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Referee #1 

Received and published: 12 January 2016 

This paper presents the treatment of aerosol background error covariance with balance 

constraints. Overall, the paper is well written. The presented result shows that the 

method would improve the chemical data assimilation performance. 

We thank Reviewer #1 for thoroughly reviewing the manuscript, valuable comments 

and constructive suggestions. We have carefully addressed all Reviewer's comments 

and suggestions. We also respond point by point to the reviewer’s comments as listed 

below. 

 

One major concern is that the numerical experiments were only based on a 24-hour 

forecasting. Since the atmospheric chemistry and meteorological conditions vary day 

to day. It is highly suggested that the authors extend the experiments to a longer time 

period. The test period is coincident with CalNex field campaign. So it is not difficult 

to find more observations for such testing. 

The period of the effect of data assimilation is generally less than 24 hours (Fig. 12). 

A longer time forecast of the DA experiment should be very close to the experiment 

without DA. To demonstrate the robustness of our DA system, we conducted nine 

cases with a group of 24-h forecasts for each case. For the flight events are 

discontinuous, we ran these cases with different initial time according the flight 

processes. The details of these nine cases are in Table 2 (Page 19) and Figure 8 (Page 

21). And the results are showed in Figure 11 (Page 26) and Figure 12 (Page 28).  

 

Cross-correlations can be between different species/bins or different grid points. The 

authors often use “cross-correlation” without specifying what they mean. It is helpful 

to be unambiguous. For instance, in abstract (line 7 on Page 10054), 

“cross-correlation” probably refers to the correlation between different species. 

Thanks, the specification for cross-correlation has been revised in this sentence and 

some other sentences (line 40, line 123, line 141, line 191, line 268, line 269 and line 

580).  

 

The description of model configuration is lacking. Although readers are referred to Li 

et al. (2013) for details, some basic information should be provided directly. For 

instance, the mapping projection used for the horizontal coordinates and the 

extensions of the vertical levels are better given in the paper. 

We have added some description of the model configuration in the revised manuscript 

(lines 273-277).  

 

The calculation of the cross-correlation of emission species is not clear. Is it based on 

15 May-14 June, 2010 emissions over domain d03? 
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The emission species are referred to those RADM2 species that produced by NEI’05 

data. We calculated the correlation between any two horizontal fields of emission 

species over domain d03. It is indicated at line 294.  

 

10054, line 14, "are more coincident" -> have better agreement 

Thanks, the sentence has been revised (line 47-49). 

 

10054, line 23, "meteorology-chemistry models" -> Chemical transport models 

The "meteorology-chemistry models" has been revised as “Chemical transport models” 

(lines 62). 

 

10055, line 4, "difficult dealt due to ...": Remove "dealt". 

The “dealt” has been removed. 

 

10055, line 26, "balance analysis fields": balanced analysis fields? 

Corrected. 

 

10056, line 16: PM2.5 is part of PM10 and PM1 is part of PM2.5. So they do not 

represent different size bins. 

This sentence has been revised, and we cited two new papers about the relationship of 

PM2.5 and PM10-2.5 (lines 109-111). 

 

10056, line 19: The spread of observation impact is not necessarily “enhanced”. 

Corrected. We have changed to “produce more balanced initial fields” (line 109). 

 

10057, line 4: It is not clear what “the species that are not ADJACENT” means here. 

“that are not ADJACENT” means that are not the connecting. This sentence has been 

revised (line 121-122). 

 

10057, line 12, “.. has been ESTIMATED ...”: Developed or applied? 

The “estimated” has been changed to “developed’’ in the revised manuscript. 

 

10058, Eq(1): It is better to have the LHS written as J(x) and x should be in bold font. 

“     ” has been changed to “    ”, and   is in bold font in the revised manuscript.  

 

10059, line 2, “d = y - Hx ”: d= y-H xˆb 

Corrected. 

 

10059, lines 6-7: This seems to neglect the fact that there are multiple variables at 

each grid point. 
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Corrected. The sentence has been change to: For a high-resolution model, the number 

of vector    is on the order of    . Therefore, the number of elements in B is 

approximately      (line 174).  

 

10059, line 18, “which represent ...”: Separate the run-together sentence. They 

represent the correlation among pairs of grid points for one species. 

Thanks. The sentence has been separated (lines 185-186).  

 

10063, line 16, “cross-correlations between emissions”: Change to “cross-correlations 

of emission species”, to be consistent with the title of Section 3.2. 

The sentence has been revised (Line 265). 

 

10063, line 19, “the cross-correlations of aerosol emissions from ...” -> the 

cross-correlations of aerosol emission species from ... 

The sentence has been revised (Line 268). 

 

10064, line 3, “...that is coupled to aerosol and chemistry domains” -> ...that is 

coupled to aerosol and chemistry models 

The sentence has been revised (Line 272). 

 

10064, lines 16-17, “Emission files are .... of the aerosol forecasts”: What does "a 

primary factor for the distribution of the aerosol forecasts” mean? In addition, it is a 

run-together sentence that needs to be rewritten. 

“A primary factor” means the emission file. This sentence has been revised as: The 

emission files are necessary for running the WRF/Chem model. It is an important 

factor for the distribution of the aerosol forecasts. (lines 290-291) 

 

10065, line 5: “With the exception of the auto-correlation in the diagonal line” is 

redundant. 

The sentence has been removed. 

 

10066, line 25: Please spell out “DA” as “data assimilation” since DA is not 

previously defined yet. 

Corrected.  

 

10067, line 3: Figure 2 -> Figure 4. 

Corrected. 

 

10067, line 4: Fig. 2a -> Fig. 4a. 

Corrected. 
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10067, line 8: Fig. 2b -> Fig. 4b. 

Corrected. 

 

10067, line 8, “all standard deviations significantly decrease”: The decrease of NO3 is 

not significant. 

The sentence has been change to: “all standard deviations decrease in different 

degrees” (Line 367). 

 

10069, line 8: There are many other flights available. Why was this flight chosen over 

all the others? More description on the flight observations is needed as well. 

We have added all flight events that performed during May 15 to 00UTC of June 14, 

2010. We chose the case of June 3 for the aircraft observations are enough and the 

aircraft tracks around Los Angeles, the center of model domain. For the other cases, 

there are not enough aircraft observations during the assimilation time windows (±1.5 

hour of initial time), or the flight tracks are relative few and not around Los Angeles 

(Fig. 8). But, to demonstrate the robustness of our DA system, we run all cases and 

calculate the average improvements.    

 

10069, line 25: WRf/Chem -> WRF-Chem. Note that the WRF/Chem is better 

changed to WRF-Chem in the entire paper. 

All “WRF-Chem” have been change to “WRF/Chem”. 

 

10071, line 17: Figure 11 does NOT show “scatter plots”. 

Corrected, thank you. 

 

10071, line 19: Fig.1a -> Fig. 11a 

Corrected, thank you.  

 

10072, lines 9-10: It is not true that the data assimilation has the hypothesis of the 

independent control variables. The independence of control variables merely helps to 

simplify the background error covariance matrix. 

We agree. This sentence has been removed.    

 

10077, Table 1: Please add the name of the species to the table. 

Corrected, thank you (Page 33). 

 

10079, Figure 2: Why aren’t the cells identical in shape? It applies to Figure 3 too. 

Figure 2 and Figure 3 have been plotted in the same shape. 
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10081, Figure 4, “Same as Fig. 3”: Figure 4 is quite different from Figure 3. 

Corrected, thank you (line 373-374).  

 

Referee #2 

This paper discusses implementation of cross-correlations between aerosol variables 

in a variational data assimilation (DA) system via balance constraint. The authors 

describe their methodology and then apply their new developments for a single 24-hr 

forecast over Southern California. Results suggest that incorporating 

cross-correlations within the DA system was beneficial, especially for 3- to 18-hr 

forecasts.  

This paper is generally interesting and good, although there are some shortcomings 

that I believe should be addressed before publication. My biggest concerns regard that 

only one forecast was produced and lack of discussion about other methods of dealing 

with cross-correlations for aerosols, such as ensemble-based DA methods. 

Additionally, there are many areas of text that I believe require some clarification. 

Thank you very much for your careful review and constructive suggestions. Please 

find below our detailed responses to all questions and comments. 

 

Bigger comments, questions, and concerns 

1. I appreciate that you actually implemented your developments in a DA system to 

see the real-world impacts. However, you only showed results from one forecast, 

which does not give much confidence regarding the generality or strength of the 

results. If possible, I strongly urge you to add more cases. I know that adding more 

cases requires more work, but doing so would not add much to the length of the paper 

and would make the conclusions much more robust. 

We agree that single one case is not convincing to show the capability of our DA 

system, though the major purpose is to develop the DA system with the 

cross-correlation process. We have added more cases in the revised manuscript, all 

nine flight cases from May 15 to June 14, 2010, are applied to DA experiments.  

The details of these nine cases are in Table 2 and Figure 8. The results are showed in 

Figure 11 and Figure 12. The averaged improvement of DA for these nine cases is 

lower than that for the case on June 3, 2010. The main reasons are that the flight 

tracks are relative fewer in some cases, or the flight tracks are not around Los Angeles. 

Another reason is that the initial fields of Control experiment are consistent with 

observations, especially for the initial time at 00 UTC and 18 UTC. In the case that 

limited improvements were obtained at the initial fields, the improvements of 

subsequent forecasts are also low.  

 

2. In my opinion, you neglected to discuss another (and easier) method of dealing 

with cross-correlations between aerosol species: ensemble-based DA methods (such 
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as the ensemble Kalman filter) that naturally handle cross-correlations. Thus, I 

strongly believe you should mention ensemble DA methods in the introduction, and 

you should cite and briefly discuss Pagowski and Grell (2012) and Schwartz et al. 

(2014), who assimilated aerosol observations, including PM2.5, with ensemble-based 

DA methods. There are other references that have also assimilated aerosol 

observations with ensemble DA, but I believe those two are the most relevant, and 

without this material regarding ensemble DA, I believe your work is not placed within 

its proper context. 

Thanks. These two papers have been cited, and some discussions about ensemble DA 

methods are added in the revised manuscript (lines 109-111).  

 

3. In light of the above comment, I believe your title should be more specific, and I 

suggest adding the word “variational” before “data assimilation”. 

We agree. The title has been revised.  

 

4. You left out a few important details about the DA system. For example, what DA 

system were you using? Was it GSI or some other system? Please briefly explain 

somewhere in the text. Additionally, for your 24-hr forecast you described in section 

5, what was the background for DA? Finally, please briefly state the observation 

errors that you used. 

Firstly, this DA system is not GSI or some other widely used systems. It was 

developed by Li et al. (2013) for the MOSAIC scheme of WRF/Chem model. A 

simple description about the DA system was added in Section 1 (line 129-130).  

Secondly, the backgrounds for DA are the forecasting results from the previous runs 

without DA. These previous forecasting results have been obtained when we run the 

model for the BEC statistics. We added the description of the background in Section 

5.1 (lines 471-473). 

Thirdly, we assume that the observation error is the half of background errors. And a 

vertical profile of observation errors was applied, resulted from the average of 

background errors of every level. We think it is an enough large error, even the 

representativeness error is considered. Since the purpose of this manuscript is to 

demonstrate the signification of balance constrains in the 3DVAR system, the 

observation error has an insignificant impact on the analysis of balance constrains. 

We added the description of the observation error in Section 5.1 (lines 473-475).  

 

5. I believe some aspects regarding Eqs. (6-13) need clarification. 

a) Page 8, line 9: Please clarify what you mean by “first variable”. 

The “first variable” means this variable is fixed. There is not unbalanced component 

for this variable that is similar to the variable of the vorticity in the DA system of 

ECMWF (Derber and Bouttier, 1999). But, we did not find the name of “first variable” 
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in other relevant literatures. Thus, we have removed this name in the revised 

manuscript. 

 

b) Page 8, Eq. (7): Please fill-in the upper triangle of K. Are all upper-triangle 

elements zero? 

Yes, all upper-triangle elements are zero. We have filled in the matrix.  

 

c) Page 8, line 19: Please clarify what you mean by “a one regression coefficient.” 

It is a mistake. It should be “a regression coefficient”. We have revised this sentence.  

 

d) Some more details about how you compute ρij would be beneficial. 

The     is the statistical regression coefficients between the variables   and  . For 

example     is the regression coefficient between     and    . Here,     and 

    are estimated from the forecast differences of 24 h and 48 h forecasts of one 

month (May 15 to June 14, 2010), that is              ,          

    . Similar to the calculation of the BEC,     and     are also estimated by 

this forecast difference to represent the difference between real state and forecasts. 

Using the forecast difference, we have 30 pairs     and     for each grid. Then, 

we can estimate a regression equation and obtain the regression coefficient    . 

Since the     of each grid are close, we use the data of     and      at all grids 

to estimate a regression equation and obtain a regression coefficient    . This     

should be more robust. Figure 1 shows the scatter plots of     and      for all 

grids. The size of     or      is       , where   is the number of model grid 

points, and 30 represents 30 days. From this scatter plots, we can obtain the regression 

equation:  

            .                          (1) 

     is the predict of    , that is     . The residuals are     . In this equation, 

the intercept is neglected, since     and     are forecast differences that can be 

considered to be zero mean values. Using          and      , we can estimate 

the regression equation to predict      , and obtain  
  

 and  
  

. 

             
  

     
  

    .                      (2) 

Then, the other regression equations and regression coefficient can be obtain step by 

step. Some more detail about the calculation of     was added in the revised 

manuscript (lines 327-331).    
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Figure 1 Scatter plots of     and      

 

e) Additionally, I think it would be nice if you provided some details on how to 

interpret ρij to bolster the discussion on page 14. 

We agree. Some details of the calculation of  
  
 are added in the revised manuscript 

(lines 327-331). 

 

f) What would happen if the regression was not “based” on EC? In other words, what 

would happen if you listed the control vector species in reverse [such that OTR was in 

the first row on the LHS of Eq. (7) and EC was in the last row]? You mention some of 

this on page 14 lines 6-8, but I believe a clear description about the “order” or “first 

and second variables” would be greatly beneficial. You also mention using OTR as 

the “last variable” (page 14, line 19), but the rationale for this choice is not obvious to 

me. Please clarify. 

We think it is difficult to clarify this question which is beyond the scope of current 

study. We set this order of species mainly due to the following two reasons. First, the 

correlation of EC and OC is the highest. Second, OTR is correlative with all other 

variables. The purpose of the balance constrain is to obtain as independent variables 

as possible. So, EC and OC should be the first two for their high correlation. If we set 

the other variable such as OTR as the first order, and OC as the second order, the 

coefficient of determination of the regression equation of OC will be less, compared 

with the coefficient of determination of the regression equation with EC as the first 

order. It will increase the correlation of OCu with the other variables. Similarly, since 

OTR includes many species that are correlative with former variables, the coefficient 

of determination of the regression equations of OTR will be largest using all former 

variables as factors, and then obtain the more independent OTRu. To investigate the 

impacts by using different orders, more tests need to be conducted which we may 

address in later studies. 
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In addition, we can refer other DA system to understand this question. In the 

formulation of DA of ECMWF (Derber and Bouttier, 1999), The balance operator   

matrix which transforms                   into                . The first variable 

is the vorticity   The balanced part of the divergence   and the temperature and 

surface pressure        are given by the equations: 

                                                              (3) 

                                                        (4) 

Then, the   matrix becomes: 

  

 
 
 
 
 
    

    

    

     
 
 
 
 

.                       (5)      

In this DA system of ECMWF, the   and   are the first two variables. We think the 

reason is that they are relative high correlative. The        is the third variable, since 

it is correlative with the former variables. The   is the last variable that is not 

correlative with the other variables. Unfortunately, Derber and Bouttier (1999) did not 

explain why they set this order of variables. We explain it from our thought.  

In another reference about the study of balance constraints for GSI system (Chen et al., 

2013), the order of control variables is the stream function ( ), the unbalanced part of 

the velocity potential (  ), the unbalanced part of temperature (  ), the unbalanced 

part of surface pressure (   ), and the relative humidity (   ). Here,     is the last 

order, and its regression equation uses all former variables as factors. 

 

g) Page 9, line 1: I feel like the word “deduced” to describe ρ21 is inaccurate. How 

exactly are you obtaining ρij? 

The “deduced” has been changed to “obtained” (line 362). Please see the response of 

d) for the process of obtaining ρij. 

 

h) Page 9, lines 3-10: I found ε confusing and also unnecessary. By definition, ε = 

 OCu, so why not just use  OCu directly in place of ε? Thus, I suggest removing all 

instances of ε. 

We wrote Eq. (8) and reserve residual   because it is a normal format for a 

regression equation. This may be easier to understand for the reader. And we revised 

the Eq. (9) and its explanation to understand easily the calculation of      and   

(line 215).  

 

i) Page 9, Eq. (11). I believe you’re missing “ ” on EC and OCu. 

Corrected, thank you. 
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Smaller comments, questions, and concerns 

1. Page 2, line 14: Please clarify what you mean by “coincident”. 

We mean the PM2.5 concentrations of the experiment with balance constraints are 

more consistent with the observed concentrations. The sentence has been removed.  

 

2. Page 2, line 17: Please omit the word “significant” because you did not perform 

any statistical significance testing, and you only showed results from one forecast. 

Thanks, the sentence has been revised. 

 

3. Page 2, line 21: Again, omit “significantly”. 

Thanks, the sentence has been revised. 

 

4. Page 2, line 26: Technically, the observation errors also determine the analysis 

increments. 

Thanks, the observation error has been added in the revised manuscript (line 65). 

 

5. Page 3, line 5: Most models now have a state size O(10
7
). Suggest modifying. 

Thanks, the sentence has been revised (lines 69). 

 

6. Page 3, lines 3-8: Note that with ensemble DA methods, these issues are not as 

difficult to deal with. 

Thanks, we add the qualifier of “variational data assimilation system” (line 99). 

 

7. Page 3, line 12: Please define in words what you mean by PM2.5. 

Thanks, the definition of PM2.5 has been added in the revised manuscript (lines 105). 

 

8. Page 3, line 13: Suggest spelling out GSI and adding a reference. 

We have spelled out GSI in the revised manuscript (line 77).  

 

9. Page 4, lines 9-11: Do these assumptions only apply to variational approaches? 

Yes. We add the qualifier of “variational” in the revised manuscript (line 99). 

 

10. Page 4, line 20: This might be a good place to mention Pagowski and Grell (2012) 

and Schwartz et al. (2014). 

Thanks, we have cited these two references at lines of 109-110. 

 

11. Page 5, line 1: Please spell out “AOD”. 

Thanks, the sentence has been revised (line 119). 

 

12. Page 5, line 4: Please clarify what you mean by “not adjacent”. 
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 “that are not ADJACENT” means that are not the connecting. This sentence has 

been revised (line 121-122). 

 

13. Page 5, line 10: Please clarify what you mean by “eight/four”. 

The MOSAIC scheme offers flexibility in specifying the number of size bins, four or 

eight bins are commonly used. Four bins used are located between 0.039–0.1 μm, 

0.1–1.0 μm, 1.0–2.5 μm, and 2.5–10 μm. Some introductions of “eight/four” size bins 

have been added in the revised manuscript (lines 127-128).   

14. Page 5, line 12: Suggest “developed” rather than “estimated”. 

Thanks, the sentence has been revised. 

 

15. Page 6, Eq. (1): It should be J(x) not J( x). 

Thanks, the sentence has been revised (line 159). 

 

16. Page 6, lines 20-25 and Eq. (2): You’ve ignored non-linear H and its linearization 

about the background to derive the linear H. In Eq. (1), H is nonlinear, but in Eq. (2) 

it’s linear, because you’ve linearized H about xb. Please be more precise. 

Thanks. In this paper, the observation variables are the species concentration and total 

PM2.5 concentration. They are really linear relationship with the state variables. 

Anyway, we have added the assumption of linear in the revised manuscript (line 163). 

 

17. Page 7, line 2: In the expression for the innovation, here H should be nonlinear 

(H). 

Since the relationship between observation variables and state variables is linear. We 

do not emphasize the nonlinear H.    

 

18. Page 7, line 7: Again, it should probably be 10
7
 rather than 10

6
. Also, 10

12
 should 

probably be 10
14

. 

Thanks, the sentence has been revised (lines 174). 

 

19. Page 7, line 14: Please clarify what you mean by “is commonly simplified with 

vertical levels.” 

The standard deviation matrix ( ) is a diagonal matrix with the size of       , 

that is, each species at each grid has a value of standard deviation. But, to reduce the 

computational cost, we use the average value of standard deviations that are at the 

same vertical level. Though the size of   is fixed, the number of parameters of 

standard deviations reduces in the DA system. We have added some introduction in 

the revised manuscript (lines 180-181). 

 

20. Page 10, lines 8-9: It was unclear to me how you got Eq. (17) from Eq. (6). 
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Please add some steps or clarify. 

According the definition of the BEC, 

                                     . 

Using Eq. (6),  

                                       
   

                          =           
      

                          =     
  

Some explains have been added in the revised manuscript (lines 237-242).  

21. Page 11, line 1: In Eq. (20), it appears you used  x = B
1/2
 z. Thus, I believe line 1 

on page 11 should read  z = B
-1/2

 x (note the negative sign on the exponent of B). 

Please double-check. 

Corrected, thank you. 

 

22. Page 12, line 5: Should be “horizontal grid spacing” not “resolution”…they 

mean different things. 

Thanks, the sentence has been revised (lines 274). 

 

23. Page 12, lines 10-12: Please clarify what you mean by “former forecast”. 

Additionally, where do the initial meteorological conditions come from? Are these 

also from NARR? 

The initial meteorological condition is from NARR. For a 48-hour or 24-hour forecast 

running, we update the initial meteorological condition using the reanalysis NARR 

data. But for the initial aerosol condition, since there are not reanalysis data, we use 

the forecast condition from former forecast as the initial condition. The explaination 

has been added in the revised manuscript (line 281-283).  

 

24. Page 12, line 26 and page 13, line 2: I wonder if you might want to 

rename“E_ORG” to “E_OC” and “E_PM25” to “E_OTR” to be consistent with the 

nomenclature of the control variables. If so, please also change on the relevant figure 

(Fig. 2) and elsewhere in the text. 

Since the emission variables are different with the model control variables. The 

former include many aerosol precursors such as E_SO2, E_NO2. These 

aerosol precursors can transform into aerosol through chemical process. Thus, the 

emission variable E_SO4 or E_NO3 are not completely corresponding to the control 

variables. We use the name of emission variables, consistent with the name in user’s 

guide of WRF/Chem.  

 

25. Page 13, line 5: “With the exception” is misleading and suggests that the diagonal 

correlations will be < 0.5. Please modify. 

We have modified the corresponding sentence in the revised manuscript (Line 305). 
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26. Page 13, line 9: Suggest “high” rather than “close”. 

Corrected. 

 

27. Page 14, line 1: I believe it should be Eqs. (6-13) rather than Eqs. (6-12). 

Corrected. 

 

28. Page 14, line 2: I believe Eq. (7) is more correct than Eq. (6). 

Corrected. 

 

29. Page 14, lines 9-19: Should the control variables here have subscripts “u”? I’m not 

sure. Please double-check. 

We have double-checked.  

 

30. Page 14: Just a comment—I really like Fig. 3. 

Thanks. 

 

31. Page 15, line 2: Suggest “obtained” rather than “performed”. 

Corrected. 

 

32. Page 15, lines 2, 3, and 8: In all these locations, it should be Fig. 4, not Fig. 2. 

Corrected, thanks. 

 

33. Page 15, lines 10-11: I believe OTR and NO3 should be OTRu and NO3u, 

respectively. 

Corrected. 

 

34. Page 15, lines 10-11: Please clarify with what the “decreases” are with respect to. 

Thanks, we have modified the sentence (Line 369) 

 

35. Page 15, line 17: I believe it should be Eq. (22), not Eq. (21). 

Corrected. 

 

36. Page 15, lines 18-25: Please explain how you get the horizontal correlation scale 

(Ls) from Fig. 5. Is Ls defined as an e-folding distance? Overall, I was a bit confused 

by your description of Ls —please clarify. 

We assume that the decline curve of horizontal correlations is according to the 

Gaussian function (Fig. 5). Then the intersection of the decline curve and the line of 

  
 

          can be approximately as the value of horizontal correlation scale. The 

introduction has been added in the revised manuscript (lines 384-386).  
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37. Page 15, line 27: I believe OC, NO3, SO4, and OTR should have subscript “u”. 

Corrected. 

 

38. Page 16, line 1: Please clarify what you mean by “common factors in regression 

equations”. 

The common factors mean EC,    , and     . For example, EC is used four times 

in the regression Eqs. (6-13),     is used three times,      is used two times. But, 

it may be puzzling to readers. We have revised this sentence in the manuscript (lines 

390-391).   

 

39. Page 16, lines 4-16: Similar to my above comment, please explain how you get 

the vertical correlation length-scales from Fig. 6. 

For the vertical correlation, we use the real values calculated from the forecasting 

differences in the DA system, but not approximate values from an alternative function. 

The name of “vertical correlation length-scale” is just a conception to explain the 

difference between the unbalanced variables and full variables. We have added some 

explanations in the revised manuscript (lines 397-399, 405-406) 

 

40. Page 16, lines 13-16: I only see very small differences regarding the vertical 

correlations between the full and unbalanced variables. Perhaps you may wish to 

modify the text. 

The differences of vertical correlation are slight, compared with the difference of 

horizontal. The main reason is that the vertical correlations are generally affected by 

the atmospheric boundary layer height. Thus, all vertical correlation decreases rapidly 

for the level above the boundary layer height. We have added this explanation in the 

revised manuscript (lines 410-413). 

 

41. Page 17, line 23: Please clarify that DA-balance assimilates the same observations 

as “DA-full”. 

For the DA-full experiments and DA-balance experiments, we use the same 

observation for the data assimilation. This sentence has been revised (lines 469-470). 

 

42. Page 17, line 25: “WRF” not “WRf”. 

Thanks, the sentence has been revised. 

 

43. Page 17, line 28: Please clarify what you mean by “the initial time”. 

The initial time means the start time of the model running, which is listed in Table 2. 

  

44. Page 18, lines 4-26: I feel like this discussion slightly misses the main points. In 
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my opinion, the main point is that the balance constraints can allow observations of a 

specific species to impact other variables. Even with PM2.5 observations, because 

the model-simulated PM2.5 is a function of all the control variables, the individual 

species’ fields are adjusted through the BECs, even without a direct observation of 

the individual species. Thus, without multivariate correlations, an aircraft 

observation of OC can only impact OC (because the forward operator for OC is only 

a function of OC), but with the multivariate BECs, an OC observation can now 

impact OTR or EC. Perhaps you might wish to clarify some aspects of the text along 

these lines. 

Yes. For the BECs without balance constraints, the observation of OC can only impact 

OC. The crossing effects among species from the BECs with balance constraints. This 

section has been revised (lines 484-489). 

 

45. Page 19, lines 1-5: I don’t believe it is appropriate to describe the smaller RMSEs 

as “improvements”. You’re simply looking at fits to observations, which, on their 

own, do not tell you anything about the relative goodness of your DA system. 

The comparison between the analysis PM2.5 against the assimilated observations is 

known as “sanity check”. It can demonstrate the capability of the DA system. In the 

revised manuscript, we use more data from all nine cases to demonstrate the effects of 

the DA system. This section has been revised (lines 506-517). 

 

46. Page 19, line 17: The description here of Fig. 11 is incorrect. 

Corrected.  

 

47. Page 19, line 19: It should be Fig. 11a, not 1a. 

Corrected.  

 

48. Page 19, line 20: Omit “significantly”. You can maybe replace it with 

“substantially”. 

Thanks, the sentence has been revised. 

 

49. Page 20, lines 16-17: Please clarify what you mean by these lines. 

This sentence means the horizontal correlation scales of unbalanced variables are 

closer than that of full variables. And the vertical correlation scales show similar trend. 

The sentence has been revised (lines 556-558).    

 

50. Page 20, line 27: Please clarify what you mean by “mutual spread”. 

The “mutual spread” has been changed to “crossing spread” (line 489).  

 

51. Page 21, line 6: I don’t agree with this line. You’re only looking at the analysis fits, 

which does not mean your analysis fields are necessarily better. 
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This sentence has been removed in the revised manuscript. 

 

52. Page 21, line 20: Please clarify what you mean by a “universal balance 

constraint”. 

The balance constraint in this paper is just a statistical relationship. We hope to find a 

universal balance that can describe the physical or chemical balanced relationship of 

aerosol variables, similar with the balance constraint of geostrophic balance or 

temperature-salinity balance in meteorological or oceanic data assimilation. The 

sentence has been revised in the manuscript (lines 585-586). 

 

53. Table 1: Suggest also pointing to Eq. (7) in the caption. Also, you should annotate 

the various species on this figure somehow, because it’s difficult to look back to Eq. 

(7). 

Thanks, we followed this suggestion. 

 

54. Fig. 2 caption: Suggest “NEI05” rather than just “NEI” 

Thanks, the sentence has been revised. 

 

55. Fig. 4 caption: In my opinion, this figure isn’t that close to Fig. 3 so I suggest 

elaborating. 

Corrected, thank you . 

 

56. Fig. 5 caption: Suggest pointing to Fig. 4 rather than Fig. 3. 

Corrected. 

 

57. Fig. 6: Suggest adding labels of “Height” to the axes. 

Corrected. 

 

58. Fig. 7: Suggest adding a unit (meters) to the colorbar. 

Corrected. 

 

59. Figs. 8 and 9: The labels above/below the panels are very small. Can these be 

enlarged? 

Corrected. 
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Abstract 34 

Balance constraints are important for background error covariance (BEC) in data assimilation 35 

to spread information between different variables and produce balance analysis fields. Using 36 

statistical regression, we develop a balance constraint for the BEC of aerosol variables and apply it 37 

to a three-dimensional variational data assimilation system in the WRF/Chem model. One-month 38 

forecasts from the WRF/Chem model are employed for BEC statistics. The cross-correlations 39 

between the different species are generally high. The largest correlation occurs between elemental 40 

carbon and organic carbon with as large as 0.9. After using the balance constraints, the 41 

correlations between the unbalanced variables reduce to less than 0.2. A set of data assimilation 42 

and forecasting experiments is performed. In these experiments, surface PM2.5 concentrations and 43 

speciated concentrations along aircraft flight tracks are assimilated. The analysis increments with 44 

the balance constraints show spatial distributions more complex than those without the balance 45 

constraints, which is a consequence of the spreading of observation information across variables 46 

due to the balance constraints. The forecast skills with the balance constraints show substantial 47 

and durable improvements from the 2
nd

 hour to the 16
th

 hour compared with the forecast skills 48 

without the balance constraints. The results suggest that the developed balance constraints are 49 

important for the aerosol assimilation and forecasting. 50 

Keyword: aerosol species, WRF/Chem, data assimilation, balance constraint, background error 51 

covariance  52 
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 60 



1. Introduction 61 

Aerosol data assimilation in chemical transport models has received an increasing amount of 62 

attention in recent years as a basic methodology for improving aerosol analysis and forecasting. In 63 

a data assimilation system, the background error covariance (BEC) plays a crucial role in the 64 

success of an assimilation process. The BEC and the observation error determine analysis 65 

increments from the assimilation process (Derber and Bouttier 1999, Chen et al., 2013). 66 

However, accurate estimation of the BEC remains difficult due to a lack of information about 67 

the true atmospheric states and also due to computational requirement arising from the large 68 

dimension of the BEC (typically        ). For a variational data assimilation system, a few 69 

methods have been developed to estimate and simplify the expression of the BEC, such as the 70 

analysis of innovations, the NMC (National Meteorological Center) and the ensemble-based 71 

(Monte Carlo) methods. The NMC method is extensively used in operational atmospheric and 72 

meteorology-chemistry data assimilation systems. It assumes that the forecast errors are 73 

approximated by differences between pairs of forecasts that are valid at the same time (Parrish and 74 

Derber, 1992). Pagowski et al. (2010) estimated the BEC of PM2.5 (particles having an 75 

aerodynamic diameter less than 2.5 µm) by calculating the differences between the forecasts of 24 76 

and 48 h, and used the estimated BEC in a Grid-point Statistical Interpolation (GSI) system (Wu et 77 

al., 2002). Benedetti et al. (2007) estimated the BEC of the sum of the mixing ratios of all aerosol 78 

species for an operational analysis and forecast systems at ECMWF (The European Centre for 79 

Medium-Range Weather Forecasts). The BEC with multiple species and size bins of aerosols have 80 

been calculated and employed in data assimilation. Liu et al. (2011) estimated the BEC with 14 81 

aerosol species in the Goddard Chemistry Aerosol Radiation and Transport scheme of the Weather 82 

Research and Forecasting/Chemistry (WRF/Chem) model and applied it to the GSI system. 83 

Schwartz et al. (2012) increased the number of the species to 15 based on the study of Liu et al. 84 

(2011). Li et al. (2013) estimated the BEC for five species derived from the Model for Simulation 85 

Aerosol Interactions and Chemistry (MOSAIC) scheme.  86 

One important role that the BEC plays in meteorological data assimilation is to spread 87 

information between different variables to produce balanced analysis fields, which employ 88 

balance constraints to convert original variables into new independent variables. Balance 89 



constraints have been employed in atmospheric and oceanic data assimilation, such as geostrophic 90 

balance or temperature-salinity balance (Bannister, 2008a, 2008b). To incorporate balance 91 

constraints, the model variables are usually transformed to balanced and unbalanced parts. The 92 

unbalanced parts as control variables are can be assumed independent, and the balanced parts are 93 

constrained by balance constraints (Derber and Bouttier, 1999). Instead of using an empirical 94 

function as a balance constraint, balance constraints are also derived using regression techniques 95 

(Ricci and Weaver, 2005). Although distinct empirical relations between some variables (such as 96 

temperature and humidity) may not exist, the regression equation can also be estimated as balance 97 

constraints (Chen et al., 2013). 98 

In current aerosol variational data assimilation with multiple variables, balance constraints are 99 

not yet incorporated in the BEC. The state variables are assumed to be independent variables 100 

without cross-correlation. However, the aerosol species are frequently highly correlated due to 101 

their common emission sources and diffusion processes. For example, the correlations in terms of 102 

the R-square between elemental carbon and black carbon exceed 0.6 in many locations across Asia 103 

and the South Pacific in both urban and suburban locations (Salako et al., 2012), and the 104 

correlations between different size bins, such as PM2.5 and PM10-2.5 (the diameter of particles being 105 

between 2.5 and 10 µm), are also generally significant (Sun et al., 2003; Geller et al., 2004). Thus, 106 

the cross-correlations between different species or size bins are necessary to produce balanced 107 

analysis fields. Cross-correlations spread the observation information from one variable to other 108 

variables, which can produce more balanced initial fields. For the data assimilation of the 109 

ensemble Kalman filter method, the BEC with balance constraints is assured (Pagowski et al., 110 

2012; Schwartz et al., 2014), although the balance may break down because of localization. 111 

Recently, several studies have suggested that the BEC with balanced cross-correlation should 112 

be introduced into aerosol variational data assimilation (Kahnert, 2008; Liu et al., 2011; Li et al., 113 

2013; Saide et al., 2013). Kahnert (2008) exhibited cross-correlations of the seventeen aerosol 114 

variables from Multiple-scale Atmospheric Transport and Chemistry (MATCH) Model. He found 115 

that the statistical cross-correlations between aerosol components are primarily influenced by the 116 

interrelations between emissions and by interrelations due to chemical reactions to a much lesser 117 

degree. Saide et al., (2012; 2013) incorporated the capacity to add cross-correlations between 118 



aerosol size bins in GSI for assimilating observations of aerosol optical depth (AOD) data. The 119 

cross-correlations between the two connecting size bins for each species were considered using 120 

recursive filters while, the cross-correlation is not considered for the other size bins that are not 121 

connecting.  122 

In this paper, we explore incorporating cross-correlations between different species in BEC 123 

using balance constraints. The balance constraints are established using statistical regression. We 124 

apply the BEC with the balance constraints to a data assimilation and forecasting system with the 125 

MOSAIC scheme in WRF/Chem. The MOSAIC scheme includes a large number of variables with 126 

eight species, and flexibility of eight or four size bins. The scheme of four size bins is used in our 127 

studies. The four bins are located between 0.039–0.1 μm, 0.1–1.0 μm, 1.0–2.5 μm, and 2.5–10 μm, 128 

and the total mass of the first three bins are PM2.5. A 3DVAR system for the MOSAIC (4-bin) 129 

scheme has been developed by Li et al. (2013). For comparisons, we employ this 3DVAR system 130 

with the same model configurations as employed by Li et al. (2013). The data assimilation and 131 

forecasting experiments are performed with a focus on assessing the impact of cross-correlations 132 

of the BEC on analyses and forecasts.  133 

The paper is organized as follows: Section 2 describes the 3DVAR system and the formulation 134 

of the BEC. Section 3 describes the WRF/Chem configuration and estimates the correlations 135 

among the emissions. The statistical characteristics of the BEC, including the regression 136 

coefficient of the cross-correlation, are discussed in Section 4. Using the BEC, experiments of 137 

assimilating surface PM2.5 observations and aircraft observations are discussed in Section 5. 138 

Shortcomings, conclusions and future perspectives are presented in Section 6. 139 

2. Data assimilation system and BEC 140 

In this section, we present a formulation of the BEC with cross-correlation between different 141 

species using a regression technique. Then, the cost function with the new BEC is derived and the 142 

calculating factorization of the BEC is described. 143 

The control variables of the data assimilation are obtained from the MOSAIC (4-bin) aerosol 144 

scheme in the WRF/Chem model (Zaveri et al., 2008). The MOSAIC scheme includes eight 145 

aerosol species, that is, elemental carbon or black carbon (EC/BC), organic carbon (OC), nitrate 146 

(NO3), sulfate (SO4), chloride (Cl), sodium (Na), ammonium (NH4), and other inorganic mass 147 



(OIN). Each species is separated into four bins with different sizes: 0.039–0.1 μm, 0.1–1.0 μm, 148 

1.0–2.5 μm and 2.5–10 μm. The scheme involves 32 aerosol variables with eight species and four 149 

size bins. These variables cannot be directly introduced as control variables in an assimilation 150 

system in consideration of computational efficiency. The number of variables must be decreased 151 

prior to assimilation. Li et al. (2013) have lumped these variables into five species as control 152 

variables in the 3DVAR system. The five species consist of EC, OC, NO3, SO4 and OTR. Here, 153 

OTR is the sum of Cl, Na, NH4 and OIN. Note that the data assimilation system aims to assimilate 154 

the observation of PM2.5; only the first three of four size bins are utilized to lump as one control 155 

variable for each species. 156 

For a 3DVAR system, the cost function ( ), which measures the distance of the state vector to the 157 

background and observations, can be written as follows: 158 

     
 

 
                 

 

 
                .          (1) 159 

Here,   is the vector of the state variables, including EC, OC, NO3, SO4 and OTR;    is the 160 

background vector of these five species, which are generated by the MOSAIC scheme;   is the 161 

observation vector;   is the observation operator that maps the model space to the observation 162 

space and is assumed to be linear here;   is the observation error covariance associated with  ; 163 

and   is the background error covariance associated with   . Eq. (1) is usually written in the 164 

incremental form 165 

        
 

 
         

 

 
                  ,             (2) 166 

where            ) is the incremental state variable. The observation innovation vector is 167 

known as        . The minimization solution is the analysis increment   , and the final 168 

analysis is         . This analysis is statistically optimal as a minimum error variance 169 

estimate (e.g., Jazwinski, 1970; Cohn, 1997). 170 

In Eq. (1) or Eq. (2),    is a             , where   is the number of model grid points, 171 

and   is the number of state variables.   is a symmetric matrix with a dimension of       . 172 

For a high-resolution model, the number of vector    is on the order of    . Therefore, the 173 

number of elements in B is approximately     . With this dimension, B cannot be explicitly 174 

manipulated. To pursue simplifications of B, we employ the following factorization 175 



      ,                                 (3) 176 

where   and   are the standard deviation matrix and the correlation matrix, respectively.   177 

and   can be described and separately prescribed after the factorization.   is a diagonal matrix 178 

whose elements include the standard deviation of all state variables in the three-dimensional grids. 179 

To reduce the computational cost, we use the average value of standard deviations that are at the 180 

same level. Thus, the standard deviation is simplified with vertical levels.   is a symmetric 181 

matrix, having the form 182 

  

 
 
 
 
 
 
 
       

     
      

      
   

   
        

      
      

   

    
      

          
       

   

    
      

      
           

   

    
      

      
        

        
 
 
 
 
 
 
 

,                      (4) 183 

where    ,    ,      ,       and      at diagonal locations are the background error 184 

auto-correlation matrices that are associated with each species. They represent the correlation 185 

among pairs of grid points for one species. Other submatrices represent the correlations between 186 

different species, known as cross-correlations. For example,    
   represents the cross-correlations 187 

between EC and OC, and    
       

    . In Li et al. (2013), these cross-correlations were 188 

disregarded, that is, the five species are considered independently and   is thus a block diagonal 189 

matrix. 190 

In this study, the cross-correlations between different species are considered by introducing 191 

control variable transforms (Derber and Bouttier, 1999; Barker, 2004; Huang, 2009). We divide 192 

the model aerosol variables into balanced components (   ) and unbalanced components (   ): 193 

          .                                  (5) 194 

Note the EC does not need to be divided. There is not unbalanced component for EC that is 195 

similar to the variable of vorticity in the data assimilation of ECMWF (Derber and Bouttier, 1999), 196 

or the variable of stream function in the data assimilation of MM5 (Barker, 2004). The 197 

transformation from unbalanced variables (   ) to full variables (  ) by the balance operator   198 

is given by 199 

        .                                    (6) 200 



Eq. (6) can be written as 201 
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where     is the submatrix of  , which represents the statistical regression coefficients between 203 

the variables   and   (Chen et al., 2013). Note that    is a diagonal matrix with the dimension of 204 

model grid points. Each model grid point has a regression coefficient. For convenience, we 205 

assumed that the elements of     is a constant value for all grid points, which are denoted as     206 

and are calculated by linear regression with all grid points. For example,     can be obtained 207 

from the regression equation of OC and    as 208 

            ,                               (8) 209 

where   is the residual.     and     can be estimated from the forecast differences of 24 h 210 

forecasts and 48 h forecasts, similar to the statistics of the BEC. Eq. (8) contains the slope but no 211 

intercept. The intercept is nearly zero because     and     represent forecast differences that 212 

can be considered to be zero mean values. After obtaining    , the balanced part (e.g., the value 213 

of the regression prediction) of  OC can be obtained by 214 

                 .                           (9) 215 

Where      represents the predicted value of Eq. (8), which is equal to the balanced part (    ). 216 

Remove the      from the full variables to obtain the unbalanced part (    ), that is,   in Eq. 217 

(8). Thus, the calculation of      can be written as 218 

               .                          (10) 219 

Here,      and  EC are employed as predictors in the next regression equation to obtain 220 

     . Then, we can obtain the unbalanced parts of the remaining variables, which are defined as 221 

follows: 222 

                                                  (11) 223 

                                                    (12) 224 

                                                       (13) 225 



The coefficient of determination (  ) can be employed to measure the fit of these regressions. It 226 

can be expressed as 227 

                   
   

   
,                                  (14) 228 

where SSR and SST are the regression sum of squares and the sum of squares for total, 229 

respectively.  230 

These unbalanced parts can be considered to be independent because they are residual and 231 

random.    denotes the unbalanced variables of the BEC and can be factorized as 232 

         
 ,                               (15) 233 

where    and    are the standard deviation matrix and the correlation matrix, respectively.    234 

should be a block diagonal without cross-correlations as follows: 235 
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According the definition of the BEC, 237 

                                          .                               (17) 238 

And    can be written as 239 

                                  
   .                              (18) 240 

Using Eq. (6), Eq. (17) and Eq. (18), the relationship between   and    is 241 

        
 .                                  (19) 242 
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  are defined as the square root of   and the square root of   , respectively. Their 243 

transformation is  244 

 
 

     

 

 .                                 (20) 245 

Using Eq. (15), Eq. (20) can be written as follows:  246 

 
 

       

 

 .                                (21) 247 

Generally, a transformed cost function of Eq. (2) is expressed as a function of a preconditioned 248 

state variable: 249 
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Here,      
 

    . Using Eq. (21), Eq. (22) can be written as 251 

      
 

 
      

 

 
       

 

       

 

          

 

       .         (23) 252 

Eq. (23) is the last form of the cost function with the cross-correlation of  .  253 

According to Li et al. (2013), the correlation matrix of the unbalanced parts (  ) is factorized as 254 

                                             (24) 255 

Here,   denotes the Kronecker product, and    ,     and     represent the correlation 256 

matrices between gridpoints in the   direction, the   direction, and the   direction, respectively, 257 

with the sizes      ,      , and      , respectively. Here,   ,    and    represent the 258 

numbers of grid points in the   direction,   direction, and   direction, respectively. This 259 

factorization can decrease the size of the dimension of   . Another desirable property of Eq. (24) 260 

is 261 
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    and     are expressed by Gaussian functions, and     is directly computed from the proxy 263 

data. They will be discussed in Sec 4.2. 264 

3. WRF/Chem configuration and cross-correlations of emission species  265 

  In this section, we describe the configuration of WRF/Chem, whose forecasting products will 266 

be employed in the following BEC statistics and data assimilation experiments. In addition, the 267 

cross-correlations of emission species from the WRF/Chem emission data are investigated to 268 

understand the cross-correlation between different species of the BEC.  269 

3.1 WRF/Chem configuration 270 

WRF/Chem (V3.5.1) is employed in our study. This is a fully coupled online model with a 271 

regional meteorological model that is coupled to aerosol and chemistry models (Grell et al., 2005). 272 

The model domain with three spatial domains is shown in Figure 1. The horizontal grid spacing 273 

for these three domains are 36 km (80×60 points), 12 km (97×97 points), and 4 km (144×96 274 

points), respectively. The outer domain spans southern California and the innermost domain 275 



encompasses Los Angeles. All domains have 31 vertical levels with the top at 50 hPa. The vertical 276 

grid is stretched to place the highest resolution in the lower troposphere. The discussion of the 277 

BEC and the emissions presented in this paper will be confined to the innermost domain. The 278 

initial meteorology conditions for WRF/Chem are prepared using the North American Regional 279 

Reanalysis (NARR) (Mesinger et al. 2006). The meteorology boundary conditions and sea surface 280 

temperatures are updated at each initialization. For the forecast running, the initial meteorological 281 

conditions are obtained from the NARR data. The initial aerosol conditions are obtained from the 282 

former forecast. The emissions are derived from the National Emission Inventory 2005 (NEI’05) 283 

for both aerosols and trace gases (Guenther et al., 2006). For more details, the readers are referred 284 

to Li et al. (2013). 285 

 286 

Figure 1. Geographical display of the three-nested model domains. The innermost domain covers 287 

the Los Angeles basin; the black point denotes the location of Los Angeles. 288 

3.2 Cross-correlations of emission species  289 

The emission source is necessary for running the WRF/Chem model. It is an important factor 290 

for the distribution of the aerosol forecasts. The analysis of the correlations among the emission 291 

species can help us to understand the BEC statistics. The emission species is derived from the 292 

emission file that is produced by the NEI’05 data for each model domain. Only the emission data 293 

for the innermost domain is used to calculate the correlation among the emission species. The 294 

emission file contains 37 variables, including gas species and aerosol species. An aerosol species 295 

also comprises a nuclei mode and accumulation model species (Peckam et al., 2013). From these 296 



aerosol emission species, five lumped aerosol species are calculated, which is consistent with the 297 

variables in the data assimilation. These five lumped species are E_EC (sum of the nuclei mode 298 

and the accumulation mode of elemental carbon PM2.5), E_ORG (sum of the nuclei mode and the 299 

accumulation mode of organic PM2.5), E_NO3 (sum of the nuclei mode and the accumulation 300 

mode of nitrate PM2.5), E_SO4 (sum of the nuclei mode and the accumulation mode of sulfate 301 

PM2.5), and E_PM25 (sum of the nuclei mode and the accumulation mode of unspeciated primary 302 

PM2.5). 303 

  Figure 2 shows the cross-correlations of the five lumped aerosol emission species. All 304 

cross-correlations exceed 0.5. This result reveals that the emission species are correlated, which 305 

may be attributed to the common emission sources and diffusion processes that are controlled by 306 

the same atmospheric circulation. The most significant cross-correlation is between E_EC and 307 

E_ORG with a value of approximately 0.8. This high correlation demonstrates that the emission 308 

distributions of these two species are very similar. Their emissions are primary in urban and 309 

suburban areas with small emissions in rural areas and along roadways (not shown). As shown in 310 

Fig. 2, the lowest cross-correlation is between E_ORG and E_SO4; the latter emissions are 311 

primary in the urban and suburban areas with few emissions in rural areas and roadways (not 312 

shown).    313 

 314 

Figure 2. Cross-correlations between emission species of E_EC, E_ORG, E_NO3, E_SO4 and 315 

E_PM25. The emission species data are derived from the NEI’05 emissions set for the innermost 316 

domain of the WRF/Chem model 317 

 318 

4 Balance constraints and BEC statistics  319 
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   With the configuration of the WRF/Chem model described in Section 3.1, forecasts for one 320 

month (from 00UTC of May 15 to 00UTC of June 14, 2010) were performed for the balance 321 

constraints and the BEC statistics. Forecast differences between 24 h forecasts and 48 h forecasts 322 

are available at 00UTC. Thirty forecast differences are employed as inputs in the NMC method. 323 

For this method, 30 forecast differences are sufficient; however, a longer time series may be more 324 

beneficial for the BEC statistics (Parrish and Derber, 1992).  325 

4.1 Balance regression statistics   326 

Using the 30 forecast differences between 24 h and 48 h forecasts, we can obtain    ，    ， 327 

          and     . The size of these variables is       , where   is the number of 328 

model grid points. We put these data into Eqs. (6-13) to calculate the regression coefficients of      329 

and the unbalanced parts of the variables. Note the process of calculation should be step by step, 330 

since the latter equation will use the unbalanced parts of former equations. Table 1 shows the 331 

regression coefficients whose column and row are consistent with      in Eq. (7). The last column 332 

in Tab. 1 is the coefficient of determination (  ) of the regression equations. For the regression 333 

equation of OC, the regression coefficient is 0.90 and the coefficient of determination of Eq. (7) is 334 

0.86, which indicates that EC and OC are highly correlated and their mass concentration scales are 335 

approximate. Their correlation is similar to the correlation of the stream function and velocity 336 

potential; thus, we set them as the first and second variables in the regression statistics. For the 337 

regression equation of    , the regression coefficients of EC and     are 4.01 and 3.76, 338 

respectively, because the mass concentration scale of     exceeds the mass concentration scales 339 

of EC and    . The coefficient of determination is only 0.32, which indicates that the 340 

correlations between     and EC and between     and     are weak. This result reveals that 341 

the forecast errors of     differ from the forecast errors of EC and    . A possible reason is 342 

that     is the secondary particle that is primarily derived from the transformation of    , but 343 

EC and     are derived from direct emissions. Similar to    ,     is also primarily derived 344 

from the transformation of     and the coefficient of determination for     is also low. For the 345 

last variable OTR, the maximum coefficient of determination is 0.96 because OTR includes some 346 

different compositions that are correlated with the first four variables.  347 



Table 1 Regression coefficients of balance operator   and the coefficient of determination 348 

(regression coefficients correspond to     in Eq. (7)) 349 

species regression coefficient ( ) 
coefficient of 

determination (  ) 

EC 1     / 

OC 0.90 1    0.86 

NO3 4.01 3.76 1   0.32 

SO4 1.35 -0.21 -3.15 1  0.48 

OTR 2.93 2.35 0.28 0.60 1 0.96 

 350 

Figure 3 shows the cross-correlations of the five full variables and the unbalanced variables. In 351 

Fig. 3a, the cross-correlations of the full variables exceed 0.3 and most of them exceed 0.5. In Fig. 352 

3b, however, the cross-correlations of the unbalanced variables are less than 0.2. Some of the 353 

cross-correlations are close to zero, which indicates that these unbalanced variables are 354 

approximatively independent and can be employed as control variables in the data assimilation 355 

system.  356 

  

(a) full variables (b) unbalanced variables 

Figure 3. Cross-correlations between the five variables of the BEC. These variables are (a) full 357 

variables and (b) unbalanced variables of EC, OC,    ,     and OTR. 358 

 359 

4.2 BEC statistics 360 

   Using the original full variables and the unbalanced variables obtained by the regression 361 

equations, the BEC statistics are obtained. Figure 4 shows the vertical profiles of the standard 362 



deviations of the original   and the unbalanced   . In Fig. 4a, the original standard deviation of 363 

    is the largest value, whereas the smallest value is OC, whose profile is close to the profile of 364 

EC. All profiles show a significant decrease at approximately 800 m because the aerosol 365 

particulates are usually limited under the boundary level. In Fig. 4b, all standard deviations 366 

decrease in different degree, with the exception of EC, which remains as the control variable in the 367 

unbalanced BEC statistics. Note that the standard deviation of      decreases by approximately 368 

80% compared with     , which decreases by approximately 10%. This result is attributed to the 369 

small coefficient of determination for the regression of     (in Tab. 1), which indicates that a 370 

small portion of     can be predicted by the regression and a large portion is an unbalanced 371 

component. In contrast with    , a small portion of OTR is the unbalanced component.   372 

  

(a) full variables (b) unbalanced variables 

Figure 4. Vertical profiles of the standard deviation of the variables. (a) full variables and (b) 373 

unbalanced variables 374 

 375 

For the correlation matrix of   and   , they are factorized as three independent 376 

one-dimensional correlation matrices in Eq. (24). The horizontal correlation    or    is 377 

approximately expressed by a Gaussian function. The correlation between two points    and    378 

can be written as  
 
       

 

   
 

, where    is the horizontal correlation scale and is a constant value 379 

for    and   , which are considered to be isotropic (Li et al., 2013). This scale can be estimated 380 

by the curve of the horizontal correlations with distances. Figure 5 shows the curves of the 381 



horizontal correlations for the five control variables. For the full variables (Fig. 5a), the sharpest 382 

decrease in the curves is observed for     and the slowest decrease in the curves is observed 383 

for    . We assume that the decline curve is according to the Gaussian function. Then the 384 

intersection of the decline curve and the line of   
 

          can be approximately as the value 385 

of horizontal correlation scale. The horizontal correlation scales of EC, OC,    ,     and OTR 386 

are 25 km, 27 km, 20 km, 30 km and 28 km, respectively. For the unbalanced variables (Fig. 5b), 387 

their curves are closer than the curves of the full variables. The correlation scales of EC,    , 388 

    ,      and      are 25 km, 23 km, 24 km, 28 km and 25 km, respectively. These results 389 

suggest that the unbalanced variables are expressed by some common factors such as EC,     390 

and     , in the regression equations of Eqs. (10-13), which produces consistent horizontal 391 

correlation scales. 392 

 

 

 

 

 

 

(a) full variables (b) unbalanced variables 

Figure 5. Same as Figure 4, with the exception of the horizontal auto-correlation curves of the 393 

variables. The horizontal thin line is the reference line of   
 

          for determining the 394 

horizontal correlation scales. 395 

 396 

For the vertical correlation between    and    , they are directly estimated using the 397 

forecasting differences in the data assimilation system, but not estimated from a approximately 398 

alternative function. Because it is only an       matrix. Figure 6 shows the vertical correlation 399 

matrices    and     for the full variables (left column) and the unbalanced variables (right 400 

column), respectively. A common feature of both the full variables and the unbalanced variables is 401 



the significant correlation between the levels of the boundary layer height, which is consistent 402 

with the profile of the standard deviation in Fig. 4. Some weak adjustments to the correlations 403 

between the full and unbalanced variables are made. For example, the correlation of      is 404 

stronger than the correlation of     between the boundary layers. Similar with the analysis of 405 

horizontal correlation scale, the vertical correlation scale of      is larger than the vertical 406 

correlation scale of    . Conversely, the vertical correlation scale of      is smaller than the 407 

vertical correlation scale of OTR. These results demonstrate that the vertical correlations for the 408 

unbalanced variables are more consistent than the vertical correlations of the full variables, which 409 

is similar to the adjustments to the horizontal correlation scale. Note that the differences of vertical 410 

correlation are slight, compared with the difference of horizontal. The main reason is that the 411 

vertical correlations are generally affected by the atmospheric boundary layer height. Thus, all 412 

vertical correlation decreases rapidly for the levels above the boundary layer height. 413 
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Figure 6. Vertical correlations of the five variables of the BEC. The left column represents the full 414 

variables, and the right column represents the unbalanced variables. 415 

 416 

5. Application to data assimilation and prediction 417 

   To exhibit the effect of the balance constraint of the BEC, the data assimilation experiments 418 

and 24-h forecasts for nine cases are run using WRF/Chem model. The surface PM2.5 and 419 

aircraft-speciated observations are assimilated using different BEC, and the evaluations are 420 

presented for the data assimilation and subsequent forecasts. Three basic statistical measures 421 

including mean bias (BIAS), root mean square error (RMSE) and correlation coefficient (CORR) 422 

are utilized for the evaluations. 423 

5.1 Observation data and experiment scheme 424 

   Two types of observation data are employed in our experiments. The first type of observation 425 

data consists of hourly surface PM2.5 concentrations from the California Air Resources Board 426 

(ARB). There are 42 surface PM2.5 monitoring sites existed in the innermost domain of the 427 
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WRF/Chem model (Fig. 7). The second type of observation data is the speciated concentration 428 

along the aircraft flight track. The aircraft observations were investigated from the California 429 

Research at the Nexus of Air Quality and Climate Change (CalNex) field campaign in 2010. Nine 430 

flights data around Los Angeles from 15 May to14 June, 2010 are selected as the cases of data 431 

assimilation. Table 2 shows the start time and end time of each flight. The species of the aircraft 432 

observations include OC, NO3, SO4 and NH4. Note that NH4 is not a control variable; thus, the 433 

aircraft observation of NH4 is disregarded in the data assimilation. Because the particle size of the 434 

aircraft observations is less than 1.0 μm, some adjustments to the flight observations are made 435 

according to the ratios between the concentration under 2.5 μm and the concentration under 1.0 436 

μm for each species using model products. With the ratios multiplied by the aircraft observed 437 

concentrations, the speciated concentrations under 2.5 μm can be obtained.   438 

 439 

Table 2 The periods of flight during CalNex 2010 and the initial time of assimilation  440 

Number of 

cases 

Start time of flight End time of flight Initial time of assimilation 

1 18:00 UTC, May 16 01:42 UTC, May 17 00:00 UTC, May 17 

2 17:28 UTC, May 19 00:10 UTC, May 20 18:00 UTC, May 19 

3 17:28 UTC, May 21 00:10 UTC, May 21 18:00 UTC, May 21 

4 23:08 UTC, May 24 05:23 UTC, May 25 00:00 UTC, May 25 

5 01:59 UTC, May 30 07:45 UTC, May 30 06:00 UTC, May 30 

6 05:00 UTC, May 31 10:54 UTC, May 31 06:00 UTC, May 31 

7 07:59 UTC, June 2 14:09 UTC, June 2 12:00 UTC, June 2 

8 07:59 UTC, June 3 14:041 UTC, June 3 12:00 UTC, June 3 

9 17:56 UTC, June 14 23:35 UTC, June 14 18:00 UTC, June 14 

 441 



 442 

Figure 7. The topography of the innermost domain and the locations of surface monitoring stations 443 

(black dots). The red square is the location of Los Angeles 444 

 445 

 446 

(a) 00:00 UTC±1.5 h, May 17               (b) 18:00 UTC±1.5 h, May 19 447 

 448 

(c) 18:00 UTC±1.5 h, May 21              (d) 00:00 UTC±1.5 h, May 25 449 

 450 

(e) 06:00 UTC±1.5 h, May 30               (f) 06:00 UTC±1.5 h, May 31  451 
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 452 

(g) 12:00 UTC±1.5 h, Jun 02                (h) 12:00 UTC±1.5 h, Jun 03  453 

 454 

(i) 18:00 UTC±1.5 h, Jun 14 455 

Figure 8. Aircraft flight tracks during the time window of data assimilation for nine cases. The 456 

color of the track indicates the aircraft height.  457 

 458 
   The initial time of data assimilation cases are designed according to the period of flights, 459 

showed in Table 2. The time window of assimilation for the flight data is ±1.5h, though some 460 

flight times do not completely cover the time windows. Figure 8 shows the aircraft tracks during 461 

the time window of data assimilation. It is obvious that the aircarft data on May 21, May 25 and 462 

June 14 are relative few as the tracks are almost outside of the study domain. For the surface data, 463 

it is only the observations at the initial time are assimilated. For each case, three parallel 464 

experiments are performed. The first experiment is the control experiment without aerosol data 465 

assimilation, which is frequently known as a free run and denoted as Control. The second 466 

experiment is a data assimilation experiment that assimilates surface PM2.5 and aircraft 467 

observations using the full variables without balance constraints; it is denoted as DA-full. The 468 

third experiment is also a data assimilation experiment that also assimilates surface PM2.5 and 469 

aircraft observations, but employs the unbalanced variables as control variables conducted by the 470 

balanced constraint; it is denoted as DA-balance. The backgrounds for DA-full and DA-balance 471 

are the forecasting results from the previous runs without DA. These previous forecasting results 472 
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have been obtained when we run the model for the BEC statistics. The observation error is the half 473 

of standard deviation of the original background variable, and a vertical profile of observation 474 

errors is applied with the average profile of standard deviation of the background variable. In each 475 

experiment, a 24-h forecasting is run using the WRF/Chem model with the same configuration 476 

described in Section 3.1, and the case on June 3, 2010 is presented in detail as an example. 477 

5.2 Increments of data assimilation 478 

Figure 9 shows the horizontal increments of EC, OC, NO3, SO4 and OTR at the first model 479 

level for the DA-full (left column) and DA-balance experiments (right column) of the case on 480 

June 3, 2010. In the DA-full experiment, the increment of EC and OTR (Fig. 9a and 9i) are similar. 481 

They are obtained from the surface PM2.5 observations because no direct aircraft observations 482 

correspond to these two variables. In the DA-balance experiment, significant adjustments are 483 

made to the increments of EC (Fig. 9b) under the action of the balance constraints. The 484 

observations of OC affect greatly the increments of EC for thee high cross-correlation between EC 485 

and OC. Thus the increments of EC are similar with the increments of OC. Similarly, significant 486 

adjustments are made to the increment of OTR (Fig. 9j), though there are not the species 487 

observation of OTR. There are also some slight adjustments for the increments of OC, NO3 and 488 

SO4 for the crossing spread among species. 489 

Figure 10 shows the vertical increments along 35.0 N for the DA-full and DA-balance 490 

experiments. Similar to Fig. 9, the increments of EC and OTR (Fig. 10a and 10i) spread upward 491 

from the surface in the DA-full experiment, which are obtained from the surface PM2.5 492 

observation. In the DA-balance, the increments of EC and OTR (Fig. 10b and 10j) exhibit 493 

observation information from the aircraft height at approximately 500 m, and the value of the 494 

increments show significant increases. The distributions of the increments for these five variables 495 

in the DA-balance (Fig. 10, right column) generally tend to coincide compared with the 496 

distributions of the increments in the DA-full (Fig. 10, left column). The results of the DA-balance 497 

are reasonable due to the influence of each other across the balance constraints.   498 



  

(a) EC in the DA-full (b) EC in the DA-balance 

  

(c) OC in the DA-full (d) OC in the DA-balance 

  

(e) NO3 in the DA-full (f) NO3 in the DA-balance 

  

(g) SO4 in the DA-full (h) SO4 in the DA-balance 



  

(i) OTR in the DA-full (j) OTR in the DA-balance 

Figure 9. Surface distributions of increments of the five variables of EC, OC, NO3, SO4 and OTR 499 

at 12:00 UTC on June 3, 2010. The left column and right column are from DA-full and 500 

DA-balance, respectively. 501 

 502 

  

(a) EC in the DA-full (b) EC in the DA-balance 

  

(c) OC in the DA-full (d) OC in the DA-balance 

  

(e) NO3 in the DA-full (f) NO3 in the DA-balance 



  

(g) SO4 in the DA-full (h) SO4 in the DA-balance 

  

(i) OTR in the DA-full (j) OTR in the DA-balance 

Figure 10. Same as Figure 9, with the exception of the vertical sections along 35 N. 503 

  504 
5.3 Evaluation of data assimilation and forecasts 505 

Figure 11 shows the scatter plots of the initial model fields versus the surface observation for all 506 

nine cases. In Fig. 11a, the simulated concentrations of the Control experiment display a 507 

significant underestimation with a BIAS of -3.66µg/m
3
. The mean concentration of Control is 508 

10.90 µg/m
3
, about 25.1% lower than observed mean concentrations (14.56 µg/m

3
). In the DA-full 509 

and DA-balance experiments, there are remarkable increases for the simulated concentrations, and 510 

the BIASs reduce to as small as -1.21 and -0.94 µg/m
3
. The RMSE is 9.53 µg/m

3
 in the Control 511 

experiment. The RMSE reduces to 4.82 and 4.48 µg/m
3
 in the DA-full and DA-balance 512 

experiment, respectively. There are also significant improvements for the CORR in the DA-full 513 

and DA-balance experiments, compared with the Control experiment. Furthermore, these three 514 

statistical measures of the DA-balance experiments show some slight improvement, compared 515 

with that of the DA-full experiments. The result demonstrates that more observation information 516 

spread by balance constraints can improve assimilation performance.  517 



  518 

(a) Control 519 

 520 

(b) DA-full 521 

 522 

(c) DA-balance 523 

Figure 11. Scatter plots of observed concentrations of PM2.5 versus simulated PM2.5 concentrations 524 

of the experiments of (a) Control, (b) DA-full, and (c) DA-balance for all nine cases.  525 

 526 

To evaluate the effects of the data assimilation, the CORR, RMSE and BIAS during the forecast 527 

time are calculated for each case, and their averaged results are showed in Figure 12. The CORRs 528 

of the DA-balance and DA-full experiments are very close (Fig. 12a). But, the difference increase 529 
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after the first hour with a higher CORR in the DA-balance experiment. The CORR of the 530 

DA-balance experiment is substantially higher than that of the DA-full experiment from the 2
nd

 531 

hour to the 16
th

 hour. Similar improvements for the RMSE and the BIAS of the DA-balance 532 

experiment are observed in Fig. 12b and Fig. 12c, respectively. The improvement for the BIAS in 533 

the DA-balance experiment is the most significant among these three statistical measures. The 534 

peak value of the improvement for the BIAS (Fig 12c) is at the 4
th

 hour, and the improvement is 535 

distinct until the end of forecasts. These improvements indicate that the balance constraint is 536 

positive for the subsequent forecasts, which derives from the balanced initial distribution among 537 

species. 538 
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(c) BIAS 

Figure 12. The averaged (a) Correlations, (b) root-mean-square errors (RMSE in µg/m
3
) and (c) 539 

mean bias (BIAS in µg/m
3
) of the PM2.5 concentration forecasts against observations as a function 540 

of forecast duration.  541 

 542 

6. Summary and discussion 543 

   We examined the BEC in a 3DVAR system, which uses five control variables (EC, OC, NO3, 544 

SO4 and OTR) that are derived from the MOSAIC aerosol scheme in the WRF/Chem model. 545 

Based on the NMC method, differences within a month-long period between 24- and 48-h 546 

forecasts that are valid at the same time were employed in the estimation and analyses of the BEC. 547 

The background errors of these five control variables are highly correlated. Especially between EC 548 

and OC, their correlation is as large as 0.9.  549 

A set of balance constraints was developed using a regression technique and incorporated in 550 

the BEC to account for the large cross correlations. We employ the the balance constraint to 551 

seperate the original full variables into balanced and unbalanced parts. The regression technique is 552 

used to express the balanced parts by the unbalanced parts. These unbalanced parts can be 553 

assumed independent. Then, the unbalanced parts are employed as control variables in the BEC 554 

statics. Accordingly, the standard deviations of these unbalanced variables are less than the 555 

standard deviations of the original variables. The horizontal correlation scales of unbalanced 556 

variables are closer than that of full variables on the effect of the balance constraints. And the 557 

vertical correlations of unbalanced variables show similar trend. 558 

  To evaluate the impact of the balance constraints on the analyses and forecasts, three groups of 559 

experiments, including a control experiment without data assimilation and two data assimilation 560 
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experiments with and without balance constraints (DA-full and DA-balance), were performed. In 561 

the data assimilation experiments, the observations of surface PM2.5 concentration and 562 

aircraft-speciated concentration of OC, NO3 and SO4 were assimilated. The observations of these 563 

three variables can spread to the two remaining variables in the increments of the DA-balance, 564 

which results in a more complex distribution. The evaluations of CORR, RMSE and BIAS for the 565 

initial analysis fields show more improvement in the DA-balance experiments, compared with the 566 

DA-full experiments. Though, these improvement are some slight. An important reason is that the 567 

surface PM2.5 observations are independent from the aircraft observations. If we evaluate the 568 

analysis fields by the species observation of aircraft, there may be more significant improvements 569 

in the DA-balance experiments.    570 

While the improvements increase after the first forecasting hour in the DA-balance 571 

experiments, compared with forecasts of the DA-full experiments. The improvements persist to 572 

the end of forecasts, and are substantial from the 2
nd

 hour to the 16
th

 hour (Fig. 12). These results 573 

suggested that the balance constraints can serve an import role for continually improving the skill 574 

of sequent forecasts. Note that some aircraft data are relative few, and some flight tracks are not 575 

around Los Angeles in some cases (Fig. 8). If there are more aircraft observations, the 576 

improvements of the DA-balance experiments should be more significant and durable. 577 

   The developed method for incorporating balance constraints in aerosol data assimilation can 578 

be employed in other areas or other applications for different aerosol models. For the aerosol 579 

variables in different models, some cross-correlations between different species or size bins 580 

should exist because their common emissions and diffusion processes are controlled by the same 581 

atmospheric circulation. Although these cross-correlations may be stronger than the 582 

cross-correlations of atmospheric or oceanic model variables, theoretic balance constraints, such 583 

as geostrophic balance or temperature-salinity balance, do not exist. We expected to discover a 584 

universal balance constraint that can describe the physical or chemical balanced relationship of 585 

aerosol variables, and utilize it in the data assimilation system. In addition, we expected to expand 586 

the balance constraint to include gaseous pollutants, such as nitrite (NO2), sulfur dioxide (SO2), 587 

and (carbon monoxide) CO. These gaseous pollutants are correlated with some aerosol species, 588 

such as NO3, SO4 and EC, which can improve the data assimilation analysis fields of aerosols by 589 

http://dict.cn/sulfur%20dioxide


assimilating these gaseous observations. The assimilation of aerosol observations may improve the 590 

analysis fields of gaseous pollutants. 591 

 592 

Code availablity 593 

This data assimilation system is established by ourself. The code of this system can be obtained on 594 

request from the first author (zzlqxxy@163.com). 595 
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 710 

Table 1 Regression coefficients of balance operator   and the coefficient of determination 711 

(regression coefficients correspond to     in Eq. (7)) 712 

species regression coefficient ( ) 

coefficient of 

determination 

(  ) 

EC 1     / 

OC 0.90 1    0.86 

NO3 4.01 3.76 1   0.32 

SO4 1.35 -0.21 -3.15 1  0.48 

OTR 2.93 2.35 0.28 0.60 1 0.96 

 713 

 714 

 715 

 716 

Table 2 The periods of flight during CalNex 2010 and the initial time of assimilation  717 

Number of 

cases 

Start time of flight End time of flight Initial time of assimilation 

1 18:00 UTC, May 16 01:42 UTC, May 17 00:00 UTC, May 17 

2 17:28 UTC, May 19 00:10 UTC, May 20 18:00 UTC, May 19 

3 17:28 UTC, May 21 00:10 UTC, May 21 18:00 UTC, May 21 

4 23:08 UTC, May 24 05:23 UTC, May 25 00:00 UTC, May 25 

5 01:59 UTC, May 30 07:45 UTC, May 30 06:00 UTC, May 30 

6 05:00 UTC, May 31 10:54 UTC, May 31 06:00 UTC, May 31 

7 07:59 UTC, June 2 14:09 UTC, June 2 12:00 UTC, June 2 

8 07:59 UTC, June 3 14:041 UTC, June 3 12:00 UTC, June 3 

9 17:56 UTC, June 14 23:35 UTC, June 14 18:00 UTC, June 14 

 718 

 719 

 720 

 721 

 722 



Figure 1 Geographical display of the three-nested model domains. The innermost domain covers 723 

the Los Angeles basin; the black point denotes the location of Los Angeles. 724 

 725 

Figure 2 Cross-correlations between emission species of E_EC, E_ORG, E_NO3, E_SO4 and 726 

E_PM25. The emission species data are derived from the NEI’05 emissions set for the innermost 727 

domain of the WRF/Chem model 728 

 729 

Figure 3 Cross-correlations between the five variables of the BEC. These variables are (a) full 730 

variables and (b) unbalanced variables of EC, OC,    ,     and OTR. 731 

 732 

Figure 4 Vertical profiles of the standard deviation of the variables. (a) full variables and (b) 733 

unbalanced variables 734 

 735 

Figure 5 Same as Figure 4, with the exception of the horizontal auto-correlation curves of the 736 

variables. The horizontal thin line is the reference line of   
 

          for determining the 737 

horizontal correlation scales. 738 

 739 

 740 

Figure 6 Vertical correlations of the five variables of the BEC. The left column represents the full 741 

variables, and the right column represents the unbalanced variables. 742 

 743 

Figure 7 The topography of the innermost domain and the locations of surface monitoring stations 744 

(black dots). The red square is the location of Los Angeles 745 

 746 

Figure 8 Aircraft flight tracks during the time window of data assimilation for nine cases. The 747 

color of the track indicates the aircraft height.  748 

 749 

Figure 9 Surface distributions of increments of the five variables of EC, OC, NO3, SO4 and OTR 750 

at 12:00 UTC on June 3, 2010. The left column and right column are from DA-full and 751 

DA-balance, respectively. 752 

 753 

Figure 10 Same as Figure 9, with the exception of the vertical sections along 35 N. 754 



 755 

Figure 11 Scatter plots of observed concentrations of PM2.5 versus simulated PM2.5 concentrations 756 

of the experiments of (a) Control, (b) DA-full, and (c) DA-balance for all nine cases.  757 

 758 

Figure 12  The averaged (a) Correlations, (b) root-mean-square errors (RMSE in µg/m
3
) and (c) 759 

mean bias (BIAS in µg/m
3
) of the PM2.5 concentration forecasts against observations as a function 760 

of forecast duration.  761 
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