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The reviewer states: "The authors obtain spatial sparsity fractions of about 80% for
representing Vulcan emissions using wavelets. While these compression rates may,
at first, seem phenomenal, they are not surprising given that most of the gridcells in
the region of interest in Fig. (1b) do not contain significant levels of fossil fuel CO2
emissions. One alternative and naive approach to wavelets would be to consider only
those gridcells, or some aggregated set of gridcells (e.g. 4x4), that contain emissions
above a specified level (e.g. >1% of the max). Another approach could be to prescribe
spatial basis functions that have areas proportional to population (i.e. small areas for
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large metropolitan regions, and large areas for rural regions). | surmise that these
naive approaches would also lead to large sparsity fractions or reductions in dimen-
sion. To better illustrate the strengths of their wavelet approach, | recommend that the
authors devise a naive metric of sparsity and compare and contrast their numbers to
this metric.”

Response: The reviewer is correct inasmuch that there are other sparse representa-
tions of ffCO2 emissions e.g., simply retaining grid-cells above a threshold. However,
what a collection of selected grid-cells will not provide is a random field model, i.e. a
systematic way of constructing a field based on independent model parameters. The
discussion in Section 3 (selection of wavelets) is not about sparsity per se but about a
sparse random field model for ffCO2 emissions. A random field model could be con-
structed from the selected grid-cells by requiring that they be related to others in some
fashion. One such relation could be to constrain the values of the grid-cells using a
spatial variogram. This would result in a Gaussian random field, which are used when
estimating biospheric CO2 fluxes (and which, as we described in Sec. 1, will not work
for ffCO2 emissions). Alternatively, one could use a multi-resolution approach for the
spatial model, using wavelets to develop spatial structures in a continuous-level-of-
detail manner.

A sparse collection of grid-cells, with an inversion method treating each as an inde-
pendent parameter, would not be very useful — measurements at sensors are not very
sensitive to them individually. In contrast, the MsRF allows one to systematically per-
turb the weights of wavelets whose supports span the entire domain (which will have
a substantial impact globally on the sensors) down to the fine-scale ones (2 degree
x 2 degree supports), with very local impact. Ensuring that the MsRF is sparse (low-
dimensional) is thus very significant in an inversion setting.

In our paper, we had assumed that simply using the term “random field model” would
convey our intention of constructing fields in a systematic manner (for use inside an
optimization algorithm, when solving an inverse problem). We will add this clarification
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- our explicit interest in constructing fields systematically and ensuring that we can do
so using as few free parameters as possible — in the beginning of Sec. 3.

The reviewer states: “On page 1300, lines 26-28, the authors note that the deterministic
nature of their presented method is a drawback. Without quantified confidence intervals
and uncertainties, it is difficult to ascertain the significance of the inversion results (e.g.
as shown in Fig. 7). The authors should run additional inversion tests that vary e,,
€3, and other relevant parameters, and then report on the sensitivity of their results to
these variations. Furthermore, the manuscript should contain a discussion of the errors
described in items 3 and 4 below.”

Response: The main source of uncertainty in our inversions is the sparse set of mea-
surement towers and their locations (far from the source of ffCO2 emissions). In a
realistic (not synthetic data) inversion, the boundary conditions will also contribute their
uncertainty, as will the “error” model for the data-model discrepancy. The numerical
parameters mentioned above are not significant sources of errors.

The two parameters, e, and e3 are numerical tolerances that are set, as is common
in numerical studies, by reducing them till the results (wavelet coefficient estimates)
become insensitive to their values (variations drop below 1.0e-6). Selection of the
correct setting for M., is more involved and is described in Ray et al, (2013); it involved
increasing M, till the error in ffCO2 estimates fellow below a threshold (10%).

We will add the rationale for the values of the numerical tolerances, and the citations to
Sec. 5. In the new "Discussion" section, we will enumerate the sources of uncertainties
whose impacts our deterministic method does not quantify.

The reviewer states: “Underreporting is a known and persistent bias in using inventory-
based estimates for monitoring anthropogenic emissions. The authors should describe
what happens to this important source of error when using nightlights and BUA as
spatial proxies for inventories in their wavelet representation. Does this error become

C803

confounded with separate errors in the proxies and can it be attributed to the inventory
post-inversion? In a similar vein, are there errors in the proxies (e.g. clouds obscuring
nightlights) that become confounded with the inventory in the wavelet representation?”

Response: Underreporting will have no effect on the accuracy of the estimation.
Underreporting of country-level emissions lead to a smaller value of ¢ in Eq. 4, and
a smaller f,,.. However, f,. serves as normalization for wavelet weights w. A smaller
¢ will not lead to any differences in the wavelet weights relative to each other, and
consequently, have no impact on the minimization of the L1 norm. The normalizing
prior, of course, has no impact when evaluating the (Y — G’w’) constraint in Eq. 10.

Errors in nightlights and BUA can lead to smeared reconstructions. Errors in these
proxies lead to an erroneous selection of wavelets in the MsRF. If we omit a fine-scale
wavelet from the MsRF in a region with high ffCO2 emissions, it will be captured using
a coarser wavelet that covers the region with the ffCO2 source (leading to a smeared
source). If we select a wavelet in a region without significant ffCO2 emissions, the
sparse reconstruction method will simply set its weight to zero. Complications can
occur if an erroneously chosen wavelet has (1) a single sensor sited in its support
AND (2) is far from all other sensors. The measurements at a sensor are immensely
sensitive to emissions/fluxes in its vicinity. In an inversion, in this particular case, the
measurements at the sensor could be attributed entirely to the emissions modeled by
the erroneously chosen wavelet. Occlusion of nightlights by clouds is not a major issue
since these proxies are annually averaged quantities.

We will add this in the new “Discussion” section of the paper.

The reviewer states: “The inversions are performed assuming a perfect atmospheric
model. In reality, atmospheric models contain biases and other imperfections that can
severely limit the ability to invert for regional scale surface emissions. The authors
should describe how model imperfections could be included the inversion (e.g. as an
extra term in Eq. 5) and how they might be confounded with other errors in their sparse
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wavelet representation.”

: Transport model errors are not unique to estimation of ffCO2 emissions; they are
also encountered in the estimation of biospheric CO2 fluxes too, and are addressed by
using observation-specific model-data error variances (the diagonal terms in Re, in Eq.
6). We have cited papers by Chatterjee et al, (2012) and Gourd;ji et al, (2012), where
their calculation has been described in detail. Adapting these methods to our ffCO2
emission problem is outside the scope of the paper. Observation-specific model-data
error variances would result in the rescaling of the constraint in Eq. 10. We will add
this to the “Discussion” section.

The reviewer states “The inversion results for the U.S. shown in Fig. (7a) exhibit pro-
nounced seasonality, with small error reductions during periods 7 and 27, and large
error reductions offset by 2-3 months during periods 15 and 35. The time dependence
of the inversion suggests the presence of multiple time scales of interest that do not
seem to be represented in the inversion demonstration. Although the wavelet coeffi-
cients in Eq. 7 vary with time (i.e. they contain index k), the wavelets themselves do not
(i.e. do not contain index k). Are the spatial distributions of the nightlight and BUA prox-
ies fixed for the year? If so, would introducing time-varying spatial distributions of these
proxies reduce this seasonality? Please respond and include appropriate discussion
in the manuscript.”

Response: The errors in the estimation are due to changes in the wind direction,
which blow the ffCO2 away from the measurement locations. Having a new MsRF for
each k would imply that ffCO2 emitting regions change significantly on a weekly (or
seasonal) basis, to the point that one needs to select new wavelets. This is unlikely.
More practically, nightlights and BUA maps are computed as annual averages to re-
move the effect of cloud cover, holidays etc. on nightlight radiances, and it would be
difficult to construct time-varying prior emissions, from a feasibility point of view.

We do, of course, allow for multiple timescales; our emissions are estimated at 8-day
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resolution, which is sufficiently fine to capture any seasonal changes e.g., change of
wind patterns, and we perform inversions for 360 days.

The reviewer states: “In a comment related to item 5, fossil fuel emissions also vary
over multiple time scales (daily, weekly, monthly, and yearly). Although the manuscript
adequately describes the various spatial scales (and “spatial” is specified in the title),
the discussion of multiple time scales is haphazard. | recommend including this dis-
cussion in the manuscript and describing how the sparse wavelet technique can (or
cannot) be extended to capture multiple time scales. Making a clearer distinction be-
tween multiple time and space scales will also be helpful.”

Response: We are somewhat confused by the comment of haphazard modeling of
time-scales of ffCO2 emissions, since our paper contains none. Emissions are es-
timated over 8-day periods, and each period is considered to be independent of the
others. The MsRF is designed to address the non-stationary spatial nature of ffCO2
emissions. We have not addressed the temporal modeling of ffCO2 emissions because
of the reason below.

Changing (seasonal) wind patterns (which blow ffCO2 away from our limited set of
measurement sites) pose one of the stiffest challenges to accurate emission estima-
tion, and is the issue that we have investigated here. The primary variation of ffCO2
emissions, as represented by the Vulcan dataset, is diurnal (approximately 2x, with an
afternoon peak). A much smaller spatial variation occurs, comparatively very slowly,
when emissions shift from the hot south to the cold north in winter. In this paper, we
have focused on investigating whether the MsRF is useful for estimation purposes,
given the seasonal nature of wind patterns. Seasonal processes are adequately re-
solved at weekly resolution. The seasonal variation of ffCO2 emissions occur at a
timescale far longer than the time taken by ffCO2 to be transported across the US
(roughly two weeks) and consequently we have not had to impose any kind of tempo-
ral correlation in the emissions to obtain our ffCO2 estimates.
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We will add, in the new Discussion section, why we have not attempted to address the
multiscale temporal nature of ffCO2 emissions. Sopbhisticated temporal modeling of
ffCO2 emissions, to simultaneously capture both the diurnal and seasonal variations,
could probably be performed using non-stationary correlation functions. Our MsRF
was not designed to do this, and we conjecture that sparse reconstruction and wavelets
would likely be overkill.

There is a possibility that the reviewer may have been misled by our use of the term
“non-stationary”. We do not use it to mean time-variant or unsteady. Rather, we useiitin
the statistical sense. For a stationary function, statistical summaries (means, variances
etc.) computed within a moving window defined inside the support of the function would
remain the same. More practically, a function that can be characterized by a single
time/length scale e.g., a sine wave, is stationary, whereas another, displaying different
scales in different parts of its support, is not. Consequently, a time-series of smoothly
varying temperature can be stationary, whereas the porosity field of a block of dry soil
may not.

The reviewer states: “The manuscript attributes inversion differences to differences
between EDGAR and Vulcan emissions. The authors should also compute and report
the raw differences between these two emissions inventories before they are used in
the inversion demo.”

Response: We do not ascribe the estimation error to differences between EDGAR
and Vulcan. The primary source of estimation error is the lack of informative measure-
ments (too few towers, and winds tend to blow ffCO2 emissions away from them). The
differences between EDGAR and Vulcan are a small source of error. We will mention
these errors (between annually averaged Vulcan and EDGAR) in Sec. 5.

The reviewer states: “The synthetic observations used in the inversion, which are first
introduced on page 1291 and later discussed on page 1295, should be described more
clearly and in more detail. Were the elements of the sensitivity matrix H generated for
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another problem and adapted for this manuscript or were they computed specifically
for this paper? As a numerical verification test, do the sensitivities multiplied by the
Vulcan fluxes equal the concentrations obtained from a single forward simulation using
Vulcan (i.e. does y equal Hf as given in Eq. 5)? More information about the WRF
setup would also be useful (What lateral boundary conditions were used to generate
the winds? What physics packages options were used? and so on).”

Response: The H matrices used in this paper were generated for two previous studies
(Gourdji et al, 2010; Gourdji et al, 2012), which describe in great detail the gridding and
the WRF settings used to construct them. We cite the papers on Pg 1291:21, and fail
to see what repeating the same details would contribute to our paper. However, we will
update the paper to explicitly mention the references where details on the calculation
of H (meshes, models and settings) can be obtained.

The reviewer also asks “do the sensitivities multiplied by the Vulcan fluxes equal the
concentrations obtained from a single forward simulation using Vulcan (i.e. does y
equal Hf as given in Eqg. 5)?” We presume he/she means “if the sensitivities multiplied
by the estimated (NOT Vulcan) fluxes equal the concentrations obtained from a single
forward simulation using Vulcan?” Yes, they do. This is equivalent to asking if the
estimated fluxes reproduce the observations (y). The agreement is plotted for a few
measurement towers in Fig. 9 (right).

The reviewer states: “The authors analyze and display (Fig. 3) the statistics of non-
zero wavelet coefficients. To help with visualization, it may also be useful to display
maps of a few of the major features obtained from the wavelet decomposition.”

Response: We thank the reviewer for this excellent suggestion. We will do so in the
revised version of the paper.

The reviewer states: “On page 1288, line 13, the authors incorrectly associate static
sources with emissions from highways. While it is true that highways are fixed, the
traffic flow along them is not. COZ2 emissions from traffic are usually categorized as
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mobile and non-stationary.”

Response: The reviewer is correct that emissions from highways are classified as
mobile. Averaged over time, they appear as line sources whose strengths vary along
the line. However, they do not move, and can be captured by the same set of wavelets.
Hence we called them “static” sources.

We will add this clarification as a footnote in Sec. 3.2.

The reviewer has some suggestions regarding rewording of some figure captions, in
the interest of clarity

Response: We will make the suggested changes

The reviewer states: “Please add “et al" to the Friedlingstein reference on pages
1278 and 1303. Also, according to recent work (see Fig. 1a in Regnier et al,
doi:10.1038/ngeo1830), fossil fuel emissions are not the largest net carbon flux at the
atmosphere-surface interface. Please revise the second sentence in the Introduction
accordingly.”

Response: Thank you for pointing out the error in the Friedlingstein reference. We are
a little confused by the Regnier reference. Fig 1a therein clearly shows that fossil-fuel
emissions are indeed the largest NET carbon exchange between land and atmosphere.
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