Implementation of aerosol assimilation in Gridpoint Statistical Interpolation v. 3.2 and WRF-Chem v. 4.3.1

3

4 M. Pagowski¹, Z. Liu², G. A. Grell¹, M. Hu¹, H.-C. Lin², and C. S. Schwartz²

5 [1]{NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado, USA}

6 [2]{National Center for Atmospheric Research, Boulder, Colorado, USA}

7 Correspondence to: M. Pagowski (Mariusz.Pagowski@noaa.gov)

8

9 Abstract

10 Gridpoint Statistical Interpolation (GSI) is an assimilation tool that is used at the National 11 Centers for Environmental Prediction (NCEP) in operational weather forecasting in the USA. 12 In this article we describe implementation of an extension to the GSI for assimilating surface 13 measurements of PM_{2.5}, PM₁₀, and MODIS Aerosol Optical Depth at 550 nm with WRF-14 Chem. We also present illustrative results. In the past the aerosol assimilation system has been 15 employed to issue daily PM2.5 forecasts at NOAA/ESRL and, in our belief, is well tested and 16 mature enough to be made available for wider use. We provide a package that, in addition to 17 augmented GSI, consists of software for calculating background error covariance statistics 18 and for converting in-situ and satellite data to BUFR format, plus sample input files for an 19 assimilation exercise. Thanks to flexibility in the GSI and coupled meteorology-chemistry of 20 WRF-Chem, assimilating aerosol observations can be carried out simultaneously with 21 meteorological data assimilation. Both GSI and WRF-Chem are well documented with user 22 guides available on-line. This article is primarily intended as a technical note on the implementation of the aerosol assimilation. Its purpose is also to provide guidance for 23 24 prospective users of the computer code. Scientific aspects of aerosol assimilation are also briefly discussed. 25

26 **1** Introduction

27 Data assimilation plays an increasingly important role in forecasting concentrations of 28 chemical species, replacing a somewhat outdated procedure where assimilation was only 29 applied to meteorology, while chemical species were obtained from the previous forecast

1 without referring to observations. Interest in tropospheric chemical data assimilation dates back to Elbern and collaborators (Elbern et al., 1997; Elbern and Schmidt, 1999; Elbern et al., 2 3 2000; Elbern et al., 2001; Elbern et al., 2007) and Carmichael and collaborators (Daescu and 4 Carmichael, 2003; Carmichael et al., 2003; Sandu et al., 2005; Chai et al., 2007; and 5 Constantinescu et al., 2007a-d). Stratospheric data assimilation was documented by e.g. Massart et al. (2005), Geer et al. (2006), Barre et al. (2013), and Massart et al. (2014). 6 Assimilation methods described in these publications include static 3D-Var and flow-7 dependent 4D-Var and ensemble Kalman filters (e.g. Bouttier and Courtier, 1999; Talagrand, 8 9 2010; Kalnay, 2010).

Realisation that aerosols affect weather and climate and are a pivotal contributor to air
pollution has led to recent developments in assimilating aerosols. Examples of such
developments include Benedetti and Fisher (2007), Kahnert (2008), Morcrette et al., (2009),
Benedetti et al. (2009), Rouïl et al. (2009), Schutgens et al. (2010a and b), Pagowski et al.
(2010), Liu et al. (2011), Pagowski and Grell (2012), Schwartz et al. (2012), Saide et al.
(2013), and Schwartz et al. (2014).

The above publications have shown that initial conditions play an important but not a dominant role in chemical forecasting. Especially for predicting air quality, i.e. chemical composition in the boundary layer, inaccurate source emissions and deficient physical and chemical parameterizations result in deteriorating forecasts soon after the assimilation. In this context, applying 3D-Var assimilation methods that aim to exclusively ameliorate initial conditions constitutes only a first step towards improving chemical forecasts.

Below we describe aerosol observations that can be currently assimilated with our extension of the Gridpoint Statistical Interpolation (GSI, Wu et al., 2002, Purser et al., 2003a and b). Next, we provide a brief introduction to the 3D-Var formulation of the GSI, elaborate on forward operators for aerosol observations and specification of model (background) error. We conclude by presenting results of an application of the assimilation system.

27 2 Observations and measurement errors

In our implementation, assimilated observations include surface measurements of $PM_{2.5}$ and PM₁₀, plus Aerosol Optical Depth (AOD, alternatively, Aerosol Optical Thickness, AOT) retrievals at 550 nm from Moderate Resolution Imaging Spectroradiometer (MODIS) satellites Aqua and Terra. In North America, continuous measurements of surface aerosol concentrations at hourly resolution are made available thanks to monitoring stations participating in the US EPA AIRNow program. The observations are processed with minimal delay, making them suitable for real-time assimilation. A free subscription to the real-time data feed is possible through the AIRNow gateway (http://airnowapi.org/). A computer code is made available to convert text-formatted files obtained form the gateway to BUFR (Binary Universal Form for the Representation of Meteorological Data, Dragosavac, 2007) as required by the GSI.

8 AIRNow PM_{2.5} and PM₁₀ concentrations are measured using Tapered Element Oscillating Microbalance instruments (TEOM, Thermo Fisher, Continuous particulate TEOM monitor, 9 10 Series 1400ab, product detail, 2007, available at 11 http://www.thermo.com/com/cda/product/detail/1,10122682,00.html). The error of both PM aerosol measurements ε_m is 1.5 µg m⁻³ plus an inaccuracy of 0.75% times the species 12 13 concentration.

14 AOD data come from MODIS sensors on board the Terra and Aqua satellites. Retrievals over 15 land and sea are derived from the dark target product (Remer et al., 2005) and deep blue 16 product over bright land surface (Hsu et al., 2004, 2006). Currently, the dark target ocean and 17 land AOD products are available from both Terra and Aqua, but deep blue retrievals are only 18 available from Aqua. MODIS retrieved AOD is provided at seven wavelengths: 470, 550, 19 660, 870, 1240, 1630, and 2130 nm. In our implementation, only Level 2 (L2) AOD retrievals 20 at 550 nm are used. The AOD observation error is specified after Remer et al. (2005) as 21 $\epsilon_{AOD}=0.03 + 0.05\tau$ over water and $\epsilon_{AOD}=0.05 + 0.15\tau$ over land, where τ is an AOD observation. Only AOD retrievals marked with the highest quality flag are retained for the 22 23 assimilation.

24 L2 retrievals available from Aqua are at 25 ftp://ladsweb.nascom.nasa.gov/allData/51/MYD04 L2 and L2 retrievals from Terra are 26 available at ftp://ladsweb.nascom.nasa.gov/allData/51/MOD04 L2. These data come in HDF-EOS format at 5 min segments of the satellite's orbit that correspond to $10 \text{ km} \times 10 \text{ km}$ 27 resolution at the surface. Computer code (W. Wolf, personal communication, 2013) is 28 29 available in the package to convert HDF to BUFR for the GSI.

3 Aerosol assimilation within the Gridpoint Statistical Interpolation

- 2 GSI includes a 3D-VAR assimilation tool from which an analysis is obtained by minimization
- 3 of a cost function given by

$$J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + (\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x})).$$
(1)

5 In Eq. (1), x is a vector of analysis, x_b is the forecast or background vector, y is an observation vector, **B** is the background error covariance matrix, H is an observation operator, and **R** is 6 7 the observation error covariance matrix. The background error covariance matrix **B** is 8 separated into vertical and horizontal components and is represented as a product of error 9 variances and spatial correlation matrices. The correlation matrices simulate Gaussian shapes in space and in the GSI are modelled with recursive filters (Purser et al., 2003a and b). The 10 11 application of the filters requires specification of the background error correlation length scales. The observation covariance matrix R combines measurement and representativeness 12 errors, and is usually assumed to be diagonal. The observation operator H, which can be non-13 linear, converts model variables to observation space. Solutions to the minimization problem 14 15 are sought using the incremental approach (Courtier et al., 1994). With this approach two minimization loops are employed: an outer loop where fully non-linear observation operator 16 is applied, and an inner loop where the observation operator is linearized. 17

Our extension to the GSI includes separate options for Goddard Chemistry Aerosol Radiation and Transport (GOCART, Chin et al., 2000, 2002; Ginoux et al., 2001) and all other aerosol modules in WRF-Chem (Grell et al., 2005). Since the Community Radiative Transfer Model (CRTM, Han et al., 2006; Liu and Weng, 2006), which is coupled to the GSI, is currently only available for GOCART, AOD can only be assimilated with the GOCART model background.

24 3.1 Forward models and observation processing in GSI

The forward models for GOCART differ from other aerosol parameterizations and aredescribed first.

27 $PM_{2.5}$, PM_{10} , and AOD are all integrated measurements that require a summation of 28 individual aerosol species. In WRF-Chem implementation, GOCART aerosol species include 29 unspecified P₂₅, sulphate S, hydrophobic and hydrophilic black carbon (BC₁ and BC₂, 30 respectively), hydrophobic and hydrophilic organic carbon (OC₁ and OC₂, respectively), five 1 dust bins (D₁: 0.2-2.0 μ m; D₂: 2.0-3.6 μ m; D₃: 3.6-6.0 μ m; D₄: 6.0-12.0 μ m; and D₅: 12.0-2 20.0 μ m), and four sea salt bins (SS₁: 0.2-1.0 μ m; SS₂: 1.0-3.0 μ m; SS₃: 3.0-10.0 μ m; and 3 SS₄: 10.0-20.0 μ m).

4 PM_{2.5} concentration is calculated as

5
$$PM_{2.5} = \rho_d \Big[P_{2.5} + 1.375S + BC_1 + BC_2 + 1.8 \big(OC_1 + OC_2 \big) + D_1 + 0.286D_2 + SS_1 + 0.942SS_2 \Big],$$
 (2)

6 where ρ_d , dry air density, is multiplied by mixing ratios of aerosol species. Factors for 7 sulphate and organic carbon account for increasing the mass of the compounds due to the 8 presence of ammonium ion and oxygen, respectively. Factors for dust and seas alt account for 9 a size cut-off at the 2.5 µm diameter calculated assuming lognormal distribution of these 10 species. An expression for PM₁₀ concentration is

11
$$PM_{10} = \rho_d [P_{2.5} + 1.375S + BC_1 + BC_2 + 1.8(OC_1 + OC_2) + D_1 + D_2 + D_3 + 0.87D_4 + SS_1 + SS_2 + SS_3]$$

12

13 (3)

Only a brief description of the observation operator for AOD is given here and we refer the 14 15 reader to Liu et al. (2011) and Schwartz et al. (2012) for full details. We assume that the size 16 distribution of aerosol species within each size bin is logarithmic and that the particles are spherical and externally mixed. Parameters of the distributions are give in Liu et al. (2011). 17 CRTM contains profiles of GOCART aerosol species that include their effective radii, 18 19 standard deviations, and refractive indices. The extinction coefficient of each aerosol species 20 is computed for a given wavelength based on Mie scattering theory and accounting for 21 hygroscopic size growth of hydrophilic species. Finally, AOD is calculated from the equation

22
$$\tau(\lambda) = \sum_{i=1}^{n} \sum_{k=1}^{ktop} E_{ext}(\lambda, n_{r_i}, r_{eff_i}) \times c_{ik} \times \rho_{d_k} \times d_k,$$
(4)

where E_{ext} is the extinction coefficient (a function of wavelength λ , refractive index n_r , and effective radius r_{eff}), *c* is aerosol mixing ratio, ρ_d is dry air density and *d* is layer depth. Indices *i* and *k* denote aerosol species and model layers respectively; *n*=15 denotes the number of GOCART aerosol species.

For each of the summations (2), (3), and (4), mixing ratios of aerosol species are horizontally linearly interpolated to the observation location. No extrapolations are performed in the vertical for surface observations, as their locations are assumed to coincide with the first
 model level.

3 A representativeness error for a surface observation is assigned based on the character of the site after Elbern et al. (2007), using a formula given by $\varepsilon_{repr} = \alpha \varepsilon_m (\Delta x/L_{repr})^{\frac{1}{2}}$, where ε_m is 4 measurement error, α is a tunable parameter, Δx is model grid size, and L_{repr} represents the 5 6 observation's radius of influence. The parameter α determines magnitude of the observation 7 error and can be specified in the namelist. Its default value, which was obtained through 8 experimentation, is set to 0.5. Radii of influence for observations are prescribed equal to 10 9 km, 4 km, and 2 km for rural, suburban, and urban sites, respectively. The total observation error is calculated as $\epsilon_{obs} = (\epsilon_m^2 + \epsilon_{repr}^2)^{\frac{1}{2}}$. 10

Only surface measurements that fall below specified thresholds are accepted (default values 11 are set to 100 μ g m⁻³ for PM_{2.5} and to 150 μ g m⁻³ for PM₁₀). Also, an observation is rejected if 12 its deviation from the background is greater than these maximum allowable values. 13 Depending on the user's preference, an observation can also be rejected if a difference 14 between its actual elevation and model terrain height interpolated to its geographic location 15 16 exceeds a threshold specified in the namelist. Characteristics of the error for different 17 instruments and the default values can be easily modified (in the GSI distribution files 18 convinfo, chemmod.f90 and read anowbufr.f90).

19 To reduce the volume and diminish the correlation of satellite observation errors, thinning 20 (subsampling) of AOD observations is recommended to a resolution that is comparable to the 21 model grid size. Thinning options can be specified in the namelist.

For aerosol options other than GOCART, $PM_{2.5}$ or PM_{10} are read as $PM2_5_DRY$ or PM10from WRF-Chem output so that summations (2) and (3) are not required. The rationale for such an approach is discussed in the next section. Calculation of surface PM observation errors and data selection for the assimilation follows the implementation for GOCART.

26 **3.2** Specification of background error

In GSI, error correlation length scales and variances can vary zonally and vertically. They can be calculated as forecast statistics using the NMC method (Parrish and Derber, 1992) or the ensemble method (Fisher, 2003). Computer code to produce a file containing these statistics for meteorological state variables and desired aerosols formatted for the GSI is available for 1 download with WRF Data Assimilation system at

2 <u>http://www.mmm.ucar.edu/wrf/users/wrfda/downloads.html</u>.

For GOCART parameterization, state variables include 15 aerosol species. As an illustration, 3 vertical profiles of standard deviations and horizontal correlation length scales for OC_1 , OC_2 , 4 and sulphate are shown in Fig. 1. These statistics were derived for a month-long period in the 5 6 2012 summer, over a domain spanning eastern North America, with 24 km grid resolution, 7 using NMC method applied to 24- and 48-hour forecasts. In the GOCART case, increments 8 (or additions to the background state) to each aerosol species are obtained using background 9 error statistics for individual aerosol species. We will not reflect on the realism of the 10 statistics derived using the NMC method in this manuscript, but only point out that 11 accounting for uncertainty in emission sources and aerosol parameterization deficiencies should be considered when estimating model errors. Pagowski and Grell (2012) discuss this 12 13 topic in detail.

14 An alternative approach is also available where increments to individual species are 15 calculated based on their a priori contribution to the total aerosol mass. This is expressed as 16 the sum of 15 aerosols species accounting for multiplication factors of sulphate and organic carbon (hereafter, "ratio approach"). With this approach, statistics for the total aerosol are 17 18 used to minimize the 3D-Var cost function and need to be provided in the background error 19 input file. The choice of any of the two approaches is determined in the namelist. Also, error 20 correlation length scales and standard deviations can be tuned for optimal performance and 21 modified by factors specified in the namelist.

For parameterizations other than GOCART, specifying background error statistics for a large number of aerosol species is in our opinion overly burdensome, especially because such statistics may not be reliable given the large uncertainties in emissions and in the state of science in aerosol modelling. Therefore, for these parameterizations, we require that background error statistics are provided for a WRF-Chem output variable PM2_5_DRY/PM10 when PM_{2.5}/PM₁₀ observations are assimilated. This variable is also a state variable for which an increment will be calculated.

29 **3.3** Running GSI and aerosol assimilation cycle

A comprehensive user's guide for GSI is available at <u>http://www.dtcenter.org/com-</u>
 <u>GSI/users/docs/users_guide/GSIUserGuide_v3.2.pdf</u>. Also, an on-line tutorial is available and

group tutorials are given at least once a year (<u>http://www.dtcenter.org/com-GSI/users/tutorial/index.php</u>). Thus, only a cursory description of the assimilation is given
 here. Our package provides a default configuration and shell scripts for assimilating PM_{2.5},
 PM₁₀, and MODIS AOD with WRF-Chem GOCART parameterization.

Specifically, for aerosol assimilation, in addition to an input file with aerosol background 5 6 statistics, a user needs to provide WRF-Chem output in netcdf format, observations files in 7 BUFR format (normally a single file for PM_{2.5} and PM₁₀, and/or file with MODIS AOD), a 8 namelist specifying options for the assimilation, plus a configuration file anavinfo. The latter 9 file contains the names of aerosol species as state variables for which minimization of the 3D-10 Var cost function is performed. Normally, entries in anavinfo would include either GOCART 11 species or PM25/PM10. We note that a simultaneous assimilation of meteorological variables is also possible. 12

On the output, GSI overwrites the input WRF-Chem file. For quality control and to visualize 13 14 increments, we suggest using ncdiff, a component of netcdf manipulation software NCO 15 available at http://nco.sourceforge.net (alternatively diffy operator from the CDO package, 16 https://code.zmaw.de/projects/cdo). For GOCART, the output WRF-Chem file contains an analysis of aerosol species. No further processing is required to issue the next forecast. For 17 18 other aerosol options, increments to individual aerosol species need to be calculated using the 19 ratio approach and added to the background. They will constitute initial conditions for the 20 following forecast. We again recommend using NCO software for this procedure. Sample 21 increments to OC_1 , OC_2 and sulphate on the first model level (i.e. assumed to be at the 22 surface) are shown in Fig. 2. Their magnitudes and spatial patterns are related to the 23 specification of background error statistics for individual aerosol species. Surface and satellite 24 observations were assimilated to produce this figure.

We routinely employ a six-hour assimilation cycle that includes both assimilation of standard
 meteorological observations and aerosol observations.

The impact of aerosol assimilation has been well documented in the publications cited in Section 1. For illustration, Fig. 3 shows bias and spatial correlation with respect to AIRNow measurements calculated for forecasts issued over a month-long period during summer 2012 with and without assimilation of surface observations of $PM_{2.5}$. GOCART parameterization was used with the ratio approach. The improvement in the early forecast hours is noteworthy. Reasons for a relatively quick deterioration of the aerosol forecasts at later hours were briefly noted in Section 1 and are elaborated in detail in Pagowski and Grell (2012) and Jiang et al.
 (2013).

3 4 Conclusions

We described our implementation of the assimilation of $PM_{2.5}$ and PM_{10} , surface observations and satellite MODIS AOD level 2 retrieval using the GSI and WRF-Chem. Along with aerosol assimilation, computer codes for formatting the observations are included in the package. Also, an example configuration and sample input files for an assimilation exercise are supplied.

9 We recommend that prospective users become familiar with a general application of the GSI10 as described in the User's Guide and in the on-line tutorial.

11 We hope that the availability of this implementation will lead to further development of the

12 aerosol and chemical data assimilation system that may include wider range of observations.

13 GSI is a community-based system and user contributions are encouraged.

14 Acknowledgements

15 This work has been supported by the US Weather Research Program within the NOAA/OAR

16 Office of Weather and Air Quality, NOAA Health of the Atmosphere Program, and US Air

17 Force Weather Agency.

1 References

- 2 Barré, J., Peuch, V.-H., Lahoz, W., Attie, J.-L., Josse, B., Piacentini, A., Eremenko, M.,
- 3 Dufour, G., Nedelec, P., von Clarmann, T., and El Amraoui, L.: Combined data assimilation
- 4 of ozone tropospheric columns and stratospheric profiles in a high-resolution CTM, Q. J. Roy.
- 5 Meteor. Soc.,, doi: 10.1002/qj.2176, http://doi.wiley.com/10.1002/qj.2176, 2013.
- 6 Benedetti, A., and Fisher, M.: Background error statistics for aerosols, Q. J. Roy. Meteorol.
- 7 Soc., 133, 391–405., 2007.
- 8 Benedetti, A., Morcrette, J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H.,
- 9 Huneeus, N., Jones, L., and Kaiser, J.: Aerosol analysis and forecast in the European Centre
- 10 for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J.
- 11 Geophys. Res., 114, D13205, doi:10.1029/2008JD011115, 2009.
- Bouttier, F., and Courtier, P.: Data Assimilation Concepts and Methods. ECMWF training
 notes. Available online at: http://www.ecmwf.int, 1999.
- Carmichael, G. R., Daescu, D. N., Sandu, A., and Chai, T.: Computational aspects of
 chemical data assimilation into atmospheric models, in Science Computational ICCS 2003.
 Lecture Notes in Computer Science, IV, pp. 269-278, Springer, Berlin, 2003.
- 17 Chai, T., Carmichael, G. R., Tang, Y., Sandu, A., Hardesty, M., Pilewskie, P., Whitlow, S.,
- 18 Browell, E. V., Avery, M. A., Nedelec, P., Merrill, J. T., Thompson, A. M., and Williams, E.:
- 19 Four-dimensional data assimilation experiments with International Consortium for
- 20 Atmospheric Research on Transport and Transformation ozone measurements, J. Geophys.
- 21 Res., 112, D12S15, doi:10.1029/2006JD007763, 2007.
- Chin, M., Rood, R. B., Lin, S.-J., Muller, J.-F. and Thompson, A. M.: Atmospheric sulfur
 cycle simulated in the global model GOCART: Model description and global properties, J.
- 24 Geophys. Res., 105, 24,671–24,687, doi:10.1029/2000JD900384, 2000.
- 25 Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V.,
- 26 Logan, J. A., and Higurashi, A.: Tropospheric aerosol optical thickness from the GOCART
- 27 model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59,
- 28 461-483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
- Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Assessment of ensemblebased chemical data assimilation in an idealized setting, Atmos. Environ., 41(1), 18-36,

- 1 2007a.
- Constantinescu, E. M., Chai, T., Sandu, A., and Carmichael, G. R.: Autoregressive models of
 background errors for chemical data assimilation, J. Geophys. Res., 112, doi:
 10.1029/2006JD008103, 2007b.
- 5 Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael, G. R.: Ensemble-based chemical
- 6 data assimilation. I: General approach. Q. J. Roy. Meteorol. Soc., 133, 1229–1243, 2007c.
- 7 Constantinescu, E. M., Sandu, A., Chai, T., and Carmichael G. R.: Ensemble-based chemical
- 8 data assimilation. II: Covariance localization, Q. J. Roy. Meteorol. Soc., 133, 1245–1256,
 9 2007d.
- 10 Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for operational implementation
- 11 of 4D-Var using an incremental approach, Q. J. Roy. Meteorol. Soc., 120, 1367-1387,
- 12 doi:10.1002/qj.49712051912, 1994.
- Daescu, D. N., and Carmichael, G. R.: An adjoint sensitivity method for the adaptive location
 of the observations in air quality modelling, J. Atmos. Sci., 60, 434-449, 2003.
- Dragosavac, M.: BUFR User's Guide, ECMWF Technical note, available online at:
 <u>http://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/ECMWF/bufr_user_guide.pdf</u>
 , 2007.
- 18 Elbern, H., Schmidt, H., and Ebel, A.: Variational data assimilation for tropospheric
 19 chemistry modelling, J. Geophys. Res., 102(D13),: 15,967-15,985, 1997.
- Elbern, H., and Schmidt, H.: A 4D-Var chemistry data assimilation scheme for Eulerian
 chemistry transport modelling, J. Geophys. Res., 104(D15), 18,583-18,598, 1999.
- Elbern, H., Schmidt, H., Talagrand, O., and Ebel, A.: 4D-variational data assimilation with
 an adjoint air quality model for emission analysis, Environ. Modeling Software, 15, 539-548,
 2000.
- Elbern, H., and Schmidt, H.: Ozone episode analysis by four-dimensional variational
 chemistry data assimilation, J. Geophys. Res., 106(D4), 3569-3590, 2001.
- Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical state
 estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–3769, 2007.

- 1 Fisher, M.: Background error covariance modeling. Proc. Seminar on Recent Developments
- 2 in Data Assimilation for Atmosphere and Ocean, Reading, UK, ECMWF, 45-63, 2003.
- 3 (Available at <u>http://www.ecmwf.int/newsevents/meetings/annual_seminar/seminar2003_</u>
- 4 <u>presentations/Fisher.pdf.</u>)
- 5 Geer, A. J., Lahoz, W. A., Bekki, S., Bormann, N., Errera, Q., Eskes, H. J., Fonteyn, D.,
- 6 Jackson, D. R., Juckes, M. N., Massart, S., Peuch, V.-H., Rharmili, S., and Segers, A.: The
- 7 ASSET intercomparison of ozone analyses: method and first results, Atmos. Chem. Phys., 6,
- 8 5445–5474, doi:10.5194/acp-6-5445-2006, 2006.
- 9 Ginoux, P., Chin, M., Tegen, I., Prospero, Holben, J., B., Dubovik, O., and Lin, S.-J.: Sources
- 10 and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106,
- 11 20,225–20,273, doi:10.1029/2000JD000053, 2001.
- 12 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G. J., Skamarock, W., and
- Eder, B.: Fully-coupled online chemistry within the WRF model, Atmos. Environ., 39, 6957-6975, 2005.
- Han, Y., van Delst, P., Liu, Q., Weng, F., Yan, B., Treadon, R., and Derber, J.: JCSDA
 Community Radiative Transfer Model (CRTM) Version 1, NOAA Tech. Rep. NESDIS
 122, 33 pp., NOAA, Silver Spring, Md, 2006.
- Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Aerosol properties over brightreflecting source regions, IEEE Trans. Geosci. Remote Sens., 42, 557–569,
 doi:10.1109/TGRS.2004.824067, 2004.
- Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep Blue retrieval of Asia aerosol
 properties during ACE-Asia, IEEE Trans. Geosci. Remote Sens., 44, 3180–3195,
 doi:10.1109/TGRS.2006.879540, 2006.
- Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.: Probing into the impact of 3DVAR assimilation of sur- face PM10 observations over China using process analysis, J. Geophys. Res.-Atmos., 118, 6738–6749, doi:10.1002/jgrd.50495, 2013.
- Kahnert M.: Variational data analysis of aerosol species in a regional CTM: Background error
 covariance constraint and aerosol optical observation operators, Tellus, 60B, 753–770, 2008.
- 29 Kalnay, E.: Ensemble Kalman filter: current status and potential, in Data Assimilation:
- 30 Making Sense of Observations, eds. W. A. Lahoz, B. Khattatov, and R. Ménard (Berlin:

- 1 Springer), 69–92, 2010.
- Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y-H. and Wang, T.: Three-dimensional
 variational assimilation of MODIS aerosol optical depth: Implementation and application to a
 dust storm over East Asia, J. Geophys. Res., 116, D23206, doi:10.1029/2011JD016159, 2011.

5 Massart, S., Cariolle, D., and Peuch, V.-H.: Towards an improvement of the atmospheric 6 ozone distribution and variability by assimilation of satellite data, C.R. Geosci., 337, 1305–

- 7 1310, doi:10.1016/j.crte.2005.08.001, 2005.
- 8 Massart, S., Agusti-Panareda, A., Aben, I., Butz, A., Chevallier, F., Crevosier, C., Engelen,
- 9 R., Frankenberg, C., and Hasekamp, O.: Assimilation of stratospheric methane products in the
- 10 MACC-II system: from SCIAMACHY to TANSO and IASI. Atmos. Chem. Phys., 2014,
- 11 accepted.
- 12 Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A.,
- 13 Bonet, A., Kaiser, J. W., Razinger, M., Schulz, M., Serrar, S., Simmons, A. j., Sofiev, M.,
- 14 Suttie, M., Tompkins, A. M., and Untch, A.: Aerosol analysis and forecast in the European
- 15 Centre for Medium-Range Weather Forecast Integrated Forecast System: 1. Forward
- 16 modeling, J. Geophys. Res., 114, D06206, doi:10.1029/2008JD011235, 2008.
- Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.: Threedimensional variational data assimilation of ozone and fine particulate matter observations:
 some results using the Weather Research and Forecasting Chemistry model and Grid-point
- 20 Statistical Interpolation, Q. J. Roy. Meteor. Soc., 136, 2013–2024, doi:10.1002/qj.700, 2010.
- Pagowski, M., and Grell, G. A.: Experiments with the assimilation of fine aerosols using an
 ensemble Kalman filter, J. Geophys. Res.-Atmos., 117, D21302, doi:10.1029/2012jd018333,
 2012.
- Parrish D. F., and Derber J. C.: The National Meteorological Center spectral statistical
 interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763, 1992.
- 26 Purser, R. J., Wu, W-S., Parrish, A. F., and Roberts, N. M.: Numerical aspects of the
- application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous
 Gaussian covariances, Mon. Wea. Rev., 131, 1524-1535, 2003a.
- Purser, R. J., Wu, W-S., Parrish, A. F., and Roberts, N. M.: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially

- inhomogeneous and anisotropic general covariances, Mon. Wea. Rev., 131, 1536-1549,
 2003b.
- Rouïl, L., Honoré, C., Vautard, R., Beekmann, M., Bessagnet, B., Malherbe, L., Meleux, F.,
 Dufour, A., Elichegaray, C., Flaud, J.-M., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and
 Poisson, N.: PREV'AIR: an operational forecasting and mapping system for air quality in
- 6 Europe, Bull. Am. Meteorol. Soc., 90, 73–83. doi: 10.1175/2008BAMS2390.1, 2009.
- 7 Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R.,
- 8 Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The
- 9 MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947-973,
- 10 doi:10.1175/JAS3385.1, 2005.
- 11 Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and
- 12 Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of
- 13 observationally constrained, multi-wavelength and fine mode retrievals on regional scale
- 14 forecasts, Atmos. Chem. Phys., 13, 10425-10444, 2013.
- 15 Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Applying an ensemble
- 16 Kalman filter to the assimilation of AERONET observations in a global aerosol transport
- 17 model, Atmos. Chem. Phys., 10, 2561–2576, doi:10.5194/acp-10-2561-2010, 2010.
- 18 Schwartz, C. S., Liu, Z., Lin, H. C., and McKeen, S. A.: Simultaneous three-dimensional
- 19 variational assimilation of surface fine particulate matter and MODIS aerosol optical depth, J.
- 20 Geophys. Res., 117, D13202, doi:10.1029/2011JD017383, 2012.
- 21 Schwartz, C. S., Liu, Z., Lin, H.-C., and Cetola, J. D.: Assimilating aerosol observations with 22 a "hybrid" variational-ensemble data assimilation system, J. Geophys. Res. - Atmos., 119,
- 22 d inyona vanatonar-ensemble data assimilation system, 5. Geophys. Res.
 23 doi:10.1002/2013JD020937, 2014.
 - Talagrand, O.: "Variational assimilation," in Data Assimilation: Making Sense of
 Observations, eds W. A. Lahoz, B. Khattatov, and R. Ménard (Berlin: Springer), 40–67, 2010.
 - 26 Wu, W-S., Purser, R. J., and Parrish, D. F.: Three-dimensional variational analysis with
 - 27 spatially inhomogeneous covariances, Mon. Wea. Rev., 130, 2905-2916, 2002.

1

Figure 1. Vertical profiles of standard deviations (top) and horizontal correlation length scales (bottom) for OC₁, OC₂, and sulphate derived for a North American domain (see text for details). Tick mark values of $-log(p/p_s)$ on the ordinate approximately correspond to values of atmospheric pressure equal to 1000, 600, 370, 220, 135, and 80 hPa, respectively.

1	08	06	04	02	.0	.02	.04	.06	.08
• • •									

Figure 2. Sample analysis increments of OC₁, OC₂, and sulphate (from the top) on the first
model level.

Figure 3. Bias (left) and spatial correlation (right) calculated for forecasts issued over a month-long period in summer 2012 for the North America domain with and without assimilation of surface observations of $PM_{2.5}$.