
We would like to thank the anonymous referee's constructive comments. As a result, in
our opinion, the revised manuscript is improved with respect to the original. An item-by-
item response to the comments is presented below. The manuscript was revised
accordingly with changes/modifications presented below as well.

*===
Responses to the anonymous referee's comments:

Anonymous Referee #1
Received and published: 31 January 2015

In this article, the authors port the WRF YSU PBL scheme onto NVIDIA Tesla K40
CPU. With some optimizations, the GPU code gets a good speedup comparing with
CPU-only code. I have some concerns about the paper.

(1) First, the NVIDIA Tesla K40 GPUs is the state-of-art accelerator. But the Intel Xeon
E5-2603 is not. The comparison may be a little unfair.

 The Intel Xeon E5-2603 is the CPU we have here.

(2) Second, the baseline CPU code has not been well tuned. At least the optimization
with height dependence release can also be exploited on CPU.

 We ran the CPU-based code on one CPU core using exactly the same optimization
along with height dependence release as the GPU-based code. It took 1204 ms, which
corresponded to speedup of 1.5x.

 We added one sentence with a little modification in the third paragraph of Section 5
“Summary and future work” to reflect this issue. The whole paragraph becomes:

	
 	
 	
 	
 	
 	
 	
 	
 “Using	
 one	
 NVIDIA	
 Tesla	
 K40	
 GPU	
 in	
 the	
 case	
 without	
 I/O	
 transfer,	
 our	

optimization	
 efforts	
 on	
 the	
 GPU-­‐based	
 YSU	
 PBL	
 scheme	
 can	
 achieve	
 a	
 speedup	
 of	

193×	
 with	
 respect	
 to	
 one	
 CPU	
 core,	
 whereas	
 the	
 speedup	
 for	
 one	
 CPU	
 socket	
 (4	

cores)	
 with	
 respect	
 to	
 one	
 CPU	
 core	
 is	
 only	
 3.5×.	
 We	
 also	
 ran	
 the	
 CPU-­‐based	
 code	

on	
 one	
 CPU	
 core	
 using	
 exactly	
 the	
 same	
 optimization	
 along	
 with	
 height	

dependence	
 release	
 as	
 the	
 GPU-­‐based	
 code,	
 and	
 its	
 speedup	
 is	
 merely	
 1.5x	
 as	

compared	
 to	
 its	
 original	
 Fortran	
 counterpart.	
 In	
 addition,	
 we	
 can	
 even	
 boost	
 the	

GPU-­‐based	
 speedup	
 to	
 360×	
 with	
 respect	
 to	
 one	
 CPU	
 core	
 when	
 two	
 K40	
 GPUs	

are	
 applied;	
 in	
 this	
 case,	
 one	
 minute	
 of	
 model	
 execution	
 on	
 dual	
 Tesla	
 K40	
 GPUs	

will	
 achieve	
 the	
 same	
 outcome	
 as	
 six	
 hours	
 of	
 execution	
 on	
 a	
 single	
 core	
 CPU.”	

(3) Third, using share memory is a general technique on GPU. According the Section 4.2,
you just simply use more L1 cache to get better performance. Have you tried to use share
memory for the better locality?

 We have tried "cudaFuncCachePreferShared" for using more shared memory as
opposed to "cudaFuncCachePreferL1" for using more L1 cache. It was found that the
GPU runtime with "cudaFuncCachePreferShared" is almost the same as that with turning
off "cudaFuncCachePreferL1" for this scheme.

 In other words, the GPU runtimes for using "cudaFuncCachePreferShared" or
turning off "cudaFuncCachePreferL1" are liasted in Table 1:

 GPU runtime Speedup
 Non-coalesced 36.0 ms 50.0x
 Coalesced 34.2 ms 52.6x

 And, the GPU runtimes for using "cudaFuncCachePreferL1" are presented in Table
2:

 GPU runtime Speedup
 Non-coalesced 34.3 ms 52.5x
 Coalesced 33.0 ms 54.5x

 We added one sentence to the last paragraph in Section 4.2 to address this issue. The
whole paragraph becomes:

 “Starting	
 with	
 the	
 first	
 CUDA	
 C	
 version	
 of	
 the	
 YSU	
 PBL	
 scheme,	
 the	

computing	
 performances	
 with	
 L1	
 cache	
 command	
 was	
 found	
 to	
 be	
 better	
 than	

that	
 without	
 this	
 command,	
 while	
 the	
 latter	
 performance	
 was	
 noticed	
 to	
 be	

almost	
 the	
 same	
 as	
 that	
 using	
 "cudaFuncCachePreferShared"	
 command.	
 This	

suggests	
 that	
 usage	
 of	
 more	
 L1	
 cache	
 helps	
 to	
 speed	
 up	
 the	
 CUDA	
 C	
 programs	
 for	

this	
 scheme.	
 	
 The	
 GPU	
 runtime	
 and	
 speedup	
 are	
 summarized	
 in	
 Table	
 2	
 after	
 L1	

cache	
 command	
 “cudaFuncCachePreferL1”	
 is	
 launched.”	

