
We would like to thank the anonymous referee's constructive comments. As a result, in
our opinion, the revised manuscript is improved with respect to the original. An item-by-
item response to the comments is presented below. The manuscript was revised
accordingly with changes/modifications presented below as well.

*===
Responses to the anonymous referee's comments:

Anonymous Referee #1
Received and published: 31 January 2015

In this article, the authors port the WRF YSU PBL scheme onto NVIDIA Tesla K40
CPU. With some optimizations, the GPU code gets a good speedup comparing with
CPU-only code. I have some concerns about the paper.

(1) First, the NVIDIA Tesla K40 GPUs is the state-of-art accelerator. But the Intel Xeon
E5-2603 is not. The comparison may be a little unfair.

 The Intel Xeon E5-2603 is the CPU we have here.

(2) Second, the baseline CPU code has not been well tuned. At least the optimization
with height dependence release can also be exploited on CPU.

 We ran the CPU-based code on one CPU core using exactly the same optimization
along with height dependence release as the GPU-based code. It took 1204 ms, which
corresponded to speedup of 1.5x.

 We added one sentence with a little modification in the third paragraph of Section 5
“Summary and future work” to reflect this issue. The whole paragraph becomes:

	 	 	 	 	 	 	 	 “Using	 one	 NVIDIA	 Tesla	 K40	 GPU	 in	 the	 case	 without	 I/O	 transfer,	 our	
optimization	 efforts	 on	 the	 GPU-‐based	 YSU	 PBL	 scheme	 can	 achieve	 a	 speedup	 of	
193×	 with	 respect	 to	 one	 CPU	 core,	 whereas	 the	 speedup	 for	 one	 CPU	 socket	 (4	
cores)	 with	 respect	 to	 one	 CPU	 core	 is	 only	 3.5×.	 We	 also	 ran	 the	 CPU-‐based	 code	
on	 one	 CPU	 core	 using	 exactly	 the	 same	 optimization	 along	 with	 height	
dependence	 release	 as	 the	 GPU-‐based	 code,	 and	 its	 speedup	 is	 merely	 1.5x	 as	
compared	 to	 its	 original	 Fortran	 counterpart.	 In	 addition,	 we	 can	 even	 boost	 the	
GPU-‐based	 speedup	 to	 360×	 with	 respect	 to	 one	 CPU	 core	 when	 two	 K40	 GPUs	
are	 applied;	 in	 this	 case,	 one	 minute	 of	 model	 execution	 on	 dual	 Tesla	 K40	 GPUs	
will	 achieve	 the	 same	 outcome	 as	 six	 hours	 of	 execution	 on	 a	 single	 core	 CPU.”	

(3) Third, using share memory is a general technique on GPU. According the Section 4.2,
you just simply use more L1 cache to get better performance. Have you tried to use share
memory for the better locality?

 We have tried "cudaFuncCachePreferShared" for using more shared memory as
opposed to "cudaFuncCachePreferL1" for using more L1 cache. It was found that the
GPU runtime with "cudaFuncCachePreferShared" is almost the same as that with turning
off "cudaFuncCachePreferL1" for this scheme.

 In other words, the GPU runtimes for using "cudaFuncCachePreferShared" or
turning off "cudaFuncCachePreferL1" are liasted in Table 1:

 GPU runtime Speedup
 Non-coalesced 36.0 ms 50.0x
 Coalesced 34.2 ms 52.6x

 And, the GPU runtimes for using "cudaFuncCachePreferL1" are presented in Table
2:

 GPU runtime Speedup
 Non-coalesced 34.3 ms 52.5x
 Coalesced 33.0 ms 54.5x

 We added one sentence to the last paragraph in Section 4.2 to address this issue. The
whole paragraph becomes:

 “Starting	 with	 the	 first	 CUDA	 C	 version	 of	 the	 YSU	 PBL	 scheme,	 the	
computing	 performances	 with	 L1	 cache	 command	 was	 found	 to	 be	 better	 than	
that	 without	 this	 command,	 while	 the	 latter	 performance	 was	 noticed	 to	 be	
almost	 the	 same	 as	 that	 using	 "cudaFuncCachePreferShared"	 command.	 This	
suggests	 that	 usage	 of	 more	 L1	 cache	 helps	 to	 speed	 up	 the	 CUDA	 C	 programs	 for	
this	 scheme.	 	 The	 GPU	 runtime	 and	 speedup	 are	 summarized	 in	 Table	 2	 after	 L1	
cache	 command	 “cudaFuncCachePreferL1”	 is	 launched.”	

