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Abstract

In this paper we propose a probabilistic framework for an uncertainty quantification study
of a carbon cycle model and focus on the comparison between steady state and transient
simulation setups. A Global Sensitivity Analysis (GSA) study indicates the parameters and
parameter couplings that are important at different times of the year for Quantities of Interest
obtained with the Data Assimilation Linked Ecosystem Carbon (DALEC) model. We then
employ a Bayesian approach and a statistical model error term to calibrate the parameters
of DALEC using net ecosystem exchange observations at the Harvard Forest site. The
calibration results are employed in the second part of the paper to assess the predictive
skill of the model via posterior predictive checks.

1 Introduction

Climate studies strongly depend on the modeling of the Carbon cycle. Carbon cycle mod-
els, in turn, strongly depend on the capability of current land models to simulate the terres-
trial ecosystem and to capture Carbon exchanges between land and atmosphere. There
have been a significant number of studies looking to leverage the increasing amount of ex-
perimental observations and calibrate parameters in several terrestrial ecosystem models.
These studies have faced a number of challenges related to handling data and measure-
ment errors from multiple sources, formalizing model error, dealing with parameter observ-
ability and data sparsity, to name a few. In this paper we propose a probabilistic framework
to estimate parameters for a process-based ecosystem model. Representative studies, both
probabilistic and non-probabilistic, are reviewed below.

Over the past two decades several studies employed data assimilation techniques to
calibrate Carbon cycle models. Here we briefly discuss the works that motivated the current
study. Kaminski et al. (2002, 2012) used an adjoint approach to infer model parameters for
a terrestrial biosphere model based on observational data streams. The variational data
assimilation problem was formulated based on Bayes theorem with both the likelihood and
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the prior presumed Gaussian. It was found that models employing optimized parameters
show clear improvements when checked against independent observations compared to
non-optimized parameters. Similar approaches were employed by Rayner et al. (2005),
Tjiputra et al. (2007), Kuppel et al. (2012) to estimate parameters of ecosystem models.

Some of the above studies start from a Bayesian framework when setting the cost func-
tion for a least-square fitting procedure. The resulting probability densities for model param-
eters are approximated as multivariate Gaussian densities near the Maximum a Posteriori
(MAP) estimate of the parameter values. This assumption is valid only in the vicinity of MAP
values, unless the model is linear in all parameters. Several studies in the past decade,
some of which mentioned below, employed sampling techniques to explore non-Gaussian
posterior distributions for parameters in ecosystem models.

Knorr and Kattge (2005), Braswell et al. (2005), Xu et al. (2006) employed Bayesian
frameworks to estimate parameters of terrestrial ecosystem models. These studies em-
ployed Metropolis-Hastings Markov Chain Monte Carlo (MCMC) techniques to sample the
posterior density of model parameters constructed based on eddy covariance measure-
ments of Carbon fluxes as well as based on synthetic datasets. Tang and Zhuang (2009)
employed both Global Sensitivity Analysis (GSA) and a Bayesian framework to improve
parameterization of a Terrestrial Ecosystem Model. This study employed Latin Hypercube
Sampling from the prior density of model parameters, and a sampling-importance resam-
pling method to construct posterior densities for model parameters. Ricciuto et al. (2008)
employed an MCMC approach to sample the posterior densities of key parameters for com-
bined global-scale terrestrial and ocean carbon cycle models. The study found that tem-
poral correlation has a significant impact on the calibrated parameters and subsequently
on model predictions. A recent review by Zobitz et al. (2011) provides a primer on data
assimilation studies with MCMC.

Several studies compared several parameter estimation methods for terrestrial biogeo-
chemical models. Participants in the OptIC project (Trudinger et al. (2007)) presented re-
sults employing optimization, variational, and sampling methods. Similarly, the REFLEX
project (Fox et al. (2009)) selected the DALEC v1 model (Williams et al. (2005)) to assess
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the performance of several parameter estimation algorithms, using both synthetic and ob-
served Net Ecosystem Exchange (NEE) and Leaf Area Index (LAI) data. More recently,
Ziehn et al. (2012) compared variational and sampling techniques to estimate parameters
for BETHY, a process-based model of the terrestrial biosphere.

From this review, we noted a set of critical outstanding research questions in the con-
text of constraining Carbon cycle models. First, few, if any, calibration studies have investi-
gated steady state/transient assumptions. It is also important for the ecological community
to understand how information content depends on model assumption, e.g. steady state vs
transient. Second, Carbon cycle models require a complete parameter sensitivity analysis,
particularly with respect to temporal dynamics. Such analyses are vital for organising ef-
fective parameter calibration followed by an estimation of the predictive skill of ecosystem
models.

In this paper we propose a Bayesian framework for the estimation of uncertainties in
ecosystem land model parameters followed by a forward Uncertainty Quantification (UQ)
study to examine the predictive capabilities of the model given the calibrated set of param-
eters. The Bayesian formulation provides a flexible framework for handling heterogeneous
information, and allows for sequential updates of posterior distributions as the prior infor-
mation is revised.

Figure 1 shows a schematic of this framework, consisting of two intrinsically connected
workflows, for Parameter Estimation and Forward UQ. In this schematic, the Data Assim-
ilation Linked Ecosystem Carbon (DALEC) model (Williams et al. (2005)) is used for both
the “Measurement Model” m() and the “Computational Model” f(). We employ two model
setups in our analysis. In the first approach, DALEC is run in a spinup mode until the Car-
bon pools reach a quasi steady state. In the second approach, each ecosystem model run
consists of one cycle only. In this approach the Carbon pools are part of the investigation on
model parameters, either for the purpose of estimating densities of model inputs or to prop-
agate these densities forward to model outputs. More details on the steady state/transient
model setups are provided in Section 2.
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To facilitate the estimation of a high-dimensional posterior density for model parameters,
we first rank the importance of specific model parameters on model outputs via Global
Sensitivity Analysis. Specifically we employ variance-based decomposition techniques to
compute Sobol indices (Sobol (1993); Campolongo et al. (2000)). Posterior densities are
estimated first for the most important parameters, while less important parameters are fixed
at their nominal values. This constraint is subsequently relaxed to arrive at a joint posterior
distribution over the entire parameter space. Finally, we undertake a Bayesian posterior pre-
dictive check (Lynch and Western (2004)) to assess the adequacy of the calibrated Carbon
model to predict the experimental observations. The predictive skill of this model is further
assessed via Continuous Rank Predictive Score (Gneiting and Raftery (2007)) computa-
tions. The analysis steps mentioned here are undertaken with the help of the Uncertainty
Quantification Toolkit (UQTk).1 UQTk is a collection of software libraries and tools for the
quantification of uncertainty in numerical model predictions. Additional scripts specific to
this study are available upon request from the first author.

This paper is organized as follows. Section 2 provides a description of the processes
comprising DALEC and of their associated parameters. Section 3 presents the GSA re-
sults, including total order effects, in Section 3.1, and joint effects, in Section 3.2. Posterior
densities for model parameters are explored in Section 4 and the predictive capabilities are
estimated in Section 5. We end with conclusions in Section 6.

2 Description of the Carbon Cycle Model

The schematic in Fig. 2 shows a 1-day time step consisting of a sequence of process-
based submodels shown with green boxes. These submodels are connected via fluxes and
interact with five major Carbon (C) pools. The fluxes calculated on any given day impact
Carbon pools and processes in subsequent days. The blue arrows in this figure indicate
Carbon pools or model variables that are input parameters to specific sub-models, while

1http://www.sandia.gov/UQToolkit
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green arrows indicate the Carbon pools or model variables affected by a particular sub
process.

The version of DALEC used in this study is based on a modified version of the DALEC v1
model (Williams et al. (2005); Fox et al. (2009)). The model has been modified to facilitate
comparisons with the Community Land Model (Thornton et al. (2007)), and with the Local
Terrestrial Ecosystem Carbon Model (Ricciuto et al. (2011)).2 It consists of three vegetation
Carbon pools, for leaf, stem, and root, and two soil Carbon pools, for soil organic matter
and litter. Photosynthesis is driven by the Aggregate Canopy Model (ACM) (Williams et al.
(2005)), which itself is calibrated againts the Soil-Plant-Atmosphere (SPA) model (Williams
et al. (1996)). ACM was updated to employ a temperature-based deciduous phenology used
in Ricciuto et al. (2011), driven by the six parameters shown in Fig. 2. Spring phenology is
driven by a linear relationship to growing degree days, while senescence is driven by mean
air temperature. To reduce model complexity, the plant labile pool was removed and stem
carbon is used to support springtime leaf flush given the spring phenology and the maxi-
mum leaf area index parameter. Given the importance of maintenance respiration in other
sensitivity analyses (Sargsyan et al. (2014)), this process was added along with parameters
controlling the base rate and temperature sensitivity.

In this version of DALEC, ACM shares one parameter, the specific leaf area (lma), with
the deciduous phenology and employs two additional parameters, leaf C:N ratio (leafcn)
and Nitrogen use efficiency (nue). The autotrophic respiration model computes the growth
and maintenance respiration components and is controlled by three parameters: the growth
respiration fraction (rg_frac), and the base rate at 25◦C (br_mr) and temperature sensitiv-
ity for maintenance respiration (q10_mr), respectively. The allocation sub-model partitions
Carbon to several vegetation Carbon pools. Leaf allocation is first determined by the phenol-
ogy submodel, and the remaining available Carbon is allocated to the root and stem pools
depending on the fractional stem allocation parameter (astem). The “Litterfall” submodel
redistributes the Carbon content from vegetation pools to soil pools and is based on the

2The source code for the modified DALEC version is available upon request from Daniel Ricciuto
(ricciutodm@ornl.gov)
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turnover times for stem (tstem), root (troot), and leaves (tleaf). The sequence of sub-models
concludes with the “Decomposition” which models the heterotrophic respiration component
and the decomposition of litter into soil organic matter (SOM). This sub-model is driven by
temperature sensitivity for heterotrophic respiration (q10_hr), the base turnover times for
litter and SOM at 25◦C (br_lit, br_som), respectively, and by the decomposition rate (dr)
from litter to SOM.

Model parameters and their nominal values are provided in Table 1. These parameters
are grouped according to the sub-model that employs them. Except for leaf mass per unit
area (lma) which impacts both the deciduous leaf phenology and ACM, all other parame-
ters are employed in single submodels. The numerical ranges and nominal values for these
parameters are provided in the table, and are designed to reflect average values and broad
uncertainties associated with the temperate deciduous forest plant functional type that in-
cludes Harvard Forest (Fox et al. (2009); White et al. (2000); Ricciuto et al. (2011)). In
addition to the model parameters, several processes are driven by the observed air tem-
perature, solar radiation, vapor pressure deficit, and CO2 concentration at the flux tower
site.

As mentioned in the Introduction, for this study we consider two approaches for running
DALEC. The first approach employs a steady state assumption, with DALEC run in a spinup
mode until it reaches a quasi-steady state. For this study we declare the model to be in a
quasi-steady state when the relative L2 error between successive cycles becomes less than
a threshold value of 10−6 for select model ouputs. For the range of parameters employed
in the runs presented here, the model spinup takes typically 30-50 cycles of the 1992-
2006 meteorology (450-750 total years) depending on the parameter values, especially the
turnover time of slow carbon pools. In this context, each cycle corresponds to running the
model for 15 years with the meteorology inputs of 1992-2006. At the start of the first cycle,
the Carbon pools are initialized to zero with the exception of stem carbon, which is set at a
value to "seed" leaf growth in the following season. For subsequent cycles, the Carbon pools
are initialized with the final state from the previous cycle. The daily quantities of interest
output by DALEC in the first cycle after the system reaches a steady state are used for
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several analyses presented in this paper. This approach follows the protocol for the North
American Carbon Program (NACP) interim synthesis simulations, but fails to capture, for
example, the large negative NEE observed at Harvard Forest. In the second approach, the
initial values of the Carbon pools in January 1992 are added to the set of model parameters
to be estimated. This approach employs transient assumptions and, for any given set of
parameter values, DALEC is run one cycle only, for 1992-2006. The resulting model output
values are then used to study the model behavior under transient conditions. The model
evaluations are cheaper compared to the first approach, however the dimensionality of the
parameter space of DALEC is increased by 5, with 3 vegetation Carbon pools and 2 soil
Carbon pools, from 18 to 23 parameters. Henceforth, we will refer to these two approaches
as DST and DTR.

3 Global Sensitivity Analysis

GSA formally studies how the change in model output can be apportioned to changes in the
model inputs. Given our focus on statistical model calibration and uncertainty quantification,
we employ variance-decomposition methods where the variance of the model output is
decomposed into fractions associated with input factors and their interactions. The primary
quantity of interest (QoI) for GSA is NEE, for which we have experimental observations
available. We explore GSA for several other QoIs to understand the role each parameter
or set of parameters plays in determining other quantities of interest in addition to NEE.
Specifically we consider the Gross Primary Production (GPP), the Total Vegetation Carbon
(TVC), and the Total Soil Carbon (TSC).

The effects of input parameters θ = {θ1, . . . ,θNθ} and their interactions on a model output
y =m(θ), are quantified through Sobol indices (Sobol (1993); Campolongo et al. (2000)).
The first order Sobol indices are given by

Si =
Varθi [Eθ∼i(m(θ)|θi)]

Varθ[m(θ)]
, i= 1, . . . ,Nθ (1)
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where θ∼i = {θ1, . . . ,θi−1,θi+1, . . . ,θNθ}, Eθ∼i [·] is the expectation with respect to θ∼i, and
Varθi [·] is the variance with respect to θi. Note that, in this context, sub-script i can denote
one parameter or a group of parameters. Such a group, corresponding to the Phenology
model, is presented below.

Similarly, the joint sensitivity indices Sij are

Sij =
Varθi,θj [Eθ∼(i,j)

(m(θ)|θi,θj)]

Varθ[m(θ)]
−Si−Sj , i, j = 1, . . . ,Nθ. (2)

While interactions between three or more parameters can be defined in a similar fashion,
for most physical models these higher-order interactions are negligible.

The sensitivity index Si can be interpreted as the fraction of the variance in the QoI that
can be attributed to the i-th input parameter only, while Sij is the variance fraction that is
due to the joint contribution of the i-th and j-th input parameters. The total sensitivity index
combines the first-order sensitvity indices with joint sensitivity and higher-order interactions
to yield

STi = Si +
∑
j
i 6=j

Sij +
∑
j,k

i 6=j 6=k 6=i

Sijk + . . .=
Eθ∼i [Varθi(m(θ)|θ∼i)]

Varθ[m(θ)]
(3)

This index measures the fractional contribution to the total variance due to parameter θi
and all interactions with all other model parameters.

Starting from the derivation of these indices, based on the decomposition of variance,
the sum of all first-order order indices and joint and higher-order interaction indices sums
to one

1 =
∑
i

Si +
∑
i,j
i 6=j

Sij + . . . (4)

Given that all Sobol indices are greater or equal to zero, it follows that
∑

iSi ≤ 1. The
reverse is true for the total effect indices,

∑
iS

T
i ≥ 1, due to multiple counting of joint and

higher order parameter interactions.
9
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Total effect indices are useful to ascertain which parameter or group of parameters has
the most impact on a particular QoI, and also decide which parameters are less important
and can potentially be fixed at their nominal value without a significant impact on the model
output. Joint sensitivity indices can be used to verify or discover interactions between the
computational model components as related to a specific model output. In this paper we will
present results for total effect and joint sensitivity Sobol indices, while skipping first order
Sobol indices for brevity.

The Sobol indices (1)-(3) can be written in integral forms, but these integrals are not ana-
lytically tractable when the input parameter space is high-dimensional. In order to evaluate
these indices numerically we employ a Monte-Carlo approach enhanced by techniques de-
scribed by Saltelli (2002) and modified by Kucherenko et al. (2012) to account for parameter
dependencies. This method employs sampling of the input parameters from their prior dis-
tributions and an efficient re-use of model evaluations to reduce the computational cost of
estimation of the above conditional variances.

We employ informative priors, described in Sec 4.3, for all model parameters. The prior
distributions for all parameters are assumed independent, except for the Spring phenol-
ogy parameters gdd_min and gdd_max, which are bound by the inequality constraint
gdd_min < gdd_max. Consequently, for these two parameters we will compute a com-
pound sensitivity index, namely STi for i= (gdd_min,gdd_max) which is the total effect
index based on joint prior distribution of this set of parameters, including all interactions
between either gdd_min or gdd_max, or both, and the rest of the DALEC parameters.

For each of the QoIs mentioned above, we compute monthly averages corresponding
to the entire simulation, i.e. the January average is computed using the January daily QoI
values for all available years. The simulations are driven by daily minimum and maximum
temperatures, global radiation, and CO2 concentration for years 1992−2006, at the Harvard
Forest site (Urbanski et al. (2007)).
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3.1 Total Effect Indices

Figures 3-6 show matrices of total effect indices, STi , for the four QoIs mentioned above.
Each row in these matrices shows the indices corresponding to a particular monthly average
QoI.

Different parameters have larger impacts at certain times of the year. For NEE corre-
sponding to DST, in Fig. 3a, phenology parameters tsmin and leaffall, which control the
senescence of leaves in the Fall, have a significant impact on NEE during this period only.
Specifically, tsmin, which is the critical temperature at which leaffall begins, mainly affects
NEE in October. For DTR, in Fig. 3b, the base rate of maintenance respiration br_mr, which
represents a Carbon cost plants must continuously spend during their lifetime, becomes
the dominant parameter for NEE. In the transient configuration, the autotrophic respiration
sub-model controls most of NEE variance. The total effect index for several parameters,
i.e. astem, tstem, troot, and tleaf are not shown in this figure, since they have a negligible
contribution to NEE variance.

Similar behavior is seen for parameters that control GPP, in Fig. 4. Parameter gdd_min,
which is part of the pair gdd=(gdd_min,gdd_max) in this figure, is the number of growing
degree days at which leaf budbreak occurs. This parameter has the most impact in March
and April. The strong dependence of these fluxes on phenology parameters highlights the
importance of an accurate phenology model, as has been shown in other modeling studies,
e.g. (Richardson et al. (2012)). On the other hand, the Nitrogen use efficiency nue, which
controls the amount of GPP per unit leaf Nitrogen, is important throughout most of the grow-
ing season (June-September). This is broadly consistent with other sensitivity studies that
have shown strong sensitivity to leaf nitrogen, e.g. Sargsyan et al. (2014). Unlike for NEE,
the GPP fluxes exhibit a similar dependence on the parameters controlling the phenology
and aggregate canopy modes for both DST and DTR.

TVC and TSC are carbon pools and tend to vary on a much larger timescale than GPP
or NEE, which are fluxes. Therefore, the Sobol indices do not exhibit significant seasonal
variability. TVC is a sum of three Carbon pools, vc1 (for leaf C), vc2 (for stem C), and vc3 (for
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root C). For both DST and DTR, in Fig. 5, this quantity of interest is most strongly controlled
by the base rate of maintenance respiration br_mr. For DTR, the initial value of vc2 exhibits
a small, but non-negligible, total effect index of about 10% on the total variance of TVC.

TSC corresponding to DST, in Fig. 6a, is mostly controlled by both br_mr and the base
rate of decomposition for soil organic matter br_som, which effectively determines the pool
residence time. Given the same inputs, a pool with a longer residence time will contain
more Carbon. For DTR, in Fig. 6b, the initial value of soil organic matter pool (sc2) becomes
dominant and exhibits a total effect index of about 50%. For this setup, the impact of br_mr
and br_som on the total variance of TSC is about 40%, down from about 80% for the quasi-
steady state setup for DST.

The total sensitivity index results indicate that, for some quatities of interest like GPP and
TVC, the simulation setup, i.e. DST vs DTR, does not change significantly the effect of model
parameters on the model outputs. For these two model outputs the dominant parameters
are similar for both setups, given the priors employed for the model parameters, including
the Carbon pools for DTR. Unlike for GPP and TVC, the simulation setup changes the
relative importance of model parameters on NEE and TSC. This takes place either through
a change in the relative importance of phenology and ACM model parameters (for NEE) or
by bringing a significant contribution from the Carbon pools (for TSC). In the next section
we examine joint effect indices for parameter pairs to determine what fraction of the total
effect indices is due to interactions between model parameters.

3.2 Joint Effects

Figures 7-9 show relevant joint sensitivity indices corresponding to the four quantities of
interest examined in this study. In these figures, each node shows relevant parameters
while the label on each link corresponds to the joint Sobol index Sij , in % units. She joint
sensitivity Sobol index values are rounded to the nearest integer for clarity.

Both NEE and GPP exhibit seasonal variability for the total effect Sobol indices. For
these parameters the joint parameter interactions are only relevant during Fall, accounting
for about 10-15% of the total variance in the corresponding quantity of interest, and play
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an important role in determining the evolution of the Carbon cycle during the senescence
period. Figures 7 and 8, showing these interactions during October, are representative of
results throughout Fall. For both NEE and GPP the interaction tsmin and leaffall is signifin-
cant during Fall, while interactions between other phenology, ACM, and AR parameters are
negligible. In general joint sensitivity maps for NEE and GPP are similar between DST and
DTR.

Similar to the total effect index results for TVC and TSV, the joint sensitivity indices display
little seasonal variability. The results shown in Fig. 9 for these QoIs correspond to Septem-
ber and are representative of all monthly averages (results not shown). Moreover, only DST

results are shown in this figure since the corresponding DTR results are almost identical
to DST. For TVC the data in Fig. 9a indicates that the interaction between AR (through
br_mr) and ACM (nue) and Literfall (tstem) sub-models, respectively, contribute about 10%
to TVC variance. In fact these joint interactions represent about half of the total effect index
of nue and tstem, shown in Fig. 5. The results in Fig. 9b show that the interactions between
model parameters are important for TSC as well. For this quantity of interest, the interac-
tion AR (br_mr) and Decomposition (br_som) sub-models acounts for about 10-30% of the
corresponding total effect index values, shown in Fig. 6.

The GSA results can be used to understand the effect of model parameters on particu-
lar quantities of interest and discard, from the analysis, parameters that have a negligible
impact. In this study, we will use the GSA results to facilitate the calibration of model pa-
rameters, by grouping parameters into sub-sets according to their effect on the relevant
quantities of interest. More details are presented in the following section.

4 Parameter Calibration

We employ a Bayesian framework to compute posterior probabilities for model parame-
ters discussed in the previous sections. This framework is well-suited for dealing with un-
certainties from different sources, including parametric and model uncertainty as well as
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experimental errors (Sivia (1996)). Bayes rule is given as:

p(θ|D) = LD(θ)p(θ)/p(D), (5)

where p(θ) and p(θ|D) are the prior and posterior probability densities, respectively, for
model parameters θ. These densities represent our knowledge of θ before and after learn-
ing from the data D. The likelihood function LD(θ) = p(D|θ) is the likelihood of the data D
for a particular instance of model parameters θ. The denominator in Eq. (5), p(D), is the
“evidence”, computed by integrating the numerator over the support of p(θ). It plays a role
of a normalizing constant in the parameter estimation context, and is not computed here.

4.1 Calibration Data

The data available for the calibration of model parameters consists of the Harvard Forest’s
daily NEE values processed for the North American Carbon Program Site Synthesis study
(Barr et al. (2013)) based on flux data measured at the site (Urbanski et al. (2007)). Hill
et al. (2012) estimated that daily NEE estimates follow a normal distribution. The daily ob-
servations cover a period of 15 years starting with year 1992. A snapshot of these observa-
tions, including the magnitude of the observation error, is provided in Fig. 10. The standard
deviations for the daily NEE values were estimated using a bootstrapping technique using
half-hourly NEE data (Papale et al. (2006); Barr et al. (2009)). The mean standard deviation
is about 0.7, with a range of variation between 0.2 and 2.5.

4.2 Likelihood Construction

In general, the discrepancy between model predictions and the data can be formalized as

z =m(t;θ) + εm + εd (6)

Here, t is the time in day units and z is the daily NEE observation described above. Further,
εm is the discrepancy between the model prediction m(t;θ) and the physical truth, while εd
denotes the experimental error. In general it is not straightforward to disambiguate between
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these two sources of error. For the present study, we presume the experimental error to be
known (Papale et al. (2006); Barr et al. (2009)). Given that measurements are taken at dif-
ferent times, we further assume that daily measurement noise/errors, εd, are independent,
hence

εd ∝N(0,Σd), Σd = diag[σ2d,1,σ
2
d,2, . . .︸ ︷︷ ︸

Nd

], (7)

where Nd is the number of days. Next we will focus our attention on modeling εm. We
propose a multivariate Gaussian distribution, employing a constant bias µ= [µ,µ, . . . ,µ]T

and a Nd×Nd square exponential covariance matrix Σm with

Σmi,j = σ2m exp
(
−(ti− tj)2/l2c

)
(8)

Given that ti is simply a notation for day #i, the covariance matrix entries are given by
Σmi,j = σ2m exp

(
−(i− j)2/l2c

)
, where lc is a correlation length. This analytical expression

for Σm is adopted based on the intuition that model errors for succesive days are highly
correlated while model errors for days that are far apart are uncorrelated. The magnitude of
lc controls the rate of decrease of daily model error correlations.

Given the above formulations of model and data errors, one can group these two into one
multivariate normal error term

ε= εm + εd ∝N(µ,Σ), Σi,i = σ2m +σ2d,i, Σi,i±k = σ2m exp
(
−k2/l2c

)
(9)

and the likelihood LD(θ) is written as

LD(θ) = (2π)−Nd/2
√
|Σ|exp

(
−(z−m−µ)T Σ−1 (z−m−µ)

)
(10)

Here, z = [z1,z2, . . .] is the vector of NEE observations, m= [m(t1,θ),m(t2,θ), . . . ] is the
vector of model NEE predictions, and µ is the model bias vector described above. All these
vectors are Nd long. In addition to the model parameters θ, we now have three additional
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hyperparameters characterizing the model error: the model bias µ, model error standard
deviation σm, and correlation length lc. Unlike for DALEC parameters, for which we em-
ploy informed priors described in the next section, for these hyperparameters we employ
uninformed priors.

In practice, estimating the likelihood LD(θ) can be costly, and prone to numerical insta-
bilities when considering the full Nd×Nd covariance matrix Σ. Therefore we will work with
band-diagonal covariance matrices, obtained by setting the diagonals of the model error
covariance matrix Σm to zero beyond a certain bandwidth kb

Σi,i±k = 0 fork > kb (11)

The effect of covariance matrix bandwidth on the model error terms {µ,σm, lc} and DALEC
parameters is studied in Section 4.4.1.

4.3 Parameter priors

Following LeBauer et al. (2012) we proceed to construct informed priors for the DALEC
model parameters as well as for the initial Carbon pool amounts employed in DTR. Consid-
ering the nominal values and bounds presented in Table 1, we separate model parameters
into two categories. In the first category we place parameters with a range that spans ap-
proximately one order of magnitude or less. For these parameters we employ truncated
normal densities as priors, with the mode set at the nominal values and standard deviations
set to one-eight of the range of variation for each parameter.

In the second category we place parameters for which the range of variation spans more
than two orders of magnitude. For these parameters we set truncated log-normal density
priors. Similarly to the first set of parameters, the parameters of these densities are set such
that the mode occurs at the nominal value and the standard deviation is set to one-eight of
the range of variation for each corresponding parameter in this category. For both normal
and log-normal densities, we truncate the priors based on the ranges presented in Table 1.

For all parameters, except the pair (gdd_min,gdd_max) we consider independent prior
distributions. For the growing degree days parameters, given the inequality constraint
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gdd_min < gdd_max, we employ a truncated joint normal density set up as a product of
one-dimensional normal densities for both gdd_min and gdd_max. This joint density is ap-
propriately scaled so that it integrates to 1 over non-rectangular space (due to the inequality
constraint) for these two parameters. Similarly, the truncated normal and log-normal densi-
ties for the other model parameters are appropriately scaled to account for the finite param-
eter ranges.

For DTR, the initial Carbon pool amounts (representing values on January 1st, 1992)
are also estimated in addition to the DALEC parameters and the hyperparameters defining
the model error. For the carbon pool initial values we also employ truncated normal and
log-normal densities. These prior distributions are informed by site observations (Table 2).
The initial leaf carbon (vc1) is set to zero with a small standard deviation because of the
starting date of the simulation, which is in mid-winter well after leaf fall. Initial litter and soil
organic mean (sc1, sc2) values and standard deviations are taken from Gaudinski et al.
(2000), while stem carbon is estimated from Urbanski et al. (2007). Specifically, we employ
truncated normal densities for all Carbon pools except litter carbon (sc1). For sc1, the mean
and the range differ by two orders of magnitude, hence we employ a truncated log-normal
density for this pool.

4.4 Posterior distributions via MCMC

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the posterior prob-
ability density p(θ|D) in Eq. (5). MCMC is a class of techniques that allows sampling from
a probability density by constructing a Markov Chain that has the target density as its sta-
tionary distribution (Gamerman (1997); Gilks et al. (1996)). In particular, we employ an
adaptive Metropolis algorithm (Haario et al. (2001)), which uses the covariance of the pre-
viously visited chain states to find better proposal distributions, allowing it to explore the
posterior distribution in an efficient manner. Haario et al. (2001) show that, for Gaussian
distributions, the adaptive sampling algorithm is similar in performance to the Metropolis
algorithm. For non-Gaussian posterior densities, the adaptive procedure is superior to non-
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adaptive procedures, however the adaptive procedure is challenged by the dimensionality
of the parameter space.

To facilitate the convergence of the adaptive MCMC algorithm we proceed gradually,
starting with a group of parameters identified as important for NEE through GSA in Sec-
tion 3. The schematic in Fig. 11 shows one iteration in the sequence of MCMC simulations.
We also add the model error hyperparameters, in addition to select DALEC parameters, to
start the first iteration

θ(1) = {gdd_min,gdd_max,tsmin, leaffall,nue,q10_mr,br_mr}+ {µ,σm, lc}

with initial values θ(1)ini set to the nominal conditions provided in Table 1 for DALEC param-
eters, and µ= 0, σm = lc = 1 for model error hyperparameters, respectively. The rest of
parameters are held constant at their nominal values. The initial covariance matrix, C(1)

ini ,
allows the MCMC algorithm to explore a number of possible states before adapting the
sample covariance based on the sample history. For this study we found that a diagonal
covariance matrix with entries set to a fraction of about 1/16 of the variances for the corre-
sponding prior density provided a good start for the MCMC algorithm.

The MCMC states obtained during the first iteration are used to compute the covariance
matrix corresponding to the first set of parameters C(1) which is then used to construct the
initial covariance matrix for the second iteration, C(2)

ini . This process is shown schematically
in Fig. 11. The initial parameter values for the 2-nd iteration consist of the Maximum A
Posteriori (MAP) for θ(1) augmented with the nominal values for

θ(2)\(1) = {lma,rg_frac,q10_hr,br_lit}

The iterative process is completed after the third iteration, with θ(3)\(2) containing the rest of
the DALEC parameters. This iterative algorithm breaks the original high-dimensional prob-
lem into a sequence of steps of increasing dimensionality, with each intermediate step start-
ing with a better proposal covariance compared to an approach for which this covariance is
empirically chosen.
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We employ the Raftery-Lewis diagnostic (Raftery and Lewis (1992)) to determine when
the MCMC samples converge to stationary posterior distributions. For DST, approximately
4× 106 samples are necessary to predict the 5%, 50%, and 95% quantiles of all param-
eters to within ±1% accuracy with 95% probability. For DTR, the Raftery-Lewis diagnos-
tic test shows that 6× 106 are necessary for converged posterior densities. Given 5× 106

MCMC samples, the Effective Sample Size (Kass et al. (1998)) (ESS) for DST varies be-
tween 10,000 and 15,000 samples depending on each parameter, while for DTR, ESS is
between 8,000 and 12,000. This shows that there is significant autocorrelation between
chain samples, which is somewhat typical for MCMC samplers in high-dimensional spaces.
To ensure converged posterior densities, and since the computational model is cheap, re-
sults presented below are based on 7.5×106 MCMC samples for both DST and DTR. When
processing the MCMC samples, we skip the first 106 samples, and then “thin” the rest of
the samples by picking every 10th sample.

4.4.1 Effect of covariance bandwidth on posterior distributions

We performed several MCMC runs to examine the effect of covariance bandwidth on the
estimates of model pararameters and hyperparameters. The bandwidth is parameterized
by kb, in Eq. (11), which denotes the number of non-zero diagonals on either side of the
main diagonal.

Figure 12(a)-(c) shows the estimated MAP values for the hyperparameters µ, σm, and lc,
respectively corresponding to the model error. In addition to DST and DTR, we also show
results for “Dup

TR”. This run is similar to DTR, except uniform priors with the same range
were employed for all Carbon pools. The error bars shown in this figure correspond to two
standard deviations estimated from the MCMC samples.

It seems that the model bias µ, in Fig. 12(a), is not significantly affected by the band-
diagonal trim of the covariance martrix. For all runs considered here µ is consistently neg-
ative signaling that, on average, DALEC overpredicts the NEE data. The other two model
parameters, σm and lc, in Figs. 12(b,c), are sensitive to the bandwidth setup, until they reach
statistically converged values around kb = 10. The model error standard deviation σm mean
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values for both DST and DTR are slightly below 0.4, compared to a mean value of 0.7 for
the NEE measurement error (in Section 4.1).

The 2D joint marginal density for σm and lc, shown in Fig. 12(d) for kb = 12, indicate a
relatively strong dependence and a negative correlation between these two hyperparam-
eters. Results for larger covariance bandwidths (not shown) confirm that densities of both
σm and lc exhibit converged moments for kb > 10.

It is interesting to note the value for the converged mean correlation length lc. It seems
that this hyperparameter does not depend on a particular model setup, at least for the site
and time range considered in this study. Further tests, with uniform priors for all parame-
ters lead to similar mean values for lc. A value of lc = 4, indicating that the model error
discrepancy exhibits a time scale of about 8 days, seems to be an intrinsic property of
the model. This most likely suggests that model errors follow the variability of NEE over
synoptic timescales associated with the periodic passage of weather systems and precip-
itation events (Mahecha et al. (2010)). Further tests, with alternate model error terms, are
necessary to verify this observation.

4.4.2 Comparison between DST and DTR

We first proceed to analyse the model calibration results for DST, when DALEC is run to a
quasi-steady state for each parameter sample. In order to measure the degree of depen-
dence in the posterior distributions for the 18 model parameters we examine the “distance
correlation” values (Székely et al. (2007)) estimated based on the MCMC samples. The dis-
tance correlation is a measure of dependence between two random variables, being zero
when they are independent. Given random variables X and Y with finite first moments, the
distance correlation R(X,Y ) ∈ [0,1] is defined as

R(X,Y ) =
ϑ2(X,Y )√
ϑ2(X)ϑ2(Y )

(12)
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where ϑ2(X,Y ) is the “distance covariance” between X and Y and ϑ2(X) is the “distance
variance”, ϑ2(X) = ϑ2(X,X). The distance covariance ϑ2(X,Y ) is defined as

ϑ2(X,Y ) =E(||X −X ′||||Y −Y ′||)) +E(||X −X ′||)E(||Y −Y ′||)
− 2E(||X −X ′||||Y −Y ′′||)) (13)

where (X ′,Y ′), (X ′′,Y ′′) are independent and identically distributed random variables, with
the same joint density as (X,Y ). Székely et al. (2007) provide numerical algorithms to
compute R(X,Y ) given samples of random variables X and Y . The results are shown
in Table 3. In this table, parameters are grouped in blocks according to the sub-model they
participate in. The entries in the diagonal blocks show dependencies between parameters in
the same sub-model while the entries in off-diagonal blocks indicate dependencies between
parameters from different sub-models.

The most important statistical dependencies are between nue and lma that control the
gross photosynthesis (ACM) and between rg_frac and nue that control net photosynthe-
sis. Relevant dependencies are also observed between q10_mr, a parameter of the au-
totrophic respiration process, and and the gross photosynthesis parameters. In order to fur-
ther understand the dependencies between model parameters we compute 1D and 2D joint
marginal densities, via Kernel Density Estimation (KDE) (Scott (1992); Silverman (1986)),
for the model parameters that exhibit at least one distance correlation factor that is greater
than 0.4. These results are shown in Fig. 13. The statistical dependencies identified above
through R are also evident in 2D joint marginal densities for the same parameters.

Figure 14 shows 1D marginal densities for the rest of the parameters. These parameters
show little dependence on other parameters and so the 1D marginal distribution is sufficient
to characterize their density. Some parameters, e.g astem, tleaf , br_mr, show little update
from prior to posterior densities. For br_som, its turnover rate is slow enough such that
the NEE data contain little useful information. For tleaf, the lack of information is due to
the fact that the effects of leaf turnover on net fluxes are much more strongly controlled by
their timing, as determined by the phenology parameters, than by the background turnover
rate. The posterior densities for other parameters, e.g. laimax, are tilted toward one end of
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their prior range. This might indicate that the model error term is not sufficient to describe
the discrepancy between the model and the data, and the calibration process attempts to
compensate for structural discrepancies between observations and model predictions by
pushing some parameters toward either the minimum or the maximum value of their prior
range.

The posterior density for tsmin exhibits an interesting piecewise quasi-linear profile. This
is due to the fact that minimum daily temperatures, in degrees Celsius, are provided with
one decimal digit accuracy and this parameter is a threshold for leaf drop, i.e. its participa-
tion in the computational model is through an “if” statement. Hence all samples between
successive one-digit accurate thresholds are equally likely during the MCMC sampling pro-
cess, and the product between piecewise uniform likelihood and the normal prior results in
the posterior density profile observed in Fig. 14.

Next, we analyze the calibration results for DTR. For this model setup, the initial values
for the Carbon pools at the beginning of year 1992 are part of the set of model parameters
and each DALEC simulation consists of only one cycle, for the time span 1992-2006. The
distance correlation matrix for DTR parameters that are common to DST has entries that are
by-and-large similar to the ones shown in Table 3 indicating that the dependence between
model parameters is not altered by the model setup. This observation is confirmed by visual
inspection of the 1D and 2D joint marginal densities based on DTR results for the same
parameters as the ones shown in Fig. 13 (results not shown).

Finally, Figure 15 shows marginal densities for two Carbon pools that were updated in
the calibration exercise DTR. vc3 corrresponds to the stem Carbon while sc1 and sc2 cor-
respond to the litter Carbon and soil organic matter, respectively. Both vc3 and sc2 exhibit
some dependence on the temperature sensitivities for maintenance respiration and het-
erotrophic respiration, q10_mr and q10_hr, respectively. These dependencies are consis-
tent with the flow of information depicted in Fig. 1.

Next we examine the departure of each parameter’s posterior density from its prior den-
sity as a result of the Bayesian update via Eq. (5). We quantify these changes via the
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Kullback-Leibler (KL) divergence between prior and marginal posterior densities,

DKL(p||q) =

∞∫
−∞

p(x) ln

(
p(x)

q(x)

)
dx, (14)

where p is the posterior density and q is the prior density. KL divergence results are pre-
sented in Fig. 16. In this figure, parameters are sorted in ascending order based on theDKL

values for DST. Parameters that exhibit DKL < 0.5 for both DST and DTR are excluded from
this figure for clarity. Moreover, the C pools shown in this figure are only present for DTR,
hence there is no DST result for these parameters. The right half of this figure contains pa-
rameters that were identified as important for NEE in Section 3. These parameters are well
constrained by the NEE data, reflecting the useful information in the flux data, for example
on the timing of phenological events (gdd_min) and the dynamics of autotrophic respiration
(br_mr, q10_mr). In general DKL results are similar for DST and DTR, perhaps with the ex-
ception of br_som. For DST, the NEE data contain little information on the turnover rate of
SOM. For DTR, the inclusion of Carbon pools, in particular the SOM pool (sc2), impacts the
Bayesian update of this parameters due to the dependencies observed in the joint marginal
densities, shown in Fig. 15.

5 Predictive Assessment

In this section we explore the predictive skill given the posterior distributions for the model
parameters for DST and DTR. First, we employ the Bayesian posterior predictive distribution
(Lynch and Western (2004)) to assess the adequacy of the calibrated DALEC model, and
the Gaussian data noise model, for prediction of the NEE observations. Specifically, the
posterior distribution for the predicted NEE data, p(y|D), is computed by marginalization
of the likelihood over the posterior distribution of model parameters and hyperparameters,
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here θ:

p(y|D) =

∫
θ

p(y|θ)p(θ|D)dθ. (15)

For the present work, (y−m) |θ ∼ εm+ εd, where y = [y1,y2, . . .] is a Nd-dimensional vec-
tor with NEE predictions over a range of Nd days, εm is the model error term and εd is the
data noise term.

The 1D-marginal posterior predictive density for daily NEE values for a two-year snapshot
around 1995 are shown in Fig. 17. These densities were computed by sampling the poste-
rior distribution of model parameters θ, i.e. by using the MCMC samples that are already
available. We employ about 4000 MCMC samples, for each sample we draw 20 samples
from the multivariate normal distribution εm + εd, and then add these samples to the model
evaluations. These results are saved into daily bins, from which we extract several quan-
tiles corresponding to the 1D-marginal posterior predictive density. It is worth to note that the
variance of the posterior predictive distributions can also be estimated analytically as the
sum of the measurement error variance and the pushed-forward variance, i.e. the variance
of the output quantity of interest with respect to posterior variability.

The top frame in Fig. 17 corresponds to DST and the bottom frame to DTR. Generally,
the predicted data spread covers well the observed NEE values for the entire time range.
Ocasional spikes can be seen outside the 5− 95% predictive band, shown in blue.

In order to quantitatively compare the predictive capability of the calibrated models for
DST and DTR, we adopt a probabilistic score based on the predictive cumulative distribu-
tion function (CDF). The Continuous Rank Predictive Score (CRPS) (Gneiting and Raftery
(2007)) measures the difference between the CDF of the provided data and that of the fore-
cast/predicted data, i.e. data generated based on the posterior predictive distribution. Thus,

CRPS(F ,D) =
1

Nd

Nd∑
k=1

∞∫
−∞

(Fk(yk|D)−HDk(yk))2 dyk (16)
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Here, Fk(yk|D) is the 1D marginal posterior predictive CDF for day/component k computed
using 1D marginal posterior predictive distributions

Fk(yk|D) =

yk∫
−∞

pk
(
y′k|D

)
dy′k (17)

where

pk (yk|D) =

∫
p(y|D)dy∼k. (18)

is the 1D marginal posterior predictive density corresponding to day k, based on p(y|D)
computed via Eq. (15). Herre, dy∼k = dy1 · · ·dyk−1dyk+1 · · ·dyNd . The CDF of the provided
data is approximated as a Heaviside function centered at the observation value Dk (Hers-
bach (2000)), HDk(yk) = 1yk≥Dk .

We employ the posterior predictive check data presented above to compute CRPS values
for both DST and DTR. For DST we obtain a value 0.67 while for DTR the CRPS value is
0.60. The lower values for DTR compared to DST indicate, on average, tighter marginal
predictive CDF’s that are better centered around the NEE data for the setup when DALEC
is run for one cycle and the Carbon pools are treated as parameters. This indicates a better
predictive skill for DTR compared to DST.

In order to measure the effect of calibration on the predictive capability of DALEC we
employ the Continuous Rank Predictive Skill Score (CRPSS) (Wilks (2011))

CRPSS =
CRPSpsp−CRPSprp
CRPSprf −CRPSprp

(19)

where CRPSpsp is the CRPS computed above based on the posterior predictive distribu-
tion, CRPSprp is based on the prior predictive distribution, and CRPSprf is the CRPS
based on “perfect” predictions. For the current study, the “perfect” predictions correspond
to the hypothetical case with no model error and posterior densities for model parameters
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centered on the NEE observations. The prior predictive distribution is defined analogous
to the posterior predictive distribution in Eq. (15), with the posterior density p(θ|D) being
replaced by p(θ), the prior density for model parameters θ.

A CRPSS value of 0 implies no improvement of the predictive skill for the calibrated model
parameters compared to the predictions based on the prior information, while a value of 1
can be achieved when the posterior distribution reduces to a point and the model prediction
is the same as the corresponding experimental data. The CRPS values corresponding to
the prior (CRPSprp), posterior CRPSprp, and the ideal case CRPSprf are presented in
Table 4 for both DST and DTR. Based on the values in this table the CRPSS for DTR shows
a much stronger improvent in predictive capabilities for this model setup compared to DST.

6 Conclusions

We presented uncertainty quantification results for a process-based ecosystem Carbon
model. We assembled several probabilistic methodologies in a framework that tackles the
connected problems of parameter estimation and forward propagation of input uncertain-
ties. Depending on the simulation setup, the model employs either steady state or transient
assumptions, respectively, and it is driven by meteorological data corresponding to years
1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations
were available to calibrate the model parameters and test the performance of the model.

We first discussed global sensitivity analysis (GSA) results for the complete set of input
parameters. Based on their contribution to the variance, we find that different parameters
have larger impacts for NEE at certain times of the year when the processes they control
become important. One example is the tsmin parameter, which is the critical temperature
at which leaf fall begins, and mainly affects NEE in October. We found that parameter inter-
actions can also be relevant to the variability of NEE or Gross Primary Production (GPP).
Unlike NEE and GPP which are fluxes, the Carbon pools, either vegetation (TVC) or soil
(TSC), tend to vary more slowly and their month-to-month variability depends on a small
subset of parameters. We also found that the simulation setup affects the relative impor-
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tance of parameters for NEE and TSC while GPP and TVC are less sensitive to the change
between steady and transient assumptions.

We then proceeded to calibrate the model parameters in a Bayesian framework using
informative priors for all parameters. In this context we examined both steady and tran-
sient assumptions for the Carbon model simulations. In the latter approach the initial values
for the Carbon pools are part of the calibration process. The discrepancy between actual
and predicted NEE values was modeled as a multivariate normal distribution with constant
mean and a square exponential covariance matrix. A convergence study was performed to
determine the effect of covariance matrix bandwidth on the parameters of the discrepancy
term. It was found that the converged correlation length does not depend on the simulation
setup and that the model discrepancy for NEE data exhibits a time scale of about one week.

The posterior distribution of model parameters was sampled sequentially by first consid-
ering the most relevant parameters and then progressively adding less important param-
eters, according to GSA-based ranking. The posterior samples, obtained with a Markov
Chain Monte Carlo algorithm, exhibit significant dependencies between some of the model
parameters. Comparison of posterior densities for parameters that are common to the two
model setups indicate similar calibration results.

The predictive capabilities of the model, employing the parameters’ posterior distribution,
were assessed qualitatively through posterior predictive checks and quantitatively through
Continuous Rank Predictive Score (CRPS) computations. Based on the CRPS values, the
transient model setup, for which Carbon pools are set as simulation parameters, performed
better, in particular when compared to results based on prior predictive distributions. Given
similar calibration results for the parameters common to the two configurations, we attribute
the improvement in the predictive capabilities to the calibrated Carbon pools in the transient
model setup.

The analysis presented in this paper considered a single data series at one site only.
However, the Bayesian framework employed in the parameter calibrations is well-suited to
deal with both heterogeneous data and multiple model setups. We are currently explor-
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ing avenues to extend this work to multi-site studies together with employing multiple data
streams to better constrain the model parameters.
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Table 1. Description of model parameters.

Param. Nom. val. Range Description Units

gdd_min 100 10 · · ·250 threshold for leafout [◦C day]
gdd_max 200 50 · · ·500 threshold for max. LAI [◦C day]
tsmin 5 0 · · ·10 Temperature for leaffall [◦C]
laimax 4 2 · · ·7 Seasonal max. LAI [m2 leaf / m2]
leaffall 0.1 0.03 · · ·0.95 rate of leaffall [day−1]D

ec
id

.P
he

n.

lma 80 20 · · ·150 specific leaf area [gC / m2 leaf]

A
C

M leafcn 25 fixed leaf C:N ratio [gC/gN]
nue 7 1 · · ·20 Nitrogen use efficiency [ ]

q10_mr 2 1 · · ·4 Maintenance resp. T-sensitivity [ ]
br_mr 10−4 10−5 · · ·10−2 Base rate for maintenance resp. [gC m−2 day−1 / gC biomass]A

.R
.

rg_frac 0.2 0.05 · · ·0.5 growth respiration fraction [ ]

A
. astem 0.7 0.1 · · ·0.95 Allocation to plant stem pool [ ]

tstem 1
50×365

1
250×365 · · · 1

10×365 stem turnover time [day−1]
troot 1

5×365
1

25×365 · · · 1
365 root turnover time [day−1]

Li
tte

r.

tleaf 10−2 10−3 · · ·10−1 leaf turnover time [day−1]

q10_hr 2 1 · · ·4 Heterotrophic resp. T-sensitivity [ ]
br_lit 1

2×365
1

5×365 · · · 10
5×365 base turnover for litter [gC m−2 day−1 / gC litter]

br_som 1
30×365

1
100×365 · · · 1

10×365 base turnover for SOM [gC m−2 day−1 / gC SOM]

D
ec

om
p.

dr 10−3 10−4 · · ·10−2 decomposition rate [day−1]
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Table 2. Prior setup for the initial Carbon pool amounts employed in DTR.

Name ID Mean St. Dev Constraints

leaf C vc1 0 20 0 < vc1
stem C vc2 9000 1800 0 < vc2
root C vc3 1500 300 0 < vc3
litter C sc1 10 25 0 < sc1< 1000
som C sc2 8800 1760 0 < sc2
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Table 3. Distance correlation factors for DST. The diagonal blocks are marked according to the pro-
cess the parameters contribute to, see also Fig. 2 and Table 1. The entries in the diagonal block show
dependencies between parameters from the same process, while the entries in the off-diagonal
block show dependencies between parameters from different processes.

gdd_min 1
gdd_max 0.5 1
tsmin 0 0 1
laimax 0 0.1 0 1
leaffall 0.1 0 0.2 0 1

lma 0 0.2 0 0.1 0.1 1

nue 0.1 0.3 0 0. 0.2 0.9 1

q10_mr 0 0.2 0 0 0.1 0.6 0.6 1
br_mr 0 0.2 0.1 0.1 0.4 0.1 0 0.2 1
rg_frac 0.3 0.1 0 0 0.2 0.4 0.6 0.2 0.1 1

astem 0 0 0 0 0 0 0 0 0 0 1

tstem 0 0 0 0 0.2 0 0 0.1 0.1 0.1 0 1
troot 0 0 0 0 0 0 0 0 0 0 0 0.1 1
tleaf 0 0 0 0 0 0 0 0 0 0 0 0 0 1

q10_hr 0.1 0.1 0.1 0 0.2 0.2 0.1 0.2 0.2 0.2 0 0.2 0 0 1
br_lit 0.1 0.1 0.1 0 0.4 0 0.1 0.1 0.5 0.1 0 0 0 0 0.3 1
br_som 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
dr 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.1 0 0 0 0 0.1 0.2 0.1 1

gd
d_

m
in

gd
d_

m
ax

ts
m

in

la
im
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fa
ll
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e

q1
0_

m
r

br
_m

r

rg
_f

ra
c
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te
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hr
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dr
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Table 4. CRPS and CRPSS values for DST and DTR. The CRPSS value for DTR shows a much
larger improvement in predictive capabilities for this model setup compared to DST.

Setup CRPSprf CRPSprp CRPSpsp CRPSS

DST 0.16 0.90 0.67 0.31
DTR 0.16 1.45 0.60 0.65
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Table 5. Nomenclature.

ACM Aggregate Canopy Model
CRPS Continuous Rank Predictive Score
CRPSS Continuous Rank Predictive Skill Score
DALEC Data Assimilation Linked Ecosystem Carbon
FIM Fisher Information Matrix
GPP Gross Primary Production
GSA Global Sensitivity Analysis
MCMC Markov Chain Monte Carlo
NEE Net Ecosystem Exchange
QoI Quantity of Interest
TSC Total Soil Carbon
TVC Total Vegetation Carbon
DKL(p||q) Kullback–Leibler divergence between probability densities q

and p
LD = p(D|θ) Likelihood of the data D for a particular instance of model

parameters θ
p(θ), p(θ|D) prior and posterior probability densities, respectively, for

model parameters θ
p(y|D) posterior distribution for the predicted NEE data y
pk(yk|D) marginal posterior distribution for the predicted NEE compo-

nent yk
R(X,Y ) Distance correlation between random variables X and Y
Si First-order Sobol index for parameter i
Sij Joint Sobol index for parameters i and j
ST
i Total-order Sobol index for parameter i
θ Vector of parameters for DALEC
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Parameter
Estimation

Forward UQ

Bayesian
Framework

Measurement Model
z = m(x; θ) + εm + εd

GSA

z

x

Data (D)

θ

p
d
f(
θ|D

)

Computational Model
y = f(x; θ)

x

y
Figure 1. Schematic of parameter estimation, on yellow background, and forward UQ workflows,
on green background. For this work DALEC is used as both “measurement model”, m, and as
“computational model”, f . In the Bayesian framework, parameter estimation depends both on the
model error εm and on the measurement error εd.
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Figure 2. Schematic of processes, shown with green boxes, in DALEC with associated parameters,
listed in orange boxes. The blue arrows indicate how internal parameters and QoIs, shown with blue
circles, impact DALEC processes, while the green arrows show the impact of processes on the QoI
and other internal parameters.
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Figure 3. Matrices with total effect Sobol indices, ST
i , for monthly averages of NEE for (a) DST

and (b) DTR. The colormap changes from red for large index values to blue for indices ≈ 1%. The
grayscale corresponds to Sobol index values from 1% down to 0.1%, while blank cells indicate values
smaller the 0.1%.
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Figure 4. Matrices with total effect Sobol indices, ST
i , for monthly averages of GPP for (a) DST and

(b) DTR. The colormap setup is similar to the one in Fig. 3.
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Figure 5. Matrices with total effect Sobol indices, ST
i , for monthly averages of TVC for (a) DST and

(b) DTR. The colormap setup is similar to the one in Fig. 3.
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Figure 6. Matrices with total effect Sobol indices, ST
i , for monthly averages of TSC for (a) DST and

(b) DTR. The colormap setup is similar to results in Fig. 3.
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Figure 7. Relevant joint Sobol indices, Sij , corresponding to October NEE averages for (a) DST and
(b) DTR. The labels on each line show the magnitude, in %, of Sobol indices for the corresponding
parameter pairs.
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Figure 8. Relevant joint Sobol indices, Sij , corresponding to October GPP averages for (a) DST and
(b) DTR. The labels on each line show the magnitude, in %, of Sobol indices for the corresponding
parameter pairs.
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Figure 9. Relevant joint Sobol indices, Sij , corresponding to September averages for (a) TVC and
(b) TSC. Both sets of results are based on DST. The labels on each line show the magnitude, in %,
of Sobol indices for the corresponding parameter pairs.
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Figure 10. Snapshot of NEE observations (with red line) for the Harvard Forest site. The light blue
region, bordered by thick blue lines corresponds to ±2σ around the daily NEE values.
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Figure 11. Schematic of the iterative process for parameter calibration. The MCMC sampling of the
joint density for the set of parameters θ(i) starts at θ(i)ini using an initial proposal covariance C(i)

ini.
For the following iteration, (i+ 1), the initial condition is constructed using the MAP estimate for
θ(i), augmented with initial conditions, in this case the nominal values, for the rest of parameters,
θ(i+1)\(i). The initial proposal covariance C

(i+1)
ini is constructed based on the sample covariance

matrix for θ(i), augmented with an initial proposal covariance for θ(i+1)\(i), C(i+1)\(i)
ini .
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Figure 12. Convergence of model error components with increasing bandwidth of the covariance
matrix: (a) µ, (b) σm, and (c) lc. The joint 2D marginal density of (σm, lc) for kb = 12 is shown in (d).
In addition to DST and DTR setups, we also considered “Dup

TR”, a setup equivalent to DTR, but with
uniform priors assumed for the vegetation and soil Carbon pools.
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Figure 13. DST-problem: 1D marginal and 2D joint marginal PDFs for parameters showing distance
correlation factors above 0.4, see also Table 3. Marginal PDFs are estimated via KDE based on
approximately 5× 105 MCMC samples.
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Figure 14. DST-problem: 1D marginal PDFs for parameters showing distance correlation factors
less than 0.4 with other parameters, see also Table 3. Marginal PDFs are estimated via KDE based
on approximately 5× 105 MCMC samples.
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Figure 15. DTR-problem: 1D marginal and 2D joint marginal PDFs for select parameters correlated
with the Carbon pools. Marginal PDFs are estimated via KDE based on approximately 5×105 MCMC
samples.
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Figure 16. Kulback-Leibler divergence, DKL(p||q), between prior q and posterior p densities for
parameters with DKL > 0.5 for both DST and DTR.
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Figure 17. Marginal posterior predictive densities using the calibration results for DST (top frame)
and DTR (bottom frame) presented in Section 4. The blue regions correspond to the daily 5− 95%
quantile range and the green regions to 25− 75% quantile range. The red line shows the daily NEE
observations.
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