Responses to comments Provided by Referee 3
	1. This is in general a well thought out and methodologically sound piece of work and the authors make a sufficient case that the work is novel for it to warrant publication.
Authors’ response: Thanks very much for your positive comments.



	2. While there are no fundamental issues with the work there are a number of ways in which it could be improved. These are mainly regarding key pieces of information that are currently missing from the manuscript.
The authors go to the trouble of conducting a Bayesian Calibration on six of the mode parameters which is excellent since rather than employing an optimisation routine to merely ’tune’ the model parameters they estimate the full conditional probability of the parameters being probable given the ET and E data. However, once the calibration is made only a single parameter vector is selected and all the subsequent analysis versus the data is based on results of that single vector. This is an opportunity missed since they already have all the information they need to report the influence of posterior parameter uncertainty on model outputs. This could be done by calculating the 5th and 95th quantiles from their 3000 member parameter sample for example. This would make for a far superior analysis of model-measurement differences since the model output can now be represented by the full calibrated posterior distribution not just a single run.
Authors’ response: Thanks for your valuable suggestions. In our revised paper, model-measurement differences were analysed using the 5th and 95th quantiles from their 3000 member parameter sample. Please see Fig. 8 and Fig. 9. We also discussed in the paper:

· Also, the 95% posterior prediction intervals of simulated soil E was narrow. (Line 422, Page 20);
· that the estimated daily ET generally fluctuated tightly with the measured values with relative narrow uncertainties (95% posterior predication intervals) (Lines 425-426, Page 20);
· However, there are 12 days during the study period (111 days) with observations beyond the upper bounder of the 95% posterior predication intervals (Fig. 8) (Lines 428-430, Page 20);
· simulated λET and E were comparable to the measurements with relatively narrow uncertainties (95% posterior predication intervals) (Lines 495-496, Page 23).


	3. The choice of an MCMC algorithm to sample the posterior is generally good one although assessing convergence requires special care as it is too easy to be fooled into believing that convergence has been obtained when in fact only a local maxima has been found. For this reason the manuscript is too light on details of the Gelman-Rubin numbers that were obtained that convinced the authors that the MCMC had converged. This should be reported especially since ﬁg 4. k1, k2, k3 might suggest that convergence has not yet been reached.
Authors’ response: According to your valuable suggestion, the G-R test was reported in Appendix C. The figure below showed that the parameters tend to converge after 5000 iterations.
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Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel chains with different initial values were used to calculate GR values.


	4. The authors should give details of why they chose the 6 parameters that they did to be calibrated. Ideally a calibration should include all model parameters and if a subset is selected perhaps for reasons of computational practicality then an objective method such as Morris should be used to select the most important parameters.
Authors’ response: According to your valuable suggestion, the global sensitivity was conducted in Appendix A. The results indicated that the most sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameter had almost no effect on the variability in model output (Fig. C2. 
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Fig. C2 The evolution of the first-order sensitivity indices.

	5. In Bayesian Calibration the choice of the prior distribution is also important and should be discussed but this is currently missing.
Authors’ response: According to your valuable suggestion, the influence of prior distribution on the simulation results was conducted in our revised paper (see Appendix A). As expected the simulated values of daily evapotranspiration and soil evaporation both showed larger uncertainties. Thus, there is a need to update the parameters based on observation datasets. In our revised paper, the following sentences were stated (Lies 252-258, Page 12):
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[image: image3.wmf]()

p

c

represents prior probability distributions of parameters 
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, which is chosen as uniform distributions with specified allowable ranges (Table 1). In general, the parameter ranges were wide enough to include the actual parameter values and to give the optimization freedom (Sack et al., 2006). In the test study, we run the S-W model using 4000 parameter vectors which were sampled from the prior distribution using Latin Hypercube Sampling (LHS) method (Iman and Helton, 1998), and found that the observed data in most case were in the range of predicted values (Appendix A). 
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Fig. C3 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model using the prior distribution of parameters. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data.


	6. The manuscript is also lacking details on the errors were used in the likelihood calculation to represent the random errors that were assigned to the measurements. This is gain an important omission as these errors should be discussed and justiﬁed on the asis of analyses or from literature.
Authors’ response: In our revised paper, the calculation of errors were stated as (Lines 262-275, Page 13):
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; Gelman et al., 1995) and treated as one the model parameters, which yields a complete posterior distribution of 
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. However, this method artificially increased the parameter dimension of the problem and may result in unreasonable estimations of the parameter values (Kavetski et al., 2006). In this study, 
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 was estimated by using the analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find the value of 
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We then used 
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 in the equations (22).


	Detailed Comments:

	1. Throughout the manuscript the authors refer to "multiple measuring datasets". This doesn’t work in English perhaps "multivariate datasets" might convey what the authors want?
Authors’ response: Thanks for your detailed helps to us. According to your valuable suggestion, the words “multiple measuring datasets” were changed as “multivariate datasets” in our revised paper. 

	2. Abstract: accounted -> account
Authors’ response: It has been corrected.



	3. p743 line4 has good performances -> performs well
Authors’ response: It has been changed.



	4. p744 line8 in arid -> in the arid
Authors’ response: It has been corrected.



	5. p745 line18 synchronously -> synchronous
Authors’ response: It has been corrected.



	6. p746 line2 were-> was
Authors’ response: It has been corrected.



	7. line7 delete was
Authors’ response: It has been deleted



	8. p747 line13 coefﬁcient -> coefﬁcients
Authors’ response: It has been corrected.



	9. line18 is -> are
Authors’ response: It has been corrected.



	10. p748 line16 is -> are
Authors’ response: It has been corrected.



	11. p750 line8 parameters needed -> parameters that needed
Authors’ response: It has been corrected.

12. line13 dataset -> datasets
Authors’ response: It has been corrected (Line 286 in our revised paper).



	13. line17 The difference between the model and the observations should not be called model error as if the observations are ’truth’. A better description is model data mismatch recognising that both the model and the data contain errors. Also see above you need to discuss how the observational random error is obtained.
Authors’ response: According to your suggestion, the ‘model error’ was changed as ‘model-data mismatch’.

The observational error was studied by Wang et al. (2014). In our revised paper, these errors were stated as (Lines 131-138, Pages 6 and 7):

In addition, the flux uncertainties are directly related to the likelihood function of Bayesian inference (Section 2.5). Thus, determining the uncertainties is EC measurements is essential for proper parameter estimates. Recently, Wang et al. (2014) systemically studies the flux uncertainties of EC systems equipped in the HiWATER experiment. Generally, uncertainties for 
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References:
Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., Xu, Z.W.: Assessment of Uncertainties in Eddy Covariance Flux Measurement Based on Intensive Flux Matrix of HiWATER-MUSOEXE. IEEE Geosciences and Remote Sensing Letters, 2014, (under review).



	14. Line22 "assuming the model error follows a Gaussian" no this is not a correct interpretation of likelihood. The likelihood is formally the "chance of getting the observations given the parameters". Therefore the Gaussian in the likelihood represents the errors in the observation rather than the model. The idea here is that random observational error (as quantified by the sigma and the Gaussian) is stopping us from always obtaining the observations from the parameters. The errors in the parameters are represented in the prior and as it stands this calibration estimates the probability of the parameters being correct given the observations assuming that this is the correct model. That is to say an assumption of the calibration is that the model is correct. We know this is wrong but the Bayesian Calibration does not explicitly represent this. Of course the model data mismatch in the likelihood does implicitly quantify both model and data errors but this is not the formal understanding of the likelihood. Indeed later on you go on to suggest possible model improvements. As future work I would advocate creating a new version of the model with those improvements and formally quantifying whether the new model is more likely using Bayesian analysis. See Bayesian Model Comparison in Van Oijen, M.; Reyer, C.; Bohn, F.J.; Cameron, D.R.; Deckmyn, G.; Flechsig, M.; Härkönen, S.; Hartig, F.; Huth, A.; Kiviste, A.; Lasch, P.; Mäkelä, A.; Mette, T.; Minunno, F.; Rammer, W.. 2013 Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. Forest Ecology and Management, 289. 255-268. 10.1016/j.foreco.2012.09.043.
Authors’ response: Thanks for your clear interception of the definition of the likelihood function. Also, thanks very much for your guides to us for the future studies. We will conduct some model comparison studies of different ET model in typical ecosystems (i.e., alpine grassland, alpine forest, arid farmland, and arid forest) in northwest China. According to your suggestion, the sentence was changed as (Lines 261-263, Pages 12 and 13):
Assuming the model-data mismatch 
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References:
van Oijen, M., Cameron, D.R., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson, P.E., Kiese, R., Rahn, K.H., Werner, C., Yeluripati, J.B.: A Bayesian framework for model calibration, comparison and analysis: application to four models for the biogeochemistry of a Norway spruce forest. Agric. For. Meteor., 151(12), 1609-1621, 2011.
van Oijen, M., Reyer, C., Bohn, F.J., Cameron, D.R., Deckmyn, G., Flechsig, M., Härkönen, S., Hartig, F., Huth, A., Kiviste, A., Lasch, P., Mäkelä, A., Mette, T., Minunno, F., Rammer, W.: Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. Forest Ecol. Manag., 289, 255-268, 2013.


	15. p751 line10 formally I believe you are using the Metropolis algorithm rather than Metropolis-Hastings
Authors’ response: The detail of MCMC algorithm was presented in Appendix B. The M-H algorithm was used in our study. Because the prior distribution was selected as uniform distribution, the M-H algorithm was indeed the same as the Metropolis algorithm.



	16. line14 Which distribution are you using for the proposal density (multivariate normal?)
Authors’ response: In our revised paper, the proposal function was presented more clear (Lines 303-315, Pages 14 and 15):

It was well recognized that efficiency of the M-H algorithm was strongly effected by the proposal distribution function. To find an effective proposal distribution 
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, a test run of the M-H algorithm with 10, 000 simulations was made by using a uniform proposal distribution (Braswell et al., 2005):
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is the covariance matrix of the parameter vector 
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 from the initial test run (Xu et al., 2006). The detailed description on MCMC sampling procedure and the code written in Matlab were presented in Appendix B.


	17. line22 I don’t think you need to split the datasets in this way. Indeed the calibration would benefit from the inclusion of all of the data. The comparison against data that you make later on would be just as valid since this is more about identifying weaknesses in the structure of the model i.e. missing processes rather than parametrisation.
Authors’ response: According to your valuable suggestion, these sentences were changed as (Lines 323-326, Pages 15 and 16):

Since the primary interest in application of the S-W model was to reproduce the pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during the whole study period, we used all available data to construct the likelihood function (equation 25) and to obtain the posterior distribution of the parameters.



	18. line23 dataset -> datasets
Authors’ response: This sentence has been deleted. 



	19. line24 optimised -> calibrated
Authors’ response: This sentence has been deleted. 



	20. p752 line11 posterior expectancy? Assume you mean the expectation of the posterior (i.e. the mean). See comments above about representing the full posterior in your analysis rather than just one parameter vector.
Authors’ response: Yes, it is the posterior median values of the parameters. The full posterior were also included in our analysis in the revised paper. Please see Figs. 8 and 9.

21. p753 line4 was -> are 
Authors’ response: It has been corrected.



	22. p754 line8 contents -> content
Authors’ response: It has been corrected.



	23. line13 split plantshave
Authors’ response: It has been split.



	24. line22 were -> are
Authors’ response: It has been corrected.


	25. line23 predicate -> predict
Authors’ response: It has been corrected.



	26. line25 reword: something like "However, significant differences exist between measured and modeled half-hourly ET values for the spring maize in the arid desert oasis."
Authors’ response: Thanks, it has been corrected.



	27. line27 regressive -> the regression
Authors’ response: It has been corrected.



	28. p755 line10 was -> is
Authors’ response: It has been corrected.



	29. line17 observed -> observe
Authors’ response: It has been corrected.



	30. ine20 5 -> on the 5th of
Authors’ response: It has been corrected.



	31. line22 needed -> needs
Authors’ response: It has been corrected.



	32. p756 line4 was -> is
Authors’ response: It has been corrected.



	33. line10 on the 5th of July
Authors’ response: It has been corrected.



	34. line11 no gaps in time i.e. 12:00 20:00
Authors’ response: The gaps in time were added in our revised paper.


	35. line17 flows do not -> flows that do not
Authors’ response: It has been corrected.


	36. line18 representing -> represent
Authors’ response: It has been corrected.


	37. line19 attentions -> attention
Authors’ response: It has been corrected.


	38. Figure8: The text in this figure is currently too small
Authors’ response: The size of this figure was 18cm×8cm. 

	Finally, we want to express our deep appreciations to you for your patient helps in improving the quality of our paper. Thanks very much!


Appendix A

A.1 Global Sensitivity Analysis

To identify the key parameters that being responsible for most of the variability of the model outputs, a global sensitivity analysis were performed. Following Saltelli et al. (2008), the first-order sensitivity index 
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A.2 Monte Carlo Simulations

The Monte Carlo method was used to calculate 
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. The procedure are listed as below (Saltelli et al., 2010):

Step 1: 

     Generate two independent input parameter sampling matrices 
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 with dimension 
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Step 2:
     Build another 
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Step 3:

     Calculate 
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     where 
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is the estimated value of model output; The matrices 
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are generated using the Latin Hypercube Sampling technique (Iman and Helton, 1988). 
A.3 Matlab Code for Global Sensitivity Analysis

function [A,B]=LHSsample(N,d,interval)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Using the Latin Hypercube Sampling (LHS)technique (Iman and Helton, 1988)
% to generate matrices A and B
% Authors   : Zhu Gaofeng
% Date      : March 19, 2014
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Description:
% N         :    number of sample 
% d         :    dimension of parameter vector
% Interval :   interval of prior distribution of paramter being d*2 matrix
% A         :    matrix A being N*d
% B         :    matrix B being N*d
interval=[interval;interval];
% Generates a LHS M1 containing N samples and 2*d dimension
M1=lhsdesign(N,2*d);
for j=1:size(M1,2)
    int=interval(j,:);
for i=1:size(M1,1) 
%transform to parameter space
        M(i,j)=unifinv(M1(i,j),int(1),int(2)); 
    end
end
A=M(:,1:d);             % the first d columns were designed to matrix A
B=M(:,d+1:end);        % the last d columns were designed to matrix B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model
function LET=SWSA(rstmin,k1,k2,k3,b1,b2,Tamin,Tamax,KA,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac)
% calculate rss
thetas=0.45;    % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp(b1-b2*SWC_2./thetas);
% calculated rsc
F1=(eps+S)*(1055+k1)./(1055*(S+k1));       % S:short wave radiation W m-2
tao=(Tamax-k2)/(k2-Tamin);
numerator=(Ta-Tamin).*(Tamax-Ta).^tao;
denominator=(k2-Tamin).*(Tamax-k2).^tao;
F2=numerator./denominator;
F3=1-k3*D;
rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4);
% S-W model
% specific heat capacity of the dry air in kJ/kg/K;
Cp=1.013;  
Ra=(delta+gamma).*raa;
Rs=(delta+gamma).*ras+gamma.*rss;
Rc=(delta+gamma).*rac+gamma.*rsc;
Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra)));
Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra)));
Rns=Rn.*exp(-KA.*LAI);
A=Rn-G;
As=Rns-G;
ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gamma.*(1+rss./(raa+ras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*(1+rsc./(raa+rac)));
LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT;
D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp);
E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras));
T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model
% Main Program

clc
clear
Nss=4000;                           % Sample numbers
% Prior parameter interval for rstmin, k1,k2,k3,b1,b2,Tamax,Tamin,KA
interval=[1 80
          0 500
          20 40
          0 .1
          4 15
          0 8
          0 5
          40 45
          .2 .8];
dem=size(interval,1); % dimension of parameter vector
% Generate matrices A and B using the LHS technique
[Am,Bm]=LHSsample(Nss,dem,interval);
% input meteorological data, Here we used the daily average data
data=[108.1539915   125.3973438 -3.675183507    0.871684028 13.78421875 64.39277778 844.5503472 17.07349201 26.71506701 2.832   256.97255   253.5320313];
% Variables
ET  =  data(1);          
% w m-2
Rn   =  data(2);          
% w m-2
G    =  data(3);          
% w m-2
u    =  data(4);          
% m s-1
Ta   =  data(5);          
% oC
RH   =  data(6)/100;      
% humidity 
P    =  data(7)/10;       
% kPa
SWC_2=  data(8)/100;     
% m3 m-3
SWC_r=  data(9)/100;     
% m3 m-3
LAI  =  data(10);         
% m2 m-2;
hc   =  data(11)/100;     % canopy height in m
z    =  3;              

% reference height in m
S    =  data(12);         
% solar radiation
% calcualte wind speed at canopy height
z0  =   0.13*hc;            % roughness lenght
d   =   0.67*hc;            % zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorologic varibles
lambda=2500.78-2.3601*Ta;     
% saturaed vapour pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
%air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;
D=es-ea;
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
%
Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;           %the ratio between the mplecular weight of water vapor and air
gamma=Cp*P./(lambda*epsilong);
% calculate raa
k=0.41;                                         % von K¨¢rm¨¢n constant
% z0h=0.1*z0;                                     % roughness length to the heat flux in [m];
n=2.5;                                          % parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     % bare surface
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                         % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% calculate the sensitivity index
sa1=0;
sb1=0;
ss1=zeros(1,dem);
st1=zeros(1,dem);
AB=zeros(1,dem);
for j=1:Nss
    ETA=SWSA(Am(j,1),Am(j,2),Am(j,3),Am(j,4),Am(j,5),Am(j,6),Am(j,7),Am(j,8),Am(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    sa1=sa1+ETA;
    sb1=sb1+ETA^2;
    bfo(j,1)=sa1/j;
    VY(j,1)=sb1/j-bfo(j,1)^2;
    ETB=SWSA(Bm(j,1),Bm(j,2),Bm(j,3),Bm(j,4),Bm(j,5),Bm(j,6),Bm(j,7),Bm(j,8),Bm(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);  
    for i=1:dem
        AB=Am(j,:);
        AB(i)=Bm(j,i);        
        ETAB=SWSA(AB(1),AB(2),AB(3),AB(4),AB(5),AB(6),AB(7),AB(8),AB(9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
        ss1(i)=ETB*(ETAB-ETA)+ss1(i);
        Si(j,i)=ss1(i)/(j*VY(j,1));
        st1(i)=st1(i)+(ETA-ETAB)^2;
        ST(j,i)=st1(i)/(2*j*VY(j,1));
    end
end
% Create figure
figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
% Create axes
axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on');
box('on');
hold('all');
% Create multiple lines using matrix input to semilogy
semilogy1 = semilogy(Si);
set(semilogy1(1),'DisplayName','{\itr}_{STmin}');
set(semilogy1(2),'DisplayName','{\itK}_1');
set(semilogy1(3),'DisplayName','{\itK}_2');
set(semilogy1(4),'DisplayName','{\itK}_3');
set(semilogy1(5),'DisplayName','{\itb}_1');
set(semilogy1(6),'DisplayName','{\itb}_2');
set(semilogy1(7),'DisplayName','{\itT}_{min}');
set(semilogy1(8),'DisplayName','{\itT}_{max}');
set(semilogy1(9),'DisplayName','{\itK}_A');
% Create xlabel
xlabel('Simulation');
% Create ylabel
ylabel('{\itS}_{i}');
% Create legend
legend1 = legend(axes1,'show');
set(legend1,'Position',[0.7141 0.3258 0.1121 0.2881]);
% Create textbox
annotation(figure1,'textbox','String',{'August'},'FontSize',14,...
    'EdgeColor','none',...
    'Position',[0.1387 0.8208 0.393 0.1009],...
    'FitHeightToText',...
    'on');        
save Si
A.4 First-order sensitivity indices
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Fig. A1 The evolution of the first-order sensitivity indices.
Table A1 The first-order sensitivity index 
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S

 for different parameters

	Parameter
	Si (%)
	Order

	rSTmin
	54.3
	1

	k1
	4.2
	5

	k2
	8.5
	4

	k3
	0
	9

	b1
	21.9
	2

	b2
	10.4
	3

	Tamin
	0.3
	7

	Tamax
	0.12
	8

	KA
	2.84
	6


From Fig. A1 and Table A1, we can see that the most sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameters with Si less than 5% had almost no effect on the variability in model output. In addition, we thought that some parameter such as KA (the extinction coefficient of light attenuation) has obviously physical meaning and should be measured directly on site (see Sauer et al., 2007). Thus, in our study, only six parameters were selected to be estimated in order to avoid equifinality or over-parameterization. 
Overall, the key parameters in the S-W model are rSTmin , b1 and b2 with the values of Si larger than 10%. Thus, proper estimations of these parameters have great influences in reducing the uncertainty on model simulation. 
A.5 Prior Uncertainty Quantification

To derive from that the prior predictive uncertainty, 4000 parameter vectors were sampled from the prior uniform distribution using Latin Hypercube Sampling (LHS) method. The results indicated that the both simulated daily (ET; mm d-1) and soil evaporation (E; mm day-1) showed larger uncertainties (Fig. C2). Thus, there is an urgent need to optimize the parameters based on available datasets.
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Fig. A2 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model using the prior distribution of parameters. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data.
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Appendix B
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Part 2: Multi-Source Data Set Optimization Scheme

1.1 Metropolis-Hasting (M-H) Algorithm:

1.2 Matlab Code for the M-H Algorithm:

1.3 Results

Part 3: Single Data Set Optimization Scheme

2.1 Metropolis-Hasting (M-H) Algorithm:

2.2 Matlab Code for the M-H Algorithm:

2.3 Results
Part 4: Comparisons Between Two Optimization Schemes
This appendix show: 
(1) Description of Bayes’ Theorem

(2) the optimization scheme of M-H algorithm using multi-source data set (Part 1) and single data set (Part 2); 

(2) The Matlab Code of the M-H algorithm using different assimilation scheme;

(3) The differences between the two different assimilation schemes;

The code can be used and tested freely. I would be great appreciations if you can cited our paper when using the code.
Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwest China. Geosci. Model Dev. Discuss., 7, 741–775.

PART 1: The Bayes’ Theorem 
A general description of the Bayesian probabilistic inversion is given by Bayes’ theorem (Box and Tiao, 1973) in a form of:  
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in which 
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 is the prior probability density function (PDF) representing prior knowledge about parameter 
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; 
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is the likelihood function, which defines the fit to the data for particular parameter set and also reflects the influence of the data on parameter identification; 
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is the probability of observations 
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, and 
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is the posterior PDF of parameter 
[image: image87.wmf]c

. Thus, the inverse problem can be related to the forward problem through a set of measurements and prior knowledge about the probability of the parameters. 
PART 2: Multi-Source Data Set Optimization Scheme

2.1 Metropolis-Hasting (M-H) Algorithm:

In practice, except for situations where 
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 have very simple forms, it is not always possible to draw samples directly from
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. In such cases, the Markov Chain Monte Carlo (MCMC) method can be used to investigate the parameter space in the search for the posterior distribution (Geman et al., 1993; Gelfand and Smith, 1990). The basic idea for the MCMC sampling is to design a Markov chain with 
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as the targeted stationary distribution. Once the chain has simulated for sufficiently long period samples in the chain will follow the stationary distribution, then one can collect the samples from the simulation and calculate various statistics associated with the posterior PDF from them. The Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970) is a type of MCMC technique that approximately obtains samples from the posterior distribution. A simple computational implementation of the M-H algorithm consists of the following steps:

Step 1: 

Chose an arbitrary initial point 
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 in the parameter space.

Setp 2:

Propose a candidate point 
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where
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specify the prior range of the parameter vector 
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; 
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is a random number uniformly distributed between -0.5 and +0.5; 
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is a value controlling the proposing step size and was set to be 5. 
Step 3: 

     3.1 Calculate 
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 for a given parameter vector:
For a given parameter vector 
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, we can simulate half-hourly λET (W m-2) and daily E (mm day-1) using equations (1) and (9) in the manuscript, which is labeled as
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     where 
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 is observed values of the ith dataset [observed half-hourly λET (W m-2) and daily E (mm day-1), respectively] at time 
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 is the number of observations of the ith dataset. 
3.2 Calculate the likelihood function 
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     where 
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 is the number of dataset (
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Step 4: 

 Calculate the acceptance probability:
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     The ratio of likelihood is calculated under the candidate value of parameter to  that calculated under preciously accepted value of parameter. 

Step 5: 

      Generate a random number 
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form the uniform distribution
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Step 6: 

       Repeat steps 2 and 5 until enough samples are obtained.

The flowchart of the M-H algorithm was illustrated in Fig. B1.
[image: image187.emf]Initializing c

(0)

, and calculating               (i=1, 2) and L(c

(0)

) using Eqns. (B2) and (B4), respectively

(0)

()

a

i

c



Generating c

(new)

by the uniform proposal distribution using Eqn. (B1)

• Simulating the S-W model using parameter value c

(new) 

to obtain  f

i

(t) (i=1, 2);

• Comparing with observation values and getting e

i

(t) (i=1, 2);

• Obtaining               using Eqn. (B2);

• Calculating the likelihood function L(c

(new)

) using Eqn. B4

()

()

anew

i

c



• Calculating the acceptance probability 

α

using Eqn. B5;

• Generating a random number r~U(0,1); 

• if r

≤α

then c

(k)

=c

(new)

; otherwise c

(k)

=c

(k-1)

;

Convergence?

Or iteration completed?

No

Yes

Obtaining the posterior distribution of the parameters

Initializing c

(0)

, and calculating               (i=1, 2) and L(c

(0)

) using Eqns. (B2) and (B4), respectively

(0)

()

a

i

c



Generating c

(new)

by the uniform proposal distribution using Eqn. (B1)

• Simulating the S-W model using parameter value c

(new) 

to obtain  f

i

(t) (i=1, 2);

• Comparing with observation values and getting e

i

(t) (i=1, 2);

• Obtaining               using Eqn. (B2);

• Calculating the likelihood function L(c

(new)

) using Eqn. B4

()

()

anew

i

c



• Calculating the acceptance probability 

α

using Eqn. B5;

• Generating a random number r~U(0,1); 

• if r

≤α

then c

(k)

=c

(new)

; otherwise c

(k)

=c

(k-1)

;

Convergence?

Or iteration completed?

No

Yes

Obtaining the posterior distribution of the parameters


Fig. B1 Flowchart representing the basic scheme of the M-H algorithm.

2.2 Matlab Code for the M-H Algorithm:

%% Matlab Code of two source evapotranspiration model

function [LET,Emd]=SW(rstmin,k1,k2,k3,b1,b2,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac)
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Author: 
Gaofeng Zhu; Xin Li et al

%% Date: 

March 17, 2014 

%% Address:
Lanzhou University

%%

%% If there is a need for using the code, please cite the paper of the %% authors as:

%% Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the two-source evapotranspiration model by Bayesian approach: 
%% application to spring maize in an arid region of northwest China. Geosci. %% Model Dev. Discuss., 7, 741–775
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Descriptions: 

%%%%%% Output variables　

%% LET


simulated half-hourly evapotranspiration in [w m-2]

%% Emd


simulated daily soil evaporation in [mm d-1]

%%%%%% parameter in resistance sub-model

%% rstmin 

minimal stomatal resistance in [s m-1]

%% k1           parameter in eqn. 16 in the manuscript with unit [w m-2]

%% k2 


unit [oc]

%% k3           unit [kPa-1]

%% b1           parameter in soil surface resistance in [s m-1]

%% b2           parameter in soil surface resistance in [s m-1]

%%%%%% input driving variables 

%% F4 


see eqn. (19) in the manuscript 

%% G 


soil heat flux in [W m-2]

%% Rn           net solar radiation in [W m-2]

%% S            short-wave solar radiation in [W m-2] (Rs in eqn.16)
%% LAI 


leaf area index in [m2 m-2]

%% Ta 


air temperature in reference height in [oc]

%% rho

    air density in [kg m-3]

%% D 


air water vapor pressure deficit in [kPa]

%% SWC_2       soil water content at the surface layer [m3 m-3]

%% delta       slope of the saturation vapor pressure versus temperature
curve [kPa K-1]

%% gamma       psychrometric constant [kPa K-1]

%% raa 

aerodynamic resistances in [s m-1]

%% ras

aerodynamic resistances in [s m-1]

%% rac

aerodynamic resistances in [s m-1]
%% Code of S-W model   %%
%% calculate rss in [s m-1] 
thetas=0.45;   % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp(b1-b2*SWC_2./thetas);
%% calculated rsc in [s m-1]
F1=(eps+S)*(1055+k1)./(1055*(S+k1));  % S:short wave radiation W m-2
Tamin=0;
Tamax=40;
tao=(Tamax-k2)/(k2-Tamin);
numerator=(Ta-Tamin).*(Tamax-Ta).^tao;
denominator=(k2-Tamin).*(Tamax-k2).^tao;
F2=numerator./denominator;
F3=1-k3*D;
rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4);
%% S-W model
Cp=1.013;  % specific heat capacity of the dry air in kJ/kg/K;
Ra=(delta+gamma).*raa;
Rs=(delta+gamma).*ras+gamma.*rss;
Rc=(delta+gamma).*rac+gamma.*rsc;
Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra)));
Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra)));
KA=.41;
Rns=Rn.*exp(-KA.*LAI);
A=Rn-G;
As=Rns-G;
ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gamma.*(1+rss./(raa+ras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*(1+rsc./(raa+rac)));
LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT;                         % total half-hourly ET in [W m-2] 

% air water vapor pressure deficit at the canopy height in [kPa] 

D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp); 
% half-hourly soil evaporation in [W m-2]
E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras)); 

% half-hourly canopy transpiration in [W m-2]
T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac));
%% convert units of evaporation and transpiration from [W m-2] to [mm m-2]
lambda=2500.78-2.3601*Ta;    
Em=E./lambda;
Tm=T./lambda;
%% calculate the daily accumulative soil evaporation and transpiration %% in [mm day-1]
for i=1:length(E)/48
    Emd(i,1)=sum(Em((i-1)*48+1:i*48));
    Tmd(i,1)=sum(Tm((i-1)*48+1:i*48));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the S-W model
% Main Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% Authors
: 

Gaofeng Zhu, Xin Li

%% Date   
:     
March 17, 2014
%% Address
:   
Lanzhou University

%% Purpose
: 

using the M-H algorithm to explore the posterior

%%


distribution   parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
% load meteorological and biological driving data 
load data
% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S
% Variables
ET  
=  data(:,1);           
% w m-2
Rn   
=  data(:,2);          
% w m-2
G    
=  data(:,3);          
% w m-2
u    
=  data(:,4);          
% m s-1
Ta   
=  data(:,5);          
% oC
RH   
=  data(:,6)/100;      
% humidity 
P    
=  data(:,7)/10;        
% kPa
SWC_2
=  data(:,8)/100;      
% m3 m-3
SWC_r
=  data(:,9)/100;      
% m3 m-3
LAI  
=  data(:,10);          
% m2 m-2;
hc   
=  data(:,11)/100;      
% canopy height in m
z    
=  3;                      
% reference height in m
S    
=  data(:,12);       
 
% solar radiation
load Edaily





% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1 
% saturated vapor pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
% air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;





 % actual vapor pressure in kPa
D=es-ea;                         % air vapor pressure deficit in kPa
% air density in kg m-3
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;         %the ratio of water vapor and air         
gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1)
% calculate raa using equations from Shuttleworth and Wallace (1985) 

k=0.41;                         
% von Karman constant
% z0h=0.1*z0;                  % roughness length to the heat flux in [m];
n=2.5;                          
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
%  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% method 2 

% w=6/100;                                    % leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                                    % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));    
end
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure

% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
e1=LETo-ET;
e2=Emdo-Edaily;
sigma1=sqrt(sum(e1.^2)/length(LETo));
sigma2=sqrt(sum(e2.^2)/length(Emdo));
logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2));
logL=logL1+logL2;
nsim=30000;









% iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
% generate new parameter vector
rr=-.5+rand(1,length(cmin));
    cnew=co+rr.*(cmax-cmin)/5;
    % simulate using new parameter vector    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for different data set
    e1=LETo-ET;
    e2=Emdo-Edaily;
    % estimate sigma of different data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24
    % calclaute the log-likelihood of different data set 
    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            
    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);            
    % calcualte the total log-likelihood  
    logLnew=logL1+logL2;                                  % Eqn.23
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics

    end
    sigma(i,:)=[sigma1,sigma2];         % save sigma

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program

The proposing efficiency of 
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 affects the efficiency of the algorithm, and hence should be properly designed to ensure a moderate sample acceptance rate. A rate of 23% is sometimes an optimal acceptance rate (Robert and Rosenthal, 1998). In our test study, the accepting rate using the uniform proposal function is generally low (~10%). Based on the test run, we constructed a normal distribution 
[image: image119.wmf](0,cov())

Nc

, where 
[image: image120.wmf]cov()

c

is the diagonal matrix of the parameter with its diagonal being set to the estimated variances of the parameter 
[image: image121.wmf]c

from the initial test run and zeros elsewhere. Then, we adopted the following proposal distribution:
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Using this proposal distribution, the general acceptance rate can achieve between 20-50%. The Matlab code was shown as following:

function y=Generate(co,transT,eigV,cmin,cmax)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Purpose : using normal distribution to generate candidate
% Author  : Gaofeng Zhu, Xin Li, et al.,
% Date    : March 17, 2014
% the original code was developed by Xu et al., 2007;
% Please cited as:
% Xu T., White L., Hui DF., Luo YQ. Global Biogeochemical Cycle, 20, GB2007, 
% dio:10.109/2005GB002468, 2006
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
co=co';
while(true) 
% 6:  the number of parameter 
cT=randn(6,1).*[sqrt(eigV(1,1));sqrt(eigV(2,2));sqrt(eigV(3,3));sqrt(eigV(4,4));sqrt(eigV(5,5));sqrt(eigV(6,6))];
%generate a new configuration based on the estimated covariance matrix
c_new =transT*(transT'*co+cT);
 if c_new(1)>cmin(1)&c_new(1)<cmax(1)...
        &c_new(2)>cmin(2)&c_new(2)<cmax(2)...
        &c_new(3)>cmin(3)&c_new(3)<cmax(3)...
        &c_new(4)>cmin(4)&c_new(4)<cmax(4)...
        &c_new(5)>cmin(5)&c_new(5)<cmax(5)...
        &c_new(6)>cmin(6)&c_new(6)<cmax(6)...
        break
    end
end
y=c_new';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model

% Main Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% Authors: Gaofeng Zhu, Xin Li

%% Date:     March 17, 2014
%% Adress:   Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution 

%%           parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
% load meteorological and biological driving data 
load data
% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S 
% Variables
ET  
=  data(:,1);           
% w m-2
Rn   
=  data(:,2);          
% w m-2
G    
=  data(:,3);          
% w m-2
u    
=  data(:,4);          
% m s-1
Ta   
=  data(:,5);          
% oC
RH   
=  data(:,6)/100;      
% humidity 
P    
=  data(:,7)/10;        
% kPa
SWC_2
=  data(:,8)/100;      
% m3 m-3
SWC_r
=  data(:,9)/100;      
% m3 m-3
LAI  
=  data(:,10);          
% m2 m-2;
hc   
=  data(:,11)/100;      
% canopy height in m
z    
=  3;                      
% reference height in m
S    
=  data(:,12);       
 
% solar radiation
load Edaily





% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1 
% saturated vapor pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
% air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;





 % actual vapor pressure in kPa
D=es-ea;                         % air vapor pressure deficit in kPa
% air density in kg m-3
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;         %the ratio of water vapor and air         
gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1)
% calculate raa using equations from Shuttleworth and Wallace (1985) 

k=0.41;                         
% von Karman constant
% z0h=0.1*z0;                  % roughness length to the heat flux in [m];
n=2.5;                          
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
%  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% method 2 

% w=6/100;                                    % leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                                    % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));    
end
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure

% Prior estimate of covariance matrix of parameters 
% it was obtained from previous uniform run
cov_c=[0.9645
-0.0219
-0.3973
-0.0015
-0.0047
0.0314

-0.0219
0.0247
-0.0852
0.0003
0.0171
0.0322

-0.3973
-0.0852
5.3166
-0.0076
-0.0279
-0.0387

-0.0015
0.0003
-0.0076
0.0003
0.0025
0.0065

-0.0047
0.0171
-0.0279
0.0025
0.2524
0.6315

0.0314
0.0322
-0.0387
0.0065
0.6315
1.6916];

[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
e1=LETo-ET;
e2=Emdo-Edaily;
sigma1=sqrt(sum(e1.^2)/length(LETo));
sigma2=sqrt(sum(e2.^2)/length(Emdo));
logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2));
logL=logL1+logL2;
nsim=30000;









% iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
    % generate new parameter vector from normal destribution
    cnew= Generate(co,transT,eigV,cmin,cmax);
    % simulate using new parameter vector    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for different data set
    e1=LETo-ET;
    e2=Emdo-Edaily;
    % estimate sigma of different data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24
    % calclaute the log-likelihood of different data set 
    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            
    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);            
    % calcualte the total log-likelihood  
    logLnew=logL1+logL2;                                  % Eqn.23
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics

    end
    sigma(i,:)=[sigma1,sigma2];         % save sigma

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the main program
2.3 Results of Multi-source Assimilation Scheme
The results of 10,000 evolution of MCMC using multi-source data are shown in Fig. B2
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Fig. B2 The evolution of MCMC chain using the normal distribution proposal (left) and histograms of sample from posterior distribution (right) by using multi-source dataset

The comparison between observed and simulated half-hourly evapotranspiration (W m-2) were illustrated in Fig. B3. The simulated values were obtained using the median values of the posterior parameter distribution.
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Fig. B3 Comparison between observed and simulated half-hourly evapotranspiration (W m-2). The regression lion between observed and simulated values was: y=0.84x+0.18 (R2=0.83)

PART 3: Single Data Set Optimization Scheme 
3.1 M-H Algorithm:

To investigate how the estimation accuracy and parameters vary, a test case was also run by using one single data set (the EC-measured half-hourly ET; W m-2). In this case, the likelihood function was set as:
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where 
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is EC-observed half-hourly ET (W m-2); 
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is simulated ET values  (W m-2; Eqn.1 in the manuscript); 
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et

is the model error (W m-2); and 
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 is the standard deviation on each data point. For a given parameter vector, 
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 is estimated as (Braswell et al., 2005):
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3.2 Matlab Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% This scheme using only the EC-measured half-hourly ET data

%% Authors: Gaofeng Zhu, Xin Li

%% Date:     March 17, 2014
%% Adress:   Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution 

%%           parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
load data
% ET  Rn Gs_1  WS_3m  Ta_3m  RH_3m  P  Ms_2cm  Ms_10cm LAI h S 
% Variables
ET  =  data(:,1);           
% w m-2
Rn   =  data(:,2);          
% w m-2
G    =  data(:,3);          
% w m-2
u    =  data(:,4);          
% m s-1
Ta   =  data(:,5);          
% oC
RH   =  data(:,6)/100;      
% humidity 
P    =  data(:,7)/10;       
% kPa
SWC_2=  data(:,8)/100;      
% m3 m-3
SWC_r=  data(:,9)/100;      
% m3 m-3
LAI  =  data(:,10);         
% m2 m-2;
hc   =  data(:,11)/100;    
% canopy height in m
z    =  3;                 
 
% reference height in m
S    =  data(:,12);        
% solar radiation
load Edaily




% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;     
% saturated vapour pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
%air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;
D=es-ea;
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
%
Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K;
%the ratio between the mplecular weight of water vapor and air
epsilong=.622;         
gamma=Cp*P./(lambda*epsilong);
%% calculate raa
k=0.41;                        
% von Karman constant
% z0h=0.1*z0;                 
% roughness length to the heat flux in [m];
n=2.5;                         
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;  % bare surface
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
%% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% w=6/100;                            
% leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                         
% saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET, E and T
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));
    Edaily(i,1)=ETdaily(i,1)*FracE(i,1);
    Tdaily(i,1)=ETdaily(i,1)*FracT(i,1);
end 
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure
% Prior estimate of covariance matrix of parameters 
% it was obtained from test uniform run, which is similar to that used 

% in Part 1

%
cov_c=[2.649    -11.1951    0.4698  -0.011  -0.0843 0.5416
-11.1951    12139.2934  -80.9997    0.3606  11.5584 23.4091
0.4698  -80.9997    22.3938 -0.0033 0.3244  1.6035
-0.011  0.3606  -0.0033 0.0006  0.0007  -0.0004
-0.0843 11.5584 0.3244  0.0007  0.576   1.3829
0.5416  23.4091 1.6035  -0.0004 1.3829  4.4452];
[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=20;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
% only ET data set was used here, that is different form Part 1
e1=LETo-ET;
sigma1=sqrt(sum(e1.^2)/length(LETo));
logL=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
nsim=10000;                                     % iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
    % generate new parameter vector from normal destribution
    cnew= Generate(co,transT,eigV,cmin,cmax);
    % simulate using new parameter vector    
    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for ET data set
    e1=LETo-ET;
    % estimate sigma of ET data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    % calclaute the log-likelihood 
    logLnew=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);           
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program
3.3 Results 

The results of 10,000 evolution of MCMC using single data are shown in Fig. B4 (left). Comparing with multi-source assimilation scheme, we can see that the posterior distribution of soil resistance parameter (b1 and b2) varied wider.[image: image133.png]50 - 10000
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Fig. B4 The evolution of MCMC chain using the normal distribution proposal (left) and histograms of sample from posterior distribution (right) by using single dataset.

The slope (0.85) of the regression line between observed and simulated half-hourly ET for single data set assimilation scheme is slightly lower than that for multi-source data set assimilation scheme (0.86). Thus, we can conformed that that the multi-source data set assimilation scheme is more effective than the single data set scheme. 
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Fig. B5 Comparison between observed and simulated half-hourly evapotranspiration (W m-2). The regression lion between observed and simulated values was: y=0.83x-1.65 (R2=0.75)

PART 4: Comparisons Between Different Assimilation Schemes

4.1 Posterior distributions of parameter for different assimilation schemes  

For Scheme 1 (simultaneously assimilate all data sets), 
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 is the length of the 95% credible interval) (Fig. B6), and their posterior distributions become approximately symmetric with distinctive modes, while parameters 
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 have relative large variability (widely spread on the prior bounds) (Fig. B7a); For Scheme 2 (only assimilate EC data), only 
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 showed relatively large uncertainty reductions and tended to be approximately symmetric, while 
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 and 
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 tended to span the entire prior range (Fig. B7b). Comparing with the two assimilation schemes, important differences occurred in estimates of the posterior distribution of parameters related to the soil surface resistance (
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 and 
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; s m-1) (Fig. B6). Generally, tighter posterior distributions for parameters 
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 were obtained by Scheme 1. For example, the values of uncertainty reduction for 
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 in Scheme 1 (0.89 and 0.56, respectively) were higher than that in Scheme 2 (0.79 and 0.12, respectively). Thus, the daily soil evaporation data helped to well constrain estimates of 
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 and 
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. In addition, the six calibrated parameters by Scheme 1 were not significantly inter-correlated with each other (correlation coefficients lower than 0.1), while for Scheme 2 the pairs 
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 tended to be constrained together with correlation coefficients being 0.84 and 0.32, respectively (Table B1). 
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Fig. B6 Uncertainty reductions of parameters using different assimilation schemes

Table B1 The correlation coefficient, derived form the posterior distribution of parameters using different assimilation schemes. 

	rSTmin
	k1
	k2
	k3
	b1
	b2
	

	1
	-0.004
	-0.01
	0.02
	0.01
	0.004
	rSTmin

	
	1
	0.05
	-0.04
	-0.02
	0.06
	k1

	
	
	1
	-0.04
	-0.07
	0.07
	k2

	EC data Only
	1
	0.05
	-0.04
	k3

	rSTmin
	1
	
	
	1
	0.02
	b1

	k1
	-0.13
	1
	
	
	1
	b2

	k2
	-0.13
	0.06
	1
	
	
	

	k3
	-0.15
	0.02
	0.01
	1
	
	

	b1
	-0.09
	0.05
	0.04
	0.02
	1
	

	b2
	0.32
	0.02
	0.05
	-0.03
	0.84
	1

	
	rSTmin
	k1
	k2
	k3
	b1
	b2


* the upper triangular matrix for Scheme 1; the lower triangular matrix for Scheme 2
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Fig. B6 Histograms of samples from the posterior distributions of the parameters. The dashed vertical lines indicate mean parameter values. (a) Simultaneously assimilate all data sets, (b) EC-measured λET data only

4.2 Comparisons of model performance for different assimilation schemes  

Having parameterized the S-W model by different assimilation schemes as described above, we ran the model to simulate the half-hourly 
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(equation 1) and 
[image: image164.wmf]λ

E

(equation 9) values (W m-2). The daily estimations of evapotranspiration (ET; mm d-1) and soil evaporation (
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; mm d-1) were obtained by summing up the half-hourly simulated values. The statistical analysis of observed versus estimated values of water vapor fluxes at different time-scales for different assimilation schemes were summarized in Table B2. Overall, the simulations (half-hourly 
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 and daily soil evaporation) of the S-W model optimized by using all data sets simultaneously (Scheme 1) were comparable to the measurements (see Fig. 6 in the Manuscript). For example, the slope of regressive equation between the measured and modeled half-hourly 
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values for Scheme 1 was 0.84, with MBE of 24.2 W m-2, IA of 0.93 and EF of 0.74. A relatively good agreement between measured and estimated daily soil evaporation (E) was also obtained. The slope of regression equation was 1.01, with MBE of –0.01 mm day-1, IA of 0.94 and EF of 0.76. When only EC-measured data were used (Scheme 2), the performances of the S-W model optimized by Scheme 2 on simulations of half-hourly 
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were not significantly different from that optimized by Scheme 1 (Fig. B7). The regression equation between the measured 
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 and the estimated 
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from the S-W model optimized by Scheme 2 was 0.83, with MBE of 30.5 W m-2, IA of 0.67 and EF of 0.13. However, the S-W model optimized by Scheme 2 significantly underestimated the soil evaporation (E). The slope of regression equation between the measured and the estimated E was 0.59, with MBE of 0.11 mm day-1, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W model properly partition the total ET into its different components using only the half-hourly 
[image: image171.wmf]λ
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 data, even thought the simulated values was in good agreement with measurements.   

The fluctuation of measured and estimated daily ET and E by the two different assimilation schemes was illustrated in Fig. B8. For both assimilation schemes, the simulated daily ET generally fluctuated tightly with the measured values with relative narrow uncertainties (97% posterior predication intervals). Also, we can observed that the 97% posterior prediction interval of soil evaporation for Scheme 1 was narrower than that for Scheme 2 (Fig. B8). Thus, we thought that the soil resistance in the S-W model was properly parameterized for the spring maize by the method with the multiple data sets simultaneously assimilated.
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Fig. B7 Relationship between measured and estimated by Scheme 1 (a) evapotranspiration (
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ET

; W m-2), (b) daily soil evaporation (E; mm d-1).
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Fig. B8 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model during the study period in Daman Oasis. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data. (a) Simultaneously assimilate all data sets, (b) EC-measured λET data only.

Table B2 Statistical analysis of measured and estimated values of half-hourly evapotranspiration (λET; W m-2), daily soil evaporation (E; mm d-1), and daily evapotranspiration(ET; mm d-1) by different assimilation schemes for the spring maize in arid desert oasis during the study period.

	
	n
	Regressive equation
	R2
	Mean measured values 
	Mean simulated values
	RMSE
	MBE
	IA
	EF

	Scheme 1

	λET (W m-2)
	3578
	λETmodeled=0.84λETmeasured+0.18
	0.83
	161.4
	137.2
	80.7
	24.2
	0.93
	0.74

	E (mm d-1)
	56
	Emodeled=1.01Emeasured +0.01
	0.82
	0.26
	0.28
	0.05
	-0.01
	0.94
	0.76

	ET (mm d-1)
	95
	ETmodeled=0.83ETmeasured +0.19
	0.83
	2.02
	1.88
	0.32
	0.14
	0.94
	0.79

	Scheme 2

	λET (W m-2)
	3578
	λETmodeled=0.83λETmeasured-1.65 
	0.75
	161.4
	142.4
	89.1
	30.5
	0.90
	0.70

	E (mm d-1)
	56
	λETmodeled=0.59λETmeasured+0.01
	0.66
	0.26
	0.16
	0.12
	0.11
	0.67
	0.13

	ET (mm d-1)
	95
	λETmodeled=0.89λETmeasured+0.15
	0.85
	2.02
	1.94
	0.12
	0.07
	0.99
	0.97


n=the sample number; R2=the determination coefficient; RMSE=root mean square error; MBE=mean bias error between measured and modeled values; IA= index of agreement; ET= model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and Poblete-Echeverria and Ortega-Farias (2009).
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Appendix C

C.1 Convergence of MCMC
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where 
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is the number M-H parallel chains; 
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is the running length of M-H algorithm; 
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is the ith component of the parameter vector 
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; 
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 and 
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 denotes the between and within-run variances; and 
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GR

 is the Gelman-Rubin (G-R) diagnostic of convergence of MCMC (Gelman and Rubin, 1992).

The evolution of GR diagnostic of convergence of MCMC was shown in Fig. C1. We can see that the GR values for all parameters tended to be less than 1.1 after 5000 iteration. 
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Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel chains with different initial values were used to calculate GR values.
B.2 Matlab Code 

clc
clear
load Chain 
% Chain is the matrix than contain N running length, K parallel chains
% it is a N*K matrix for parameter ci 
[N,K]=size(Chain); 
for k=1:K
    ss=0;
    for n=1:N
        ss=ss+Chain(n,k);
        cwb(n,k)=ss/n;               %calculate c.,k
    end
end 
for n=1:N
    st=0;
    for k=1:K
        st=st+cwb(n,k);
    end
    cst(n)=st/K;                      % calculate c.,.
end   
for n=1:N
    sb=0;
    for k=1:K
        sb=sb+(cwb(n,k)-cst(n))^2;
    end
    B(n)=n*sb/(K-1);                   % calculated B
end
for k=1:K
    sw=0;
    for n=1:N
        sw=sw+(Chain(n,k)-cwb(n,k))^2;
        swc(n,k)=sw/(n-1);
    end
end
for n=1:N
    s1=0;
    for k=1:K
        s1=s1+swc(n,k);
    end
    W(n,1)=s1/K;                        % calculated W
end
for n=1:N
    GR(n,1)=sqrt((W(n)*(n-1)/n+B(n)/n)/W(n));
end
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