the BEC on analyses
and forecasts.15

The paper is organized as follows: Sect. 2 describes the data assimilation system
and the formulation of the BEC. Section 3 describes the WRF/Chem configuration
and estimates the correlations among the emissions. The statistical characteristics of
the BEC, including the regression coefficient of the cross-correlation, are discussed in
Sect. 4. Using the BEC, experiments of assimilating surface PM2.5 observations and20

aircraft observations are discussed in Sect. 5. Shortcomings, conclusions and future
perspectives are presented in Sect. 6.

2 Data assimilation system and BEC

In this section, we present the formulation of the BEC with cross-correlation using a re-
gression technique based on the data assimilation system developed by Li et al. (2013).25

Then, the cost function with the new BEC is derived and the calculating factorization of
the BEC is described.
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The control variables of the data assimilation are obtained from the MOSAIC (4-bin)
aerosol scheme in the WRF/Chem model (Zaveri et al., 2008). The MOSAIC scheme
includes eight aerosol species, that is, elemental carbon or black carbon (EC/BC), or-
ganic carbon (OC), nitrate (NO3), sulfate (SO4), chloride (Cl), sodium (Na), ammonium
(NH4), and other inorganic mass (OIN). Each species is separated into four bins with5

different sizes: 0.039–0.1, 0.1–1.0, 1.0–2.5 and 2.5–10 µm. The scheme involves 32
aerosol variables with eight species and four size bins. These variables cannot be
directly introduced as control variables in an assimilation system in consideration of
computational efficiency. The number of variables must be decreased prior to assimila-
tion. Li et al. (2013) have lumped these variables into five species as control variables10

in the data assimilation system. We employ the variables of Li et al. (2013) to perform
the data assimilation experiments. The five species consist of EC, OC, NO3, SO4 and
OTR. Here, OTR is the sum of Cl, Na, NH4 and OIN. Note that the data assimilation
system aims to assimilate the observation of PM2.5; only the first three of four size bins
are utilized to lump as one control variable for each species.15

For a three-dimensional variational data assimilation system, the traditional cost
function (J), which measures the distance of the state vector to the background and
observations, is written as follows:

J (δx) =
1
2

(x−xb)TB−1(x−xb)+
1
2

(y −H(x))TR−1 (y −H(x)) . (1)

Here, x is the vector of the state variables, including EC, OC, NO3, SO4 and OTR; xb20

is the background vector of these five species, which are generated by the MOSAIC
scheme; y is the observation vector; H is the observation operator that maps the model
space to the observation space; R is the observation error covariance associated with
y; and B is the background error covariance associated with xb. Equation (1) is usually
written in the incremental form25

J (δx) =
1
2
δxTB−1δx+

1
2

(Hδx−d )TR−1 (Hδx−d ) , (2)
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where δx (δx = x−xb) is the incremental state variable. The observation innovation
vector is known as d = y−Hx. The minimization solution is the analysis increment δx,
and the final analysis is xa = xb+δx. This analysis is statistically optimal as a minimum
error variance estimate (e.g., Jazwinski, 1970; Cohn, 1997).

In Eqs. (1) or (2), B is a symmetric matrix with the large size N ×N (N is the size5

of vector xb). For a high-resolution model, the number of model grid points is on the
order of 106. Therefore, the number of elements in B is approximately 1012. With this
size, B cannot be explicitly manipulated. To pursue simplifications of B, we employ the
following factorization

B = DCDT, (3)10

where D and C are the standard deviation matrix and the correlation matrix, respec-
tively. D and C can be described and separately prescribed after the factorization. D
is a diagonal matrix whose elements include the standard deviation of all state vari-
ables in the three-dimensional grids and is commonly simplified with vertical levels. C
is a symmetric matrix15

C =



CEC COC
EC C

NO3

EC
C

SO4

EC
COTR

EC

CEC
OC COC C

NO3

OC
C

SO4

OC
COTR

OC

CEC
NO3

COC
NO3

CNO3
C

SO4

NO3
COTR

NO3

CEC
SO4

COC
SO4

C
NO3

SO4
CSO4

COTR
SO4

CEC
OTR COC

OTR C
NO3

OTR
C

SO4

OTR
COTR


, (4)

where CEC, COC, CNO3
, CSO4

and COTR at diagonal locations are the background error
auto-correlation matrices that are associated with each species, which represent the
correlations between the spatial gridpoints for one species. Other submatrices repre-
sent the cross-correlations between different species. For example, CEC

OC represents the20
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cross-correlations between EC and OC, which is equivalent to COC
EC . In Li et al. (2013),

these cross-correlations were disregarded, that is, the five species are considered in-
dependently and Eq. (4) is a block diagonal with auto-correlations.

In this study, the cross-correlations are considered by introducing control variable
transforms (Derber and Bouttier, 1999; Barker, 2004; Huang, 2009). We divide the5

model aerosol variables into balanced components (δxb) and unbalanced components
(δxu):

δx = δxb +δxu. (5)

Note the first variable of EC does not need to be divided. This first variable is similar
to the vorticity in the data assimilation of ECMWF (Derber and Bouttier, 1999), or the10

stream function in the data assimilation of MM5 (Barker, 2004). The transformation
from unbalanced variables (δxu) to full variables (δx) by the balance operator K is
given by

δx = Kδxu . (6)

Equation (6) can be written as15 
δEC
δOC
δNO3
δSO4
δOTR

 =


1
ρ21 1
ρ31 ρ32 1
ρ41 ρ42 ρ43 1
ρ51 ρ52 ρ53 ρ54 1



δEC
δOCu
δNO3u
δSO4u
δOTRu

 (7)

where ρi j is the submatrix of K, which represents the statistical regression coefficients
between the variables i and j (Chen et al., 2013). Note that ρi j is a diagonal matrix
with the dimension of model grid points. Each model grid point has a one regression
coefficient. For convenience, we assumed that the elements of ρi j is a constant value20

for all grid points, which are denoted as ρi j and are calculated by linear regression with
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all grid points. For example, ρ21 can be deduced from the regression equation of OC
and EC as

δOC = ρ21δEC+ε, (8)

where ε is the residual. Equation (8) contains the slope but no intercept. The intercept
is nearly zero because δOC and δEC represent all forecast differences that can be5

considered to be zero mean values. After obtaining ρ21, the balanced part (e.g., the
value of the regression prediction) of δOC can be obtained by

δOCb = ρ21δEC. (9)

Remove the balanced part from the full variables to obtain the unbalanced part (δOCu),
that is, ε in Eq. (8). Thus, the calculation of δOCu can be written as10

δOCu = δOC−ρ21δEC. (10)

Here, δOCu and δEC are employed as predictors in the next regression equation to
obtain δNO3. Then, we can obtain the unbalanced parts of the remaining variables,
which are defined as follows:

δNO3u = δNO3 − (ρ31EC+ρ32OCu) (11)15

δSO4u = δSO4 − (ρ41δEC+ρ42δOCu +ρ43δNO3u) (12)

δOTRu = δOTR− (ρ51δEC+ρ52δOCu +ρ53δNO3u +ρ54δSO4u) (13)

The coefficient of determination (R2) can be employed to measure the fit of these
regressions. It can be expressed as

R2 =
SSR
SST

, (14)20

where SSR and SST are the regression sum of squares and the sum of squares for
total, respectively.
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These unbalanced parts can be considered to be independent because they are
residual and random. Bu denotes the unbalanced variables of the BEC and can be
factorized as

Bu = DuCuDT
u , (15)

where Du and Cu are the standard deviation matrix and the correlation matrix, respec-5

tively. Cu should be a block diagonal without cross-correlations as follows:

Cu =


CEC

COCu

CNO3u

CSO4u

COTRu

 . (16)

Using Eq. (6), the relationship between B and Bu is

B = KBuKT. (17)

B
1
2 and B

1
2
u are defined as the square root of B and the square root of Bu, respectively.10

Their transformation is

B
1
2 = KB

1
2
u . (18)

Using Eq. (15), Eq. (18) can be written as follows:

B
1
2 = KDuC

1
2
u . (19)

Generally, a transformed cost function of Eq. (2) is expressed as a function of a pre-15

conditioned state variable:

J (δz) =
1
2
δzTδz+

1
2

(
HB

1
2 δz−d

)T
R−1
(

HB
1
2 δz−d

)
. (20)
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Here, δz = B
1
2δx. Using Eq. (19), Eq. (20) can be written as

J (δz) =
1
2
δzTδz+

1
2

(
HKDuC

1
2
u δz−d

)T
R−1
(

HKDuC
1
2
u δz−d

)
. (21)

Equation (21) is the last form of the cost function with the cross-correlation of B.
According to Li et al. (2013), the correlation matrix of the unbalanced parts (Cu) is

factorized as5

Cu = Cux ⊗Cuy ⊗Cuz (22)

Here, ⊗ denotes the Kronecker product, and Cux, Cuy and Cuz represent the correlation
matrices between gridpoints in the x direction, the y direction, and the z direction,
respectively, with the sizes nx ×nx, ny ×ny , and nz ×nz, respectively. Here, nx, ny and
nz represent the numbers of grid points in the x direction, y direction, and z direction,10

respectively. This factorization can decrease the size of the dimension of Cu. Another
desirable property of Eq. (22) is

C
1
2
u = C

1
2
ux ⊗C

1
2
uy ⊗C

1
2
uz (23)

Cux and Cuy are expressed by Gaussian functions, and Cuz is directly computed from
the proxy data. They will be discussed in Sect. 4.2.15

3 WRF/Chem configuration and cross-correlations between emissions

In this section, we describe the configuration of WRF/Chem, whose forecasting prod-
ucts will be employed in the following BEC statistics and data assimilation experiments.
In addition, the cross-correlations of aerosol emissions from the WRF/Chem emission
data are investigated to understand the cross-correlation of the BEC.20
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3.1 WRF/Chem configuration

WRF/Chem (V3.5.1) is employed in our study. This is a fully coupled online model
with a regional meteorological model that is coupled to aerosol and chemistry domains
(Grell et al., 2005). The model domain with three spatial domains is shown in Fig. 1. The
resolutions for these three domains are 36, 12, and 4 km, respectively. The outer do-5

main spans southern California and the innermost domain encompasses Los Angeles.
All domains have 30 vertical levels. The discussion of the BEC and the emissions pre-
sented in this paper will be confined to the innermost domain. The initial meteorology
conditions for WRF/Chem are prepared using the North American Regional Reanal-
ysis (NARR) (Mesinger et al., 2006). The meteorology boundary conditions and sea10

surface temperatures are updated at each initialization. The initial aerosol conditions
are obtained from the former forecast without updating. The emissions are derived
from the National Emission Inventory 2005 (NEI’05) for both aerosols and trace gases
(Guenther et al., 2006). For more details, the readers are referred to Li et al. (2013).

3.2 Cross-correlations of emission species15

Emission files are necessary for running the WRF/Chem model, which is a primary fac-
tor for the distribution of the aerosol forecasts. The analysis of the correlations among
the emission species can help us to understand the BEC statistics. The emission
species is derived from the emission file that is produced by the NEI’05 data for each
model domain. Only the emission file for the innermost domain is used to calculate20

the correlation among the emission species. The emission file contains 37 variables,
including gas species and aerosol species. An aerosol species also comprises a nu-
clei mode and accumulation model species (Peckam et al., 2013). From these aerosol
emission species, five lumped aerosol species are calculated, which is consistent with
the variables in the data assimilation. These five lumped species are E_EC (sum of the25

nuclei mode and the accumulation mode of elemental carbon PM2.5), E_ORG (sum of
the nuclei mode and the accumulation mode of organic PM2.5), E_NO3 (sum of the
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nuclei mode and the accumulation mode of nitrate PM2.5), E_SO4 (sum of the nuclei
mode and the accumulation mode of sulfate PM2.5), and E_PM25 (sum of the nuclei
mode and the accumulation mode of unspeciated primary PM2.5).

Figure 2 shows the cross-correlations of the five lumped aerosol emission species.
With the exception of the auto-correlation in the diagonal line, all cross-correlations5

exceed 0.5. This result reveals that the emission species are correlative, which may
be attributed to the common emission sources and diffusion processes that are con-
trolled by the same atmospheric circulation. The most significant cross-correlation is
between E_EC and E_ORG with a value of approximately 0.8. This close correlation
demonstrates that the emission distributions of these two species are very similar. Their10

emissions are primary in urban and suburban areas with small emissions in rural areas
and along roadways (not shown). As shown in Fig. 2, the lowest cross-correlation is be-
tween E_ORG and E_SO4; the latter emissions are primary in the urban and suburban
areas with few emissions in rural areas and roadways (not shown).

4 Balance constraints and BEC statistics15

With the configuration of the WRF/Chem model described in Sect. 3.1, forecasts for
one month (00:00 UTC of 15 May to 00:00 UTC of 14 June 2010) were performed
for the balance constraints and the BEC statistics. Forecast differences between 24 h
forecasts and 48 h forecasts are available at 00:00 UTC. Thirty forecast differences are
employed as inputs in the NMC method. For this method, 30 forecast differences are20

sufficient; however, a longer time series may be more beneficial for the BEC statistics
(Parrish and Derber, 1992).

4.1 Balance regression statistics

Using these 30 forecast differences, we can estimate the regression equations of EC,
OC, NO3, SO4 and OTR and calculate the unbalanced parts of these variables accord-25
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ing to Eqs. (6)–(12). Table 1 shows the regression coefficients whose column and row
are consistent with ρi ,j in Eq. (6). The last column in Table 1 is the coefficient of deter-

mination (R2) of the regression equations. For the regression equation of OC, the re-
gression coefficient is 0.90 and the coefficient of determination of Eq. (7) is 0.86, which
indicates that EC and OC are highly correlative and their mass concentration scales5

are approximate. Their correlation is similar to the correlation of the stream function and
velocity potential; thus, we set them as the first and second variables in the regression
statistics. For the regression equation of NO3, the regression coefficients of EC and
OCu are 4.01 and 3.76, respectively, because the mass concentration scale of NO3 ex-
ceeds the mass concentration scales of EC and OCu. The coefficient of determination10

is only 0.32, which indicates that the correlations between NO3 and EC and between
NO3 and OCu are weak. This result reveals that the forecast errors of NO3 differ from
the forecast errors of EC and OCu. A possible reason is that NO3 is the secondary
particle that is primarily derived from the transformation of NOx, but EC and OCu are
derived from direct emissions. Similar to NO3, SO4 is also primarily derived from the15

transformation of SO2 and the coefficient of determination for SO4 is also low. For the
last variable OTR, the maximum coefficient of determination is 0.96 because OTR in-
cludes some different compositions that are correlative with the first four variables. For
this reason, we set OTR as the last variable in the regression statistics.

Figure 3 shows the cross-correlations of the five full variables and the unbalanced20

variables. In Fig. 3a, the cross-correlations of the full variables exceed 0.3 and most
of them exceed 0.5. In Fig. 3b, however, the cross-correlations of the unbalanced vari-
ables are less than 0.2. Some of the cross-correlations are close to zero, which in-
dicates that these unbalanced variables are approximatively independent and can be
employed as control variables in the DA system.25
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4.2 BEC statistics

Using the original full variables and the unbalanced variables obtained by the regres-
sion equations, the BEC statistics are performed. Figure 2 shows the vertical profiles
of the standard deviations of the original D and the unbalanced Du. In Fig. 2a, the
original standard deviation of NO3 is the largest value, whereas the smallest value is5

OC, whose profile is close to the profile of EC. All profiles show a significant decrease
at approximately 800 m because the aerosol particulates are usually limited under the
boundary level. In Fig. 2b, all standard deviations significantly decrease, with the ex-
ception of EC, which remains as the control variable in the unbalanced BEC statistics.
Note that the standard deviation of OTR decreases by approximately 80 % compared10

with NO3, which decreases by approximately 10 %. This result is attributed to the small
coefficient of determination for the regression of NO3 (in Table 1), which indicates that
a small portion of NO3 can be predicted by the regression and a large portion is an un-
balanced component. In contrast with NO3, a small portion of OTR is the unbalanced
component.15

For the correlation matrix of C and Cu, they are factorized as three independent
one-dimensional correlation matrices in Eq. (21). The horizontal correlation Cx or Cy is
approximately expressed by a Gaussian function. The correlation between two points

r1 and r2 can be written as e
− (r2−r1)2

2L2
s , where Ls is the horizontal correlation scale and is

a constant value for Cx and Cy, which are considered to be isotropic (Li et al., 2013).20

This scale can be estimated by the curve of the horizontal correlations with distances.
Figure 5 shows the curves of the horizontal correlations for the five control variables.
For the full variables (Fig. 5a), the sharpest decrease in the curves is observed for NO3
and the slowest decrease in the curves is observed for SO4. The horizontal correlation
scales of EC, OC, NO3, SO4 and OTR are 25, 27, 20, 30 and 28 km, respectively.25

For the unbalanced variables (Fig. 5b), their curves are closer than the curves of the
full variables. The correlation scales of EC, OC, NO3, SO4 and OTR are 25, 23, 24,
28 and 25 km, respectively. These results suggest that the unbalanced variables are
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expressed by common factors in the regression equations, which produces consistent
horizontal correlation scales.

For the vertical correlation between Cz and Cuz, they are directly estimated using the
forecasting differences because it is only an nz ×nz matrix. Figure 6 shows the vertical
correlation matrices Cz and Cuz for the full variables (left column) and the unbalanced5

variables (right column), respectively. A common feature of both the full variables and
the unbalanced variables is the significant correlation between the levels of the bound-
ary layer height, which is consistent with the profile of the standard deviation in Fig. 4.
Some weak adjustments to the correlations between the full and unbalanced variables
are made. For example, the correlation of NO3u is stronger than the correlation of NO310

between the boundary layers, namely, the vertical correlation scale of NO3u is larger
than the vertical correlation scale of NO3. Conversely, the vertical correlation scale of
OTRu is smaller than the vertical correlation scale of OTR. These results demonstrate
that the vertical correlations for the unbalanced variables are more consistent than
the vertical correlations of the full variables, which is similar to the adjustments to the15

horizontal correlation scale.

5 Application to data assimilation and prediction

To exhibit the effect of the balance constraint of the BEC, the data assimilation ex-
periments and 24 h forecasting are run using WRF/Chem model from 12:00 UTC on
3 June 2010 to 12:00 UTC on 4 June 2010. The surface PM2.5 and aircraft-speciated20

observations are assimilated using different BEC, and the evaluations are presented
for the data assimilation and subsequent forecasts. Three basic statistical measures in-
cluding mean bias (BIAS), root mean square error (RMSE) and correlation coefficient
(CORR) are utilized for the evaluations.
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5.1 Observation data and experiment scheme

Two types of observation data are employed in our experiments. The first type of obser-
vation data consists of hourly surface PM2.5 concentrations, which are obtained from
the California Air Resources Board. A total of 42 surface PM2.5 monitoring sites exist
in the innermost domain of the WRF/Chem model (Fig. 7). The second type of obser-5

vation data is the speciated concentration along the aircraft flight track. The aircraft
observations are investigated during the California Research at the Nexus of Air Qual-
ity and Climate Change (CalNex) field campaign. This aircraft flight track is around Los
Angeles from approximately 08:00 UTC on 3 June 2010 to 14:00 UTC on 3 June 2010
(Fig. 7). The species of the aircraft observations include OC, NO3, SO4 and NH4. Note10

that NH4 is not a control variable; thus, the aircraft observations of NH4 is disregarded
in the data assimilation. Because the particle size of the aircraft observations is less
than 1.0 µm, some adjustments to the flight observations are made according to the
ratios between the concentration under 2.5 µm and the concentration under 1.0 µm for
each species using model products. With the ratios multiplied by the aircraft observed15

concentrations, the speciated concentrations under 2.5 µm can be obtained.
Three parallel experiments are performed. The first experiment is the control ex-

periment without aerosol data assimilation, which is frequently known as a free run
and denoted as the control. The second experiment is a data assimilation experiment
that assimilates surface PM2.5 and aircraft observations using the full variables without20

balance constraints; it is denoted as DA-full. The third experiment is also a data assim-
ilation experiment that assimilates the same observations but employs the unbalanced
variables as control variables conducted by the balanced constraint; it is denoted as
DA-balance.

In each experiment, a 24 h forecasting is run using the WRf/Chem model with the25

same configuration described in Sect. 3.1. These experiments begin from 12:00 UTC
on 3 June 2010 and end at 12:00 UTC on 4 June 2010. For the DA-full and DA-balance
experiment, the surface PM2.5 observations at the initial time are assimilated. The
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aircraft-speciated observations from 10:30 to 13:30 UTC are assimilated for the use
of more observation information.

5.2 Increments of data assimilation

Figure 8 shows the horizontal increments of EC, OC, NO3, SO4 and OTR at the first
model level for the DA-full (left column) and DA-balance experiments (right column).5

In the DA-full experiment, the increment of EC and OTR (Fig. 8a and i) are similar.
They are obtained from the surface PM2.5 observations because no direct aircraft ob-
servations correspond to these two variables. In the DA-balance experiment, signif-
icant adjustments are made to the increments of EC (Fig. 8b) under the action of
the balance constraints. The same applies to the increment of OC (Fig. 8d) for their10

high cross-correlation. Similarly, significant adjustments are made to the increment of
OTR (Fig. 8j). The findings reveal some mixed characters of the first four variables
that are correlative with OTR. The increments of OC, NO3 and SO4 are affected by
surface PM2.5 observations and aircraft observations. Some adjustments are made to
the value and horizontal scales of the increments. These results demonstrate that the15

observation information can spread across variables by balance constraints.
Figure 9 shows the vertical increments along 35.0 N for the DA-full and DA-balance

experiments. Similar to Fig. 8, the increments of EC and OTR (Fig. 9a and i) spread
upward from the surface in the DA-full experiment, which are obtained from the surface
PM2.5 observation. In the DA-balance, the increments of EC and OTR (Fig. 9b and20

j) exhibit observation information from the aircraft height at approximately 500 m, and
the value of the increments show significant increases. The distributions of the incre-
ments for these five variables in the DA-balance (Fig. 9, right column) generally tend
to coincide compared with the distributions of the increments in the DA-full (Fig. 9, left
column). The results of the DA-balance are reasonable due to the influence of each25

other across the balance constraints.
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5.3 Evaluation of data assimilation and forecasts

Figure 10 shows the scatter plots of the model vs. the observed surface PM2.5 mass
concentrations at 12:00 UTC on 3 June 2010, which is the time of initialization. Com-
pared with the control experiment, significant improvements in the evaluations of the
DA-full are observed. The CORR increases by approximately 0.3. The RMSE and the5

BIAS decrease approximately 50 % in the DA-full experiment (Fig. 10b). The evalua-
tion of the DA-balance experiment (Fig. 10c) is similar to the evaluation of DA-full. The
RMSE and BIAS of the DA-balance are slightly better than the RMSE and BIAS of
DA-full, but the CORR of DA-balance is slightly lower than the CORR of DA-full. The
main reason is probably attributed to the notion that the aircraft observations are in-10

dependent of the surface observations and the adjustments of the balance constraints
are primarily obtained from the speciated observations of the aircraft observations.
These adjustments may not be consistent with the distribution of the surface observa-
tions. However, these minor differences of statistical measures imply that the balance
constraints in the DA-balance are reasonable, which does not destroy the primary dis-15

tributions of the increments in DA-full.
Figure 11 shows the scatter plots of the model species vs. the aircraft observed

species. The CORR of the DA-balance is the highest value of the three experiments
during the total forecasting period (Fig. 1a). Note that the CORR in DA-balance and
DA-full are similar prior to the first 3 h; however, the former is significantly higher than20

the latter from the 3rd hour to the 18th hour. Similar improvements for the RMSE and
the BIAS of DA-balance are observed in Fig. 11b and c, respectively. These improve-
ments indicate that the balance constraint is positive for the subsequent forecasts,
which derives from the balanced initial distribution among species.
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6 Summary and discussion

A set of balance constraints was established using a regression technique, which
was incorporated in the BEC of a data assimilation system that is associated with
five control variables (EC, OC, NO3, SO4 and OTR) and is derived from the MOSAIC
aerosol scheme of the WRF/Chem model. Based on the NMC method, differences5

within a month-long period between 24 and 48 h forecasts that are valid at the same
time were employed in the estimation and analyses. For the original variables, these
five control variables are highly correlative. Especially between EC and OC, their cor-
relation is near 0.9. These original variables need to be transformed to satisfy the
hypothesis of the independent control variables in the data assimilation system. We10

employ the method of the balance constraint to divide the original full variables into
balanced and unbalanced parts. The regression technique is used to express the bal-
anced parts by the unbalanced parts. Then, the independent unbalanced parts are
employed as control variables in the BEC statics. Accordingly, the standard deviations
of these unbalanced variables are less than the standard deviations of the full variables.15

The horizontal and vertical correlation scales of these unbalanced variables tend to be
uniform for the effect of the common factors in the regression equations.

To evaluate the impact of the balance constraints on the analyses and forecasts,
three parallel experiments, including a control experiment without data assimilation
and two data assimilation experiments with and without balance constraints (DA-full20

and DA-balance), were performed. In the data assimilation experiments, the same ob-
servations of surface PM2.5 concentration and aircraft-speciated concentration of OC,
NO3 and SO4 were assimilated. The observations of these three variables can spread
to the two remaining variables in the increments of the DA-balance, which results in
a more complicated distribution with more local centers. Even for the area with only25

surface PM2.5 observations, some adjustments in the increments of the DA-balance
are made for the mutual spread across variables compared with the increments of the
DA-full. Consequently, few differences are observed between the evaluations of the
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two data assimilation analysis fields when we evaluated them using the surface PM2.5
observations with the statistical measures of CORR, RMSE and BIAS. However, these
differences are minor because the surface PM2.5 observations are independent of the
aircraft observations and the balance constraints cannot break the primary balance of
the species.5

The incorporation of the balance constraints improves the initial DA analysis fields.
During the subsequent forecasts until 24 h, the improvements are more significant for
the evaluation of the DA-balance experiment compared with the evaluation of the DA-
full experiment, especially from the 3rd hour to the 18th hour. These results suggested
that the balance constraint can optimize the initial distribution of variables. Although10

the optimization is slight for the initial analysis fields, it can serve an import role for
improving the skill of sequent forecasts.

The method for incorporating balance constraints in aerosol data assimilation can
be employed in other areas or other applications for different aerosol models. For the
aerosol variables in different models, some cross-correlations should exist because15

their common emissions and diffusion processes are controlled by the same atmo-
spheric circulation. Although these cross-correlations may be stronger than the cross-
correlations of atmospheric or oceanic model variables, theoretic balance constraints,
such as geostrophic balance or temperature-salinity balance, do not exist. We expected
to discover a universal balance constraint among the aerosol variables and utilize it in20

the data assimilation system. In addition, we expected to expand the balance constraint
to include gaseous pollutants, such as nitrite (NO2), sulfur dioxide (SO2), and (carbon
monoxide) CO. These gaseous pollutants are correlative with some aerosol species,
such as NO3, SO4 and EC, which can improve the data assimilation analysis fields
of aerosols by assimilating these gaseous observations. The assimilation of aerosol25

observations may improve the analysis fields of gaseous pollutants.
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Table 1. Regression coefficients of balance operator K and the coefficient of determination
(regression coefficients correspond to ρi j in Eq. 6).

Regression coefficient (ρ) Coefficient of
determination (R2)

1 /
0.90 1 0.86
4.01 3.76 1 0.32
1.35 −0.21 −3.15 1 0.48
2.93 2.35 0.28 0.60 1 0.96
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Figure 1. Geographical display of the three-nested model domains. The innermost domain
covers the Los Angeles basin; the black point denotes the location of Los Angeles.
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Figure 2. Cross-correlations between emission species of E_EC, E_ORG, E_NO3, E_SO4 and
E_PM25. The emission species data are derived from the NEI emissions set for the innermost
domain of the WRF/Chem model.
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Figure 3. Cross-correlations between the five variables of the BEC. These variables are (a) full
variables and (b) unbalanced variables of EC, OC, NO3, SO4 and OTR.
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Figure 4. Same as Fig. 3, with the exception of the vertical profiles of the standard deviation of
the variables.
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Figure 5. Same as Fig. 3, with the exception of the horizontal auto-correlation curves of the
variables.
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Figure 6. Vertical correlations of the five variables of the BEC. The left column represents the
full variables, and the right column represents the unbalanced variables.
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Figure 7. Map of surface sites and aircraft flight track. The surface site locations are shown in
black squares. The color of the track indicates the aircraft height from 08:00 UTC, 3 June 2010
to 14:00 UTC, 3 June 2010.
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(a) EC in the DA-full (b) EC in the DA-balance

(c) OC in the DA-full (d) OC in the DA-balance

(e) NO3 in the DA-full (f) NO3 in the DA-balance

(g) SO4 in the DA-full (h) SO4 in the DA-balance

(i) OTR in the DA-full (j) OTR in the DA-balance

Figure 8. Surface distributions of increments of EC, OC, NO3, SO4 and OTR on 12:00 UTC on
3 June 2010. The left column and right column are from DA-full and DA-balance, respectively.
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(a) EC in the DA-full (b) EC in the DA-balance

(c) OC in the DA-full (d) OC in the DA-balance

(e) NO3 in the DA-full (f) NO3 in the DA-balance

(g) SO4 in the DA-full (h) SO4 in the DA-balance

(i) OTR in the DA-full (j) OTR in the DA-balance

Figure 9. Same as Fig. 8, with the exception of the vertical sections along 35◦ N.
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Figure 10. Scatter plots of observed concentrations of PM2.5 vs. simulated concentrations of
PM2.5 from the experiments of (a) Control, (b) DA-full, and (c) DA-balance at initialization of
12:00 UTC on 3 June 2010.
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Figure 11. (a) Correlations, (b) root-mean-square errors (RMSE in µgm−3) and (c) mean bias
(BIAS in µgm−3) of the total PM2.5 concentration forecasts against observations as a function
of forecast duration. The correlations, RMSEs and BIASs are calculated against the observa-
tions from 42 surface stations during the forecasting period from 12:00 UTC on 3 June 2010 to
12:00 UTC, 4 June 2010.
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