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At the very outset of the response, we would like to clarify that we view the work de-
scribed in the manuscript as a methodological first step in the development of an inver-
sion scheme that could be potentially used to estimate ffCO2 emissions. In this paper,
we have concentrated on describing a model for very spatially heterogeneous ffCO2
emissions fields and how this model could be used in an inverse problem (it requires
a class of optimization methods – sparse reconstruction – that is not widely used in
CO2 inversion studies). The inverse problem adopted a number of simplifications e.g.
no boundary fluxes into regional domain, very small model-data mismatch errors, an
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assumption that the ffCO2 concentration signal at a sensor could be isolated from the
biospheric signal – and used a sensor network that is not specifically designed for
targeting ffCO2 emissions. Consequently, we do not imply that our method could be
quickly adapted for real-data inversions using current transport models, sensor net-
works and ffCO2 concentration measurement techniques.

It would be reasonable to believe that accurate ffCO2 estimation would require a new
sensor network, placed closer to major sources of ffCO2 emissions. Further, while
radiocarbon is one way of estimating ffCO2 concentrations at sensors, one could also
consider pollutants from incomplete combustion e.g., CO, to “back-out” the ffCO2 sig-
nal. However, these topics, though integral to the question of ffCO2 emission estima-
tion, are out of scope in a paper that, as the title suggests, is about a spatial parame-
terization for ffCO2 emission fields.

Many of the issues required to adapt our method to real-data inversions and/or re-
gional inversions e.g., specification of boundary fluxes, determining their uncertainties
and assessing their impact on ffCO2 emission estimates, are identical to those faced
by inversion studies for biospheric CO2 fluxes. These issues have been investigated
and addressed in the biospheric CO2 context (Gourdji et al, 2012), and may provide
starting points for adapting our method (for ffCO2) to a real-world scenario. In addition,
the complications introduced by transport (dispersion and dilution) and the impact of
transport model errors are identical to those faced by biospheric CO2 inversion studies
and may be solved in a similar manner – the papers by Chatterjee et al, (2012) and
Gourdji et al, (2012), cited in our manuscript, discuss these issues to a greater extent.
Consequently, we consider these topics outside the scope of this paper.

We will add this clarification in the Introduction section.

The reviewer states: “The mathematical framework is rather complicated but is care-
fully described and can be understood with reasonable effort. However, the numerical
tests presented are not realistic, and it is unclear from the present manuscript how
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this tool would be applied in practice. Ideally this should be addressed by applying
the model to a more realistic case study as described below. If that is not possible,
then the limitations of the numerical tests described in section 5 should be clearly de-
scribed. The introduction or discussion should include a more detailed description of
questions/applications for which this framework is appropriate. One such application
could be an Observing System Simulation Experiment to evaluate the utility of a dense
radiocarbon sampling network or the utility of continuous radiocarbon measurements
that have to date been demonstrated with sufficient accuracy only in the laboratory.”

Response: We have added a “Discussion” section where we elaborate on what the
spatial parameterization could be used for (primarily for Observation System Simula-
tion Experiments, determining the location of sensors, and the frequency with which
measurements are obtained) the limitations of the tests performed in Sec. 5, as well as
the impact of various numerical and boundary condition approximations on the emis-
sion estimates.

The reviewer states: “Model code is provided in Matlab via a website. I’m sorry that
I did not have a chance to download this, but I wonder whether it includes the early
steps in the wavelet analysis (i.e., corresponding to eqn (3)).”

Response: We will include it.

Major concerns

The reviewer states: “The proxy datasets may be strongly spatially correlated with en-
ergy use, but not necessarily with fossil-fuel emissions. Many large power plants in
the US are located far from the urban areas they serve. For example, large power
plants in Wyoming and Ohio serve customers in distant urban areas. In the case of
remotely located large power plants, the nightlight and built-up-area index would be
unlikely to have intensity proportional to the emissions. In the US and certain other
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nations, detailed emissions data are available for large point sources. How could the
framework be modified to take advantage of such information? E.g., could these point
source emissions be subtracted prior to the inversion)? Is there another proxy dataset
that could provide information about large point sources (e.g., perhaps high-resolution
thermal imagery?) For areas where reliable emissions point source data are not avail-
able, might large point sources complicate or confound the analysis? Please address
this in the introduction and/or discussion.”

Response: The reviewer is correct in saying that the use of nightlights and built-up
area maps, which correlate with energy use, could lead to an inaccurate random field
model. Specifically, we may omit a fine-scale wavelet that corresponds to the large
point source. However, the random field model is multi-resolution, implying that another
wavelet, at a coarser level, whose support covers the point source, could model it. In
doing so, the point source gets “smeared” over a larger area and the estimate of its
magnitude may incur an error. However, it will not be totally omitted from the inversion
procedure, with its emissions apportioned to other non-neighboring sources. This is a
consequence of the multiresolution nature of our MsRF.

In case accurate databases of large point sources exist e.g., CARMA, the impact of the
point sources can simply be subtracted out. If another proxy such as infrared images
exists, the wavelets in our MsRF could be augmented with the wavelets (of the same
family) chosen using the second proxy. If neither exists, the large point sources are
smeared, as described above.

We realize that proxies are imperfect markers of ffCO2 emissions. One of the exper-
iments in Section 3 specifically investigates the modeling ramifications of using im-
perfect proxies to construct the spatial parameterization. Experiments in Section 5
investigate the usefulness of the final model.

We will add this to the “Discussion” section.

The reviewer states: “Fossil fuel CO2 cannot be directly measured. This is acknowl-
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edged in the manuscript but treated rather blithely. Radiocarbon measurements pro-
vide the most direct measurement-based constraint available for separating biological
and fossil fuel CO2. Radiocarbon is a powerful tracer, but unfortunately measurements
are expensive and are being made on discrete samples at a subset of the 35 tower
measurement sites considered here at a rate of 3 midday samples per week. The er-
rors on fossil fuel CO2 estimated from radiocarbon are ∼ 1ppm (J.B. Miller et al., JGR,
2012). The sampling frequency is overestimated by an order of magnitude and the
measurement uncertainty is grossly underestimated by the numerical tests considered
here. A technique for continuous measurement of radiocarbon has been demonstrated
in the laboratory (D. Murnick, O. Dogru, and E. Ilkmen, 14C Analysis via Intracavity
Optogalvanic Spec- troscopy, Nucl. Instrum. Methods Phys. Res B., 2010 April 1;
268(7-8): 708–711. doi:10.1016/j.nimb.2009.10.010.), but field deployment of contin-
uous radiocarbon sensors has not been demonstrated. Operational autonomous field
operation will not be plausible for many years. I am curious whether a more realistic
numerical test representative of currently available or plausibly augmented radiocarbon
data (e.g. 10 - 35 towers, 3-7 mid-afternoon samples per week, 1 ppm measurement
errors) would provide a useful constraint if aggregated over a long time period, e.g. 1
year, and limited to the region where the footprints show sensitivity.”

Response: The primary difficulty in performing a realistic inversion (1 ppmv noise)
is the placement of the measurement towers – they are far from sources of ffCO2
emissions, leading to a ffCO2 concentration signal that is usually no more 2 ppmv on
any sensor. Adding a noise with an error variance of 1 ppmv makes them unusable. A
true test of our method, under realistic conditions, would also require a sensor network
designed and sited to measure ffCO2 emissions. Consequently, in this paper, we have
chosen an idealized case and focused on developing the inversion methodology.

The reviewer states: “In any regional inversion, boundary values need to be estimated
and may have large uncertainty. Gourdji et al., (2012) showed that boundary/initial
condition errors are potentially large enough to preclude reliable quantification of the
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net annual ecosystem uptake of CO2 for North America. It is important to consider
and discuss the potential complications of assigning fossil fuel CO2 boundary values
for the region where fluxes are being estimated, i.e. here the boundaries of CONUS.
This seems especially complicated here, given that the impact of emissions from ar-
eas outside CONUS but within the rectangular domain would need to be taken into
account. The compressive scaling strategy to exclude emissions outside of CONUS
as described in the paper is appropriate for the idealistic case considered (synthetic
obs), but in a real-data study either (1) accurate 4-dimensional fossil fuel CO2 mole
fraction values would be needed along the boundaries of the emission estimation do-
main (2) accurate 4-dimensional information about fossil fuel CO2 mole fractions along
the boundaries of the continent along with a correction for emissions within the rectan-
gular domain but outside the emission estimation area. Other complications arise if a
significant number of LPDM particles fail to exit the domain.”

Response: The reviewer is correct in stating that our method for regional inversions
will suffer from the same boundary condition issues that other regional (biospheric
CO2) inversion methods do. This is unavoidable in the absence of good boundary
condition data. The choice of option (1) versus (2) above would depend upon where
ffCO2 concentrations (to serve as boundary fluxes) were available (around the CONUS
boundary or around the continent, as in Gourdji et al, (2012)). In case the boundary
fluxes were available at the CONUS boundary, we would use option (1). As in our
paper, we would not estimate emissions outside CONUS and use compressive sensing
to suppress estimates there. The impact of ffCO2 emissions from OCONUS on the
measurements would be imposed by time-variant ffCO2 influx/efflux along the CONUS
boundary. In principle this is no different than Gourdji et al, (2012). The question of
LPDM particles failing to exist is identical to that faced (and addressed) in Gourdji et al,
(2012). However, the issue of boundary fluxes and the impact of those uncertainties
on the ffCO2 estimates are outside the scope of the paper.
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Specific concerns

Pg 1280:10 “I recommend expanding the discussion of the potential for using radio-
carbon measurements as a (almost) direct tracer for fossil fuel CO2. Also note that
accuracy of fossil fuel CO2 estimated from radiocarbon is ∼ 1 ppm, measurements are
limited because of cost, lack of technology, etc.”

Response: Our manuscript describes a method to estimate ffCO2 emissions pred-
icated on the availability of concentrations of ffCO2 measured at a set of sensors.
Radiocarbon is one of the ways of obtaining that measurement, but it could potentially
also be derived from joint measurements of pollutants such as CO. Issues related to
the cost and feasibility of making radiocarbon measurements are outside the scope of
the paper.

Pg 1280: “After discussing radiocarbon, add a short paragraph about the atmospheric
transport model describing signatures of emissions are dispersed and diluted and pos-
sible errors in simulated transport.”

Response: The complications introduced by transport are no different from those
encountered by inversion studies focused on biospheric CO2 fluxes, and these have
been addressed in literature. We would consider them to be out of scope of our paper.

Pg 1283:8: “Can wavelets be scaled up as well as shrunk?”

Response: Yes they can. That is clear from the expression for the wavelet at scale s
and translation j.

Pg 1283: 2nd to last line.” I don’t understand what is meant where Gothic W(s) then
| Goth- icW(s)| (i.e., the |’s don’t appear in the equation, but do appear in the descrip-
tion).”

Response: Gothic W is the set of (I, j) indices of wavelets of scale s. The magnitude
of the set (Gothic W within vertical bars) is the number of (I, j) pairs in the set. We will
add this clarification in the manuscript.
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Pg 1284: “Consider defining “random field” and briefly explaining why a random field is
useful for representing complex emission maps”

Response: A random field model allows one to generate arbitrary fields based on
the values assumed by the model’s parameters. Certain characteristics required of
the fields can be encoded into the random field model. For example, if the modeled
fields are required to be smooth, one can impose a spatial correlation between field
values at different locations, e.g. adopt a Gaussian random field model. The correlation
function’s parameters can be used to control the degree of smoothness. If the modeled
fields are known to be rough at certain locations, they can be modeled using wavelets,
with fine wavelets restricted to the rough regions and the wavelet weights acting as
the model parameters. These parameters can assume arbitrary values i.e., they are
random variables, and thus the model can create random fields.

We have added this to the beginning of Sec. 2.1.

Pg 1285: “Explicitly define || ||p notation here instead of or in addition to where it defined
on pg 1288 ln 5.”

Response: We will do so

Pg 1286:16: “ Is there length scale associated with s=3 (i.e. in degrees lat/lon)? Strug-
gling a bit to understand how wavelets manifest in physical space.”

Response: Yes there is. The finest wavelets, on the M = 6 hierarchy, are on the 6th
level, and have a support of 2 degree X 2 degree. s = 3 wavelets are 3 levels above,
and are 23 × 23 larger i.e., 16 degree X 16 degree. We will add this example in the
manuscript. Another reviewer also requested it.

Pg 1288:12: “Why does sentence 2 (“Thus, while we . . .”) follow from sentence 1
(“Note that the sparse nature. . .”)?”

Response: The two sentences were badly framed. What we meant was: “We will use
wavelets selected using the (single) nightlight and BUA maps to estimate weekly ffCO2
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emissions. Our tests above show that they model annually averaged Vulcan emissions
adequately, and we assume that while the emissions wax and wane with time, their
spatial distribution does not vary sufficiently to require a new wavelet selection. We
base this assumption on ffCO2 emissions’ correlation with human activities, and static
sources like powerplants which do not display large spatial dislocations with time”. We
will revise the manuscript accordingly.

Pg 1290:13 and Fig. 15: “It looks like the magnitudes of the errors are similar to the
magnitudes of the emissions themselves. It would be nice to include a plot of relative
error would be interesting perhaps along with a scatter plot.”

Response: The relative error plot is not very informative. Locations with large emis-
sions, as predicted by fv and fpr can be slightly offset; further, since the emission fields
are so rough, neighboring locations can have drastically smaller emissions. This leads
to division by (almost) zero problems, leading to very large relative errors. These are
rare, but they increase the dynamic range of the relative error plots. We will, however,
include scatter plots of fv and fpr for each grid cell, plotted against each other, in the
online supplementary material. We see that while there is a strong correlation between
the two, they are far from being identical i.e., while the prior fluxes are a “guess” for the
true emissions, they are not particularly close.

Pg 1291:2: “Briefly explain here or in the introduction why you are using these 35
tower locations that are ill-suited for fossil fuel estimation. It is sufficient to state that
the footprints were available from earlier studies and that it was convenient to use them
for method development.”

Response: The towers chosen belong to the network that existed in North America
in 2008, and therefore represents a realistic network, although far from optimal for the
purpose of fossil fuel flux estimation.

Sec. 4.2: “It would be nice to include the figure from Ray (2013) showing a CDF to
illustrate impact of non-negativity.”
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Response: We will do so.

Pg 1292, 1st paragraph: “8 days seems a short timescale for estimating emissions.
Was this selected to minimize aggregation error when computing monthly averages?
Even annual estimates would be useful for some applications.”

Response: The reviewer is correct. We will add the rationale behind the 8-day esti-
mation period in the manuscript.

Pg 1295:18-22: “As already noted, a radiocarbon-based inversion seems a much
more straightforward application for this framework than extending the wavelet ap-
proach for simultaneous estimation of bio and fossil fluxes. However, the measure-
ment density is much larger than will be possible for radiocarbon anytime in the next
two years. The measurement errors for fossil fuel CO2 are ∼1 ppm. Chatterjee et al.
(2012) errors of 0.1 ppm seem optimistic even for total CO2 inversion unless model
transport errors are somehow accounted for elsewhere (not an issue for synthetic
data studies, but potentially important for real-data inversion). NOAA’s CarbonTracker
(www.carbontracker.gov) uses much larger sigma values for continental sites though
they were assigned somewhat arbitrarily (Peters et al., PNAS, 2007). Also boundary
value errors would be significant in any regional inversion.”

Response: We agree with the reviewer that a radiocarbon-based inversion is a more
straightforward application for our framework than joint biospheric-fossil-fuel CO2 in-
version. However, the aim of the paper was to introduce a spatial parameterization, an
accompanying sparse reconstruction method and provide evidence of their usefulness
in an inversion. We have adopted a number of simplifications to do so, as the reviewer
has pointed out. We used sensors from a network that existed in North America in
2008 and whose locations are ill-suited for ffCO2 emission estimation. A sensor net-
work optimized for ffCO2 measurements does not currently exist. Consequently, we
have focused on developing the methodology first, under idealized conditions. We in-
troduce a number of methodological and modeling novelties - we could not find any use
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of wavelets, sparse reconstruction and non-negativity enforcement in the atmospheric
inversion of rough (non-stationary) emission fields. We will add this rationale to the
“Discussion” section in our revised manuscript.

Pg 1293:3 “How different is the value of c when Edgar is used instead of Vulcan? How
different are the total emissions?”

Response: We have added this to the revised manuscript.

Pg 1296:6 “Please note also that 0.1 ppm is already very optimistic.”

Response: We agree. We will include our rationale in the “Discussion” section, as
stated above.

Pg 1299:2-6 and Fig 9(a): “A relative error plots would be useful in addition to difference
plot shown in Figure 9a.”

Response: The two estimates differ slightly in the sense that strong ffCO2 sources
may be estimated at slightly different locations. Since the spatial distribution of ffCO2
fields is rough, neighboring locations may have very different, i.e., small, emission
estimates, leading to large relative errors (division by almost zero). Consequently we
have not found relative error plots to be useful – the range of relative errors is set by a
few grid-cells where these shifts occur.

Sec. 5, other comments: “A figure showing one or more longitudinal transects of E,
fpr, fv, and F (before non-negativity) would be interesting. Perhaps for a 32-day period.
It would be nice to see the extent to which sharp spatial transitions are or are/not
resolved for these quantities. If at all possible, it would be useful to include another
more realistic case study with much sparser data (e.g. daily or thrice weekly samples)
and with errors âĹij1 ppm, corresponding to current radiocarbon capabilities.”

Response: We fail to see what these transect would provide, since the fluxes are
those before the imposition of non-negativity. As might be expected, the fluxes show
positive and negative values. The negative fluxes and their frequency are small and are
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captured by the Cumulative Distribution Function that the reviewer has asked for. The
spatial gradients can be seen in Fig. 6 (and more figures are available in the Technical
Report cited in the paper).

Pg 1300:18-21: “This overstates what has been demonstrated in the current study.”

Response: We will reword to better reflect our accomplishments.

Pg 1301:5 “Briefly describe what is meant by a dictionary or omit. The discussion of
how the framework could be extended to account for biospheric fluxes is too brief to be
of much use.”

Response: We agree and will remove the discussion.

Fig. 6: “Please consider showing difference plots (from truth) and/or relative errors
in addition to estimated emissions. Also, perhaps it would be more useful to show a
32-day average rather than an 8 day average.”

Response: The relative error plot is not very informative for the reasons described
above for the comments for Pg. 1290:13 and Pg 1299:2-6. We will add a difference
plot (between true and estimated emissions) to the paper. We will update the text to
point of the comparison with Vulcan emissions.

1280:5 1286:5 The reviewer found grammatical errors.

Response: Will be fixed in the manuscript

1289:15 “Why switch to delta from alpha used earlier?”

Response: alpha is normalized and is [0, 1]. Delta is not.

1301:11 Ray (2013) is a link to the first author’s individual webpage at Sandia. It does
not seem like a particularly robust long-term repository for the MATLAB code. Perhaps
a static version could be included as a supplement to the paper. Ray et al. 2013 SAND
Report reference: Is there a long-term repository for DOE technical reports that would
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perhaps be a better long-term link

Response: We will provide a link to the copy of the Sandia technical report stored
in Sandia’s technical library. The software supplied with this paper is a more difficult
challenge. We require permission from the US Department of Energy to license and
distribute any software. This may not arrive before the paper is finalized and we may
not be able to supply a codebase in time.

Fig. 5, Fig 7 and Fig 9: The reviewer points out that certain markings, axes in figures,
colors used for plotting etc. are not very legible, and ought to be magnified, truncated
etc. for readability.

Response: We will make the changes in the manuscript.

Fig. 7 RHS, legend notation seems inconsistent with caption (fk vs Ek?). I’m not
convinced that incorporating yobs *clearly* improves the spatial agreement for the 8
day time periods, but agree that 32 day periods show substantial improvement.

Response: We will correct the manuscript to reflect this.
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